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ABSTRACT 

The concept of a graded Lie ring 2 is studied systematically. A grading of LZ is 
defined as a decomposition of the additive group of L? into a direct sum with simple 
multiplicative behavior of the components. To each grading I of 2 corresponds an 
abelian semigroup I generated by the components. If 13 is a simple Lie algebra over 
the field F and the Icomponents are F-linear subspaces of li3, then r is a group. Its 
nonzero Fcharacters determine a diagonable subgroup Diag, I of the automorphism 
group of I! over F. If, moreover, (3 is finite dimensional over IF = C, then I is fine 
(cannot be refined) precisely if Diag, lY is maximal diagonable in Aut, 9. 

INTRODUCTION 

The systematic buildup of the grading theory of Lie algebras undertaken 
in this paper and in its continuation [l] is the most general and the most 
versatile approach to the Lie theory: virtually every existing part of the 
theory is a special case of the approach, being related to one or another 
particular grading of the Lie algebras. An example is the Cartan grading/ 
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decomposition of semisimple algebras over C, which goes back all the way to 
W. Killing’s pathbreaking 1888 paper [2]. Moreover, since the question of 
most detailed (fine) gradings of Lie algebras has not even been asked, most 
fine gradings have not been discovered (the fine gradings of the Lie algebra 
of traceless 3 X3 complex matrices are for the first time listed in the 
Appendix here), and alternative approaches to the structure theory and 
representation theory of even the most common Lie algebras remain unex- 
plored. 

Gradings of Lie algebras have been used explicitly for over 30 years 
(Wigner and Inbnii [3], Kantor [4], Kac [5], and many others). But usually the 
grading group was cyclic. The grading there was either obviously fine (like in 
the Cartan decomposition) or obviously not fine (hke the Z, gradings which 
give the real forms of Lie algebras over C). Consequently, the numerous 
papers involving particular gradings of Lie algebras have little to add but 
examples, once the general properties of gradings of Lie algebras are inves- 
tigated. Among other things, our approach provides alternatives to the 
Chevalley basis of semisimple Lie algebras (with cyclotomic integers as 
structure constants), and it permits the reduction of the structure theory of 
simple Lie algebras of the Car-tan types to the behavior of certain diagonable 
groups signalizing them. 

A Lie grading is defined as a decomposition 

r: 2 = gEp(d (1) 

of a Lie ring 5Z into the direct sum of a set of nonzero submodules L( g ) of 
2. Here g is running over an index set G such that for any two elements 
g, g’ of G one has either 

[L(g)> L(d)1 = 0 @a> 
or 

0 f Md, L(d)1 c L(g”) (2b) 

for some g” E G. Of course, g” is uniquely determined by g and g’. Lie rings 
are defined as in [6] as distributive rings satisfying the Jacobi identity and the 
identity [a, a] = 0. No base ring is required, though one can always use Z as 
base ring. The submodules of a Lie ring are subgroups of its additive group. 

The concept of grading is known in ring theory already. Generally it 
applies to any distributive (not necessarily associative) ring 2, where it is 
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defined the same way as it is for Lie rings. Two operations on gradings of 2 
are quite natural: coarsening and rejkment. While the outcome of succes- 
sive coarsenings of 2 is trivially unique, namely 52 as the only component of 
the maximally coarsened grading, the ultimate result of refinements of a 
grading l? of 2 is a fine grading of 2, that is, a grading which cannot be 
properly refined. 

A well-known example of a grading of a Lie algebra 2 that is fine for 
simple Lie algebras is provided by the Cartan decomposition 

of a finite dimensional Lie algebra 2 over an algebraically closed field F into 
the algebraic sum of the eigenspaces 

and h E @ * ad”,c”,@‘( h - a(h))(x) = 0) ( w 
relative to the Cartan subalgebra 6 of 2, where a runs over a certain finite 
set G of functions of the nilpotent lF-subalgebra @ of 52 into IF, 

Among them is the zero function: 

$j= Go. (34 

The remaining functions are said to be the roots of 8 acting on $2 by Lie 
multiplication. The well-known relations 

if a+/34G, (34 

express the fact that (3a) is a grading of 2 (see [7]). Cartan subalgebras and 
Car-tan decompositions also are defined over arbitrary fields of reference, in 
which case it can happen that a Cartan decomposition is not a grading. 
Similarly for nilpotent subalgebras. 
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It is clear that in the example (3a) the index set G is embedded into the 
abelian group &j/IF of eigenfunctions of the irreducible representations 

of @ by matrices of finite degree over F, inasmuch as each matrix A(h) has 
precisely one eigenvahie o,(h). Furthermore (see [8]) 

aA,+A, = aA, + aA%> k@ 

and 

n(A) = 1 if x(lF) =O, 

n(A) is a power of the characteristic x(iF) of IF if x(E) >O. (4d) 

The Cartan decomposition is known for its importance in describing the 
structure of 2 and in representation theory. However, there exist other fine 
gradings for most Lie algebras. What insight those may offer into the 
properties of the Lie algebras? The fine gradings have not been described 
before, even for the Lie algebra of complex 3 x 3 matrices (see Appendix). 

We observe that the components of (3a) are If-linear subspaces of $2. Such 
gradings of an iFLie algebra 2 may be called If-gradings of 2, It is clear that 
they are the preferred gradings of the IF-Lie algebra 2. Similarly, the 
F-gradings of any (not necessarily associative) If-algebra 52 are defined as 
gradings of 52 with the property that every component is an F-linear 
subspace of 2. Upon choosing an F-basis of each component of the IF-grading 
(l), the union of the component bases forms an F-basis of 2. Such bases are 
characterized by the fact that the multiplication table splits into diagonal 
blocks corresponding to the component spaces. 

In this paper we follow the convention that a simple IF-Lie algebra is 
defined as a nonabelian finite dimensional F-Lie algebra with no proper ideal 
# 0, and a semisimple F-Lie algebra is defined as the algebraic sum of finitely 
many simple IF-Lie algebras excluding the @algebra. 

A well-known example of an F-grading of any simple Lie algebra 2 over 
an algebraically closed field IF is the Kostunt grading. In order to define it by 
coarsening a Cartan decomposition (3a) of 52 one determines in some way a 
total ordering of the If-linear forms on 52, so that the sum of any two 
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“ positive” linear forms is “positive” and y>S ti y-6>0. Among the 
roots of Q2, there are precisely 

r = dim, 2, = r( 52) (de) 

positive roots that are not the sum of two positive roots, say, pi, ,Bs,. . . , & 
They are the simpk roots and form an F-basis of the If-linear space 
Hom,(Q,, --, IF) of the F-linear forms on Ci3,, so that any IF-linear form (Y is 
uniquely representable as 

a= i A(a,i)j3, 
i=l 

with coefficients X( a, i) in IF. If LY is a root, then we have 

sign(a)h(a,i)EZ”‘, 

p(a) = i X(a,i) E z, 
i=l 

sGdda)) = sign(a) (see PI). 

We observe that for any three linear forms occurring 
is the sum of the others, say for (Y, CY’, (Y + (Y’, we have 

&+4=P(o)+P(~‘), 

0 c [% QJ G Ci3,+,,, 

giving rise to the Kostant grading 

K:1;3= @ L,, 
i E Z/ICZ 

Li= @ li3,, 
p(a)-imodr 

(4f) 

(4g) 

@h) 

in (3a), one of which 

Pi) 

(4j) 

where K = K( ri) denotes the number of distinct values of p( CX) for the roots 
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(Y > 0 in (3a). The number 2~ - 1 is called the number of levels of the root 
system of 2. Note that 

L, = 2,. @k) 

The Kostant grading is an instance of a toroidal grading, which is defined 
as a grading obtained by coarsening a Cartan decomposition. In this paper 
we are interested in the toroidal gradings only as building blocks of non- 
toroidal gradings of Lie algebras. 

An example of a nontoroidal grading is provided by the If-grading [7] 

sl(2,C) = DC 2X2=Ce,C13Ce2@Ce,, 

l i I i 
e,= - 

2 ( 1 -i ’ e2= -- 
( ) 2i ’ 

e3=i( _1 -‘) (41) 

with the multiplication table 

Trivial examples of gradings are the algebraic sums 

of nonzero distributive rings L(g) (g running over the nonempty index set 
G) with componentwise addition and multiplication. Adopting a grading 

(44 
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for each component, we obtain the refinement 

of the algebraic sum grading, which need not be trivial. We say that the 
grading is algebraically decomposable if it is obtained by refinement of a 
nontrivial algebraic decomposition. 

Of particular interest is the case that 5.2 is a finite dimensional Lie algebra 
over the field lF, that (4m) is a decomposition of %.? into the algebraic sum of 
algebraically indecomposable If-subalgebras z 0, and that (4n) is a Cartan 
decomposition of L(g). In that case we speak of (40) as of a Remak-Catian 
decomposition. It will be an F-grading in case (4n) are If-gradings, e.g. for 
algebraically closed fields. 

Yet another example of a grading is the complexification grading 

of the complexification 

of any Lie algebra I;! over the real number field R, which is actually an R-Lie 
grading of C 52 interpreted as R-Lie algebra. 

In this article we associate with each grading l? of (1) the multiplicative 
domain I* generated by the symbols g of G and subject to the defining 
relators 

gg’= g” if g,g',g"EG and O+ [L(g),L(g’)] cL(g”), @a) 

inherent in the grading. For most applications it suffices to consider a 
homomorphic image of the multiplicative domain I* which is both commuta- 
tive and associative. The most general way to do this is to replace I* by the 
abelian semigroup r with generator set G derived by application of the 
mapping 

g+z (5b) 
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of G on G and defining relators 
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is = Z’ if g,g’,g”EG and OZ [L(g),L(g’)] CL(g”), (5~) 

W(w’W”) = (w)w, (5d) 

for any three expressions W, W’, W” in terms of the elements of c, 

is = !z’E if g,g'EG. (54 

The mapping (5b) extends uniquely to the canonical epimorphism 

We have 

THEOREM 1. 

(a) A refinement of (1) to another grading 

I-‘: 2 = $, L’(g’), 
g'EG' 

Hg = {g’/g’E G' & L(g’) c L’(g)} (5d 

implies that there are the canonical epkwrphisms 

+, I‘. * p* + r*, 

Er<,r: F+ li, 

E;,, r(d) = ii, 

.crj,,(g’)=g if g’EG’, L’(g’)CL(g), gEG. (5h) 

Miguel Gomez Lozano
Highlight
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(b) if 2 is perfect then 

G=G2, r*2 I= r* 

(c) Zf the grading (1) of the distributive ring 2 is of the form (40) 
subject to (4m), (4n), then the multiplicative domains r* is the free product 
of the multiplicative domains I,* (g E G). The abelian semigroup T is the 
predirect product of the abelian semigroups r, (g E G’). 

(d) For any Lie grading (1) the mapping (5b) provides a l-l correspon- 
dence between G and the gvator set G of T. 

(e) Zf li3 is simple, then r is an abelian group. 
(f) Let 52 be a simpZe Lie algebra over the aZgebraically closed field IF 

with the IF-grading (1) such that for some component L(e) of (1) we have 

[L(e), L(g)] c L(g) (g E G) 

and the generic adjoint action of the elements of L(e) on L(g) is nonsinguZar 
for all g # e of G. Then (1) i.s toroidal. 

Zf 52 is semisimple of zero characteristic then the rank of F is not larger 
than the rank of 2. Equality takes place precisely if I’ is a Cartan 
decomposition with split torus. n 

The semigroup I; of part (a) of Theorem 1 is said to be the grading 
semigroup of (1). It need not have a unit element; e.g., there is none in the 
case of an algebraic sum of several simple Lie algebras. If T has a unit 
element, then we denote it by 1~. It may be of the form lp = E with e 
contained in the index set G. Such is the case for Cartan decompositions (3a) 
of 2 where L(e) = Qo. The same is true for the Kostant grading (4j). On the 
other hand, for the grading (41) none of the three components corresponds to 
ir;, but I is the Klein four-group Z, x Zzso that l-, is the fourth element of 
r, supplementing the three elements of G. 

In Section 1 we prove Theorem 1. In Section 2 we deal with the 
automorphisms and derivations of Lie gradings; in Section 3, with the 
behavior of F-Lie gradings upon restriction of the field of reference to a 
subfield. In Section 4 the relation between F-gradings and trace bilinear 
forms is explored. In Section 5 a theorem on diagonable automorphisms is 
generalized. 

In Section 6 of [l] the maximal diagonable subgroups of the automor- 
phism groups of the simple Lie algebras over the complex number field are 
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TABLE 1 

(a) Lie rings 

Lie ring 

Lie algebra 

I 
Finite dimensional 

Lie algebra 

Semisimple 

Lie algebra 

Simple Lie algebra 

(b) Automorphism groups 

Automorphism group 
of the Lie ring 52 

Automorphism group of 
the Lie grading r of 2 

Stabilizer of r 

(c) Derivation rings 

Derivation ring of (! 

Derivation subring of Der 2 
belonging to the grading r 

(d) F-automorphism groups 

F-automorphism group of the 
Lie algebra 13 over the field F 

Aut, 52 nAut r 

for the F-Lie grading r of 52 

Aut, r n Stab r 
F-stabilizer algebra of r 

Diagonal automorphism 

group of r 

(e) Fderivation algebra 

If-derivation 
algebra of ri! 

Fderivation 
algebra of I 

Diagonal derivation 
algebra of I 

determined. In Section 7 the F-gradings of semisimple Lie algebras over a 
field IF are studied. Furthermore, in Section 8 Lie grading theory of the non 
semisimple Lie algebras is developed; an application to the reduction of the 
classification of solvable Lie algebras of finite dimension over C to the 
nilpotent case will appear separately in [9]. Also, in Section 9 the Lie 
gradings corresponding to Wigner-InGnii limits are discussed. 

In Section 2 we introduce the diagonal automorphism group Diag, I of 
an If-grading I which will play the key role for IF-Lie gradings of Lie algebras 
at zero characteristic (Theorem 2), whereas at prime characteristic also the 
diagonal derivation algebra diag, I must be considered. 



ON LIE GRADINGS. I 97 

TABLE 2 
CARTAN DECOMPOSITION OF A SIMPLE LIE ALGEBRA i! OVER 6 AND RELATED GROUPS 

@=CO 

r:Q= es, 
Aut F T/Inn I? 
Inn T/Diag, r 

Aut, r/Diag, IY 
Inn r 

Normalizer of .!jj in Aut, c 

Cartan subgroup of Ant, I‘ = Cartan MAD group 

Cartan subalgebra of c 

Cartan decomposition of li3 
Automorphism group of the Coxeter-Dynkin diagram 
Weyl group W( J? ) 
Aut(Coxeter-Dynkin diag.) x W( I? ) 
Diag, r >a W(n?) 

The auxiliary information on simple Lie algebras over Q= and the “concep- 
tual trees” found in tables 1 and 2 may be helpful to the reader. 

1. PROOF OF THEOREM 1 

We start with the assumption that 2 is a distributive ring with grading 
(1). We ask whether we can embed the elements of G into a multiplicative 
domain r* which is a nonempty set with binary operation denoted as 
multiplication and satisfying the conditions gg’ = g” in case 0 c 

[Ug), -%‘)I G Ud’). 
This is always possible in many different ways, since one may be able to 

add more relators to one embedding to find a coarser one; also one may make 
use of a subdomain of r*. From this reason we employ a mapping (5a) of G 
on a set G of symbols g (g E G) contained in r* and generating r* such 
that every element of r* is obtainable by finitely many multiplications 
starting from G and employing each time only factors which were seen 
before. Hence there is no proper subdomain of lY* containing G. We say that 
I’* is generated by i% 

Our aim is to construct an embedding of G into r* which is universal, 
meaning that for any embedding g + g” (g E G) of G into a multiplicative 
domain p subject to the condition that r is generated by c and that there 



98 J. PATERA AND H. ZASSENHAUS 

hold the equations 

&“’ = P’ (g, g’, g”E G, 0 + [%), %+)] c %C’)), 

there is a homomorphism of r* into p mapping g on g (g E G). We observe 
that the homomorphism must be unique and onto in case it exists at all, 
because c generates I*, and G generates f. 

The existence of the universal embedding hinges on the concept of a free 
multiplicative domain with given generator set, and the concept of a multi- 
plicative domain with a given generator set and defining relators which are 

explained in the sequel. 
In order to obtain the free multiplicative domain generated by n symbols 

a,,a ,,...,a~(calledthefreemagmaon{a,,a,,...,a~}in[lO])letusdefine 
recursively nonassociative words in n letters a,, a2,. . . , a, as follows: 

The one letter words in a,,az ,..., a, are the symbols a,,a, ,..., a, 
themselves. 

.Any nonassociative m-letter word W in a,, a2,. . . , a,, is obtained by 
juxtaposition of an m,-letter word W, and an ma-letter word W, in 

a,, a ,,...,a,suchthatm,+m,=m,1~m,,1~m,.WewriteW=W~~W2. 
Every nonassociative word in a,, a2,. . . , a, is an m-letter word for some 

natural number m. 

For example, there are the following Uetter words in a,, a2,. . . , a,: 

a, 0 ai (lbidn), 

a,oaj and ajOai (l<i<j,<n). 

Among the m-letter words we distinguish the chain words 

which are formed by chaining the m,-letter words Wi with letters in 

a,,a a,. . . , an recursively according to the rule 

w,=w, if k=l, @b) 

w,~w,=w,~w, if k=2, (64 

w1 0 . . . ow,=wp(w,~ -*- ow,) if k>2. @‘) 
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Note that necessarily 

Thenonassociativewordsina,,a,,...,a,fo~asystemZ(a,,a,,...,u~) 
with a binary operation and are said to form the flee multiplicative domain 
in the generators a,, ua,. . . , a,. 

For any grading (1) and for any mapping 

‘PI ‘i + L(gi) (l<i<n) (7a) 

of the symbols a 1, u2,. . . , a, into the component set of (l), we extend the 
mapping recursively to a mapping cp of Z(u,, ua,. . . , a,) into the set of all 
submodules of 2 by setting 

cpwo W’) = h?w)~ ‘pW’)l~ (W 

It follows from the properties of gradings that for each W of E(a I, u2,. . . , a,) 
eithercp(W)=OorO#~(W)~L(W(g,,...,g,)),whereW(g,,...,g,)isan 
element of G. Because of the inductive formation of W we have 

LEMMA 1. The element W(gl, . . . , g,) of G depends only on the mup- 
ping (7a). 

Let us recapitulate the modem generalization of the first isomorphism 
theorem of the theory of groups [6, p. 331. 

The free multiplicative domain Z(u,, u2, . . . , a .) in generators 
a,, a 2>“‘, a, is characterized among the multiplicative domains M with n 
generators b,, b,, . . . , b,, by the property that the mapping of ui on bi 
(1~ i < n) always extends to an epimorphism E of Z(u,, u2,. . . , a,) on M. 
By induction over the length of the word W we prove that sW(a,, as,. . . , a ,,) 
= W(b,, b, ,..., b,,). 

Any homomorphism E of the multiplicative domain Z into the multiplica- 
tive domain M establishes the equivalence relation R = R, defined by 

WR,W’ = E(W) = &(W’) (W,W’EZ). 
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It is multiplicative: 

W,RW;& W,RW; - (w,wz)R(wP2’) (w,,w;,w,,w,lq. 

For any multiplicative equivalence relation R on Z the R-equivalence 
classes form the multiplicative domain Z/R with multiplication defined by 

(w/R)(W’/R) =(ww’)/R (w,wd), 

where W/R is the R-equivalence class represented by W of 2. There is the 
canonical epimorphism of Z on Z/R mapping W on W/R. 

Now let us define the multiplicative domain generated by the elements 
b,, b,, . . . , b,, with defining relators 

W(b,,b,,..., b,) =W’(bJ+..,b,,) @a> 
where the couple of nonassociative words W, W’ range over a set % of 
ordered pairs of nonassociative words in rr letters. 

There is always a multiplicative equivalence relation R on the free 
multiplicative domain Z(a,, us,. . . , a,) in n letters ai, us, + . . , a, satisfying 
the relators 

W(a,,a,,..., q,)RW’(~,,~,,...,q,) [<W w’) E 81 (8b) 

viz the trivial relation R,, satisfied for all couples of elements of 
Va,,a,,..., a,): XR,,Y [X,Y ~~(u,,a,,...,u,)]. It is characterized as the 
equivalence relation with one class only. 

Any binary relation R on the set 2 is defined as a subset of the product 
set Z X l2, said to be the graph of R. It is the set of all ordered pairs a X b 
satisfying a, b E Z, UR b. With this in view it follows that the binary 
relations on Z form a complete distributive lattice. 

The multiplicative equivalence relations on a multiplicative domain form 
a complete sublattice of the binary relation lattice. Its maximal element is the 
trivial equivalence relation, its minimal element is the equality relation on 2. 

The multiplicative equivalence relations R on the free multiplicative 
domain Z(u,,u,,..., a,) satisfying (8b) also form a complete sublattice of 
the binary relation lattice. Its minimal element is a multiplicative equivalence 
relation R, satisfying (8b). It establishes the multiplicative domain 

Z(a,, aa>. * * , u.)/Rw generated by the equivalence classes u,/R,. For any 
multiplicative domain M with generators b,, b,, . . . , b,, that is subject to (8a), 
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the epimorphism E of X(a i, as,. . . , a,) on M mapping ai on bi (1~ i < n) 
defines the binary relation R, contained in R,. Hence the mapping of 
a i/R, on bi (1~ i < n) can be extended to an epimorphism of 
~(a,,+,..., an)/Rw on M. It follows that Z(a,,a,,...,a,)/R, is auniver- 
sal multiplicative domain with generators a,/R, = bi and relators (8b) 
which is uniquely determined up to canonical isomorphism. 

We observe that the multiplicative domain is a semigroup in case !R 
contains all associativity couples (W,( WaWs), (W,W,)W,) [W,, W,, W, E 
Z(a,,a,,..., a ,)]. In any case the adjunction of the associativity couples to % 
establishes the semigroup generated by b,, b,,. . . , b,, with defining relators 
(8b). The adjunction of the commutativity couples (a i 0 a j, a j 0 a,) (1~ i < j 
< n) to the relators used already establishes the abelian semigroup with (8b) 
as defining relators. 

In this terminology I* is the multiplicative domain with generator set G 
and defining relators (5a) and !? is the abelian semigroup with generator set 
G and (5c-e) as defining relators. 

DEFINITION 1. The Lie grading 

I?: 2 = $ L’(g) (9) 
gcG’ 

of 2 is said to be a refinement of (1) if every component module L’( g’) of 
(11) is contained in some component module L( p( g’)) of (1). It is said to be 
trivial if I? = I, otherwise it is proper. 

For any refinement it follows that p is a mapping of G’ on G such that 

w = c %‘). (10) 
g’=C’ 

g=dg’) 

Hence any relation 0 # [L’(g), L’(g’)] c L’(g”) (g, g’, g” E G’), implies that 

0 + [IMg)), U&‘))l L UPk”)), and hence every relation z’ = g” of I;’ 
- -, implies the relation j5(g)p( g ) = c( g”) of ?;. Hence there is the canonical 

epimorphism 

PG) = PM (g E G’). 
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Proof of 0. That 5_? is perfect means that [ 2,521 = 2, which is equiva- 
lent to 

a9 = c Md)~ Al 2 

9’1” = I 
g’, g” E G 

which implies that G2 = G, G= cc and that I’*2 = I*, r2 = I;. n 

Note that the trivial grading 2 = 2 provides an example of a grading of 
any Lie algebra 2 # 0 (even solvable Lie algebras) for which CG = G. 

Proof of(c). The proof follows from the remark that the j?ee product of 
the multiplicative domains M,, (g’ E G’, G’ some index set) is defined as the 
multiplicative domain with generator sets U,, E GjMgf and the equations 

xy = .z (x, Y, .z E Mg,, .z =xy in MpP, g’ E G’) 

as defining relators. In case there is the generator set HP, of M,, with 

defining relator set !Rt,, (g’ E G’), then the disjoint union of the generator 
sets Hgj is a generator set of the free product of the MgT’s with UgIEGf!Jllgt as 
defining relator set. n 

We remark that the elements of the free product of the multiplicative 
domains Mgr (g’ E G’) are presented uniquely as nonassociative words 

W(x,, x2,. * * , x,) with m letters xi E Mg: (gl E G',l < i < m) such that for 
any subproduct of the form xi 0 xi+i we have g! z gi+i. The rule of 
multiplication is by juxtaposition excepting the multiplication of two one 
letter words, say xi, y,, with letters xi, yi belonging to the same MgP. In that 
case the product of xi, yi is defined as the one letter word zi where 
zi=xiyi in MgP. 

Similarly the predirect product of the abelian semigroups F,,_(g’ E G’) is 
defined as the abelian semigroup with generator set U,,,,,rgr and the 
equations 

xy = 2 ( x, y, .z E r,,, x =xy in Fg,, g’t G’) 

as defining relators. 
In case there is the generator set gg, of Fg, with defining relator set B,, 

(g’ E G’), then the disjoint un$n of the generator sets Hgx is a generator set 
of the direct product of the Hg,‘s with the defining relator set obtained by 
forming the union of the relator sets gg, (g’ E G’), the associativity condi- 
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tions for any three (nonassociative) words in letters belonging to any one of 
the gt,,‘s, and commutativity relations 

xy = yx for x E gg,, y E EgjC (g # g’; g, g’ E G’). 

We remark that the elements of the predirect product of the abelian 
semigroups Fs, (g’ E G’) after displaying some total ordering of G’ are 
presented uniquely as associative words of the standard form x1 x2. . . x, 
with 1~1 letters xi E Tg: (g( E G’) subject to the lexicographic condition 

tzl< g, < . . * < g,* 
The rule of multiplication of two standard words 

x1x2...x,, Y1Y2...Ym, 

is obtained by merging the two subsets { g;, . . . , g& }, { g ;‘, . . . , gZ,> into one 
subset { h,, . . . , h,,,} of G’ such that h, < h, < . . . < h,,,,, and by setting 

( x1x2 *. . %JYlY2 * . . YJ = blZ2 . . . %dJ 

( I 
zi E iy zi = xk if g;=hi, hiP {g;‘,...,g:& 

zi = xk’ if g;'=hi, hi@ {gi,..vg:,); 

zj = xkyk’, if g;=g;!=hi). 

We observe that the predirect product of the abelian semigroups TgP (g’ E G’) 
must be distinguished from-the direct product. The latter can be formed only 
if each abelian semigroup r,, has a unit element, say the unit element l,,. In 
that case it is defined as the subset of the product set of the r,,‘.s formed by 
the elements with all but a finite number of components equal to the unit 
element, and by adopting componentwise multiplication. 

For example the direct product of two groups of order 1 is a group of 
order 1, but the predirect product of two groups {e,}, {e,} of order 1 is the 
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abelian semigroup with three elements e,, e2, e1e2 and the multiplication 
table 

Proof of (d). Let 2 be a Lie ring with grading (l), and let (7a) be a 
mapping of the symbols a 1,. . . , a, into the component set G of (1). Let us 
form the subset X of Z(a,,a,,..., a,) formed by those elements W for 
which (p(W) # 0. We define a binary relation sx (briefly = ) on X by 

w=,w * W(g,,g,,...,g,)=w’(g,,g,,...,g,). 

Clearly, =x is reflexive, symmetric, and transitive. Moreover we have the 
following rules: 

I. Support law: If WoW’EX thenWEX, W’EX, W’oWEX. 

II. Alternutive law: 

(a) If ... OWoW’o ... EX 
and “. ow’owo . . . ?g_Ty 

then . . . owow’o . . . E . . . OW’OWO . . . . 
@) If . . . .wow’o . . . EX 

and * ’ * .(W~W)O **. EX 
then . . * owow’o . . . E . . . .(wcIw’)o . . . . 

(c) If *.. .W0W’0 ..- EX 
and *. . OW’OWO . . . gx 

then . . . .(WoW)o ... EX. 

III. Jacobi identity: 

(a) If *. - owow’ow”o . . . EX 

and . . . owfow”owo . . . EX 

then . .- .wow’ow”o . . . 3 . . . ow’ow”oq7o . . . , 

(b) If . * * owow’ow”o . . . EX 

and a.. ow’ow”owo . . . px 

then . . . ow”owow’o . . . EX. 

IV. Substitutional law: If 

W,W’,W”,WQW’,WQW”EX 
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and if 
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then 

Here we have denoted by . . . 0 W 0 W’ 0 . . . etc. a chain word with W, W’ 
as successive component words; the initial segment of the chain word 
(preceding W) is denoted by . . . 0, and the terminal segment (succeeding 
W’) is denoted by 0 . . . . Of course the initial or the terminal segment or 
both may be empty. W 0 W’ itself is an example. We see that II, III imply the 
rule 

if WOW’EX then W’OWEX and WaW’=W’oW. 

For rules II, III it is stipulated that both . . . 0 and 0 . . . remain 
unchanged throughout. 

Note that the word W does not belong to X precisely if cp( W) = 0. That 
= x satisfies I, IV is clear; II follows from the rule 

[ . . . . x,y )... 1-L . . . ) y ) x , . * . I=[ . ..> [X,Yl,...] 014 

of Lie multiplication of several factors, where we define recursively 

1 Xl> x2, x31 = [Xl> [x2, x,11 P 

1 Xl> x 2’“” XJ = [x1,[x2,...,xn]] (rGr3; ZqEL, l<i<n); 

(lib) 

III follows from the rule 

[ . . . ) x ) y ) 2). . . I+[ . . . ) y ) 2 ) x ) . . . I+[ . ..) z,x,y )... ] =o. 

The directness of (1) is essential for verifying II, III. 
A Lie congruence between the nonassociative words in the letters 

a,,a 2,...,a, is defined as a congruence relation =x on any subset X of 
Cta,,a,,..., a,,) (said to be the support of the Lie congruence) which is an 
equivalence relation on X subject to I-IV. The proof of Theorem l(d) will 
only use the Lie congruence property of the relation =x defined above. 
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For any finite subset u of Z(a,, us,. . . , a,) the nonassociative words 
employing only elements of u as letters are in correspondence with the 
system Z(a) of nonassociative words in u with 0 as partial binary operation. 
Moreover, any Lie congruence on {a r, us,. . . , a, } with support X restricts to 
a Lie congruence on u with support X n Z(u). 

Theorem l(a) suggests the recursive formation of the mapping 

(P:2:(u,,u,,...,uJ -+T 

such that 

LEMMA 2. For W, w’ of X such that the “factors ” of W, W’ are the 
same, one has ij( W) = $( W’) = g, where 0 # ‘p(W) E L(g). 

Proof. Using the remark made above, it suffices to consider the case that 
W is an n-letter word and that the letters forming W are distinct. Lemma 2 
is trivial for n = 1. It follows from II (alternative law) for n = 2. It follows 
from III (Jacobi identity) for n = 3. 

Apply induction over n. Let n > 3. Using Lemma 1 and rules II, III 
repeatedly, it follows that for any n-letter word W in a,, . . . , a, of X there is 
a permutation v of 1,2,...,n for which ~,,~a,,~ ... ~a,,~ belongs to X 
and 

o+ [‘p(u,,),cp(u,,),...,cp(u,,)l ELkL gEG. 

It suffices to show that for any permutation v of 1,2,. . . , n and any two 
elements g, g’ E G the statements 

imply that g = g’. 
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Suppose V is any (n - l)-letter word employing each of the letters 

a2,. . . , a,, for which 0# [cp(al),cp(V)]. Then it follows that 0# q(V). Also 
(12a) implies that 

O# [cp(a,),..., da,)] E -W’)T [ cp(aA3 L(g")l E L(g) 

for some g” E G. The induction assumption applied to a2,. . . , an implies that 
v(V) c L(g”), hence [cp(ai),cp(V)] 5 L(g). Applying III to (12b), we try to 
move a, as far left as possible. Without loss of generality we can assume that 
either ~1 = 1 or 7r2 = 1. If ~1 = 1, then we have seen above that g = g’. 

Let a2 = 1. Applying II, it follows that either 

O+ [cp(a,),cp(a,,),...l EL(d) [using II(a)], 

in which case we show as above that g = g’, or else 

0 z [cp(a,,), cp(al>, dad,..., darn>1 E -Ug’) ow 
and [ cp(al), q(a nl), . . . ] = 0. Now we apply III to (12a), trying to move a,,l 
as far left as possible, and fixing al. We find that either 

O# [cp(a,),cp(a,,),* ... *I EL(g), (124 

or 

O# [cp(al),*,cp(a,,),* ... *I EL(g). (124 

In case (12d) holds, apply II to (12d). Either 

0z [cp(a,,),cp(a,),* ... *I EL(g)* 

in which case we conclude as above that [q~(a,~), q(V)] E L(g) for any 
(n - l)-letter word V in a,,,...,a,, and hence g’= g, or else 

Oz [[cp(a,,),cp(a,)l,* ... *I EL(g)* 

0 z [ cp(aTl>, dadI E UC)9 g” E G. W) 

Applying the induction hypothesis to a,, 0 a,, an2,. . . , a,,,,, it follows from 
(12d), (12f) that g = g’. 
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In case (12e) holds, we apply III to the initial Ssegment of (12e). If 

then it follows from the induction hypothesis applied to an2,. . . , a nfl that 

hence 

O+ [*,da,),* ... *] EL(g*), 

O# [‘p(a,,),..., da,,)1 E Lb*); 

O+ [cp(a,i), -%*)I EL(g), 

0 + [da,,), L(g*)l E L(dy a%) = -G’)Y 

It remains to discuss the case that 

O+ [*,~(a,>,~(a,~>,* ... *I EL(g). 

Apply III to the initial Ssegment of (12g). The case 

0 + [~(a,,),* ,cp(ai), * *. . *I E L(g) 

g = g’. 

02d 

is dealt with as above. Also we have dealt with the other case, 

already above. n 

Let us briefly d&cuss a semigroup F that will turn out to be an 
epimorphic image of I. 

Let F(G) be the free semigroup on G, i.e. the set of all associative words 

w=g,g,**.g, (Isa) 

employing some elements g i, . . . , g, of G as letters, with juxtaposition as 
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multiplication rule and identity as equality relation. We define a binary 
relation 

w =rW’ 

between certain words, say (lOa) and 

of F(G) by demanding that for any two words 

ow 

(134 wl=xl...x,, w;=x;x;...x;t 

of F(G) satisfying 

02 [L(x,),...,L(x,),L(g,),...,L(g,),L(x;),...,L(x~,)l EL(g), 

0 # [L(x,) )..., L(x,), L(&) ,...> L(gL), Nr;L, -%I41 E J%‘) 

kg’=) 

we always have g = g’. 
The relation -r clearly is reflexive, symmetric, and transitive. Moreover, 

if (13a), (13b), and 

w”=g;lg;...g;!, (13d) 

are three words of F(G) satisfying 

w “rW’, 03e) 

then for any two words satisfying 
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we find that g = g’ due to (13~) and Lemma 2. It follows that W’W -r 
W”W’. Similarly it follows that WW” =rWW”. Hence the congruence 
relation = r satisfies the substitutional law of multiplication. Thus it follows 
that the congruence classes of the congruence relation -r form a semigroup 
F with the classes g corresponding to g E G as generators. Again from 
Lemma 2 it follows that gg’ =r g’g for g, g’ of G, so that p is abelian. 

Moreover, by definition we have 

in case g, g’, g” E G and 0 # [L(g), L(g’)] E L(g”). Finally we observe that 

g =rg’ k>g’=) 

if and only if g = g’. It follows that there is the canonical epimorphism of r 
on p mapping g on g for g E G. Furthermore, we have g = g’ if and only if 
g = g’. Thus part (d) of Theorem 1 is established. n 

For example, the grading semigroup of the C-Lie grading (4e) has three 
generators gi, gs, gs with defining relators 

-- -- - _- -- - 
g,g, = g2g1= g3, g,g, = g3g2 = ZlT g,g, = g1g3 = g2, 

so that it is isomorphic to the Klein four-group. We observe that (4~) is not a 
Cartan decomposition of sl(2, C). 

Another example is provided by the Cartan decompositions 

of a simple Lie algebra 2 over the algebraically closed field IF of characteris- 
tic 0. Here 2, is the Cartan subalgebra of 5!. Its F-dimension is an invariant 
natural number r called the rank of L3. The index set G consists of the zero 
linear form and the roots p. It was pointed out already in the introduction 
that there are certain r roots pi, p2,. . . , /I, forming a Dynkin diagram such 
that the root spaces S?a,, . . . , Q3, generate the Lie algebra li3. Moreover, the 
linear forms pi,. . . , /I, are linearly independent over the field IF. It follows 
that T is the free abelian group of rank r generated by Bi,. . . , &. 

The grading semigroup of the Kostant grading defined in (4j) of the 
introduction is the cyclic group of orde_r K( 52) ( = the Coxeter number + 1) 
which is generated by the element of K that corresponds to the component 
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A,. It is the lowest order regular element in the simple simply connected Lie 
group with the Lie algebra 2, belonging to the conjugacy class denoted by 
[LI,..., l] in [5], [ll]. 

Proof of (e). Let 2 be a Lie ring satisfying [ 2, II!] = 2 with no proper 
ideal # 0. Let (1) be a grading of 2. Since 13 is simple nonabelian, it follows 
that the ideal generated by any L(g) is 2. Using III, that ideal is obtained as 
the sum of all chain products 

O# [L(g,),L(gz),...,L(g,)l 

( nEZ’O; g1,gz,-.., g,EG, atleastoneg,equaltog). (14a) 

It follows from the directness of (1) that any L(h) is the sum of those chain 
products for which 

- - 
g,g,.** &=A. (W 

Since L(h) # 0, it follows that there are indeed elements g,, g,, . . . , g, of G 
(among which is also g; say g = g j) satisfying (14b). Hence the equation 
,@ = h is solved in r by 

x= fi&. 
i=l 
i#j 

Since the g’s generate T, it follows that any equation gx = y with y in T has 
a solution x in I;. For the same reason every equation w = y with z, y E r, 
has a solution in F. Since f; is abelian, it follows that r is an abelian group. w 

Proof of (f). Without loss of generality we may assume that (1) cannot 
be refined to another IF-Lie grading with the same properties as (1). The 
assertion is that L(e) is a Cartan subalgebra. 

By assumption L(e) is an lF-subalgebra of 2 with representations 

A,: L(e) + End,L(g), 
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defined for each index g such that the generic linear transformation 

[h l,“‘, h, an F-basis of L(e); rr,. .., x r algebraically independent elements 
over IF, lF(x,,..., x,) a rational function field in r variables over IF] is 
nonsingular for all indices g # e. Moreover, in view of the equation 

it follows that the generic linear transformation of L(e) has the characteristic 
root zero: 

tZ,- i xiA,(h,) =t’~(f(t,~r,...,~~) 
i=l 

[T’E z >O; r’ < r; f(t, Xl,. . .) x,) homogeneous of degree T - r’ in t, x1,. . . , x, 
over IF; f manic of degree r - r’ in t]. Since IF is infinite, it follows that there 
is an element 

of L(e) for which the linear transformations 

are nonsingular and moreover, 

There holds the spectral decomposition 
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of I into the direct sum of the eigenspaces of A,(x) for the characteristic 
root pi, of A,(x), so that in accordance with [6], 

if [L(,g), L(g’)] = 0 or if 0 c [L(g), L(g’)] c Qg”) (g, g’, g”E G) and 
&, + p,,, is not a characteristic root of Apjj(x), but 

Hence we obtain the refinement 

or l? with component space L(e, pi,) containing x such that 

Pie = O> &,#O if l<i<n,, 

Pi, + O if e#gEG, l<i<n,. 

By assumption it follows that 

n,=l, L(e, Pi,) = L(e), 

r’= r, A,( y ) is nilpotent for y E L(e). 

From Engel’s theorem it follows that L(e) is nilpotent. Since A,(x) is 
nonsingular for all indices g z e, it follows that L(e) is self-normalizing in 2, 
i.e., L(e) is a Cartan subalgebra. w 

2. AUTOMORPHISMS AND DERIVATIONS OF LIE GRADINGS 

In this section we investigate the action of the automorphism group Aut 53 
of the Lie ring 13 on its gradings. Then we restrict our attention to the action 
over a field of reference IF. Among the subgroups related to a particular 
F-grading (l), the most important one turns out to be the diagonal subgroup 
Diag, I. For the complex or real number field Diag, I is itself a Lie group. 
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Its infinitesimal ring is the derivation algebra diag, I. It can be defined 
purely algebraically for every field of reference, and it supplies additional 
information on the F-gradings of 2 and their mutual relationship. The 
behavior of the diagonal group and diagonal derivation algebra form the 
backbone of the theory of F-Lie gradings (see Table 1). 

Most of the general concepts introduced here can be directly generalized 
to distributive rings and algebras. 

2.1. The Automorphism Group and the Stabilizer of a Grading 
We introduce the group Aut I, called the automorphism group of the Lie 

grading (l), as the subgroup of the full automorphism group Aut li! of 2 
formed by the automorphisms (Y of Ii3 which merely permute the component 
spaces, say, 

where 

ii:G+G OW 

is a permutation of the elements of G. It follows that there is the permutation 
representation 

Ar:AutI’+SymmG (I54 

A,( CY) = Z 

of Aut I’ as a subgroup A r Aut I of the full permutation group Symm G of G. 
The permutation representation Ar of Aut I is extended to a representation 

&.:AutI+ Autf; 

of Aut I by automorphisms of the abelian semigroup r. This is because any 
relator &j’ = g” (g, g’, g” E G, 0 z [L(g), L(g’)] c L(g”)) is carried by the 
element OL of Aut I to the relator Z(g)Z(g’) = Z(g”), due to the relation 

0 + ML(d), 4&m c 4wn 
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The kernel of both Ar and ii- is the stabilizer of r in Aut I: 

kerAr=StabI’= {cwlcrEAutQ &Vg(gEG+a(L(g))=L(g))}, (1%) 

a normal subgroup of Aut I with factor group isomorphic to Ar Aut 5J and 
h, Aut li3: 

Autr/Stabr=A,AutI’=&.Autr. (we) 

2.2. The Derivation Ring of a Grading 
Correspondingly we introduce the derivation ring Der I of the Lie 

grading (1) as the subring of the full derivation Lie ring Der 2 of X? that is 
formed by those derivations of Q which carry every component module into 
itself: 

Derr= {did ~Derc ikVg(g~G+d(L(g))~L(g))}. (16) 

2.3. The If-Autommphism Group and the F-Stabilizer of an F-Grading 
If XJ is a Lie algebra over the field F and (1) is an IF-Lie grading, then we 

introduce the Fautommphism group Aut, I of (1) as the intersection of 
Aut I with the full F-automorphism group of 23: 

(17a) 

The intersection of Aut F I with Stab I is called the F-stabilizer of r, 

Stab,l?=Aut,QnStabr 

It is a normal subgroup of Aut, I’ with factor group isomorphic to Ar Aut F r: 

Aut, r/Stab, l? = Ar Aut, 2. (174 
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The component spaces L(g) are If-representation spaces of the group 
Stab, r for the action 

$,:Stab,I’+U(EndF)L(g), 

J/,(~)(u)=cx(u) [aEStab,I’, uEL(g), gEG]. (17d) 

Thus the IF-Lie algebra S! appears as IF-representation space of the sum 
representation eg E o ‘c/s. M oreover there is the F-Stab, r-operator homomor- 
phism 

E g,g,: %+%w) + GdL 

Eg,g’(U@‘2)) = [% 01 (17e) 

(g, g’E G; I&g’) = 0 if [L(g), L(g’)] = 0, but gg’= g” if 0 f [L(g), L(g’)] 
c L(g”) and g” E G), such that 

sg,&@4 = Eg’,g (o@u)=O [g,g’EG; uEL(g),vEL(g’)] 

E g,,gZ,g3(%@%@%) + sg,,g,,g,(W%%) + sg3,g,,g,(W%@4 = 0, 

g,EG, +,5(g) (i=1,2,3) 

where 

Having analyzed the connection between the stabilizer group and the 
structure of the Lie algebra 2, we can use the result to build up the structure 
as follows: Let S be a group, and let G be a system of nonzero If-representa- 
tion spaces L(g) (g E G) of S such that the direct sum 

f: 52 = $ L(g) (la) 
gEG 

is a faithful (F-S representation space. Furthermore let a partial commutative 
multiplication be defined on G such that gg’ is in G if and only if g’g is in G 
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and gg’= g’g (g, g’E G). For any two elements g, g’E G let there be an 
IF-G operator homomorphism 

E &g’: G+w4g’) -G&) [L(gg’)=O if gg’@G], (17i) 

satisfying (17f), (17g). Then (17h) is an IF-Lie algebra according to the rule of 
Lie multiplication 

[u,D] =E,_.(uBU) [uEL(g), uEL(g’); g,g’EG], (13) 

such that (I7e) is an F-Lie grading f of SJ, and S is a subgroup of Stab, r. 
The If-stabilizer of I appears as the kernel of the permutation representation 
A,(Aut F I) of Aut r I in Symm G as well as the kernel of the representation 
Ar.(AutF I) in Am, T. 

2.4. Cartan Decomposition of Semisimple Lie Algebras over Algebraically 
Closed Zero Characteristic Fields 

For a Cartan decomposition 

(18) 

of a semisimple Lie algebra 5J over the algebraically closed field IF of 
characteristic zero, the If-stabilizer of l? in Aut 2 is formed by all If-automor- 
phisms a of 2 which merely multiply each element of E3, by a nonzero 
factor A,(p). This is because each root space 5JP is l-dimensional. Since the 
number of linearly independent roots equals the If-dimension r of the Cartan 
subalgebra 5Z0, it follows that the action of (Y on Q0 is trivial: a(h) = 
h (h E EO). Hence Stab, I is an abelian subgroup of Aut, 2, called the 
Cartan subgroup corresponding to XJO. By a theorem of Chevalley all Cartan 
subgroups are conjugate under Aut F 2. They are self-centralizing. The nor- 
malizer of Stab, I in Aut, Q is Aut, I, a splitting extension of Stab, I with 
finite factor group. The group Inn 9 (inner automorphism group of 2) 
generated by the automorphisms of 2 of the form exp(ad, x) [X E S? with 
nilpotent adjoint representation ad, x] intersects Aut F I in the normal 
subgroup Inn I (inner automorphism group of r), a splitting extension of 
Stab, I represented by a finite group W( 23) of reflections of degree r( 2) = 
dim, 1;3,, called the Weyl group of 2. The factor group Aut F I/Inn, I is 
represented by a finite subgroup Out, I (outer automorphism group of I’) 
isomorphic to the automorphism group of the Coxeter-Dynkin diagram of 2, 
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as well as to the factor group Aut, I/Inn, I, so that the semidirect product 
Out, I K W( L3) represents the factor group. The group hr(In+ I) is a 
subgroup of the automorphism group of r which is generated by the 
reflections in the root vectors corresponding to the roots jl. It is isomorphic to 
the Weyl group of SJ. On the other hand I; is a free abelian group of rank r, 
so that Aut T is isomorphic to the unimodular group of degree r, Aut ? = 
GL(r, Z). Hence we obtain a faithful representation of the Weyl group by 
integral matrices (see Table 2). 

2.5. The Diagonal F-Autmnorphism Group of an F-Grading 
An important normal subgroup of Aut, I contained in the center of 

StabJ is the subgroup Diag, r formed by the diagonal F-autmwrphims of 
I, i.e. those automorphisms (Y of I for which 

where the diagonal factors A, are nonzero elements of IF depending only on 
(Y and g. 

The automorphism property implies that 

L(dA,k’) = Ah”) (g, $7 g”E G) 

if 0 + [%-z), %‘)I C -f4g”); 

hence there is the corresponding homomorphism 

h,:bU(ff), 

&x(Z) = A,(g) (g E G) 

of T into the unit group of lF, 

U(F)=iF\O. 

W) 

(W 

(194 

Conversely, every homomorphism 

-- 
A:FqF) 094 
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of T into the unit group of F induces the diagonal If-automorphism 

‘ya: 2 + 13, 

q(x) = qg>x irEA( g=l 

of r such that 

2 = &,. 

This is because 

qg)qg’) = is@‘) 

119 

(134 

ow 
if g, g’, g” E G and 0 # [L(g), L(g’)] c L(g”). Hence there is the canonical 
isomorphism 

\k:DiagFl++Hom(~+U(lF)), 

‘k(a)(Z) = A,(g) (CwE Diag, l’) (2Oa) 

between the abelian group of the F-diagonal automorphisms of r and the 
group formed by the homomorphisms of r into the unit group of F. 

The F-diagonal group of the Kostant grading defined in (4j) of the 
introduction is the cyclic group of order ~(2) generated by the Kostant 
automorphism 

W-4 

where 6 is a primitive ~(2)th root of unity. Hence 

nag, K = (a,), (204 

bhg,K = K. (204 

At this point we shall try to characterize the diagonal F-groups. We 
observe that they are abelian subgroups of Aut F Ii3 with diagonable action on 
2 over IF. Conversely, let S be an abelian subgroup of Aut r 2 with 
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diagonable action over F. Thus there is an Ifdecomposition (1) of 113 such 
that 

au = A,(g)u [u+g), -S], 

where the mappings A(g) of S on the nonzero element A,(g) of F constitute 
distinct homomorphisms of S into U(F) for the elements g of the finite index 
set G. It follows that for 

we have 

a(u) = A,(&, a(~‘) = A,(&‘, [w 4 E Jqg, g’), 

+d]>= [A,(g>wL(g’)u’] =A.(d~,(g’)b’l~ 

hence 

a([u,u’]) = [a(u)&‘)] =o if [L(g), L(d)] = 0; 

also 

+,u’l) =A,k”>[ u, u’] = A,(g)A,(g’)[w u’l = b(u)> +‘)I 

if OC [L(g), L(g’)] C L(g”), g, g’, g”E G. 

Here (1) is both a Lie grading and an F-S decomposition of 2. In any such 
case the conditions (17f), (17g) are automatically verified. In our case the F-S 
decomposition (1) depends only on S, so that we may write 

l?=r,. (204 

Trivially we have 
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In the case of the Car-tan decomposition (17h) of a semisimple Lie algebra 
over an algebraicaIly closed field IF of characteristic 0 it was shown already 
that 

Stab, I = Diag, I. (2Og) 

2.6. 7’he If-Derivation Algebra of an F-Grading 

We also introduce the If-Derivation Algebra Der, I of an F-Lie grading r 
as the intersection of Der I with the If-derivation Lie algebra Der, L3: 

Der,I=DerInDer,Q. (2la) 

The component spaces A(g) are F-representation spaces of the F-Lie algebra 
Der, 2 for the action 

JI,:DerFI-+EndL(g), 

CW 

Thus the [F-Lie algebra Ii3 appears as faithful F-representation space for the 
direct sum representation 

#:Der,I+EndE, 

Moreover, there is the IF-Der, I operator homomorphism (17e) satisfying 
(17f) and (17g). 

In the opposite direction, let G be a system of nonzero representation 
spaces L(g) (g E G) of the Lie algebra 3 such that the direct sum (21~) is a 
faithful IF-z-representation space. Let a partial commutative multiplication be 
defined on G, and let an t’F-3 operator homomorphism (17e) be defined 
which satisfies (17f), (17g). Then (17h) is an F-Lie algebra 5! according to the 
rule of Lie multiplication (17j) such that (17f) is an If-grading I? = Is of Ii3 
and 3 is an [F-subalgebra of Der, I. 
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2.7. The Diagonal F-Derivation Algebra of an IF -Grading 
An important central ideal of Der, I? is the diagonal Fderivation algebra 

diag, r of I? formed by the diagonal If-derivations of I’. They are defined as 
those F-derivations d of r for which 

44 = 4ik)u b&d, gEG1, (224 

where the diagonal factors 6,(g) are elements of IF depending only on d and 
g. The derivation property of d implies that 

&d(g)+ h(d) = &(g”) (0 f b(g), L(d)] _c L(C); g, g’, g”E G), 

(22b) 

so that there is the multiplicative to additive homomorphism 

of I; into F. 
Conversely, every multiplicative to additive homomorphism 

- - 
6:r+ 

of r into IF induces the diagonal If-derivation 

of r such that 

and there is the canonical multiplicative to additive monomorphism 

- 
6:diag,I’+hom,+(I’-+!F), 

WG) = a,(g) [d EdiagFr, geG] 

(224 

(224 

W) 
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between the abelian Fderivation algebra of the diagonal If-derivations of r 
and the F-linear space formed by the multiplicative to additive homomor- 
phisms of r into IF. 

The diagonal Ifderivation algebra of I is a central If-subalgebra of Der, I 
with diagonable action. 

At this point we shall try to characterize the diagonal F-derivation 
algebras. We observe that they are abelian subalgebras of Der, 2 with 
diagonable action on 2 over F. Let 3 be an abelian F-subalgebra of Der,Q 
with diagonable action. That means that there is an F-decomposition (1) of 2 
such that 

where there are finitely many homomorphisms of 3 into the additive 
character group of 3 over F mapping d on 6,(g) with g running though G. 
It follows that for g, g’ E G, u E A(g), d E 3, we have 

W) = &(gb, d(v) = &j(g’h 

where 

&=g”EG, ~,(g”)=6,(g)+~,(g’) 

if 0 Z [L(g), L(g’)] C L(g”). 

Hence (1) is both a Lie grading and an lF$‘$decomposition of 2. In any such 
case the conditions (17c), (17d) are automatically satisfied. In our case the 
F-$decomposition (1) depends only on 3, so that we may write 

r=r,. w4 

TrivialIy we have 

If 52 is a finite dimensional F-Lie algebra, then for any IF-Lie grading (1) the 
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F-automorphism group Aut, r is algebraic. The same is true for the stabilizer 
Stab, I. The corresponding OFderivation algebra is Der, I. The l-component 
(Am, r), of Aut, I coincides with the l-component (Stab, r), of Stab, r. If 
IF = R or C, then the factor space of the closed linear group Aut F I over the 
closed normal subgroup (Stab, T), is discrete. Furthermore we have 

(Stab, r)i = (exp((Der, r),)). (22i) 

2.8. Fine IF -Gradings and MAD Subgroups of Aut F 2. 
For any finite dimensional IF-Lie algebra ri3, any IF-Lie grading (1) can be 

refined to an IF-Lie grading which has no proper If-refinement. 

DEFINITION 2. The F-grading (1) is said to be fine if it has no If-refine- 
ment. 

The diagonal group 

Diag, r = Hom( I + U(F)) 

of a fine If-grading (1) is a maximal diagonable subgroup of Aut F 53. 
Conversely, if S is a maximal diagonable subgroup of Aut r 2, then there 

is a fine If-refinement r of r,. Its diagonal group is S. 
If 2 is simple, then F is a finitely generated abelian group with ?;, as 

epimorphic image. Hence Hom( r + U(Q) = Hom( rs --, U(F)). This means, 
in view of the duality theorem, ?; = Ts in case IF is algebraically closed of zero 
characteristic. In other words, rs is fine. 

Thus we have established 

THEOREM 2. The IF-grading (1) of a simple Lie algebra 2 over an 
algebraically closed field F of characteristic zero is j&w if and only if the 
diagonal subgroup Diag , r is a muximul diagonuble subgroup of Aut F x3. 

We abbreviate “maximal diagonable subgroup” of Aut, SZ as “MAD 
subgroup.” 

In case IF is a.lgebraicalIy closed of prime characteristic p > 0, it follows 
that the kernel of the epimorphism of F on rs is a finite p-group. Similarly, 
the diagonal If-algebra 

&g, r = Hom( I += IF+ ) 
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of a fine F-Lie grading of any finite dimensional Lie algebra 2 over the field 
F is a maximal diagonable F-subalgebra of Der, 2. 

Conversely, if 5 is a maximal diagonable F-subalgebra of Der, 2, then 
there is a fine If-refinement r of I,.Its diagonal Fsubalgebra of Der, 2 is 
3. If -2 is simple nonabelian, then I is a finitely generated abelian group 
with Is as epimorphic image. Hence 

In case IF is algebraically closed of prime characteristic p > 0, it follows that 
the kernel of the epimorphism of r on rs is contained in the ppower 
subgroup Fp = {[“It E ?;} of l?. 

Thus in the case of prime characteristic p, automorphisms and derivations 
are seen to be independently useful. Generally we remark that for any 
refinement of the grading (1) to the grading 

rh 2 = $ c(g’) 
g’E6’ 

@a) 

subject to 

L(g) = e3 a97 (g E GL 
g’ E Y(g, I-‘) 

y(g, r9 = {g’lg’~ G’ & -w&T’) c L(g)}, (234 

every automorphism (Y’ of 2 stabilizing I’ also stabilizes I, inasmuch as 

GJ(d) = 63 +4g’)) = a3 NC) = J%z)> 
g’EY(g,r’) g’s m, r’) 

so that 

Stab I? c Stab r. @3d) 

Similarly, every derivation of 2 stabilizing I’ also stabilizes r, so that 

Derr’cDerI. (Be) 

In the case of the Cartan decomposition (17h) of a nonabelian finite dimen- 
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sional simple Lie algebra 13 over an algebraically closed field IF of characteris- 
tic zero, it is clear that 

Der, r = diag , I (23f) 

because of the one-dimensionality of the root spaces. 
The derivation algebra of SZ is formed by the action of the adjoint 

representation of 2, Der, 5Z = ad, 2, which is faithful and irreducible. The 
subalgebra % = diag, I is a maximal diagonable subalgebra of ad, 2, 

?I = ad, 5&. (23g) 

Conversely, any maximal diagonable subalgebra % of ad, 2 is of the form 
(23g) for some Car-tan subalgebra QO of SJ. 

2.9. Partial Ordering of IF -Lie Gradings 
The F-Lie gradings of a Lie algebra 2 over the field F form a partially 

ordered set according to the refinement concept: 

rsr’ (244 

if r is a refinement of r’. The notation adopted in (24a) reflects the remark 
that any component of I is contained in some component of r’. We observe 
that the two relations 

rs rf, r’s r (24b) 

imply that r = r’. 
If there is an F-grading I satisfying the conditions 

rd r,, rs r, (24~) 

for two F-gradings Ii and I’, of 2, and if any F-grading I’ of 13 satisfying 
the conditions 

also satisfies the condition 

r’s r, (244 
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then l? is said to be the meet of the two F-Lie gradings l?r, rs: 

r=r,nr,. 

We observe that in that case any component of r is contained in some 
component of l’r as well in some component of l’,. As a matter of fact, 
because of the maximality property of l?, every component of r equals the 
intersection of some component of r, and a component of l?,. The condition 
for the existence of rr n JT, is the compatibility condition requiring that any 
component of rr be the sum of the intersections of that component with the 
components of l’s. In fact, that condition is symmetric. It is satisfied as soon 
as there is any F-grading l? of 5Z satisfying (24d). 

For example, for any F-Lie grading l? of 2 the two IF-Lie gradings 

rl = rDiagF I! ) r2 = rdiagF C 

satisfy (24e), so that rr, rs are compatible, 

r4y-q. Wd 

But equality need not apply. For example, let 

where 13 r, 5! s are two isomorphic simple Lie algebras over the field IF of zero 
characteristic. Let 

be an IF-isomorphism of 13 r on Ci3,, and let 

be the F-Lie grading for which 
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It follows that 

Diag, B = 1, diag, %? = 0, 

and Ii = Ia are trivial F-Lie gradings, but 

2.10. Saturated F -Lie Gradings 

DEFINITION 3. The F-Lie grading (1) of the Lie algebra 2 over the field 
F is said to be saturated if 

r = rDiag, r n rdiagF r * (25) 

Let us exhibit firstly three examples of unsaturated Lie gradings repre- 
senting different contexts in which saturation does not occur with necessity: 

I. The Kostant grading K of sl(3,R) is unsaturated, because the real 
number field does not contain primitive third roots of unity. 

II. The grading 

r42,F) = L(g,)wg,), 

is unsaturated for any field F of characteristic 2, because it contains no 
primitive square root of unity. 

III. The grading 

r: ~p2~= L(g,)+ L(g,), 

L(g,)= {x+w>T L(d= b-WL (XE%) 

is unsaturated for any algebraic sum of two Lie algebras S.? i, S? s # 0 with 
isomorphism over any field lF that is not of characteristic 2. 

For each of the three examples we have Diag, I = 1, diag, r = 0, so that 
(25) is the trivial grading. 
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Elaborating earlier observations in more detail, we have 

LEMMA 3. Zf the grading semigroup r of the If-grading (1) of the Lie 
algebra 2 over the algebraically closed field IF of characteristic zero is a 
group and if the index set G is finite, then r is saturated. 

Proof. Firstly, let IF be any algebraically closed field. Let (1) be an!-Lie 
grading of the Lie algebra 2 over F with finite index set G. Since I is a 
finitely generated abelian group, it follows from the basis theorem for abelian 
groups that 

T = (E,) x (t2) x . . . x (&) XTor F (26a> 

where r is the rank of r, the elements [r,. . . ,(, of r are of infinite order, 
and the torsion subgroup Tor r of T is the finite abelian group formed by the 
elements of T of finite order. 

In case the characteristic x(IF) of IF is a prime number, we decompose 
Tar?‘ into the direct product of its pSylow subgroup S,(Tor T) and its 
complement S,,(Tor T): 

Tor F = S,(Tor F) x S,,(Tor ?;), (26b) 

where by the basis theorem for abelian groups there holds a decomposition 

S,(Tor F) = (&+I) X (&+2> X . . . X(&+,) cw 
of the p-Sylow subgroup into the direct product of cyclic subgroups (<r+i) of 
order ~“1 subject to the conditions 

- 
and the rational integers rP, vr, v2,. . . , v,, are uniquely determined by I. 

We set 

i 

r 
r’ = 

if x(lF) =O, 

7 + TP if x(F) = p > 0, 

Tor’ T = 
Tor f; if x(F) =0, 

S,,(Tor I;) if x(lF) = p > 0. 
c=) 
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Then the diagonal derivations d(v) of T over IF are derived from the 
multiplicative to additive homomorphisms ‘p of r into the additive group IF + 
of IF by setting 

~,k) = dE9 kEG)- Gw 

And horn,,, T + F + ) consists of 

where the constants cp([,), . . . , r&) are elements of F which can be chosen 
arbitrarily. Moreover, by the basis theorem for abelian groups there holds a 
decomposition 

Tar’?; = (qr) X (~a) X . . . X (TJ~,,), (26h) 

where 

‘i “i+l 0 <i<r”); 

V f.II = exponent of Tor’ T; 

x(F) + v,,, if r”>O. (26i) 

The rational integers r”, vi, vi,. . . , v,” depend only on the structure of 
the group r. By construction the field F contains a primitive q,,th root of 
unity, 3. 
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The diagonal automorphisms a( + ) of T over IF are derived from the 
homomorphisms J/ of T into the multiplicative group of IF by setting 

(W) 

And Hom(r + U(F)) consists of the mappings 

where J/(5,) (1~ i Q r) are allowed to be arbitrary nonzero elements of IF, 
and where 

+(qj) = (p/Y;y1 (1 < j 6 r”) 

where the choice of the rational integers Kj is restricted only by the 
condition 

O<Kj-+ (1 f j < r”). 

Upon forming the IF-grading 

we observe that r is a refinement of r’, so that by part 00) of Theorem 1 
there is the canonical epimorphism ~r,r. of F on T’. Since ? is a group, it 
follows that also Tf is a group. Moreover, by construction 

Diag, r = Diag, r’, diag, r = diag, r’. @em) 

Hence by the duality theorem for finitely generated abelian groups, the 
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kernel of the canonical epimorphisms er,r, is 1 if x(IF) = 0, and it is 
contained in [ S,(Tor T)] p if x(IF) = p > 0. 

If x(iF) = 0, then we have l? = l?‘, so that r is saturated. W 

As the proof shows, Lemma 3 remains true for all fields of characteristic 0 
containing a primitive mth root of unity, where m is the exponent of the 
torsion subgroup of r. It also remains true for fields of prime charact$sistic p 
with the property that the exponent m of the torsion subgroup of l? is not 
divisible by p2 and that IF contains a primitive mth root of unity in case p 

does not divide m, but IF contains a primitive (m/p)th root of unity in case 
p divides m. 

Moreover, if IF has zero characteristic, then the proof shows that 

3. EXTENSION AND RESTRICTION OF THE FIELD 
OFREFERENCE 

For any extension E of the field of reference IF, the F-Lie algebra 13 
defines the Lie algebra E t+ 2 over IE. Correspondingly the IF-grading (1) 
defines the E-grading 

Wa) 

(2W 

with the same grading semigroup 

mg =I;. 

There is the canonical injection 

z,:Aut,r-,Aut(Ec3J), 

I&) = 1,Ba [(YE Aut,r] (274 

of the If-automorphism group of r into the IE-automorphism group of IE 6& r 
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restricting to the canonical injections: 

(27d) 

Similarly there is the canonical injection 

lE : Der, I + Der,(E @r I) 

[P E Derdr)] (274 

restricting to the canonical injection 

(27f) 

In case SJ is of finite [F-dimension, the canonical injection (27f) leads to the 
tensor product relation 

diag,(lE 6x+ I) = E @F diag, I. (27g) 

This is because diag, I is the solution space of a system of linear homoge- 
neous equations in finitely many unknowns over IF, and diag,(lE @r I) is 
obtained by solving the same system over lE. 

Similarly we have 

Der,(E@, I’)=E@r Der,l?. (27h) 

Let us apply these remarks to investigate the complex&cation grading 
defined by (4p),(4q) where 5J is any semisimple Lie algebra of finite 
dimension n over the real number field Iw [12, 131. 

By an application of the Cartan-Killing criterion it follows that E = C 5! is 
a semisimple Lie algebra of dimension n over C. Hence it follows from the 
degree theorem that r? is a 2ndimensional Lie algebra over I%. 

The generating automorphism 

+ + bi) = a - bi (a,beR, i2= -1) (2Sa) 
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of C over IFI extends uniquely to the automorphism 

of 5 over R, where also p is of order 2. 
For any Car-tan subalgebra 2, cf 2, the extension algebra c,, = C 2 e = 

C @n Q3, is a Cartan subalgebra of Ii3, and the corresponding Cartan decom- 
position 

(29a) 

(B is a finite set of irreducible representation classes of E,, over W) extends 
to the C-module decomposition 

with e, = C @r, GP. Hence either 

dim, E8 = dim, ‘;3, = 1 (294 

and Ga is the eigenspace for the root 

pEHomc(&,+C), 

or 

dim, Gp = dim, ‘SP = 2 

@b) 

(294 

and Gs is the direct sum of two root spaces, say Qp, s~,_of G, each of -- 
C-dimension 1, such that p, p’ are distinct elements of Hom( L3, -j C). Hence 
(29b) can be refined to the Car-tan decomposition 

(294 

(3 being the finite set of the roots of a,) of 5. 
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The application of the automorphism p leaves Go and all cB’s invariant. 
In case dim, QP = 2 it follows that 

Ga = !p !s8” p( i$) = i$, p( Ep) = 38, cw 
and liz, consists of the elements of $ that are fixed by p. 

We choose a Chevalley basis of i? over Q: so that 

Go= 2 Ch,, 
j=l 

(29h) 

where 

r = r(E) = T( 2) = dim, rZ, = dim, Q0 (29i) 

is the rank of the Lie algebra % over C, equaling the rank of the Lie algebra 
XJ over R. Moreover, 

[hi,ep] =P(h,)eg with p(hi) ~2, (29j) 

[ep,ey] =Ng,7ep+v with Np,?= +l (29k) 

in case p, 7, p + 7 are roots of !? over C, but 

in case p + u is not a root of 

[ ep, e?] = i Xp7hj 
j=l 

[ea,e?] =0 (291) 

ii over C; finally, 

[p+V=O, hp,EQ (l<jar)]. (29m) 

It follows that the 2n elements eg, iep, hi, ihj (p E i, 1~ j < r) form an 
R-basis of E and that there is the R-automorphism u of 2, for which 

u( ep) = ep, e( hi) = hj, a( iep) = - iefi, a(ihj) = - ihj. (29n) 
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Thus also the fixed elements of u form a semisimple Lie algebra 9 of 
dimension n over R sharing its complexification with Fi!. But the semisimple 
Lie algebra R = 5! 0 over Iw is split torus, which is to say, its Car-tan 
decomposition 

where 

(E,)“= {XIX E .Q’(), u(x) = x} 9 

has only one dimensional root subspaces. 
We observe that the scalars of E, i.e. all those endomorphisms 

of the module 3 for which 

(290) 

(29P) 

(2%) 

form the field 

s(G)= {~(KEQ=,~X[~E~?~(X)=KX]} 

isomorphic to C. On the other hand 

S(2) =S(Q) =R, 

and both u, p induce the same automorphism of order 2 on S(E). Therefore 

ap E Aut, G. (29r) 

We observe also that a( Go) = Go = p(Ga), and hence ap(E,) = GO, up E 
Aut,(C @n r). 

Conversely, let R be a split torus semisimple Lie algebra over the real 
number field IF4 such that there is a Cartan decomposition 
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(B’ a finite set of nonzero R-linear forms on 9,) with 

for which dim, R, = 1 (/3 E B’). Let 

a=r@l, (30b) 

be the complexification automorphism of the semisimple Lie algebra 

.@=C@,Q=CQ (3h) 

with Cartan decomposition 

Then every R-automorphism p of !@ of order 2 for which up E Aut, I 
determines the semisimple Lie algebra 

@=Q= {xlxEQ,p(x)=X} 

formed by the fixed elements of p such that 

E=C@n~=CQ=B 

and there holds the Cartan decomposition (29a) where 

Qi3, = sg = {XIX E @o, p(x) =x}, 

2,=@;= (x(dp, p(x)=r) if PEE, p(Ss)=B,, 

ZJs=(@a+p$J= 

if PEW, p(@,)#$ 

If p’ should happen to be another R-automorphism of .@ of order 2 for which 



138 J. PATERA AND H. ZASSENHAUS 

ap’ E Aut, I such that sp’ is isomorphic to 2 over R, then any R-isomor- 
phism of 2 on sp’ extends uniquely to a C-automorphism w of @. 

Summarizing the results of our investigation, we obtain 

THEOREM 3. Let Q be a split torus semisimple Lie algebra over R, and 
let @ = @ s r be its compbxification. Then the automorphism group of @ 
over R is a semidirect product of the automorphism group over Q: and an 
automorphism u of order 2, 

Aut, @ = Autc g K (u). 

The Aut, .&onjuga_ccy classes of the elements p of order 2 of Aut, @ not 
contained in Autc R correspond one-to-one to the R-ismhy classes of 
semisimple Lie algebras 

with .@ as complexification. 

(See [14].) 
A similar theorem holds for all semisimple Lie algebras over fields of 

characteristic zero. 
Theorem 3 is not fully satisfactory inasmuch as the Cartan subalgebras of 

the real forms usually define several conjugacy classes under the R-automor- 
phism group of E. Following a suggestion of S. Helgason, the classification of 
the real forms of a simple finite dimensional Lie algebra !j? over the complex 
number field can be carried one step further by basing it only on the 
behavior of the compact Cartan subgroups of the Lie group associated with 
the real form. 

By the general theory we know that for any finite dimensional R-Lie 
algebra 3 the maximal compact Lie-subalgebras are unique up to Aut, s- 
conjugacy. Now let 2 be a semisimple R-Lie algebra, and let !R be a 
maximal compact R-subalgebra of 2, so that the characteristic roots of 
ad I? (x ) are purely imaginary for any r of %. Any Cartan subalgebra of 9l is 
a compact Cartan subalgebra of 2. In the following we use B f?r 3, p for p. 

There is a split torus real form R contained in 2 such that 13 = C @n R = 
CR, and 

(30e) 

is a Cartan decomposition of E for which the intersection 2, = EO n !Jl is a 
compact Cartan subalgebra of 2. Moreover the intersections .Q8 = E 6 n 93 
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(8 E OU B) provide the Car-tan decomposition R = R,@ epGBQp of 5%‘. 
Setting 

R,=IWea (P E B), 

&)=iQ~, 

Q3,=R, if E,n2i30, 

2 y,_y=Iw(ey-e~y)/i[w(ey+e--y) 

if (E,+Q_,)n(3+0, ?,n~=O,~>O, 

2 6,6, = R(e, - es,) C iR(e, + es,) 

if (~,+I;Z,,)n~#O,(~iZ,+~_,)n~=O, 

we obtain the Cartan decomposition of 2, 

We observe that Q = 65, @ @B,,O, with 

B, = 2,, PO = R(es - e-@)i iR(ep + cp> WOL 

O,=iQ()=& 

is a maximal compact subalgebra of the R-Lie algebra !. 
As above, let p = r@ 1, be the involution of 3 corresponding to the real 

form Q.. Let u’ = T 8 1 a be the involution of E corresponding to &: 

(J=fj”‘= {XIXED, d(x)=cc}. 

Remarking that the mapping of /I on /3’ for those p’s for which ( Dp + G-8) 
n i? =0 also maps -/3 on -p’, we observe that a’p is a Gautomorphism 
of E of order 2. Hence p is an element of order 2 of u Aut lYl which 
determines a real form. 

Conversely, for every element p’ of order 2 of u Aut rr, 

jfjp’= {rlx E ii, p’(x) = xx>. 
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It is R-isomorphic to 52 if and only if p’ is conjugate to p under a 
Gautomorphism of Ii that leaves CO elementwise fixed. Thus we obtain the 
following 

COROLLARY of Theorem 3. For any semisimple finite dimensional Lie 
algebra @ with Chevalley basis eP (p E B), hj E Q,, (1 G j d r) over Q= there 
is the maximal compact R-subalgebra 

with defining involution 

The Cartan decomposition r’ of 6 is an W-Lie grading of 0 with 
automorphism group 

Aut, I”= Aut, I’i K (a’), 

where 

is the Cartan decomposition of 9 corresponding to the given Chevalley basis. 
The elements of Aut, I? leaving 6, elementwise fixed form a normal 

subgroup Aut, P/G, containing u’ and its Aut c I conjugates in a sub- 
group of index 2. The real forms of @ are in one-to-one correspondence with 
the conjugacy classes of involutions of Aut R r’/ &a that are not contained in 
Aut c r. 

As a consequence of the corollary, one can show that two real forms of @ 
are isomorphic if and only if they share a maximal compact R-subalgebra. 

The question whether a given C-grading (1) of the simple Lie algebra 2 
over Q= is the complex&cation of an R-grading of a real form of 22 and how 
many real forms of 2 occur in this way, is discussed in paper II [l]. 
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4. LIE GRADINGS AND TRACE BILINEAR FORMS 

4.1. Compatibility of Lie Gradings and Representation Space Gradings 

DEFINITION 4. Given an [F-Lie grading (1) of the Lie algebra li! over the 
field IF and a representation 

of 2 by If-linear transformations of the If-representation space M, then the 
decomposition 

r’: M = g,~c,%‘) CW 

of M into the direct sum of [F-linear spaces M(g’) (g’ running through the 
index set G’) is said to be an IF-XI-grading of M compatible with (1) if for 
gEG, g’EG’either 

‘kMmw) = 0 (314 

or else there is an element g” E G’ such that 

O= ‘J+k))M(g’) c Mk”). (314 

In the latter event g” is necessarily unique. 

For example, let @ be a nilpotent IF-Lie subalgebra of 2 with spectral 
decomposition 

[A is a set of irreducible IF-representations of Q including the null represen- 
tation of degree 1; Ca is invariant under ad& @) with action that is either 
irreducible and If-@-equivalent to (Y or reducible with all irreducible con- 
stituents If-Q-equivalent to LY], and let M have the spectral decomposition 

r’: M= @ M,, (310 
A E A, 
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where A, is a set of irreducible F-representations of 6. It follows that 

where MaBA denotes the direct sum over all M,,, and where A’ runs through 
the irreducible constituents of a@A. 

In case that every linear transformation cx(h) (h E 8) has just one 
eigenvalue (e.g. if IF is algebraically closed and (Y is of finite degree), then 
o@A has just one irreducible constituent A’, so that either M,,, = 0 (in that 
case A’ 6 A,) or 0 c Ma@,, ' = n/r,, (u-r that case A’ E A,). Hence P is an 

IF-Q-grading that is compatible with I. 
In case Q is the Cartan subalgebra of 2, then (31~) is the Cartan 

decomposition, the nonzero members of L are the roots of 52 with respect to 
8, and the members of M, are the weights of \k with respect to 8. 

The zero linear form and the roots are the weights of the adjoint 
representation ad,(x)(u) = [x, U] (x, u E 2) with 2 as representation space. 

4.2. Isomorphic Gradings 
If both (31b) and 

V: 2 -+ End, M', 

r’: M'= $ M'(g") 
g" E C" 

(31i) 

(W 

are lF-LLgradings compatible with (l), then there are also the If-z-gradings 

\E@\E’: 52 -+ End,(M@M’); (3Ik) 

WV(x)(u’@u”) = \k(r)(u’)WP’(x)(u”), 

rw? M@M'= g,$$M(g')@ g,,$G,,M'(g"); (311) 

\k@rW: 2 --f End,(MQ M'), 

9~,\k'(x)(u'~~"")=\k(x)(u')~~"+u'~~'(x)(u"); (31m) 

rfc3r1’: M/6+,'= g,EC,E,,EC,,M(d)% M'k") 

(XEZi3; U'E M, U"E M'). (31n) 
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We may interpret the IF-e-grading (31a),(31b) also as the IF-Lie grading 

_- 
r-r’:r!-M=g~G~(g)~g,~G,M(g’) (310) 

of the semidirect product algebra of 2 with the null algebra 

M= {t+EM} 

with underlying If-linear space isomorphic to M, but equipped with the Lie 
multiplication 

[x,U] = ‘I’(x)(u) (XE 52, UE M). (3lP) 

Making use of that interpretation, we embed every IF-Lie algebra 2 with 
F-Lie grading (1) into the semidirect sum algebra 2 + a, where 

with the grading 

It follows that (1) is extended to gradings I + I’ such that I and I’ + I’ 
have canonically isomorphic semigroups, but now each element of the 
grading semigroup I + I?’ corresponds to one component of the grading. 

Such embeddings of gradings we call isomorphic embeddings. The gen- 
eral embedding concept is contained in 

DEFINITION 5. The Lie grading (1) is said to be embedded into the Lie 
grading 

rb LZ'= $ _u(g') 
g'EG' 

W) 

of the Lie ring 2 containing 2 as subring if for each component A’(g’) of 
(31q) either L’(g’)n 2 = 0 or L(g’)n 13 = L (rg’) with Tg’E G. 

It follows that for each element g of G there is precisely one element pg 
of G’ such that npg = g. Hence, if g, g’, g”E G and 0 c [L(g), L(g’)] c 
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L(g”), then it follows that 0 c [L’(pg), L’(pg’)] c L’(pg”). Hence there is 
the homomorphism 

of the grading semigroup of (1) into the grading semigroup of (31q) which 
maps the generator g of r on the generator pg. The homomorphism is said to 
be the embedding h omomorphism corresponding to_the embedding of (1) in 
(31q). In case fi happens to be an isomorphism of r on f’, we speak of j5 as 
of an embedding isomorphism. 

The universal enveloping algebra U( 2) of a finite dimensional Lie algebra 
2 over C provides another example of an isomorphic embedding of the 
Cartan decomposition of 2. 

The construction of l? + I? given here establishes a grading with in- 
finitely many components. But in concrete situations we may succeed in 
embedding a grading with finitely many components (finite grading) iso- 
morphically into another finite grading. For example, the C-Lie grading (4e) 
can be embedded into a C-Lie grading of the full ring of matrices of degree 2 
over C with four components and with the Klein four-group as grading 
semigroup. 

4.3. The Automorphism Group, the Stabilizer, and the Diagonal Group of 
Representation Space Gradings 

The automorphism group of the If-Q-grading (31b) is defined as the group 
Aut r _u I’ of all invertible If-linear transformations w of M which permute 
the component spaces L’(g’) of (31b) such that 

The normal subgroup Stab, _a I” consists of alI elements of Aut r _e I’ 
mapping each component of (31b) into itself. 

The factor group is isomorphic to the permutation group of the compo- 
nents of (31b) brought about by the action of Aut r _a I”. An important 
normal subgroup of Aut r _ a I” contained in the stabilizer Stab r _ a I’ of I’ is 
the diagonal group Diag, _a I” formed by the elements of Aut r _e I? re- 
stricted on each component of I” to a scalar operation. 

Now let us assume that \k is a faithful representation: 

ker\k={x(xEG&&(x)=O}=O. 
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Then of course the elements of the normalizer N(q) of ‘k, 

N(9)= {wlWEAutFM&W\E(li3)W-1=~(~)}, 

are mapped canonically into the If-automorphism group of 2 upon mapping 
w on the F-automorphism 

\II(@c.d(x)) = wx (XE 2) 

such that Q, is a homomorphism of IV(+) into Aut, ri3 with the unit group of 
the commuting ring 

C(\k) = {w/w E End,M =. Vx(x E 2 * 09(x) = \k(x)w)) 

as kernel. 
We utilize this construction in order to establish an orthogonality relation 

according to 

LEMMA 4. Let 9 be a faithful representation space of the Lie algebra 13 
of finite dimension over IF, and assume that for two components L(g), L(g’) 
of (1) there exists an element o of N(q) fm which 

fh‘hGD,(g’) += 1. 

Then L(g), L(g’) are orthogonal with respect to the trace bilinear form 
of \k: 

(a, b), = tr(\k(a)\k(b)) (a, b E 2). 

In other words, for all u of L(g), u’ of L(g’) we have (u, u’)? = 0. 

(See [14, $1, Proposition 121.) 
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Proof. For any element o of N(9) we have the invariance (a, b), = 
(&x(a), &x(b)), because 

tr(\ka*b) = tr(cY(\ka\kb)a-‘) = tr(w\k(a)o-‘.w\E(b)w-‘) 

= tr(\k(@a(a))*\k(Qw(b))) = (@a(a),cPo(b)). 

Applying that invariance to w, we find that for u of L(g), u’ of L(g’) we 
have 

(u, u’)* = ((WU,(@c+‘)q = &,(g)&,(g’)(u, u’)* = 0. n 

COROLLARY of Lemma 4. For any IF-Lie grading (1) of a finite dimen- 
sional Lie algebra 2 over a zero characteristic field IF that is a group 
grading, there holds the orthogonulity relation 

UJW~ L(d)) = 0 (g,g’=, iZ’f1,) (32) 

with respect to the Cur&n-Killing truce bilinear form. 

Proof. Without loss of generality we assume that IF is algebraically 
closed. We set \k = ada: 

(u, u’) = tr(ad, uad, u’) (U,U’E 2). 

If u E L( g ), u’ E L( g’), g, g’ E G, &j’ # lr, then there is a homomorphism 

of the finitely generated abelian group T into the unit group of the alge- 
braically closed field IF that maps the element @’ + 1 of r on an element 
# 1 of U(F). Now Lemma 4 sets (32) in evidence. n 

4.4. Diagonal Derivation Algebras of Semisimple Lie Algebras 
Let 52 be a semisimple Lie algebra over the field IF of characteristic zero. 

It follows that ad, is faithful and that every F-derivation is inner: 

kerad, =C(Q) =O, 

Der, 13 = ad,( x3). 
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Therefore any subalgebra of Der, 2 corresponds l-l to an isomorphic subal- 
gebra of 22; in particular diag, I? = ad, X,, where X, is an abelian F-subal- 
gebra of 2. 

The following is an important consequence for dealing with the problem 
of which subalgebras of 2 occur as components of F-Lie gradings: 

LEMMA 5. X, is nondegenerate in terms of the Cartan-Killing bilinear 

f 0l-m. 

Proof. Without loss of generality we may assume that IF is algebraically 
closed. By construction Ii = Idi.+ r is the spectral decomposition of 2 with 
respect to the abelian If-subalgebra Xr: 

where 2 6 is the centralizer of X, in 2, 26 = C, X,, the Y2b8 run through the 
eigenspaces of ad,(Xr) that do not belong to 0, SJh, belongs to the nonzero 
linear form /3’ on X, as eigenspace, and B’ is the set of all such linear forms. 

Since ad&X,) is diagonable, it follows that 23;, contains a Cartan 
subalgebra 2 a of 2 such that Xr c 2,, and there is a Cartan decomposition 

of 2 refining Ii. Hence each 2;, is a direct sum over some root spaces cfl. 
If yi, Ys E B, L3,, c c”i,, 2, c 2i8, then we have 

YllXr = YLJIX, = P’. 

All yi - yZ generate a sublattice S of the root lattice R of 2. Since T, is an - 
epimorphic image of I, we conclude that dim, diag Ii G dim, diag r. In our 
case we know that diag, I c diag, Ii. Hence 

diag, I? = diag, Ii. 

It follows that 

x,= {xJxE~o&~y(yES~y(X)=O)} 
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Using a Chevalley basis, it follows that the Cartan-Killing bilinear form has a 
positive definite integral coefficient matrix. Hence every sublattice S of R is 
nondegerate. The same is true for the annihilated subspace of Zi3,; hence X, 
is a nondegenerate subspace of 2,,. n 

COROLLARY to Lemma 5. The IF-subalgebra 26 of 2 is a reductive 
subalgebra that is the algebraic sum of the central subalgebra X, and the 
reductive subalgebra X; n 26. 

Proof. For any subset X of 2 we denote by XL the orthogonal If-linear 
subspace relative to the Cartan-KilIing bilinear form: 

Xl = {y)yE2 &vX(XEX+>Y)=o)). 

According to Lemma 5 the If-linear subspace 26 of 2 is nondegenerate, i.e. 

Similarly 

Since 23;, belongs to the center of Q3,, it follows that Xi n 2i3:, is an ideal of 
2 6 which is nondegenerate, hence reductive. n 

By construction we have 

and r =S Ir, and if X, # 0 then Ir has the centralizer of X, as one of its 
components. In fact that component corresponds to the unit element of T, 

4.5. A Theorem on Gradings of Simple Lie Algebras of Zero Characteristic 
Now let us make the further assumption that I is a group grading. It 

follows that the grading semigroup T is a finitely generated abelian group, so 
that r is the direct product of the finite abelian subgroup Tor I;, the torsion 
subgroup of T, and a free abelian group r*: 

T=TorFxr*. 

The rank of T* equals the F-dimension of X,. Although y* is not unique, it 
is very useful for the analysis of I. 
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We make the further assumption that IF is algebraically closed. 
The homomorphisms of r into U(F) with c in its kernel define a 

subgroup D, of Diag, I that is isomorphic to Tor I. 
We set I, = IJo*, where I, is an F-Lie grading for which 

rs r,. 

There is the canonical epimorphism of T on l?, with r* as kernel. It follows 
that r = r, n r,, 

where G, is a subset of G containing the element e for which 

Xr C L(e), e=1,, 

whereas L(g) E X$ n 23;, (e # g E G,) as a consequence of Lemma 5. 
We summarize our results as follows. 

THEOREM 4. Let (1) be an If-grading of the simple Lie algebra 52 over 
the field IF of characteristic zero. Then the grading group T is a finitely 
generated abelian group, so that T is the direct product of its torsion 
subgroup and a free abelian group r* of rank r’ < I( 2): 

r=TorFxT*. 

Zf r’ = r(Q), then F is a split torus Cartan decomposition of 2: 
Zf the unit element of T does not belong to G, then r’ = 0 and I? is finite. 

Else there is an element e of G for which e = 1,. In that case L(e) is an 
If-subalgebra # 0 of the F-Lie algebra 2 that forms a nondegenerate 
If-subspace in terms of the Cartan-Killing bilinear form of 2. Hence 
ad,( L(e)) is a reductive IF-Lie algebra. 

Zf r’ = 0 then ?; is finite. Else there is a direct component X, of L(e) 
such that 

ad, X, = diag, I. 

Moreover, for rl = rdiag, ,- we have 

diag, rl = diag, r, 

TorT,=l, 
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and the component 26 of I’1 containing X, is a nondegenerate subalgebra of 
2 equal to the %centralizer of X,. 

There holds the F-Lie grading 

where G, is the subset of all elements of G for which L(g) is contained in 
26. It is a group grading for which 

?;, = Tor I’. 

Zf IF contains the exp(Tor r)th root of unity, then the subgroup Hom(F -+ 
U(Q) with value 1 on !?* defines a subgroup of Diag, I’ which is the 
diagonal group of an F-Lie grading IT, of 2 such that 

r=r,nr,. 

Co~o~huw of Theorem 4. The proof of Lemmu 5 shows that there are 
only finitely many possibilities for X,, up to F-automurphism in case IF is 
algebraically closed. Similarly it may be shown that there are only finitely 
many possibilities for r,. Thus also the number of possibilities for I7 is finite. 

Let us observe that any MAD of the semisimple Lie algebra 2 over the 
algebraically closed field [F of characteristic zero generates an alternative to 
the Chevalley basis of 2 in the following way. The MAD corresponds to a 
fine IF-Lie grading (I) of 2, and the union of a system of If-bases of the 
components L( g ) provides an If-basis of 2. It will be seen that the bases of 
the component spaces always can be chosen in such a way that the multipli- 
cation constants become algebraic integers, though not necessarily rational 
integers. 

The further investigation of arbitrary If-gradings of 2 is connected with 
the Dynkin theory and the representation theory of semisimple Lie algebras, 
which will be the subject of another paper. 

5. A GENERALIZATION OF A THEOREM OF V. KAC 

In order to further our study of the If-gradings of a simple Lie algebra 2 
over the algebraically closed field IF of zero characteristic, we first generalize 
a theorem of V. Kac [5] as follows. 

It was F. Gantmacher who first studied in [14] the relation between fixed 
points and Car-tan subalgebras (see also [16]). 



ON LIE GRADINGS. I 151 

THEOREM 5. Let II3 be a fully reducible linear Lie algebra of finite 
dimension d over the field IF of zero characteristic. Then every subgroup S of 
the rwnmlizer group 

N(E)= {X~XEGL(~J)&X~X-~=X~} 

with diagonuble transformation action on Ii3 norm&m a Cartan subalgebra 
of 52. 

Proof. If the theorem is wrong, then there is a counterexample 2 of 
smallest If-dimension. Hence 2 is a fully reducible linear Lie algebra of finite 
dimension d over IF such that the subgroup S of N( 2) with diagonable 
transformation action on 2 does not normalize a Cartan subalgebra of 2. 

Because of the full reducibility of 2, we know that 2 is the algebraic sum 
of its center and of its derived algebra: 

where D( 2) is semisimple. Moreover, S normalizes both C( 2) and D( 2) 
with diagonable transformation action. Furthermore, both C( 2) and D(2) 
are fully reducible. 

If C( 2) # 0, then the If-dimension of D( 2) is less than the If-dimension 
of 2. By assumption S normalizes a Cartan subalgebra ‘3 of D( 2). Hence 
C( 2) @ 8 is a Cartan subalgebra of 2 that is normalized by S, a contradic- 
tion. It follows that C( 2) = 0, and 2 is semisimple. 

Now let us assume that there is an element u of S with nontrivial 
transformation action 5 on 52 such that 

2.!;2”= {x(x E 2 & m-l = r} # 0. 

Since the transformation action of S on 2 is diagonable, it follows that 

uu’x(uu’) -l= u~ux(u~u)-l = u’xu’-l (x E ci3”, U’E s), 

and hence 2” is invariant under the transformation action of S. Moreover, 
there holds the F-grading (1) induced by (G), so that there are IGI distinct 
homomorphisms 

8,: (u) + u(5) (GG) 
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of (u) into the unit group of IF such that 

L(e) = iJo, 

[L(e), L(g)] 2 L(g) k EG), 

where L(e) is a nonzero IF-subalgebra which is normalized by S. Moreover, it 
follows from Lemma 5 that 

where \k is the natural representation of 2. 
Because of the semisimplicity of 2 we know that the trace bilinear form 

of \k is nondegenerate. Hence the trace bilinear form of \k 1 L(e) is nondegen- 
erate. Since 2 is semisimple, it follows that the semisimple part s(x) of any 
element x of L3 also belongs to 2, so that s(x) is a matrix of degree d over IF 
with separable minimal polynomial, and s(x) commutes with x and the 
difference x - s(x) is a nilpotent matrix. By construction s(x) belongs to 
L(e) if x belongs to L(e). It follows that the Lie algebra L(e) is reductive, 
and even fully reducible. 

If L(e) = Ii3 then there is a contradiction. Hence 

OCL(e)cQ. 

The transformation action of S on 2 is diagonable. By assumption there is a 
Cartan subalgebra 9.I of L(e) that is normalized by S. 

Denoting by L3 = @ Qi3, the spectral decomposition of 2 relative to %, 
it follows that 

Q,, is invariant under the transformation action of S, and that action is 
diagonable on Q3,: 

As above, we conclude that 2e is fully reducible. 



ON LIE GRADINGS. I 153 

If 2 a = 2, then we find that ad e x is nilpotent for all x of X, hence 
(x, x)* = 0 for all x of %, and the trace bilinear form of \k]X is degenerate, 
which is a contradiction. 

Consequently 2a c 2. By assumption on 2, it follows that there is a 
Car-tan subalgebra 6 of Q3, which is normalized by S. But % is a Cartan 
subalgebra of $2. Since that is a contradiction, it follows that for each element 
u of S either ca = 2 or Qi3”= 0. 

If the transformation action of S is trivial, then S centralizes every Cartan 
subalgebra of 2, a contradiction. Hence the transformation action of S on 2 
is nontrivial. 

There holds the F-Lie grading (1) induced by S on 2, so that there are 
] G ] distinct homomorphisms 

tS,:SdJ(F) (gEG) 

of S into the unit group of IF such that 

aua-l=sg(a)u [uES, uEL(g), g-1. 

If a nonzero element u of L(g) commutes with the element u of S, then u 
commutes with every element of 2. 

Applying Lemma 5 once again, it follows that for every element g of G 
there is precisely one element g- of G for which 

so that [L(g),(L(g-)] = 0. 
If for an element u of L(g) the adjoint transformation ad,(u) is 

nilpotent, then it follows from the representation theory of semisimple Lie 
algebras that q(u) = u is nilpotent and hence for any element 0 of L(g- ) 

[u,U]=O, UZ,=ou, tr(uv)=O, 

(%q,=o, u=o. 

Using the field extension argument, we can assume without loss of 
generality that F is algebraically closed. It follows that for every nonzero 
element u of L(g) there is a nonzero element 0 of 2 and a nonzero element 
X of F for which [u, v] = ad,(u)(v) = Xv. Writing o = ChcCoh [uh E L(h), 
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h E G], we have either [u, oh] = 0 or 

0 + [u, q,] E [-%), L(h)] c +‘), 

If hj E G, 

OC [L(g),L(hj)] CL(hj) [hjEG (j=1~2)]. 

Then we have 

so that the equation hi = hS, implies that 6,, = Shz, h, = h,. Hence the 
elements h of G for which v,, # 0 form a nonempty subset G, of G with the 
permutation 

0 c [GA W4l c GO)) (h E ‘4 

such that [u, VJ = Av,,,,, S,S, = arch), (~$)l%~ = 8, (h E G,), (Sg)lnl = 1, 
where IV] is the order of the permutation n; actually the order of 6, equals 
the order of r. Since there are only finitely many unit roots of bounded order 
in IF, it follows that the transformation action of S on 52 is a finite abelian 
group # 1. It is free of fix elements in the sense explained above. Now we 
obtain a contradiction by showing that every automorphism w of 52 over IF 
that is of prime order p fixes at least one nonzero element of 13. 

If that is not the case, then w induces an F-Lie grading (1) with at most 
p - 1 components such that 

w(u) = pu [-L(g), g=G, Pp=l, S+l], 

where the exponents k(g) are distinct for g of G and 

As above, we show that the semisimplicity of 2 implies that 

PM, W4) = 0 if %d+W+p 
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and that for each g of G there is precisely one g- of G for which 

%z) + a- > = P- 

Moreover, for each g of G there is a nonempty subset G, of G with 
permutation 

m:GO+GO 

the order of r equals the order of Sk(g), which is the prime number p. But 
that is impossible, because at most p - 1 elements are contained in G,. n 

V. Kac [5] and R. Moody and J. Patera [ll] showed that any saturated 
cyclic diagonable subgroup S of Aug, 2 inducing a group grading of L3 is 
finite and stabilizes a Cartan subalgebra. Moreover, if S is a subgroup of the 
inner automorphism group, then it centralizes a Cartan subalgebra 8 of 2, 
and it is contained in the group generated by the Kostant automorphism. 

We have shown that any diagonable subgroup S of Aut F 2 stabilizes a 
Cartan subalgebra 6 of 2. 

The stabilizer of a Cartan subalgebra .Q of 2 is the If-automorphism 
group of the corresponding Cartan decomposition of 2, and it is also the 
normalizer of 2 in the adjoint representation. From that reason we denote it 

as NC@,): 

Its structure in the simple case is shown on Table 2. 

APPENDIX. THE FINE GRADINGS OF sl(3,C) 

We now describe the fine gradings of sl(3,C). A general classification of 
fine gradings of simple Lie algebras over C is in Section 6 of [ 11. 

1. The Cartan decomposition 

is often represented by the 3 X3 matrices Ejk = (6,S,,) satisfying the com- 
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mutation relations [ Ejk, E,,] = Sk,,, Ej, - c~,~E,,,~. The grading decomposi- 
tion is the sum of six l-dimensional subspaces of off diagonal matrices and 
one subspace of dimension 2 of traceless diagonal matrices: 

s1(3,C)=(C(E,,-E,)+C(E,-E,))ej,~=~(cEjk). 

j#k 

2. Unlike the Cartan decomposition, the following three gradings pro- 
vide decompositions of sl(3, C) into l-dimensional subspaces. The decomposi- 
tion 

into l-dimensional subspaces labeled by integers mod8 is one such grading, 
because the basis elements (a), a E Z mod8, satisfy the commutation rela- 
tions 

[(u),(b)] = const(a + b), a, b, a + b E Zmod8. 

A representation of this basis is given, for instance, by the matrices 

3. The decomposition (1) of sl(3,C) in the next case contains eight 
l-dimensional subspaces generated by symbols (a, k) with a integer mod2 
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and k integer: 

2 1 

157 

sl(39G) = k=~_2(C(l,k))k=g)_I(C(Oyk)) 

and the commutation relations 

[(a, k),(d k’)] = const(a + a’, k + k’), a,a’,a+a’EZmod2, 

k, k’, k + k’E il. 

This basis of sl(3, C) is represented, for instance, by the 3 X 3 matrices 

(OJ,_!x 4 j, 

(0,-l)+; d -;), 

0 i 0 
(l,l)= i 0 1 , 

( I 0 1 0 

/O 1 O\ 

0 0 i 
(0,o) = ( 0 0 

-i 0 
0 I , 
0 

io 1 
(1,2) = i 0 0 

1 0 
0 I , 

-i 

(LO)= ( k -: 
0 0 

: 1 , 
1 

I i 0 -l\ 

4. The fine grading described in [7] decomposes the Lie algebra gl(3,C) 
into a sum of nine l-dimensional subspaces: 

d(W) = e3 Q=(d), 
a.bcZmod3 

where (a, b) are the basis elements of gl(3,C) satisfying 

[(r, s),(r’, s’)] = (P’- d’“)(r + r’, s + s’), 

r,r’,s,s’,r + r’,s+ s’EZmod3, 
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with w = ezni13. A matrix realization of this basis is given by the identity 
matrix (0,O) and by 

(1, -l)= ,” ; 

i 1 

,“z , 
1 0 0 

1 0 0 
(l,O)= i 0 w 0 , 

0 0 cd2 

1 

0 0 w 
(-l,l)= i 1 0 0 ) 

0 U2 0 

I 

i 

1 0 0 

(-lo)= 0 &? 0 * 
0 0 w 

I 

We express our thanks to the referee for many useful remurks. 
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