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Abstract 

To obtain fine gradings of gl(n, C), it is necessary to study maximal Abelian sub- 
groups (MAD-subgroups) of diagonizable automorphisms in ,~ut(gl(n, C)). We de- 
scribed two finite sets ~n and •, such that each MAD-subgroup consisting only 
from inner automorphisms is conjugated to some element of ~n and each MAD-sub- 
group containing at least one outer automorphism is conjugated to some element of 
,Y;,. Using these results concerning Xn we then easily find all MAD-subgroups in 
Ju t (o(n ,  C)) for n ¢ 8 and in ,~/ut(sp(2n, C)). © 1998 Elsevier Science Inc. All rights 
reserved. 

Keywor&v Classical Lie algebra; Gradlings; Automorphism 

1. Introduction 

The aim of  this article is to complete in the case o f  the classical simple Lie 
algebras over C the main problem which was raised in [1], namely the classifi- 
cat ion o f  fine gradings (i.e. not  refinable any further) o f  these algebras. It is a 
problem closely related to finding maximal groups o f  simultaneously diagonalizable 
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automorphisms of  the algebras. Indeed a grading is found when such an alge- 
bra, as a linear space, is decomposed into the direct sum of eigenvalues of the 
corresponding automorphisms. If the group of  automorphisms is maximal, the 
gradings is fine and vice versa. 

During the eight years since [1], the life has forced many changes on the per- 
spectives and wide ranging plans formed in [1]. At least two directions of  ex- 
ploitation of  systematic study of  all gradings, mentioned in [1], have 
acquired a (mathematical) life of their own. 

First is txhe study of  solvable Lie algebras from the equidimensional nilpo- 
tent algebras, where a relation between the two is in a certain graded twist. In 
such a way the problem of finding isomorphism classes of solvable Lie algebras 
of  a given dimension is reduced in [2] to the classification of isomorphism class- 
es of equidimensional nilpotent Lie algebras. For  some low-dimensional cases 
the method was used in [3]. 

The second direction is the study of deformations of Lie algebras during 
which a chosen grading is preserved. It turned out to be an approach particu- 
larly useful in applications. Following [4], more that a two dozens of articles 
exploiting the method in some way have been published. Let us point out here, 
that the method has got a natural extension to the simultaneous deformations of 
semisimple Lie algebras and their representations [5]. Apparently deformations of 
representations had not been considered in the mathematical literature before that. 

The imposition of the grading preservation requirement on the deformation 
process split an otherwise difficult problem [6] into a number of smaller ones 
(one for each grading) which can be solved. That combined with a knowledge 
of  all gradings, add up into a powerful tool. The wealth of deformation out- 
comes is well illustrated in [7] on the case of sl(3, C). 

For  any finite dimensional simple Lie algebra L over C its decomposition as 
a linear space into the direct sum of  one-dimensional subspaces labeled by 
roots of the algebra and the r-dimensional Cartan subalgebra, where r is the 
rank of  L, is a basic information about the structure of the algebra whose im- 
portance for applications is difficult to overestimate. It is called the root or Car- 
tan decomposition of L. 

The root decomposition can be defined as the decomposition into the eigen- 
spaces of  a maximal torus of  the corresponding simple Lie group. Therefore, it 
is also a grading decomposition. As a consequence of the maximality of the to- 
rus, the root grading of L cannot be further refined (fine grading). Hence the 
Cartan subalgebra of L cannot be further decomposed in a way which would 
also be a grading of  L. Since the maximal torus is unique up to automorphisms 
of L, there is one nonequivalent root decomposition/grading of  L. 

An appealing property of  the root decomposition is the fact, that it is de- 
fined in unique way for L of any type and rank. Nevertheless, the question 
about existence of other fine gradings of a simple Lie algebra is interesting. 
One may expect that there are problems which are naturally and more simply 
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formulated exploiting bases dictated by other fine gradings of L than the root 
one. Indeed, that is precisely the case with the second fine grading of sl(2, C). 
The only alternative to the root decomposition there is the Z2 × Z2 grading (of 
gl(2, C) in fact) spanned by the Pauli's matrices. Also the generalization [8] of 
the Pauli's matrices to gl(n, C) is finding its way into the physics literature 
[9,10]. The general reason for that is the fact that such grading decomposes 
gl(n, C) into the direct sum o f n  2 subspaces of dimension 1 (i.e. it defines a basis 
of gl(n, C)), and that the generators are all semisimple elements of the algebra. 

Each fine grading of a simple algebra L is a decomposition into eigenspaces 
of a maximal Abelian subgroup (MAD-group) of the automorphism group 
,~/utL of L. Therefore the fine gradings are determined once the MAD-groups 
are found. The goal of this article is to discuss the MAD-groups of classical 
simple Lie algebras. 

At present, the known fine gradings of L besides the root decomposition are: 
• the gradings of gl(n, C), n >~ 2, generated by the generalization of the Pauli's 

matrices [8], 
• two fine gradings of sl(3, C) involving the outer automorphism of the alge- 

bra [11], 
Our study of MAD-groups begins with complete description of the case 

gl(n, C); we shall see that it simultaneously gives a solution of the problem 
for the orthogonal and symplectic Lie algebras. 

The basic tool of our considerations is the one-to-one correspondence be- 
tween the MAD-subgroups c ~'utgl(n,C) and the special subgroups of 
~ l ( n ,  C) called by us Ad-subgroups and Out-subgroups. The Ad-subgroup cor- 
responds to MAD-subgroup formed by inner automorphisms only and the 
Out-subgroup corresponds to MAD-subgroup with an outer automorphism. We 
describe a finite set Hn of Ad-subgroups and a finite set K, of Out-subgroups such 
that each Ad- or Out-subgroup, is conjugated to some element of H, or K,. 

In Section 4 we show that any MAD-subgroups ff acting on the orthogonal 
or the symplectic algebra can be extended to the MAD-subgroup acting on 
gl(n, C) with a special outer automorphism. Such MAD-groups f¢ is conjugat- 
ed to any MAD-groups ~ if and only if ~ contains an outer automorphisms 
Outc, (see Eq. (1)) with C symmetric in the orthogonal case and C skew-sym- 
metric in the symplectic case. This fact allows us to determine these elements of 
Kn which correspond to the MAD-subgroups of orthogonal and symplectic al- 
gebra (Section 4). 

The paper is closed by several illustrating examples in low dimensions. 

2. Properties of maximal abelian subgroups of Autgl(n, C) 

2.1. An automorphism group ~4utgl(n, C) consists of a subgroup of inner 
automorphisms AdA, 
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A d A X : = A  IXA forA EGI(n,C),  X E g l ( n , C )  

and a set of outer automorphisms OUtA, 

OUtAX := --(A ~XA) v =- Ad(A ,)TOut/X -= Out~AdAX. (1) 

2.2. Any MAD-subgroup ff C ,~utgl(n,C) can be written in the form 
= ~(0) U if(l), where if(0) is the subgroup of inner automorphisms (it is always 

nonempty) and ~(') is the set of outer automorphisms of if; we will distinguish 
two cases for MAD-groups: if(') is empty and ~(') is nonempty. For  n = 2, 

If ~(1)~(3, i.e. ~4(1)~ Outc then for any Outo c ~(~) we can write 
OutD = OutcAdmc ~) with Admc ,) E aJ (°) so that ~(1) = Outc,~ (°). 

2.3. Elements of  MAD-group ~ are assumed to be diagonalizable. We shall 
show that for AdA E ~(0) C ~ it implies diagonizability of A E ,~l(n, C). If 

T ( 0 , 0 . . . ,  1) denote rows of stan- el T = ( 1 , 0 , . . . , 0 ) , e ~ = ( 0 , 1 , . . . , 0 ) , . . . , e ,  = 
dard vectors then standard basis {Eij; i , j  = 1 , . . . ,  n} C gl(n, C) can be written 
in the form of a matrix product E i / =  eie~ and AdAEti = (A %,)(A%j) v. It 
shows that AdA = A ~ ® A T. It is well known that a tensor product is diagonal- 
izable iff both its components are diagonalizable. 

If if(l) # (3 then (Outc) z = Ad(cTc ,) and we see that CTC i must be diago- 
nalizable. Since a linear regular operator is diagonalizable if and only if its 
square is diagonalizable, we obtain, that diagonalizability of c T c  -1 is also a 
sufficient condition for the diagonalizability of  O u to  A matrix C with diago- 
nalizable CVC ~ will be called the admissible matrix. 

In 2.4 and 2.5, we are going to introduce two types of  subgroups of ~l(n, C) 
called Out-groups and Ad-groups. Then in 2.6, we will find a one-to-one cor- 
respondence between MAD-groups containing at least one outer automorp- 
hism and Out-groups and another one-to-one correspondence between 
MAD-groups formed by inner automorphisms only and Ad-groups. In both 
cases, constructed correspondences should reveal deeper interply between stud- 
ied notations. 

2.4. For  a given admissible matrix C E ~6l(n, C) the subgroup of diagonaliz- 
able matrices G c (61(n, C) will be called an Outc-subgroup if 

(i) for any pair A,B E G, the commutator  q(A,B) = eA,Bln, eA,B = ±1. 
(ii) for any A E G, 

ACA T = ±C. (2) 

(iii) G is a maximal set satisfying (i) and (ii), i.e. for any M ~ G either we find 
A E G such that the commutator  q(M, A) 7 ~ +In or condition (2) is not fulfilled 
for M. 
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Remark 2.1. (a) CA,8 may be equal to - 1  only if n is even (a determinant 
argument). 

(b) Condition (ii) shows that for any A E G also - A ,  ±iA c G. We see further 
that G = {1, i}Go where Go is a subgroup of G such that 

ACA T = C, (3) 

for A E Go. 

Proposition 2.2. For each adm&sible matrix C E ~l(n,  C), n > 1, any Outc- 
subgroup is nontrivial. 

Proof. Following Lemma A. 1, C = RCR T with a canonical form of C. We can 
rewrite Eq. (2) into the form 

A~ • : +~ 

for A - R-1AR. For  any canonical form of C, there exists a nontrivial (i.e. non- 
scalar and diagonalizable) matrix A~ satisfying Eq. (2). [] 

Let q,, -- exp(2ni/n);  the set 

G Iq'l := {X E ~l(n ,  C)IXA = qtn(AIAX, for each A E G, l(A) E Z} 

will be called qn-commutant of  the set G c_ ~l (n ,  C). Usual commutant ,  i.e. in 
our notation 1-commutant,  will be denoted by G' instead of G/~/. 

If  M E G then an Outc-subgroup G is also an OutMc-subgroup. We easily 
prove the following lemma. 

Lemma 2.3. The equality ADA T = ± D  is fulfilled for  any A E Outc-subgroup G 
((f D = MC where M E G (-j). 

We have not claimed so far that G has to satisfy the condition of maximality 
(iii); there is a sufficient condition guarantying the following property. 

Proposition 2.4. Let  G be an Outc-subgroup such that AB = ~zBA for  each 
A , B  E G (-1). Then G is also an OutMc-subgroup for  any M E G (1) .  

Proof. Consider a matrix B such that B(MC)B T = +MC and B commutes or 
anticommutes with all elements of  G. Then B E G I-l). Because of  co- 
mmutat ivi ty or anticommutativi ty B with M we also have BCB T = +C, i.e. 
B E G .  [] 

Later on we are going to show that a ( -1) -commutant  of  any Outc-sub- 
group G fulfils the condition of  the previous proposition. 
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We will call Outc-subgroup G and OutD-subgroup 
= RGR 1 and D = RCR "r for some regular matrix R. 
For  any Outc-subgroup G, the group 

~c = AdG U OutcAd G c .4ut  gl(n, C), 

where Ad G - {AdA IA E G}, is the MAD-group with outer automorphisms. 
Conjugated Out-subgroups lead to conjugated MAD-groups. As an Outc- 

subgroup is also OUtMc-Subgroups for M ¢ G ( 1/, MAD-group NMc can differ 
from aJc. (However, i f M  ¢ G (-l/A G = G, then C¢MC = ffC.) 

We shall prove (see Section 3.4) that for any M E G (-~) there exist a regular 
matrix R and A E G such that RGR i = G and RACR T = MC. Therefore, Outc- 
subgroup G determines MAD-group uniquely up to conjugacy. 

2.5. A subgroup of  diagonalizable matrices G C ~l (n ,  C) will be called an 
Ad-subgroup if: 

(i) for any pair A , B  E G, the commutator  q(A,B)  - ABA-1B -1 lies in the 
center ~ = {off, [~ E C*} C ~l (n ,  C). 

(ii) G is maximal, i.e. for each M ~ G there exists A E G such that 
q ( A , M )  f[ ~ .  

Note that due to the maximality, an Ad-subgroup always contains the center ~ .  
A product A B A - I B  -l  = qI  with q" = 1, as det q(A,B)  = 1. 

If an Ad-subgroup G consists of commuting or anticommuting matrices 
only, it may happen that there exists a regular matrix C such that 
ACA "r = rAC for each A E G. In that case G-~ {A E GJACA v = +C} is an 
Outc-subgroup. For  any Ad-subgroup G for which such C does not exist, 
AdG is a MAD-subgroup of ~4utgl(n, C) without any outer automorphism 
and AdG = (AdG)/°). If  G , H  are conjugated Ad-subgroups then AdG and 
A d H  are conjugated MAD-subgroups. 

2.6. We show now that any MAD-group f# c .zCutgl(n, C) arises from some 
Ad- or Out-subgroup in the above described way. Assume first ff = re0/ and 
denote 

G(O~ =_ {A E ~ l (n ,  C) IAdA E ~(0i}. Ad 

It is a subgroup of diagonalizable matrices and commutativity of two auto- 
morphisms AdA, Ad~ implies 

q ( A , B ) X  - Xq (A ,B )  = 0 

for any X E g l ( n , C ) .  Schur's lemma gives the desired result 
q(A, B) = qI, ,  q E C*. It is simple to see that G(A°~ is an Ad-subgroup which is 
not Outc-subgroup and Ad G(A°~ = eft(°). 

Let us study now the case c~f#(0/U Outc ~(0t. The automorphism Outc com- 
mutes with inner automorphism Ada iff condition 
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conjugated if 
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ACA T = r A C ,  rA E C* (4) 

is fulfilled. The equivalence relation A ~ B ~=> A B - I E  ~ decomposes the 
group ~(0) into nonintersecting classes {~A Ic~ E C*}. We choose in each such ~ A d  
class four "normalized" matrices +(1 /v /~)A,  +( i / v / -G)A  for which Eq. (2) 
is valid and denote 

~(o) ]ACA T = ± C }  C G(~; s(G~ )) = {A E ~Ad 

clearly, s ( G ~ )  is the subgroup in ~(0/ VAd.  
For any A, B E s ( G ~ )  we have three conditions 

q ( A , B )  = ABA tB- l  = ctI,, ACA T = emC, BCB T -- @C 

from which we obtain 

A B C ( A B )  T = @ACA T = e, AesC 

and 
A B C ( A B )  T = ~2BACAT BT = ~2SAe~C; 

, ~(0) i t  impl ies ~2 = 1. The max ima l i t y  o f  ~ forces that S(OAd j is an Outc-subgroup 
and clearly 

~(o) Outc Ad G(A°~. (¢ = Ad VAd O 

Though outer automorphism Outc is not uniquely determined by if, the sub- 
group s(G(OA)d) is determined uniquely. Indeed, we may take any outer 

~(0) Due to commutativity OutD E ff(u instead of Outc; then A~ = D C  ~ E ~Ad" 
or anticommutativity of elements from ~(0) ~ A d  

AAr) = SAADA, SA = ±1 .  

The equality ADA T ± D is fulfilled iffA E s(G(~)d). 

2.7. The k x k matrix 

1 0 . .  O~ 

0 1 0 

: 

0 0 . .  1 

0 0 . .  0 

will be denoted by Pk and d iag(1 ,q , . . . ,  q~ t) will be denoted by Wk, where 
q = qk = exp (i2rr/k). 

The group ~ k = { : ¢  i - . _  ~Uk[t,  J - 0 , 1 , . . . , e E C ,  ]:¢]=1} will be called 
Pauli 's  group. 
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For 

( 1 0 )  (01 1)  0 and ~ = 
W2= -1  0 ' 

a traditional notation 0" 3 and al, respectively will be used. Then 

iG30"1 = ( 0-i 0i) 

is usually denoted by 0"2. Sometimes we will use symbol 0"0 for the identity ma- 
trix 12. 

The subgroup of ~l(n ,  C) containing all regular diagonal matrices will be de- 
noted by D(n). 

3. Ad- and Outc-subgroups of ~l(n, C) 

It is convenient to consider commutative and noncommutative cases sepa- 
rately. We are interested in the classes of conjugated Ad-subgroups or Out-sub- 
groups, respectively. In what follows we will describe their suitable 
representants only. 

3.1. Commutative Ad-subgroups 

Without loss of generality we can assume that a commutative Ad-subgroup 
G contains diagonal matrices only. From the maximality of G, it follows, more- 
over that G consists of all regular matrices, i.e. 

G = D(n). 

3.2. Noncommutative Ad-subgroups 

Let G be a noncommutative Ad-subgroup; for any A, B E G the commutator 

q(A,B)  ABA- IB  l ~'('4"8)I 

where q, = exp(i2~/n), s(A,B)O, 1, ...,n - 1. 
Denote by So = min{s (A ,B)  > OIA,B E G} and choose Ao,Bo E G for which 

q(Ao,Bo) = q~'In. Since A~B~o E ~(ol , --Ad, for all k , l  = 0, 1, . . . ,  the set 

{(q;~")~I, [k = 0, 1, . . .} _= ~(G)  

forms a group isomorphic to the subgroup of the cyclic group 
Z,, = {q~n I k = 0, 1 , . . . ,  n - 1 } and, therefore, so divides n. 

If s0 = 1 then any C E G lies also in {Ao,Bo} (q"). We show that it is true also 
for So > 1. Suppose the contrary, i.e. there exists C E G such that 
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kso < s(C, Ao) < (k + 1)s0 

for some k = 1 , 2 , . . . ,  n/so. Then 

0 < -kso + s(C, Ao) = s(Bo/'f' ~C, Ao) < So 

is a contradict ion to the minimality o f  So because Bo/'° ~C E G. Therefore,  
s(C, Ao) = kso and analogously  s(C~Bo) = lso for k, l = 0, 1 , . . .  ,n/so - 1. We 
see that  any C ¢ G lies in {Ao,Bo} (q~% and thus 

G C_ {Ao,Bo} (q;'°). 

Using Lemmas  A.3 and A.2 in Appendix  A, we may assume 

and 

Ao = W,,/~,, @ Dl, Bo = P,,i~.,, @ D2 

G C {Ao,Bo} (q;;°i # @ {DI,D2}'.  
_ ~ , n / s  o 

This inclusion and assumption o f  maximali ty for G imply that 

i.e. there exists (; C {D~,D2}' such that 

G = ?/,,/.,,, @ (~. 

Hence the subgroup G is again maximal.  
It remains to answer the question whether for a given divisor so o f  n there 

exists G such that  °Y(G) = Z,/~ o. 
An answer is affirmative because we can easily prove that for any Ad-sub-  

g roup  G C (~I(Sl, C) 

&,/~,, ® O c ~l(sos~, C) 

is an Ad-subgroup  in Nl(sosl, C). So we have proved the following proposit ion.  

Proposition 3.1. Any noncommutative Ad-subgroup of  ~l(n, C) is' conjugated to 
the tensor product ~n/so ® G for some divisor nl o f  n and some Ad-subgroup 

c  ¢t(n/nl, c).  

This assertion leads to the following classification o f  all nonconjugated  Ad- 
subgroups o f  ~l(n, C). Let n = p~ . . . p r  ~r, Pi different primes, :~i > 0. Choose  
r q , . . . ,  ~r~ satisfying two following condit ions:  

(a) for each j = 1 . . . .  , s there exists i = 1 , . . . ,  r and a natural  number  fl such 
that rrj = p~ 

(b) gj . . .  ~s divides n. 
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Denote  by Hn the set consisting o f  D(n) and the family of  all Ad-subgroups  
o f  the fo rm 

~ ,  @ " "  @ :~,  @D(n/~l  . . . ~ ) .  

These Ad-subgroups  are due to L e m m a  A.4 mutua l ly  nonconjugated .  It  is clear 
f rom the same l emma that  it is enough  to consider  just  powers  of  pr ime as val- 
ues for  r 0. So we have the final theorem.  

Theorem 3.2. Any Ad-subgroup ora l (n ,  C) is conjugated to some element o f  Hn. 

Corol lary 3.3. Recall that Bell's number B(~) is a number o f  partitions o f  a 
natural number ~. Put B(O) = 0 and B(o~) = ~ , ~  B(~'). I f  n = p~' . . . p ~ ,  then 
the set Hn has 

B(~,)&~2)""" B(~) 
elements. 

3.3. Commutative Outc-subgroups, n >~ 3 

Due to the commuta t iv i ty  of  G we can assume that  

G =  {D, I i E I }  

contains  diagonal  matr ices only, i.e. we can write 

Di = d,!l)/ml 0 d~2)/m2 @ ' ' "  @ d}")Im,, 

where for  each :~ ¢ fl there exists i E I such that  d} ~) ¢ d} I~). Writ ing also the 
mat r ix  C in the block form C = (C~I~), condi t ion (3) leads to equat ion  

(1 - d}~ldSI)C~l~ -- O. 

It  shows, that  C~/~ = 0 except for  the cases: 
(a) (d,!~l) 2 = 1 for all i E I; in this case the regulari ty o f  C implies regulari ty 

of  C~. 
(b) for  some ~ ¢ fl; d)~)dJ¢li for all i E I.  
The  regulari ty requi rement  for  C implies m~ -- ml~ and the regulari ty of  bo th  

C~t~ and C/~, too.  
We can therefore assume that  matr ices  D~ are a r ranged  in such a way that  

( d l ' ~ )  -' = ( 4 2 ~ )  2 . . . . .  (d~S~) ~ = 1 

and 

d~'+"d¢ ~2~ - -  d~s+3~d~ '+4~ . . . . .  1. 

I t  is not  excluded that  s = 0 or  s = r. Mat r ix  C is, then, o f  the fo rm 
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0 Cs+ls+2 ) 
C = C~ ® . - -  @ C~,® C,+2,+~ 0 @ " "  (5) 

Since matrix C(C 1) T E G, we have for k = s, s + 2 . . . .  

Ck+l k+2 d} k+l) T C~+2k+1 for some i E I. 

We show now that m~ = m2 . . . .  mr 1. Suppose the contrary, i.e. we can as- 
sume without loss of  generality that CI~ or C,+I ,+2 are at least two-dimensional. 
Using Lemma 2.2 we can find nonscalar B1 such that BjG~B T = Ct~. Then 

B =- BI @1,, 2 ® " "  @Ira r 

fulfils condition (2) but B ~ G though B commutes with all elements of  G; it is a 
contradiction with the maximality of  G. 

In the case of  C,+l,+2 the same properties has the matrix 

( o ,  0) 
B = Ira, @ " "  @I.,~ @ Cs+ls+20C*--I'+2 D 1 @ " ' "  @ / m r ,  

where D is a regular diagonal nonscalar rn,+l x m.+l-matrix, which finishes the 
proof. 

So all matrices Cyj and Ck+l k+2 must be one-dimensional and 

G = T2p,s ~ {fldiag(el , . . .  ,Ss, ~1, ~1 I , . . . ,  ~p, ~pl)[8i 

= ±1, :~ E C*,fi C {1,i}}, 

where n = 2p + s. 
Matrix (5) can be written as the product 

C = M C , . ,  M E D ( 2 p + s ) ,  C , = Z ~ ® I p ® a , .  

We proved the following lemma. 

Lemma 3.4. For any commutative Outc-subgroup G C .~l(n, C), there exists 
p E {0, 1 , . . . ,  In/2]} such that G is conjugated to OutMc-subgroup T2p,~Jbr some 
M C D(2p + s). 

We show, on the other hand, that any T2p,,, n = 2p + s ~> 3, is an OUtMc,- 
subgroup. First, we easily show that any diagonal matrix fulfilling Eq. (2) with 
MC, is contained in T2p,, and then prove the lemma given below. 

Lemma 3.5. I f  21)+ s = n ~ 3 then 

T~;.~ ) = (r2p,s)' = D(2p + s). 

T,(-1). Proof. Let B c *2p,s ' the anticommutativity of  regular B with some matrix A 
implies TrA = 0. Therefore, B must commute with diagonal matrices Ai,j E T2p., 
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A~j = d iag(1 , . . . ,  1 , - I ,  1 , . . . ,  1,2,2 1 ,1 , . . . , 1 )  

with -1 on the ith position, i = 1 , 2 . . . , s  and with 2 on the j th  position, 
j = i + l , i + 3 , . . . ,  as TrAs.j~-0. Therefore, B itself is diagonal, i.e. 
8 c []  

We come to the following proposition. 

Proposition 3.6. (i) Any subgroup T2p,,~ is an OUtMc~-subgroup for an)' 
a4 e D(Zp + 

(ii) Any commutative Outc-subgroup G C ~.£l(n, C), n >~ 3, is conjugated to 
Out~tc-subgroup Tzp~ with suitable M E T(, -ll and suitable p,s  such that 
2 p + s = n .  

Proposition 3.7. For any M ¢ (T2p,,)' = D(2p + s) there exist a regular matrix R 
and A c TZp,.~ such that 

MC, = RTA C,R. (6) 

Proof. If M = d iag(ml , . . . ,  map+,) then put 

= @k=l diag ms+2k_lms22/,. , ms+2k lms+2k . [ ]  

R = V ~  and 

Remark 3.8. If 2p + s = n ~> 3 then (-1)-commutant  of  T2p,s is equal to its 
commutant  and the consequence of above proposition is that Tzp,,~. determines 
corresponding MAD-group uniquely as we announced in 2.4. 

3.4. Noncommutative Outc-subgroups 

Noncommutativity of the Outc-subgroup G implies even order of matrices, 
i.e. G C Nl(2n, C). 

Let A, B c G form an anticommuting pair fulfilling Eq. (2). Due to Lemma 
A.2 we can write 

A=D(Dcr3,  B = / ) @ o ' I ,  

where D a n d / )  are diagonal matrices whose elements have arguments in the 
interval (-7r/2, ~/2 >. We can assume that 

D = d iag(~l , . . . ,  ~nl~ " ~|~...,  [~112' iTl"" ", i7,,~' iOi , . . . ,  i6, 4, ), 

b = diag(~ , , . . . ,  &,~, i /~, , . . . ,  i/},,e, 7 , , . . . ,  7-3, i a l ' ' ' ' '  i~,,~), 

where nj, n2, n3,/14 • 0 and nl + n2 + n3 + n4 = n, arguments of cq, ~i,/J~, 9i are 
in ( - = / 2 ,  ~/2) and 7i,/)~, 6~, 3i are real positive numbers. 



M. Havlicek et al. / Linear Algebra and its Applications 277 (1998) 9~125 109 

The consequence of Lemma A.3 is that G C_ {A,B} I-l) = {D,/)}' ® o~2 i.e. 

3 
G = U G~ ® 0-~,, (7) 

It 0 

where Go c ~l(n,  C) is a subgroup of commutative or anticommutative matri- 
ces and elements of subset G1, G2, G3 and subgroup Go commute with D,/). 

For an easy handling, denote by 

D = D1 @ D2 @ iD3 @ iD4, 

/~) = /~)1 O i/)2 ~)/~)3 O i/~)4. (8) 

Lemma 3.9. Let a regular matrix C fulfil condition (3) for  the matrices 
A = D ® 0-3 and A = / )  ® 0-1 where D,/)  are o f  the form (8). Then 

C = C, @/2 @ C2 @ 0-3 @ C3 @ 0-, ® Ca ® (-i)a2 (9) 

and 

DiC~D~ = C~, D~c~Di = C~, i =  1,2,3,4. (10) 

Proof. Divide C into blocks (Cij)~j=l where C~j is matrix 2n~ x 2nj. Substituting 
A = D ® 0-3 and A - D ® 0-1 into (3) we obtain 

(D @ as)C(D ® 0-3) = C, 

(A~ @ 0-1)C(A~)® o"1) = C. 

It gives that C,:/= 0 for i ~ j and Cii have the form of the tensor product 
Ci, = C, ® 0-~ as claimed in the lemma. Obtaining equality (10) is just an easy 
exercise as well. [] 

Equalities (10) are trivially fulfilled for any matrices Ci, if we replace Di and 
D~ by I,,. Therefore P ® 0-3 and Q ® 0-~ where 

P = I,,, @ I,2 @ (iI,~) @ (iI,4) , (11) 

Q : I, n @ (iI,~) @I,,3 @ (ii,4) 

fulfil (3), too. As 

P, O E {D, D}' C {P, Q}' 

matrices P ® 0-3 and Q ® 0-1 commute or anticommute with any A E G and the 
maximality of G implies 

P®0-3 and Q®0-1 E G. 
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The group properties and a decomposition (7) of G imply: 
(P @ 0-3)(G0 ~ 12) = PG0 @ 0-3, i.e. 

PG0 C G1 (12) 

and similarly (P @ o'3)(GI @ 0"3) = PGI Q 12, i.e. 

PG1 c Go; (13) 

the last inclusion gives p2 E Go, particularly. Multiply (13) by p3; as 1o4 = I we 
obtain 

GI C p3Go = PGo, (14) 

Inclusions (12) and (14) therefore give Gl = PG0. Analogously G2 = QGo and 
G3 = PQG0. Note that O"10-3 = --i0-2. Moreover, p 2  Q2 E Go C 
{D,/)}' C {P,Q}', and thus p 2  Q2 are elements of Y(G0). We have proved 
the following proposition. 

Proposition 3.10. For each noncommutative Outc-subgroup G c f#l(2n, C) there 
exist P, Q E ~l(n, C) of  the form (11) and a regular matrix R E fql(2n, C) such 
that p2, Q2 E ~(Go),  t 94 = Q4 = I; the matrix RCR T has the form (9) and 

RGR I = ( G o @ ~ ) U ( P G o ® 0 - 3 ) U ( Q G o ~ a , ) U ( P Q G o ® a 2 ) ,  (15) 

where 

Go := {A E ~l (n ,C) IA  @12 E RGR-1). 

The following proposition summarizes properties of Go. 

Proposition 3.11. Either Go is an Outq-subgroup with Co = Ci • C2 • C3 • Ca 
or 

n = 2 m and Go ~ G ~  = {12, 0"3, iI2, i0"3} ® (~2 @ " "  @ ~2 

ra ]~imes 

To prove this proposition we need the following lemma. 

Lemma 3.12. Let n = 2ml, where l is odd. Then any group J of  commuting or 
anticommuting idempotent matrices is conjugated to 

m' ~mes 

where 0 <. m' <. m, E is some subgroup of  {A E D(2 . . . .  l) I A 2 = I )  and the centre 
~ ( J )  of  groups J is conjugated to I ® E. 

Proof. If m = 0 ,  then J is conjugated to some subgroup E of 
{A E D(2m-m'l)IA 2 = I} and ~(E)  = E. 
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Assume that the lemma is valid for m - 1 and consider J c ~l(2ml, C). I f J  
is commutative then J is conjugated again to some subgroup E of  
{A E D(2" re'l)]A 2 = I} and the lemma is valid. I f J  contains anticommuting 
pair A,B, then due to Lemma A.2 

A = 03 ® DI, B = o l ® D2, 

Dj = d iag(d l , . . . ,  dn/2), 02 = diag(61, . . . ,  6n/2); arg di, arg 6i E< 0, it). In com- 
bination with D~ = D~ = I, this gives Dj = D 2 = I,,/2 and therefore 

2~2 ®1,/2 c J. (16) 

Due to Lemma A.3 

J = (12 @J0) U (03 @~)  U (0, ®J , )  U (io2 ®a2), 

where J0 is a subgroup in f¢/(2 m-~ l, C) formed by commuting and anticommut- 
ing elements with squares in ~ and so we can apply the induction hypothesis to 
J0. Eq. (16) then implies 

J = ,~ 2 ® Jo. 

P r o o f  o f  3.11. As mentioned above, p2, Q2@ Go. Moreover Go C { p 2 , Q 2 } ,  

which means that each A E Go has the form 

A = A I O A2 G A3 @ A4, where Ai is ni × ni matrix. 

Matrix A ® 12 E G fulfils Eq. (2) with C given by Eq. (9). So we obtain imme- 
diately 

ACoA T = ±Co. (17) 

On the other hand, for any A E ~l(n, C) satisfying Eq. (17) the matrix A ® 12 
satisfies Eq. (2) with C given by Eq. (9). 

Suppose that Go is not an Outco-subgroup, i.e. there exists A { Go, fulfilling 
Eq. (17) and commuting or anticommuting with all elements of  Go. 

IfA ¢ {p2, O2}, then A ® 12 E G due to the maximality of  G, and thus A E Go 
- a contradiction. 

So A can be out of  Go only ifA anticommutes with p2 or Q2; without loss of  
generality assume AP 2 = -PZA. In that case n = 2r and up to the conjugacy 

p2 = a 3 ® L ,  A = o ~ D ,  

where D is a diagonal regular matrix. For  any X E Go, the relations [p2, X] = 0 
and XA - qAX = 0, q -- q(X) - 1, 1 imply that there exists )( such that 

x = s - ~ ( 2 e , 2 ) s ,  s -  o 
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Also the matrix Co has a specific form. Conditions p2CoP2= Co and 
ACoA T = Co give 

Co = S(/2 ® C)S T. (19) 

We see that equality (17) with Co in this form is fulfilled also by the matrix 
S l(Ir CX)S.  

Take Y E 5e(G0), find its I ~ and put 

- s -1  ( I t  

Then because of the maximality of G is l > ® 12 E G and thus i¢E Go. As each 
element of Go is described by (18), it holds fz = S-1 (L ® ~IL)S = L ® qL. We 
have proved that 

~(Go) = {4-In, ±a3 @I~/2}. 

For any X E Go, X 2 E W(G0), i.e. X 2 = ±In or X 2 = -+-a3 ® L. But the form 
(18) of the matrix X excludes the second possibility. Writing the dimension n 
in the form n = 2ml, where l is odd, m/> 1, Lemma 3.1.2. implies 

Go = E o o - . .  o (20) 
mt -~imes 

where E = {•2, a3, ii2, i~3 } ® In, and m' <~ m - 1, n' = n2 -~' 1. 
We show now that the maximality of G implies l = 1 and m' = m - 1. 
The special form (20) of Go and equality (2) give 

C0=C0@I2,,,,, (~r3 (S, I~,) do (~3 @ I.,) = do, 

i.e. C0 = ~ t )  ® ~2). If n' > 1 then there exists 
A u) E .Cql(n', C), A u) ¢ cd[,, i =  1,2 for which AUlC~¢I(AIO)T= C~ ~) (see Lemma 
A.1). The matrix A = (A (n ® A (2)) ® I2~, commutes or anticommutes with each 
element in Go, fulfils Eq. (17) and tbusA ®I2 E G which is equivalent toA E Go 
- a contradiction. []  

We obtained from any given Outc-group G c_ ~l(2n, C) a subgroup Go 
which is always Outco-subgroup (except G~mc )) and a pair of idempotent ele- 
ments p2, Q2 E ~(G0) by means of which an Outc-subgroup G was construct- 
ed. On the other hand, we shall prove the following proposition. 

Proposition 3.13. Let Go be either any Outco-subgroup offal(n, c) and p2, Q2 be 
any idempotent pair from ~(Go) or Go = G~m)c, the matrix Co = I  and 
a3 ® I  E {p2, Q2} c ~(G~mc)). Then there exists C such that 

G = (Go @I2) U (PGo Q o"3) U (QGo ® o1) U (PQG0 @ o2) 

is an Outc-subgroup of ~fl(2n, C) with the centre ~ (G)  = ~(Go) ~ 12, where C is 
given by Eq. (9). 
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Proof.  We mus t  p rove  only that  the g roup  G has the max imal  proper ty .  
Assume,  on the contrary ,  A ¢ G but  (2) is fulfilled and A commutes  or  
an t i commutes  with all e lements  o f  G, i.e. also with P ® a3 and Q ® 0-1; L e m m a  
A.3 then implies A = A ® ~ for  some/~  = 0, l, 2.3 and 

E {P, Q}' = {p2, Q2}, .  

As the matr ix  A c o m m u t e  or an t i commute  also with remaining elements of  G, 
the matr ix  ,4 must  commutes  or  an t i commutes  with matr ices of  g)ven Go. At 
first suppose that  G0 is an Outc, , -subgroup and, for  example,  A = A ® 0-3. Then 

A = A~ @ 0 3 = (PA ® I2)(P ® 03) 3. 

Condi t ion  (2) for C of  the fo rm (9) gives Eq. (17) for  P/I. As Go has the max-  
imal proper ty ,  PA E Go and thus A = A ® 0-3 E G - a contradict ion.  The case 
A = A ® 0-~, for /~ # 3 gives a contradic t ion ana logous ly .At  second, suppose 

Go = {/~,, 0"3, i/2, i0"3 } @ ~J)°2 @ " "  @ ~oP~ 

m ltimes 

We use for  A ®  0"~, L e m m a  A.3 (m-1) - t imes  and we obtain  

A = diag(a,  b) ® ~r~,, ® a,,, - • • ® a~,,,, ~, (21) 

because A must  lie also in {p2, Q2}, = {a3 ® I}. F r o m  L e m m a  3.9 we conclude 
that  the only matr ices  fulfilling Eq. (3) for  elements of  our  special Go have the 
fo rm C = diag(~, fl) ® I and we may  assume (see L e m m a  A.1) diag(c~, fi) = h .  
The equali ty (3) for  identi ty mat r ix  C = I and matr ix  A o f  the fo rm (21) now 
give d iag(a ,b)  E {+/2, +a3},  i.e. A E Go, what  is a contradic t ion again. The as- 
sertion on the centre o f  G is just  a direct consequence of  L e m m a  A.3. [ ]  

we are in a posi t ion to formula te  our  main  theorem.  Fo r  fixed 
(p~ki Qik>), 

N o w  
s,p,m; s + p  >~ l, m ~> l, choose m pairs o f  matr ices 
k =  l , . . . , m ,  s u c h t h a t  

p/k/ d iag(@/,  vl~/ (k) ,/k/ /k) ,/k , = , ' ' ' ~  s ' F s + l ' l s + l ~ ' ' ' ~ l ~ s ~ p ~ ' ' + p ) ~  
(22) 

O(k) , (~) p,lk) p(k) ~(a) ~(k/ ~(k/ = d i a g ( p j  , . . . ,  , s+l,lOs+l,...,iOS+p, ps+p}, 

where v' k/ p~a) E {1,(), for j =  1 , . . . , s + p .  
P u t / @ i =  L+>. R~' = Q(k), R]) = iQ (k)P(k), Rla) p(kl and denote 

S(k) gp(k) ,q/a% = {Rlk) ®/2~ , @ a,, ® L,,, ~ [/z 0, 1 2, 3}. m.2p.s \ - -  ~ !=5 ] _ ~-  

Denote  fur ther  by K,, the set o f  all g roups  of  the fo rm 

m 

H v ( a }  (p(k) Q(ky)(T2p," ®I2,,) (23) "T(m)(P,Q)ap,, ~ l l O m , 2 p , s  ~, , 

k l 
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p = (p ( i l . . .  ,p(m)), Q = (Q(Jl . . . ,  Q(ml), for all possible choices m,p,s  satisfying 
n = 2 m ( 2 p + s ) ,  n>~3. 

T h e o r e m  3.14. (i) Except .['or the case s = 2 ,  p = 0 ,  P(k)=akI2, Q(k)=bkI2 
f o r k =  l , . . . , m ,  a k , b k ~ { 1 , i }  any group T}~.~(P,Q)~K,, ( n > 3 )  is an 
OutMc-subgroup with 

C =  Ci ® C 2 0 ' "  O C~ ® C,.+1 ®'"OC~+p , (24) 

where 

{ ~j,.® . . . .  @6,,. for  r =  1 , . . . , s ,  

C,.= 0"1@~}l,.@ ' ' '®&, , -  for  r = s + l  . . . .  , s + p ,  

= ~d,-) = 1. 12 for  v}. k) .,. , 

~kr = if3 .for v~ k) = 1, p}.*) = i, 
al Jor v~ k) = i, p}.ki = 1, 

0"30" 1 Jot  V}. k/ = p}k/ = i. 

Jor any M E [T2(pnl(/5, Q)] ( ' )  -= D(2p + s) @ ~2 ® " "  ® ,~2 • 

m times 

(ii) Any OutD-subgroup G C ~l(n, C), n >1 3 is conjugated to some OutMc- 
subgroup T.(ml@ f~ 2p.s ~. , ~J E Kn with suitable 

M e Z)(Zp+ s) O,~2 O . . .  O ~ .  

m-times 

Proof .  (i) By  i n d u c t i o n  on  n. 

If  m = 0 then  7:. (°1 @ tS~ 2p,s ~, , k21 ~ T2p,s and proof was given in Proposition 3.6. The 
second step of induction is a direct application of Proposition 3.13. (Note that 

(q(m+') (p(m+l) ) ['T(m)(p f}, ) "T(m+l)(l~2p,s \ - - , 0 )  = k~m+l,2p.s\ ;Q(m+l))  • 2p,sk ,k51 @12 , 

where/5 := (p( l / , . . . ,  p(,,I, p(m+ll) and similarly for {).) We can also easily deter- 
mine (-1)-commutant of T2(pi.l(/5 0). First, it is clear that 

r ,m,/p 1 I) 
T. (m) D ( 2 p  + s)  @ .~9 @ . . .  @ JJ~2 ~ Gmax ~ [ 2p,sk , 2p,.,(P, Q) c _ Q)j ( 

Y 
m-times 

In Section 3.2 we proved that Gm~ is Ad-subgroup i.e. it has the maximal property. 
Therefore, also 
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(m) - {T~p,~(P,Q),A} C_ Gmax 

(m) - 
f o r  any A E [T~p,s(P, Q)](-I)and so 

(~ - D(2p + s) ® , ~  ®--.  o ~ .  [~p.,(P, Q)] ( ' )  = 
T m-times 

Assertion is now the consequence of Proposition 2.4; note only that matrices 
IT(,.)/,/5 ] t-~/ MC, M E [ 2p,.,.~ , Q) exhaust all matrices for which T'(m)~/52p.s ~ , Q) is an OUtMc 

-subgroup. 
(ii) By induction on n ~> 3. When G is a commutative subgroup (for n = 3, this 

is only possibility), then assertion is proved in 3.6 (ii). If G is not commutative, 
then according the Propositions 3.10 and 3.13 we have to consider two possibil- 
ities. In case when Go is an Outc0-subgroup, we can directly use the induction 
hypothesis for the form of  Go. Separately we have to discuss the case when 

G =  {In ®I2,P®a3,Q®a, ,PQ®a2}(G~m~ ®12) 

with P = a~/2 ® I, Q = a~ '/2 ® I; e, e' = 0, 1, e + e' > 0 (see Proposition 3.13, 
when half-dimensional Go is not Out-subgroup. We see, however, that G is con- 
jugated to T(I~I(/5, Q) with/5 (a~/2,I,, • ,I2), Q , ~,/2 • = . . " = ( 0 " 3  , 1 2 , . . . , 1 2 ) -  [ ]  

As in the case of commutative Out-subgroups we can prove the following 
lemma. 

Lemma 3.15. Let G = T,(m)/,/5 g~ be an Outc-subgroup. Then Jor an), matrix 2p,s k ~ 4 1  
IT. (m) t/5 Q)](1) there exists a matrix .4 E G and a regular diagonal matrix k C t 2p,s \ 

such that 

MC = kWdck (25) 

and 

IT( m )/,/5 P r o o f .  Any P I - - D ® a , . ,  @ . . . ® a , ,  E t 2p.s\ ,Q)](-1) D diagonal matrix, 
can be written in the form ~ / =  (M @ I2°,)A'; A' = 

R (m) ~7 a T, (m) - (R!'I). .. ,,, ) @ ,, @ "" @ v,, C 2p.s(o P,Q), w h e r e  M is a diagonal m a t r i x .  

- Eq. (25) i~ then fulfilled with k = x/M @ I2~ and A- = (A ® 12,,)A', where A is 
defined as in the proof  of  Proposition 3.7. [] 

The direct consequence of previous lemma is the following proposition. 

P r o p o s i t i o n  3.16. Let G be simultaneously an Outc-subgroup and OutD- 
subgroup. Then corresponding MAD-groups are conjugated. 
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Note, that two groups in Kn need not be necessarily nonconjugated, as the 
next remarks demonstrate. 

Remark 3.17. (i) Let us take an arbitrary permutation 7t on the set {1 ,2 , . . . ,  m}. 
Then groups (23) and 

m 
1-1i f ( i )  (P(~(i)) Q(=(i)))( T2p,s @ ['~m ) 
1 1  °m,2p +s \ - -  ~ 
i=1 

are conjugated, since we have just changed the order in the tensor product. 
(ii) If P has form (22) then iP 3 is the matrix of the same type and 

PT2p,s ip3T2p,s. We see, that pairs (P, Q) and (iP 3, Q) lead to the same group 
and we may assume without loss of  generality that the first diagonal element 
in both matrices P, Q is 1. 

(iii) Denote by J{ the set of matrices of  the form (22) with v~ = 1. For  
MI,  M2 E °,/g, the product MIM2 = M3J, where J E T2p,s and M3 E ,~/¢ are deter- 
mined uniquely. All three choices of  the pair P, Q from the set {MI,M,_,M3} 
lead to the same MAD-group. It follows from the fact that for each permuta- 
tion ~ on the set {1,2, 3} there exists R= E ~,~l(2, C) such that R~akR= = a~(e I. 

(iv) Consider P = diag(1, v2, . . . ,  v,, v,+l, Ys+l, • • ",  Ys+p, Ys+p) ~ ~/¥ 

and 

Then 

and 

/5=diag(1 ,v> . . . ,v , )q012p  E ~J#. 

V(PT2p,, ® a3)V ~ = P~p,, ® a3 

V(QTzp,, ® a l ) V  -1 = QT>., ~ aj 

(26) 

for any QE~J# where V=,(~.@V,.:t,®...OV,.2+, with V1 =14 and 
Vt = 12 O al. The same argument can l~e applied to any given Q c J / w i t h  
the result, that corresponding similarity matrix does not change matrices from 
PT2p,s ® a3. It means that without loss of  generality we can assume that matri- 
ces P, Q are of  the form (26). 

(v) There are further possibilities which allow to reduce the set Kn. It needs, 
however, further systematic study. 

4. MAD-groups for orthogonal and symplectic Lie algebras 

4.1. According to the Theorem 6, p. 306 in [12], the automorphism group 
.4uto(n,  C) of the orthogonal Lie algebra 
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o(n, C) = {A E gl(n, C) ]A +A v = 0} 

consists with exception n = 3, 6, 8 of inner automorphisms only, ~ in other 
words 

.~¢ut o(n,C) = AdO(n ,C)  = {AdA ]A E ~l(n ,C) ,  ATA = 1}. 

In the case of symplectic Lie algebra 

s p ( n , C ) = { A E g l ( n , C ) ] A J + J A  T = O } ,  neven,  

where J - (- ia2) ® In/2, the automorphism group is 

.~/ut = sp(n, C) = AdSp(n,  C) = {AdA IA E ~l(n, C), AJA T = J}, 

for n /> 6. The group of automorphisms in remaining cases can be obtained by 
known isomorphisms: o(3, C) ~ sl(2, C), o(6, C) ~ sl(4, C), sp(2, C) 
sl(2, C) and sp(4, C) ~ o(5, C). The only case, when the theorem does not give 
answer about the group of  automorphisms is, therefore, o(8, C). 

4.2. Orthogonal and symplectic algebras can be described in the unified way. 
Denote by 

ax(n, C) = {A E gl(n, C)]AK + KA T = 0}, 

where K is a notation for I, in the orthogonal case and for J in the symplectic 
case. Take any AdA E ~ u t a x ( n ,  C) =- AdAx(n,  C); then 

AdA = X = A IXA E ax(n, C) 

for any X E ax(n, C). Automorphism AdA can, however, be considered as au- 
tomorphism of gl(n, C) D ale(n, C) with invariant subspace a~(n, C). As we are 
interested in diagonalizable automorphisms only, we must first answer the 
question when diagonalizable AdA E ~ 'u t  a~ (n, C) remains diagonalizable after 
its extension to gl(n, C) D ax(n, C). 

Lemma 4.1. Let a matrix A E .~l(n, C) fulfil relation 

AKA T = K. (27) 

then Ada E~Cutgl(n,C) is diagonalizable (ff the restriction AdA/~,~incl 
E ~/utaK (n, C) is diagonalizable. 

Proof. Assume that AdA is diagonalizable on aK(n, C) but not on gl(n, C). It 
implies that the matrix A is not diagonalizable (see Section 3.2), i.e. we have 

i Theorem in [9] do not concern n = 4, but an extension to this case can be done easily. 
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only m < n linearly independent eigenvectors for AT: ATxi = )qxi, 
i =  1 , 2 , . . . , m  < n. 

Due to the relation (27) the set 

X = {(Kxi)xf ]i,j = 1 , 2 , . . . , m )  C gl(n,C) 

consists of  m 2 linearly independent eigenvector of  A d / a n d  each eigenvector of  
AdA lies in {X}Jin. We choose a new basis in {X}lin: 

for i > j in the case K = I and i ~> j in the case K = J and 

for i > / j  in the case K = I  and i > j  in the case K = J ,  where eq= 1 and 
sj = - 1 .  Using Eq. (27) we show that this new basis is again formed by eigen- 
vectors of  AdA. As Y,y ~ an(n, C), there exists no eigenvector of  AdA/o~/n,c), 
which does not belong to {Xu}li . c_ an(n, C). Therefore, according to assump- 
tion m < n, the dimension of  {Xu}li n is less than the dimension of an(n, C), what 
is a contradiction to diagonalizability of  AdA/~,KI,.c I. [] 

Consider now MAD-subgroup  ~ C d u t  ax (n, C). As it consists of  inner au- 
tomorphisms only (forget for this moment  about  exceptional cases), N = ~/0/ 
and 

G(Ol = {A E AK(n,C) IAdA E ~}. Ad 

The commutativi ty of  two automorphisms AdA, Ads implies q ( A , B ) X -  
Xq(A,B) = 0 as in Section 3, but now X E a x ( n , C ) C  gl(n,C). Nevertheless, 
q(A,B) = ~In, ~ E C*, because aK(n,C) is an irreducible representation and 
Schur's lemma can be applied, i.e. again AB = qBA. The equations 
AKAT= K = BKB v give q 2 =  1 and, therefore, {1, i } G ~  fulfils our definition 
of OUtK-subgroup from Section 3.3. It is clear that for any OUtK-subgroup 
G = {1,i}G0(see Remark  2.1(b)) the group AdG0 is a MAD-subgroup in 
~4ut aK (n, C). 

So we have proved the following theorem. 

Theorem 4.2. Any MAD-group ~ c ,~¢utax(n,C) has the form ~ =AdGo,  
where G = {1, i}Go is some Outx-subgroup of Nl(n, C). 

According to the Theorem 3.14 (ii) and a Lemma 3.15 Outx-subgroup G is 
Ira) p - conjugated to some OUtAc-Subgroup T~,(  , Q) c K,; it means that there exist a (m) - ' (,,) - - 

regular matrix R and A E T~p.s(P,Q ) such that RGR - 1 =  T~p.~.(P,Q) and 
RKR v = AC. Matrix RKR x is symmetric (skew-symmetric) for K = I (K = J ) ,  
i.e. the same property has AC. 
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On the other hand, any symmetric (skew-symmetric) matrix can be written 
in the form RR T (R JR T) for some regular matrix R. We have the following pro- 
portion. 

Proposition 4.3. 
(i) An Outc-subgroup G E K. is conjugated to some Outl-subgroup if[" there 

exists A E G such that matrix AC is symmetric. 
(ii) An Outc-subgroup G E K. is conjugated to some Out j-subgroup iff there 

exists A E G such that matrix AC is skew-symmetric. 

5. Examples 

5.1. We now give the explicit description of the sets H, for n <~ 6. In accor- 
dance with Section 3.2 we must find all possible decompositions of given n into 
the product of powers of  primes and the some residue. The set H4 does not con- 
tain the group 82 ® 82 ® D(1) as it is, in fact, an Outt-subgroup and it is con- 
tained in the set K4 (see Section 3.4). Here is the promised list: 

H2 = {82 ®O(1),O(2)},  H3 -- {83 @ D(1),D(3)}, 

H4 = {84 ®D(1),  82 @D(2), D(4)}, 

H5 = {85 ®D(1),D(5)},  

H6 = {86 ®D(1), 83 ®D(2),  82 ®D(3), D(6)}. 

5.2. For the description of  the sets K~ we must write a given n in the form 
n = 2m(2p + S) and to find all such decompositions. For the purpose of  classi- 
fication of the MAD-subgroups of  remaining simple Lie algebras, we write also 
the most general form of matrix C with respect to which the group is an Outc- 
subgroup.0n what follows, aj will be an arbitrary nonzero complex number.) 

(i) The set K3 has two elements: 

T2,1 = {i 'diag(e,~,~ J)lt/= 0, 1,e = +1,~ E C*} 

To,3 = { i "d iag(e l , e2 ,~3)  I t / =  0, 1, ej = 4-1}, 
(ii) The set K4 consists of  six elements: 
T4,o : -  ~,o O T2,o, where ~,o = 

C =  ( 0  a , )  ( 0  a3 )  
a2 0 • a4 0 ' 

T2.2 = 7"2.0 ® To.2, where To,2 = {i"diag(e~,e2) lr/ 

C =  ( 0  a , ) ( a 3  0 )  
a2 0 • 0 a4 ' 

To,4 = {i"diag(e,,ez,e3,e4)l, -- 0, 1, ei = +1} 

with C = 0 , 
a3 

with Cdiag(al, a2, a3). 

{i"diag(~,~-l)lq = 0,1, ~ E C*} with 

= 0,1, ~i ± 1} with 

with C = diag(al, a2, a3, a4) 
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T(1)~. i2)=T2,0@fJ)o2 w i t h C = ( 0  a , )  2'0~"2' a2 0 ®Cr~ for p -- 0,1, 2, 3 
(l) 

T0,2(x/~3,I2) = (r02 ® I2){14,12 ~ a l , i v / ~  ® a2, v / ~  ® a3}, with 

C =  ( ~  a02)@ (a04 ; ' ) ,  

T (2/r/" I,), (I1,I1)){4-i",~ ®;~2]tlO, 1}, with C a,(cru ~ a,.), It, v0, 1 2.3. 0,1 kt, 11 ~ - = , , 
(iii) The set K5 consists of three groups: 

/ 
T4.1 = ~,1 @ T2.o with C = 

\ 

To.5 ~- {i'ldiag(e,l,...,es)]q = 0, 1,~;j = i l }  

al00)  0a4 / 
0 0 a2 @ 
0 a3 0 a5 0 ' 

) @ diag(a3,a4,as), al 
0 

/ 

with C = d iag(a l , . . . , as ) .  

5.3. Now we describe MAD-groups for Lie algebras 0(4, C), sp(4, C) and 
0(5, c). 

(i) Lie algebra o(4, C). Following 4.3, we must inspect the list K4 and choose 
these subgroups G from the list for which the matrix C may be symmetric. We 
see that it is possible in all six subgroups. Sometimes, we can choose more sym- 
metric matrices C for given subgroup. Nevertheless, according to Proposition 
3.16 all these choices of C for fixed subgroup G lead to the conjugated 
MAD-groups. So we have just six MAD-subgroups which after translation 
give the MAD-groups in o(4, C). 

The algorithm of translation: Choose some G with a symmetric matrix C 
from the list 5.2 (ii). Find Go such that G = {1,i}G0 (see Remark 2.1). As C 
is symmetric, we can also find a regular matrix R such that C = RR v. Then 

= RGoR -1 consists of orthogonal matrices only and {AdA [A E G} is a corre- 
sponding MAD-groups in o(4, C). 

(ii) Lie algebra sp(4, C). There are only three MAD-subgroups, because we 
can choose the matrix C to be skew-symmetric only for G = T4,0, T~.~ and T~/. 
Writing the skew-symmetric matrix C in the form C = R JR v, the group RGoR 1 
will belong to Sp(4, C). 

(iii) We see that in all three subgroups of the set K5 the matrix C can be made 
symmetric; therefore we have three MAD-subgroups for o(5, C). We see that 
numbers of MAD-subgroups for sp(4, C) and o(5, C) coincide. Of course, it 
is the consequence of the known isomorphism sp(4, C) ~ o(5, C). 
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Appendix A 

Lemma A.1. Let B C gl(n, C) be a regular matrix with diagonalizable B(B I)T. 
Then there exists a regular matrix P and nonnegatice integers m,p such that 
n = m + 2p and 

pBp T = 

I m 

0 

2( I 

1 

0 

0 1 

~p 0 

Proof.  As B(B j)T is diagonalizable,  we can find a diagonal  matr ix  D and a 
regular matr ix  R such that  B(B 1)T = R-IDR. It may  be rewritten equivalently 
to (RBRT)((RBR T) I)T = D. Thus  we can consider,  without  loss of  generality. 
B(B I)T = D, D a diagonal  matr ix.  The  relations B = DB T and its t ranspo-  
sition give B = DBD which implies that  the matr ix  D is o f  the form 

D I,,, ~! ( - I , . )  ~ 0 2 i II1,, ~ . . .  + 2~ tlt,~ . 

where n = m + r + 2 b l  + . . - + 2 b ~  and , ; . i ¢ ) o / ¢  ±1 
i ¢; j ,  i , /  1 . . . .  k, and the matr ix  B has a form 

B = A I @ A : @  i 0 @. . .@ 0 , 

for each 

RIAIRf = 1,,, 

If we put 0) 
R = RI ~ R2 @ B~ 1 

0 1,.~) 

and R2A2R~-= -1,< 0 . 

where A~ is a regular symmetr ic  matr ix  m × m and A2 is a regular skew-symmet-  
ric matr ix  r × r, (i.e. r is even), Bi is a regular matr ix  b, x b, for i 1 , . . . ,  k. It is 
well known that  for  any symmetr ic  regular  matr ix  A~ and any skew-symmetr ic  
matr ix  A2 there exist matr ices R~ and R, such that  
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we have 

( 0 

RBR r = I,. @ --1,./2 
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0 @ lt,~ 0 @ • - • @ 0 . 

To obtain the desired form of  PBP s we can find a suitable permuta t ion  matrix 
S and put  P = SR (note, that  S ~ = S f for any permuta t ion  matrix S). [ ]  

Lemma A.2. Let  A ,B  be diagonalizable elements o f  C.ql(n,C), such that 
A B = q B A ,  where q = q~ =_ exp( i2g/k)  and k divides n. Then there exists a 
regular matrix P such that 

P 'AP = diag(1,qa. , . . .  ,q~ ') C, d i a g ( d l , & , . . .  ,dn/a) 

and 

P I B P =  

/ 0  1 0 . . .  0 

0 0 1 0 

0 0 0 . . .  1 

1 0 0 . . .  0 

® diag(6l,  ~ 2 , - - "  , ~),,/'k), 

where arg d,, arg 6~ E (0, 2re~k)Jbr i 1 , 2 , . . . ,  n/k.  

Proof.  First-order  eigenvalues 2, o f  A with respect to the arg )-i, SO that  

0 ~< arg )q ~< arg ).2 ~< "'" ~< arg ,~,, < 2=. 

Consider  a subspace F C C" 
dim F by s. As B k commutes  
o f  c o m m o n  eigenvectors o f  A 

Ae~ = 2iei, Bl'ei = v~ei, 

of  eigenvectors with arg 2i 6 (0, 2~/k) .  Denote  
with A we can choose a basis {e l , . . . , e~}  c F 
and B a , i.e. 

where degeneracy is allowed and where we may  assume also arg vi 6 (0, 2rt/k). 
Let us define 

f l  el, f l  = - - B e l ,  J3 B~el, . . . ,  .fk Bk lel, 

.fk el = e2, fa.-2 lv, Be2, . . . ,  .f2k = v~il Bk-l e2, 

f(.~-l)a.+l = es . . . .  , f~a- = vk~T Ba Je,. 
v 
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Obviously,  f l , . . .  ,f~k are linearly independent  eigenvectors o f  A. 
Suppose that s k  < n. Then there exists an eigenvector x o f  A, linearly inde- 

pendent  on f l , . . . , ~ k .  Let x corresponds to eigenvalue 2 and 
arg )~ E ( ( 2 g / k ) j , ( 2 7 c / k ) ( j +  1)); i.e. B - i x  is an element o f F .  Thus B Jx can 
be written as a linear combina t ion  o f  e l , . . . ,  e~ and x as a linear combina t ion  
of  B i e r , . . . ,  Bier; a contradiction• So sk  = n and Ji . . . .  ,f,,, form a basis o f  C". 
Since 

AJ] = Ae l  = 21el = 21 f l ,  

A J ;  = 1 A B e ,  = l q B A e l  = ) ' l q B e ,  = A,qJ2, 
VI g'I /'1 

AJ'k 1 ABk_t  e I ) q ¢ - l  v l qBa ~ ej )or k I . = = = q ,/*. 
l'k I 

we have for some suitable P 

P t A P  = diag()q, q ~ , l , . . - ,  qa--l . , ;q,  22,  q)~2 . . . .  ) 

= diag( l ,  q . . . .  , ¢ ~) ® diag()q, 22 . . . .  ,2 , / , ) .  

Moreover ,  

E l i  = Bet  = v 1"2. 

t~f2 = 1 B 2 e ,  = v f3, 
l' I 

~1 $,k I 
" 1 

B / i  = r B k e l  = el = Vlfl  

p - I B p  = 

and thus 

/ 0  1 0 . . .  0 

0 0 1 0 

0 0 0 . . .  1 

1 0 0 . . .  0 

;9 diag(vt, v2 . . . .  , v,,.;k). [ ]  

Remark  A.3. Note,  that  in the statement o f  the previous lemma, it is possible to 
replace the interval (0, 2 n / k )  by the interval ( - n / k ,  n / k ) .  
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L e m m a  A.4. Let  Di = d iag(d l ,d_~ , . . . ,d / ) ,  D2 -- diag,(61a2 . . . .  ,ill) 
a rg  di, arg  6i E (0, 2r~/k). Put 

A : =  Wk @ DI and B := Pk ~'¢ D2, 

then 

where 

{A,B}  I~/a' = :#k @ {DI~ D2}'. 

Proof .  Let us cons ider  first C c {A, B}' c {A, B} (qk). A is a d iagona l  mat r ix  with 
diq~, on the d iagona l ,  qk = exp(i27~/k). Since a r g &  E (0,27z/k), we have  
diq~ ¢ d/q~ for  s ¢ t and  so 

AC = CA ~ C -  CI @C2 @. . .@Ck~ 

where  Ci E ~ l ( l ,  C) and  for  each i it holds  

CiDi D1Ci. (28) 

F r o m  the equal i ty  BC CB we have  

CiD2 ~ D2Ci.  I for  i = l , . . . ,  k C~.~ I ~ CI 

and  thus  C~D~ = D~C~; for  mat r ix  e lements  o f  C~ = (7o) it gives 

., fik ~k, ,~i i = ~i~!i for  each LJ.  

I f  "/(i ¢ 0, then 6~jl = 6~ which implies fij - (5~, i.e. 

C,D~ = D~C, ¢=ee C, D2 - D2C,. (29) 

M o r e o v e r  C1D2 = DeC~ - D 2 C 2  implies C~ - C2 and  ana logous ly  

Ct = C2 . . . . .  Ca. (30) 

A c c o r d i n g  to (28), (29) and  (30) 

C - I k @ C , ,  where  CI E {DI,D2} ' .  (31) 

N o w ,  let us cons ider  H C {A,B}  (qa!, i.e. 

1B HA = q~AH and  tIB = qk H. 

Put  C :=  A"B.'H, where  x , y  are integers and  will be specified later. T h e n  

CA = (A'B"H)A = q~.q~iA (A'B"H) = q~+"AC, 

CB = (A"B"H)B = qkq~,~ "B'A 'B~""  -r  t) q~ .... BC.  

F o r  3' = - s  and  x = - t  is C E {A,B} '  and  acco rd ing  to (31) 

C = A  ~B ' H = I ~ . @ C I ,  CI E { D 1 , D 2 } ' ,  
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i.e. 

H = W,;'P t k k G ' F ,  

where F =D]D[C~ ~ {Dj,D2}'. [] 

Lemma A.5. ~¢k ~ .~m is conjugated to .~k,,~ ( ~ k  arid m are relative primes. 
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