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Abstract

To obtain fine gradings of gl(n, C), it is necessary to study maximal Abelian sub-
groups (MAD-subgroups) of diagonizable automorphisms in 2Zut(gl(n, C)). We de-
scribed two finite sets 5%, and £, such that each MAD-subgroup consisting only
from inner automorphisms is conjugated to some element of #, and each MAD-sub-
group containing at least one outer automorphism is conjugated to some element of
A,. Using these results concerning ¢, we then easily find all MAD-subgroups in
ut(o(n, C)) for n # 8 and in Zut(sp(2n, C)). © 1998 Elsevier Science Inc. All rights
reserved.
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1. Introduction

The aim of this article is to complete in the case of the classical simple Lie
algebras over C the main problem which was raised in [1], namely the classifi-
cation of fine gradings (i.e. not refinable any further) of these algebras. It is a
problem closely related to finding maximal groups of simultaneously diagonalizable
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automorphisms of the algebras. Indeed a grading is found when such an alge-
bra, as a linear space, is decomposed into the direct sum of eigenvalues of the
corresponding automorphisms. If the group of automorphisms is maximal, the
gradings is fine and vice versa.

During the eight years since [1], the life has forced many changes on the per-
spectives and wide ranging plans formed in [1]. At least two directions of ex-
ploitation of systematic study of all gradings, mentioned in [l], have
acquired a (mathematical) life of their own.

First is txhe study of solvable Lie algebras from the equidimensional nilpo-
tent algebras, where a relation between the two is in a certain graded twist. In
such a way the problem of finding isomorphism classes of solvable Lie algebras
of a given dimension is reduced in [2] to the classification of isomorphism class-
es of equidimensional nilpotent Lie algebras. For some low-dimensional cases
the method was used in [3].

The second direction is the study of deformations of Lie algebras during
which a chosen grading is preserved. It turned out to be an approach particu-
larly useful in applications. Following [4], more that a two dozens of articles
exploiting the method in some way have been published. Let us point out here,
that the method has got a natural extension to the simultaneous deformations of
semisimple Lie algebras and their representations [5]. Apparently deformations of
representations had not been considered in the mathematical literature before that.

The imposition of the grading preservation requirement on the deformation
process split an otherwise difficult problem [6] into a number of smaller ones
(one for each grading) which can be solved. That combined with a knowledge
of all gradings, add up into a powerful tool. The wealth of deformation out-
comes is well illustrated in [7] on the case of sl(3, C).

For any finite dimensional simple Lie algebra L over C its decomposition as
a linear space into the direct sum of one-dimensional subspaces labeled by
roots of the algebra and the r-dimensional Cartan subalgebra, where r is the
rank of L, is a basic information about the structure of the algebra whose im-
portance for applications is difficult to overestimate. It is called the roo? or Car-
tan decomposition of L.

The root decomposition can be defined as the decomposition into the eigen-
spaces of a maximal torus of the corresponding simple Lie group. Therefore, it
is also a grading decomposition. As a consequence of the maximality of the to-
rus, the root grading of L cannot be further refined (fine grading). Hence the
Cartan subalgebra of L cannot be further decomposed in a way which would
also be a grading of L. Since the maximal torus is unique up to automorphisms
of L, there is one nonequivalent root decomposition/grading of L.

An appealing property of the root decomposition is the fact, that it is de-
fined in unique way for L of any type and rank. Nevertheless, the question
about existence of other fine gradings of a simple Lie algebra is interesting.
One may expect that there are problems which are naturally and more simply
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formulated exploiting bases dictated by other fine gradings of L than the root
one. Indeed, that is precisely the case with the second fine grading of si(2, C).
The only alternative to the root decomposition there is the Z, x Z, grading (of
gl(2, C) in fact) spanned by the Pauli’s matrices. Also the generalization [8] of
the Pauli’s matrices to gl(n, C) is finding its way into the physics literature
[9,10]. The general reason for that is the fact that such grading decomposes
gl(n, C) into the direct sum of n* subspaces of dimension 1 (i.. it defines a basis
of gl(n, C)), and that the generators are all semisimple elements of the algebra.

Each fine grading of a simple algebra L is a decomposition into eigenspaces
of a maximal Abelian subgroup (MAD-group) of the automorphism group
2ZutL of L. Therefore the fine gradings are determined once the MAD-groups
are found. The goal of this article is to discuss the MAD-groups of classical
simple Lie algebras.

At present, the known fine gradings of L besides the root decomposition are:
o the gradings of gl(n, C), n = 2, generated by the generalization of the Pauli’s

matrices [8],

e two fine gradings of sl(3, C) involving the outer automorphism of the alge-

bra [11],

Our study of MAD-groups begins with complete description of the case
gl(n, C); we shall see that it simultaneously gives a solution of the problem
for the orthogonal and symplectic Lie algebras.

The basic tool of our considerations is the one-to-one correspondence be-
tween the MAD-subgroups C </utgl{n,C) and the special subgroups of
41(n, C) called by us Ad-subgroups and Out-subgroups. The Ad-subgroup cor-
responds to MAD-subgroup formed by inner automorphisms only and the
Out-subgroup corresponds to MAD-subgroup with an outer automorphism. We
describe a finite set H, of Ad-subgroups and a finite set K, of Out-subgroups such
that each Ad- or Out-subgroup, is conjugated to some element of H, or K,.

In Section 4 we show that any MAD-subgroups ¢ acting on the orthogonal
or the symplectic algebra can be extended to the MAD-subgroup acting on
gl(n, C) with a special outer automorphism. Such MAD-groups ¥ is conjugat-
ed to any MAD-groups # if and only if # contains an outer automorphisms
Outc, (see Eq. (1)) with C symmetric in the orthogonal case and C skew-sym-
metric in the symplectic case. This fact allows us to determine these elements of
K, which correspond to the MAD-subgroups of orthogonal and symplectic al-
gebra (Section 4).

The paper is closed by several illustrating examples in low dimensions.

2. Properties of maximal abelian subgroups of Autgl(n, C)

2.1. An automorphism group </utgl(n, C) consists of a subgroup of inner
automorphisms Ady,
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Ad X :=A47'X4 for A€ Gl(n,C), X €gl(n,C)
and a set of outer automorphisms Out,,
Out, X := —(4"'X4)" = Ad,,7Out, X = Out; Ad,X. (1)

2.2. Any MAD-subgroup % C .«/utgl(n,C) can be written in the form
4 = 4% U9, where 4 is the subgroup of inner automorphisms (it is always
nonempty) and %"’ is the set of outer automorphisms of %; we will distinguish
two cases for MAD-groups: 4" is empty and ¢'" is nonempty. For n = 2,
g =

If 4949, ie. 4" 50ute then for any Outp € %Y we can write
Outp = OutcAdpe-1; with Ad(pe-1, € 4 so that 4" = Out%".

2.3. Elements of MAD-group ¥ are assumed to be diagonalizable. We shall
show that for Ad, € 4'” C % it implies diagonizability of 4 € 4I(n,C). If
el =(1,0,...,0),el =(0,1,...,0),...,ef =(0,0,...,1) denote rows of stan-
dard vectors then standard basis {E;;;i,j = 1,...,n} C gl(n, C) can be written
in the form of a matrix product E; = e,-ejT and AdE; = (A*‘e,-)(ATej)T. It
shows that Ad, = 4~' ® A". It is well known that a tensor product is diagonal-
izable iff both its components are diagonalizable.

If 'V £ @ then (Outc)’ = Ad cre-1y and we see that CTC™' must be diago-
nalizable. Since a linear regular operator is diagonalizable if and only if its
square is diagonalizable, we obtain, that diagonalizability of CTC~! is also a
sufficient condition for the diagonalizability of Outc. A matrix C with diago-
nalizable CTC~! will be called the admissible matrix.

In 2.4 and 2.5, we are going to introduce two types of subgroups of 4!(n, C)
called Out-groups and Ad-groups. Then in 2.6, we will find a one-to-one cor-
respondence between MAD-groups containing at least one outer automorp-
hism and Out-groups and another one-to-one correspondence between
MAD-groups formed by inner automorphisms only and Ad-groups. In both
cases, constructed correspondences should reveal deeper interply between stud-
ied notations.

2.4. For a given admissible matrix C € ¢/(n, C) the subgroup of diagonaliz-
able matrices G C %/ (n, C) will be called an Outc-subgroup if

(i) for any pair 4, B € G, the commutator (4, B) = ¢4 l,,e45 = £1.

(ii) for any 4 € G,

ACAT = +C. (2)

(iil) G is a maximal set satisfying (i) and (ii), i.e. for any M ¢ G either we find
A € G such that the commutator g(M, 4) # +1, or condition (2) is not fulfilled
for M.
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Remark 2.1. (a) ¢43 may be equal to —1 only if » is even (a determinant
argument).

(b) Condition (ii) shows that for any A € G also —4, +i4 € G. We see further
that G = {1,i}G, where G, is a subgroup of G such that

ACAT = C. (3)
for 4 € Gy.

Proposition 2.2. For each admissible matrix C € 41(n,C), n > 1, any Outc-
subgroup is nontrivial.

Proof. Following Lemma A.1, C = RCRT with a canonical form of C. We can
rewrite Eq. (2) into the form

ACAT = +C
for 4 = R~'4R. For any canonical form of C, there exists a nontrivial (i.c. non-
scalar and diagonalizabie) matrix A4 satisfying Eq. (2). 0O

Let g, = exp(27i/n); the set
G = {X € 4I(n,C)| X4 = ¢"V4X, for each 4 € G, I(4) € Z}

will be called ¢,-commutant of the set G C ¢I(n, C). Usual commutant, i.e. in
our notation l-commutant, will be denoted by G’ instead of G'V.

If M € G then an Outc-subgroup G is also an Outyc-subgroup. We easily
prove the following lemma.

Lemma 2.3. The equality ADAT = +D is fulfilled for any A € Outc-subgroup G
iff D = MC where M € G,

We have not claimed so far that G has to satisfy the condition of maximality
(iti); there is a sufficient condition guarantying the following property.

Proposition 2.4. Let G be an Outc-subgroup such that AB = £BA for each
A,B € GV, Then G is also an Outyc-subgroup for any M € GV,

Proof. Consider a matrix B such that B(MC)BT = +MC and B commutes or
anticommutes with all elements of G. Then B¢ G=V. Because of co-
mmutativity or anticommutativity B with M we also have BCBT = +C, i.e.
BeG. [

Later on we are going to show that a (—1)-commutant of any QOutc-sub-
group G fulfils the condition of the previous proposition.
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~ We will call Outc-subgroup G and Outp-subgroup G conjugated if
G = RGR™ " and D = RCR” for some regular matrix R.
For any Outc-subgroup G, the group

%c = AdGUOutc AdG C utgl(n, C),

where AdG = {Ad, |4 € G}, is the MAD-group with outer automorphisms.
Conjugated Out-subgroups lead to conjugated MAD-groups. As an Outc-
subgroup is also Outyc-subgroups for M € GV, MAD-group % can differ
from %c. (However, if M € G™YV' NG = G, then Gy = %))
We shall prove (see Section 3.4) that for any M € G~V there exist a regular
matrix R and 4 € G such that RGR™' = G and RACRT = MC. Therefore, Outc-
subgroup G determines MAD-group uniquely up to conjugacy.

2.5. A subgroup of diagonalizable matrices G C %/(n,C) will be called an
Ad-subgroup if:

(i) for any pair 4,B € G, the commutator g(4,B) = ABA™'B~! lies in the

center & = {olf, |0 € C*} C 4l(n,C).

(i) G is maximal, i.e. for each M & G there exists 4 € G such that

g4, M) ¢ Z.

Note that due to the maximality, an Ad-subgroup always contains the center 7.
A product ABA~'B~! = g/ with ¢" = 1, as det g(4,B) = 1.

If an Ad-subgroup G consists of commuting or anticommuting matrices
only, it may happen that there exists a regular matrix C such that
ACA™ = r,C for each 4 € G. In that case G= {4 € G|ACAT = £C} is an
Outc- subgroup For any Ad-subgroup G for which such C does not exist,
AdG is a MAD-sub%roup of »/utgl(n, C) without any outer automorphism
and AdG = AdG Y If G,H are conjugated Ad-subgroups then AdG and
AdH are conjugated MAD-subgroups.

2.6. We show now that any MAD-group ¥ C <Zutgl(n, C) arises from some
Ad- or Out-subgroup in the above described way. Assume first 4 = ¢ and
denote

G\ = {4 €%l(nC)|Ads € 90}

It is a subgroup of diagonalizable matrices and commutativity of two auto-
morphisms Ad,, Adg implies

q(4,B)X - Xq(4,B) =0

for any X e€gl(n,C). Schurs lemma gives the desired result
q(4,B) =gql,, g€ C*. It is s1m)33le to see that GAcl is an Ad-subgroup which is
not Outc-subgroup and Ad GAd

Let us study now the case 44 U OutC %% The automorphism Outc com-
mutes with inner automorphism Ad, iff condition
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ACA" =r,C, reC 4)

is fulfilled. The equivalence relation 4 ~ B <= AB~' € 2 decomposes the
group Gy} into nonintersecting classes {24 |a € C*}. We choose in each such
class four “normalized” matrices +(1/,/74)4, £(i/\/r1)4 for which Eq. (2)
is valid and denote
s(GO) = {4 € G |4CAT = +C} c GY);
clearly, s(G'}) is the subgroup in G,
For any 4, B € s(G')) we have three conditions

q(A4,B) = ABA™'B™" = ul,, ACA" = ¢,C, BCB' = gC
from which we obtain

ABC(AB)" = £54CA" = £,465C
and

ABC(AB)" = o BACA"BT = o*e,¢5C;

it implies o> = 1. The maximality of % forces that s( A(;) is an Outc-subgroup

and clearly
4 = AdGY) U OutcAdGY).

Though outer automorphism Outc is not uniquely determined by %, the sub-
group s(foj) is determined uniquely. Indeed, we may take any outer
Out, € 4 instead of Outc; then 4p = DC = GAd Due to commutativity
or anticommutativity of elements from GAd,

AAD FAADA &4 = +1.
The equality ADA™ + D is fulfilled iff 4 € s(G'Y)).

2.7. The k& x k matrix

01 0 ... 0
0 0 1 0
000 ... 1

0 ... 0

will be denoted by P, and diag(l,q,...,¢""") will be denoted by W;, where
q = qr = exp(i2n/k). o

The group 2, = {a W/P/|i,j=0,1,...,a€C, |aj=1} will be called
Pauli’s group.
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For

1 0 0 1
W2:< > and P2:< \
0 —1 1 0

a traditional notation ¢; and o, respectively will be used. Then

. ( 0 i>
1030 = 0
—1

is usually denoted by g;. Sometimes we will use symbol g for the identity ma-
trix 12.

The subgroup of ¢!(n, C) containing all regular diagonal matrices will be de-
noted by D(n).

3. Ad- and Outc-subgroups of Gl(n, C)

It is convenient to consider commutative and noncommutative cases sepa-
rately. We are interested in the classes of conjugated Ad-subgroups or Out-sub-
groups, respectively. In what follows we will describe their suitable
representants only.

3.1. Commutative Ad-subgroups

Without loss of generality we can assume that a commutative Ad-subgroup
G contains diagonal matrices only. From the maximality of G, it follows, more-
over that G consists of all regular matrices. i.e.

G = D(n).

3.2. Noncommutative Ad-subgroups

Let G be a noncommutative Ad-subgroup; for any 4, B € G the commutator

q(4,B) = ABA™'B~! = U],

n

where ¢, = exp(i2n/n), s(4,B)0,1,...n— 1.
Denote by sy = min{s(4,B) > 0|4, B € G} and choose 4y, By € G for which
(Ao, By) = 1, Since A5BL € GY), for all k,1 = 0,1, ..., the set

{(g") L lk=0,1,...} = Z(G)

forms a group isomorphic to the subgroup of the cyclic group
Z,={q¢*\k=0,1,...,n— 1} and, therefore, s, divides n.

If 5o = 1 then any C € G lies also in {do, Bo}'*’. We show that it is true also
for sq > 1. Suppose the contrary, i.e. there exists C € G such that
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ksy < S(C,Ao) < (k+ l)SO
for some k = 1,2,...,n/sp. Then
0 < —ksg + S(C,A()) = S(Bg/snikC,Ao) < 8o

is a contradiction to the minimality of s, because By**C € G. Therefore.
s(C,Ay) = ksyp and analogously s(C BO) Isy for k,1=0.1,...,n/s9 — 1. We
see that any C € G lies in {4, By} @) and thus
GC {AOsBO}(q'\"))~

Using Lemmas A.3 and A.2 in Appendix A, we may assume

Ay =W,y @ D1, By =P, @ D2
and
G C {49 B} = 2, ® {Dy. DY
This inclusion and assumption of maximality for G imply that
Py @1, C G,
i.e. there exists G € {Dy,D,}’ such that
G=2,,3G.

Hence the subgroup G is again maximal.

It remains to answer the question whether for a given divisor sy of n there
exists G such that Z(G) = Z,5,.

An answer is affirmative because we can easily prove that for any Ad-sub-
group G C %I(s,, C)

’ﬁn/s(, Y G - gl(SOSl , C)
is an Ad-subgroup in %/(sys;, C). So we have proved the following proposition.

Propeosition 3.1. Any noncommutative Ad-subgroup of %1(n, C) is conjugated 1o
the tensor product 2,5, ® G for some divisor n, of n and some Ad-subgroup
G C %l(n/n,C).

This assertion leads to the following classification of all nonconjugated Ad-
subgroups of %/(n,C). Let n = p{' ...p", p; different primes, %, > 0. Choose

T\, .-, T satisfying two following conditions:
(a) foreach j =1,...,sthereexists i = 1,...,r and a natural number f such
that 7; = p/

(b) m, ... n, divides n.



106 M. Havlicek et al. | Linear Algebra and its Applications 277 (1998) 97-125

Denote by H, the set consisting of D(n) and the family of all Ad-subgroups
of the form

Pr Q- @P, @D(nfn ... 1)

These Ad-subgroups are due to Lemma A.4 mutually nonconjugated. It is clear
from the same lemma that it is enough to consider just powers of prime as val-
ues for ;. So we have the final theorem.

Theorem 3.2. Any Ad-subgroup of %1(n, C) is conjugated to some element of H,.

Corollary 3.3. Recall that Bell's number B(x) is a number of partitions of a
natural number o. Put B(0) =0 and B(a) =3, ., B(d). If n = p}* ...pY, then
the set H, has

B(a)B(%) - - B(w,)

elements.
3.3. Commutative Outc-subgroups, n = 3

Due to the commutativity of G we can assume that
G={D|iel}
contains diagonal matrices only, i.e. we can write
D, =d"l, &d®l, & - cdl,.

where for each o # f there exists i € [ such that d,-(i) # d,-(m. Writing also the
matrix C in the block form C = (C,s), condition (3) leads to equation

(1 —d”d")\Cyy = 0.

It shows, that C,; = 0 except for the cases:

(a) (d,-(°‘>)2 =1 for all i € I; in this case the regularity of C implies regularity
of Cy,.

(b) for some « # B; ddP1 for all i € I.

The regularity requirement for C implies m, = mg and the regularity of both
Cg(/; and C/jo(, too.

We can therefore assume that matrices D; are arranged in such a way that

di(,x-+l)di(372) — di(s+3)di(s+4) S 1

1t is not excluded that s = 0 or s = r. Matrix C is, then, of the form
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0 Corrs42
C:c”@...@cm@(Cﬁml +0 )EB (5)
Since matrix C(C 1T € G, we have for k = 5,5+ 2, . ..
Cisrsd®VCL,,., forsomeicl.
We show now that m; = m; = --- m, 1. Suppose the contrary, i.e. we can as-

sume without loss of generality that C|, or C, ., are at least two-dimensional.
Using Lemma 2.2 we can find nonscalar B; such that B,CyB] = C),. Then

B=B &L, & &I,

fulfils condition (2) but B ¢ G though B commutes with all elements of G; itis a
contradiction with the maximality of G.
In the case of C,,,.» the same properties has the matrix

Cs+l s+2DC—1 0

s+1s+2

B=I,& --®,®
l (Grgemes )

])@...gﬁ]mr’

where D is a regular diagonal nonscalar m,, |, x m, -matrix, which finishes the
proof.
So all matrices C;; and Ci;4-> must be one-dimensional and

G: TZp.S = {ﬂdiag(gla'“78.?aa|7fx17]s"'5“[7»“;])[81'
=41, € C*, f €{1,i}},

where n = 2p + 5.
Matrix (5) can be written as the product

C=MC, MeD2p+s), Ci=L&I, 0.
We proved the following lemma.

Lemma 3.4. For any commutative Outc-subgroup G C 91(n,C), there exists
p€1{0,1,...,[n/2]} such that G is conjugated to Outyc,-subgroup T», for some
M e D(2p+3s).

We show, on the other hand, that any T5,,, n =2p+s 2 3, is an Outyc,-
subgroup. First, we easily show that any diagonal matrix fulfilling Eq. (2) with
MC; is contained in T3, and then prove the lemma given below.

Lemma 3.5. If 2p+s =n = 3 then

T = (Tops) = D(2p+5).

Proof. Let B € Tz(; sl ), the anticommutativity of regular B with some matrix A
implies Tr4 = 0. Therefore, B must commute with diagonal matrices 4; ; € To,
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A, =diag(l,...,1,-1,1,...,1,2,27" 1,... 1)

with —1 on the ith position, i=1,2...,s and with 2 on the jth position,
J=i+1i+3,. i as Trd,; #0. Therefore, B itself is diagonal, i.e.
Be (T, CT,pY. O

We come to the following proposition.

Proposition 3.6. (i) Any subgroup To,, is an Outyc-subgroup for any
M e D(2p+ys).

(ii) Any commutative Outc-subgroup G C %1(n,C), n = 3, is conjugated to
Outyyc,-subgroup T, with suitable M € Tz(,:.‘l) and suitable p,s such that
2p+s=n.

Proposition 3.7. For any M € (T»,,)' = D(2p + s) there exist a regular matrix R
and A € Ty such that
MC, = R"AC,R. (6)

Proof. If M =diag(m,...,myps,) then put R=VM and
A=1I @1;::1 diag(\/mx+2k~lm;_:2ks \/m;‘dzk,lms-&—ﬂ\') . O
Remark 3.8. If 2p+ 5 =n >3 then (-1)-commutant of I3, is equal to its

commutant and the consequence of above proposition is that 75, determines
corresponding MAD-group uniquely as we announced in 2.4.

3.4. Noncommutative Outc-subgroups

Noncommutativity of the Outc-subgroup G implies even order of matrices,
ie. GC ¥%I(2n,C).

Let 4,B € G form an anticommuting pair fulfilling Eq. (2). Due to Lemma
A.2 we can write

A:D®O'3, B:D®61,

where D and D ate diagonal matrices whose elements have arguments in the
interval (—n/2,n/2 >. We can assume that

D:diag(ocl,...,ot,,l,ﬂl,...,/3”:,1'",\,..., /"1 lb],... ,14,),

D= diag(@, ..., G, iB1se s iBoys Trs e s n 101y i80,),

where ny,nz,n3,n5 = 0 and ny + ny + n3 + ng = n, arguments of «;, 9, f;, ; are
in (=n/2,7/2) and y,, ., 8, 6; are real positive numbers.
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The consequence of Lemma A.3 is that G C {4,B}"" = {D, D} ® 2, i..

3
G = U G;L ® O‘;u (7)

1=0
where Gy C 91(n, C) is a subgroup of commutative or anticommutative matri-
ces and elements of subset Gy, G,, G; and subgroup G, commute with D, D.
For an easy handling, denote by
D =D, ® D, DiDs P iDy,

.- . . . 8
D =D, &iDy,® D; HiDy. ( )

Lemma 3.9. Let a regular matrix C fulfil condition (3) for the matrices
A=D®o; and 4 = D® o, where D, D are of the form (§8). Then

C=CLPCRMHDPC;Ra0 DCy® (—i)o; 9)
and

D.CD;,=C,, DCD,=C;, i=1,2734. (10)

Proof. Divide C into blocks (C,j):f =1 Where C;; is matrix 2n; x 2n;. Substituting

A=D® g3 and 4 = D ® g, into (3) we obtain

(D@O'})C(D@O’z) = C,

(D@Gl)C(D®O'1) =C.

It gives that C;; =0 for i # j and C; have the form of the tensor product
Ci; = C; ® g, as claimed in the lemma. Obtaining equality (10) is just an easy
exercise as well. [

} Equalities (10) are trivially fulfilled for any matrices C;, if we replace D; and
D; by I,.. Therefore P ® g3 and Q ® g, where
P= ["1 & ]V!: D (iI”]) S (ilm)v
Q = 1"1 EB (II'I:) @ 1'13 @ (11"4)
fulfil (3), too. As
P,Q € {D.D} c{P,0}

matrices P @ g3 and Q ® o, commute or anticommute with any 4 € G and the
maximality of G implies

(11)

P®o; and QO®oa €G.
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The group properties and a decomposition (7) of G imply:
(P®O'3)(G() ®12) = PG() 03, 1.€.

PGy C G (12)
and similarly (P ® 61)(G) ® 63) = PG, ® I, i.e.
PG, C Gy; (13)

the last inclusion gives P? € G,, particularly. Multiply (13) by P?; as P* = I we
obtain

G, C P’G, = PG,. (14)

Inclusions (12) and (14) therefore give G; = PGy. Analogously G, = QG, and
Gy = PQG,. Note that 0,03 =—is,. Moreover, P>, Q*?€GyC
{D,DY c {P,Q}, and thus P?,Q* are elements of Z'(G,). We have proved
the following proposition.

Proposition 3.10. For each noncommutative Outc-subgroup G C 41(2n,C) there
exist P,Q € 41(n,C) of the form (11) and a regular matrix R € 41(2n, C) such
that P*,(? € #(Gy), P*= Q" =1I; the matrix RCR" has the form (9) and

RGR™' = (Gy ® 1) U (PGy ® 03) U (QGy ® 1) U (PQG, ® 73), (15)
where

Go:={A4€%I(n,C)|{AR I, € RGR™'}.

The following proposition summarizes properties of Gy.

Proposition 3.11. Either Gy is an Oute,-subgroup with Co = Ci S C: & C3 D G4
or

n=2" and G()EGZ_’C):{12,0'3,i[2,i03}®;?3®"'®,@2
—e —

m—1times

To prove this proposition we need the following lemma.

Lemma 3.12. Let n = 2"[, where [ is odd. Then any group J of commuting or
anticommuting idempotent matrices is conjugated to

P QP QF
———
m' —times

where 0 < m' <m, E is some subgroup of {4 € D(2"~™1)| 4> = I} and the centre
Z(J) of groups J is conjugated to I Q E.

Proof. If m=0, then J 1is conjugated to some subgroup £ of
{4 € D(2"™[)|4> = I} and Z(E) = E.
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Assume that the lemma is valid for m — 1 and consider J C #/(2"1,C). If J
is commutative then J is conjugated again to some subgroup E of
{4 € D(2"™[)|4* = I} and the lemma is valid. If J contains anticommuting
pair A4, B, then due to Lemma A.2

A:O-3®D1‘, B:UI®D23

D, = diag(d,,...,d,), D, = diag(d,,...,0,);arg d;,arg 3; €< 0,7). In com-
bination with D} = D} = I, this gives Dy = D, = I,» and therefore

P& Ly CJ. (16)
Due to Lemma A.3
J = ([2 @J()) U (0'3 ®J}) U (O'] ®J1) U (iO'p_ @Jp_),

where J; is a subgroup in ¥/(2"~!], C) formed by commuting and anticommut-
ing elements with squares in 2 and so we can apply the induction hypothesis to
Jo. Eq. (16) then implies

J =22 J.

Proof of 3.11. As mentioned above, P?,0? € Gy. Moreover G, C {P?,Q*}
which means that each 4 € G; has the form

A=A, O A © Ay & Ay, where 4, is n; X n; matrix.

Matrix 4 ® I, € G fulfils Eq. (2) with C given by Eq. (9). So we obtain imme-
diately

AC AT = +C,. (17)

On the other hand, for any 4 € 4/{n, C) satisfying Eq. (17) the matrix 4 ® I,
satisfies Eq. (2) with C given by Eq. (9).

Suppose that Gy is not an Outc,-subgroup, i.e. there exists 4 & G, fulfilling
Eq. (17) and commuting or anticommuting with all elements of G.

If4 € {P*,?} then 4 ® I, € G due to the maximality of G, and thus 4 € G,
— a contradiction.

So A can be out of G, only if 4 anticommutes with P?> or Q?; without loss of
generality assume AP? = —P?A4. In that case n = 2r and up to the conjugacy

P2:03®1r, A=0, ®D,

where D is a diagonal regular matrix. For any X € Gy, the relgtions [P, X]=0
and X4 —yAX =0, n=n5(X)— 1,1 imply that there exists X such that

X =5 (X @ nX)s, s;(é 103)- (18)
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Also the matrix Cy has a specific form. Conditions P?CoP? = C, and
ACAT = C, give

Co=S(L®C)S". (19)

We see that equality (17) with Cp in this form is fulfilled also by the matrix
S(I,  X)S. )
Take Y € Z(G)), find its ¥ and put

Y =5, a7Y)s.
Then because of the maximality of G is Y ®5 € G and thus Y € G,. As each

element of G, is described by (18), it holds ¥ = §~'(I, @ yl,)S = I, ® nl,. We
have proved that

SZ(GO) = {:*:[,,,:i:0'3 ®I,,/2}.

For any X € Gy, X* € Z(Gy), i.e. X> = %I, or X* = 403 ® I,. But the form
(18) of the matrix X excludes the second possibility. Writing the dimension #
in the form n = 2"/, where / is odd, m > 1, Lemma 3.1.2. implies

Go=ERPQ - P, (20)
N ——

m' —times

where E = {, 63,ih,io5} ® I, and m' <m — 1, ' = n2™"" L,
We show now that the maximality of G implies / =1 and m' =m — 1.
The special form (20) of Gy and equality (2) give

Co=Co®hw, (03@1,)Colo3®1,) = Co,

Le. Co=C"oCP. If n>1 then there exists
A e G, C), AV # oI, i =1,2 for which 40CY(4)T = €Y (see Lemma
A.1). The matrix 4 = (4" ©® 4®) ® I,w commutes or anticommutes with each
element in Gy, fulfils Eq. (17) and thus A ® I, € G which is equivalent to 4 € G
— a contradiction. [J

We obtained from any given Oute-group G C 41(2n,C) a subgroup G
which is always Outc,-subgroup (except G{")) and a pair of idempotent ele-

ments P2, 0 € Z(Go) by means of which an Outc-subgroup G was construct-
ed. On the other hand, we shall prove the following proposition.

Proposition 3.13. Let G, be either any Outc,-subgroup of 91(n,c) and P*, Q* be
any idempotent pair from %(Gy) or Gy = Gexe, the matrix Co =1 and
a0lc{P.Q*}c ¥ (GQZ'Q) Then there exists C such that

G =(Go® L) U(PGy ®03) U (QGo ® 01) U (PRG ® 02)

is an Outc-subgroup of 41(2n, C) with the centre Z(G) = Z(Gy) ® I, where C is
given by Eq. (9).
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Proof. We must prove only that the group G has the maximal property.
Assume, on the contrary, 4 ¢ G but (2) is fulfilled and 4 commutes or
anticommutes with all elements of G, i.c. also with P ® 63 and Q ® ¢;; Lemma
A.3 then implies 4 = 4 ® o, for some p=0,1,2.3 and

Ade(p.o) ={P QY.
As the matrix 4 commute or anticommute also with remaining elements of G,

the matrix 4 must commutes or anticommutes with matrices of given G,. At
first suppose that G is an Out,-subgroup and, for example, 4 = 4 ® o3. Then

A=Ad@ o= (PASDL) P& as).

Condition (2) for C of the form (9) gives Eq. (17) for PA. As G, has the max-
imal property, P4 € Gy and thus 4 = A ® 63 € G — a contradiction. The case
A =A4® o, for u# 3 gives a contradiction analogously.At second, suppose

Gy = {1270'3,i[2,io'3} RPLD D P
S—

m—1 times
We use for 4 ® o, Lemma A.3 (m—1)-times and we obtain

A - diag(a, b) ® J“‘ ® 0-;12 e ® O-;l (21)

m-17

because 4 must lie also in {P?, 0?}' = {63 ® I'}. From Lemma 3.9 we conclude
that the only matrices fulfilling Eq. (3) for elements of our special G, have the
form C = diag(«, f) ® I and we may assume (see Lemma A.1) diag(a, f) = L.
The equality (3) for identity matrix C = I and matrix 4 of the form (21) now
give diag(a, b) € {£h, to;},i.e. 4 € Gy, what is a contradiction again. The as-
sertion on the centre of G is just a direct consequence of Lemma A.3. [

Now we are in a position to formulate our main theorem. For fixed
s,pm: s+p=1, m=1, choose m pairs of matrices (P* QW)
k=1,...,m, such that

K k) k) k)
e Ve Ve s Ve e Vs P ‘s+p)

= diag(v}" )
(k . k) k k k
0% = diag(p}”,....p", o, o, o 0,

wherev p be {1, 2» forj=1,....,s+p. ;
Put R = L5y, RF =0 R = jgWipw RY — pki and denote

Sy (PR, 0W) = {RY @ Iyt © 0, @ L | 1t = 0,1,2,3}.
Denote further by K, the set of all groups of the form

Ty (P, Q) = [[ 843, (PY, Q) (T © 1) (23)

k=1
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p
n

[t

(P! ) Q = (O, ..., Q™), for all possible choices m, p, s satisfying
o™ (2p + s) =3

Theorem 3.14. (i) Except for the case s=2, p 0, PY =g, Q% =bi1,
fork=1,....m, ab;€{l,i} any group Tz( (P,Q)€K,, (n=3) is an
OutMC—subgroup with

C=CaoCad  -dCdCd &y, (24)
where
Gy @ QD Oy for r=1,....s,
C,=X01®6,8 - Q6b, for r=s+1,...,s+p,

L Sor vk = pb =1,
o3 for v =1, p® =

",
k) —

”

O =
: k

=1 Pﬁ f= 1,

(k)

)

a1 forv

=1

(k) —
o301 for V)

for any Me[Tz(l',"‘(P 0] "=D2p+s5)0 2,002, .
[
m—times
(ii) Any OutD subgroup G C 41(n,C), n = 3 is conjugated to some Outy,-

subgroup sz‘(P Q) € K, with suitable
MeDP2p+s5)QP Q- QP .
———

m—times

Proof. (i) By induction on 2.

If m = 0 then sz‘(P Q) = T»,, and proof was given in Proposition 3.6. The
second step of induction is a direct application of Proposition 3.13. (Note that

T (P, 0) = (SU5 1, (P, 0 ) ) (TP, O) @ 1 )

where P .= (P, ... P™ P '"“)) and similarly for 0.) We can also easily deter-

mine (—1)-commutant of T " (P, Q). First, it is clear that

_ _ _ =N
TYNP.0) CD2p+5) 8 228 ® 23 = G C [THU(P,O)] -
—_ »
m—times
In Section 3.2 we proved that Gp,, 13 Ad-subgroup i.e. it has the maximal property.
Therefore, also
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{T7(P,0), A} C G
for any 4 € [T,)(P,0)]" and so
sz(:Z(P7 Q)l(il) =D2p+5)RP R QP .
—_—

m—times

Assertion is now the cgnsequence of Proposition 2.4; note only that matrices
MC, M € [ 2p‘(P Q)] exhaust all matrices for which sz_x (P, Q) is an Outy
-subgroup.

(i1) By induction on n > 3. When G is a commutative subgroup (for n = 3, this
is only possibility), then assertion is proved in 3.6 (ii). If G is not commutative,
then according the Propositions 3.10 and 3.13 we have to consider two possibil-
ities. In case when Gy is an Outc,-subgroup, we can directly use the induction
hypothesis for the form of G,. Separately we have to discuss the case when

G= {I ®127P®O'3,Q®O'|,1)Q®0'2}( exc®])

with P = og/z ®1,0= ag’” ®I; ¢, =0,1, ¢+ ¢ >0 (see Proposition 3.13,
when half-dimensional G, is not Out-subgroup. We see, however, that G is con-
jugated to T,7(P, Q) with P = (6>, I,..., L), O = (o% '“’/- b ... h). O

As in the case of commutative Out-subgroups we can prove the following
lemma.

Lemma 3.15. Let G T.

2pS(P Q) be an Outc-subgroup. Then for any matrix

M e | 2(P~S (P, Q)] ) there exists a matrix A € G and a regular diagonal matrix R
such that

MC = RTACR (25)
and

R'GR=G.

Proof. Any M =D®o0, ® - ®a, € [TZ(;"A( ,Q)]H)hD diagonal matrix,
can be written in the form M=MhmA';, A=
(Rl,l) R ®o, ® R0, €T, ™) (B, (), where M is a diagonal matrix.

Eq. (25) i$ then fulﬁlled with R = VM & I and A = (4 ® L»)A’, where 4 is
defined as in the proof of Proposition 3.7. [

The direct consequence of previous lemma is the following proposition.

Proposition 3.16. Let G be simultaneously an Outc-subgroup and Outp-
subgroup. Then corresponding MAD-groups are conjugated.
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Note, that two groups in K, need not be necessarily nonconjugated, as the
next remarks demonstrate.

Remark 3.17. (i) Let us take an arbitrary permutation = on the set {1,2,...,m}.
Then groups (23) and

H m2p+¥ Q )(TQPA(X)IZ”')

are conjugated, since we have just changed the order in the tensor product.

(i) If P has form (22) then iP? is the matrix of the same type and
Php iP3T2,,J. We see, that pairs (P,Q) and (iP?, Q) lead to the same group
and we may assume without loss of generality that the first diagonal element
in both matrices P, Q is 1.

(iti) Denote by .# the set of matrices of the form (22) with v, = 1. For
M\, M, € .#, the product MM, = M3J, where J € T,,, and M; € .# are deter-
mined uniquely. All three choices of the pair P, QO from the set {M,, M,, M;}
lead to the same MAD-group. It follows from the fact that for each permuta-
tion 7 on the set {1,2, 3} there exists R, € ¥/(2,C) such that R_'o,R; = o).

(iv) Consider P = diag(1, va. ..., Vg, Vor1, Vorty o ooy Vopps Visp) €
and
P =diag(l,va,...,v,) @ b, € 4. (26)
Then

V(PT.'Zp.s X 0’3)Vﬁl - }STZp,s X o3
and
V(QT2p.s ® GI)V—l = QTZp..\- X gy

for any Qe .# where V=LaV, & EBK-, with V=17 and
V., =15 @ o,. The same argument can be apphed to’ any given Q € .# with
the result, that corresponding similarity matrix does not change matrices from
15T2,,,s & a3. It means that without loss of generality we can assume that matri-
ces P, Q are of the form (26).

(v) There are further possibilities which allow to reduce the set K,,. It needs,
however, further systematic study.

4. MAD-groups for orthogonal and symplectic Lie algebras

4.1. According to the Theorem 6, p. 306 in [12], the automorphism group
2/uto(n, C) of the orthogonal Lie algebra
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o(n,C) ={4 € gl(n,C)|4 + 4" =0}

consists with exception n = 3,6,8 of inner automorphisms only, ' in other
words

ut o(n,C) = AdO(n,C) = {Ad4|4 € %1(n,C), 474 = 1}.
In the case of symplectic Lie algebra
sp(n,C) = {A € gl(n,C)|4J +JA" =0}, n even,
where J = (—io2) © 1,2, the automorphism group is
/ut = sp(n,C) = AdSp(n,C) = {Ad,|4 € %1(n,C), AJAT =J},
for n = 6. The group of automorphisms in remaining cases can be obtained by
known  isomorphisms:  0o(3,C) ~sl(2,C), o(6,C) ~sl{(4,C), sp(2,C) ~

sl(2, C) and sp(4,C) ~ o5, C). The only case, when the theorem does not give
answer about the group of automorphisms is, therefore, o(8, C).

4.2, Orthogonal and symplectic algebras can be described in the unified way.

Denote by

ax(n,C) = {4 € gl(n,C)|AK + KA" = 0},
where K is a notation for 7, in the orthogonal case and for .J in the symplectic
case. Take any Ad, € o/utax(n,C) = AdAk(n, C); then

Ad; =X =A"'X4 € ax(n,C)
for any X € ag(n, C). Automorphism Ad, can, however, be considered as au-
tomorphism of gl(n, C) D ax(n, C) with invariant subspace ax(n, C). As we are
interested in diagonalizable automorphisms only, we must first answer the
question when diagonalizable Ad, € «/utag(n, C) remains diagonalizable after
its extension to gl(n,C) D ax(n, C).
Lemma 4.1. Let a matrix A € 91(n, C) fulfil relation

AKAT = K. (27)

then Ad, € odutgln,C) is diagonalizable iff the restriction Ad,/

ak (n.C)
€ Jutag(n,C) is diagonalizable. *

Proof. Assume that Ad, is diagonalizable on ax (s, C) but not on gl(n, C). It
implies that the matrix 4 is not diagonalizable (see Section 3.2), i.c. we have

! Theorem in [9] do not concern n = 4, but an extension to this case can be done easily.
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only m<n linearly independent eigenvectors for AT: ATx; = Ax;,

Due to the relation (27) the set
X = {(Kx,)xjT li,j=1,2,...,m} C gl(n,C)

consists of m* linearly independent eigenvector of Ad, and each eigenvector of
Ad, lies in {X}, . We choose a new basis in {X},:

Xy = (Kx;)x] — ex (Kx))x!
for i > j in the case K =7 and i > j in the case K =J and
Yy = (Kxi)x] + ex (Kx))x/

for i > j in the case K =7 and i > j in the case K =.J, where ¢ =1 and
g; = —1. Using Eq. (27) we show that this new basis is again formed by eigen-
vectors of Ad,. As Yj; & ax(n,C), there exists no eigenvector of Ads/, (,c)s

which does not belong to {X;};, C ax(n.C). Therefore, according to assump-

tion m < n, the dimension of {X;;},, is less than the dimension of ax (n, C), what
is a contradiction to diagonalizability of Ads/,, - O

Consider now MAD-subgroup ¢ C «/utag(n, C). As it consists of inner au-
tomorphisms only (forget for this moment about exceptional cases), 4 = %%
and

GV = {4 € Ax(n,C)|Ad, € %}.

The commutativity of two automorphisms Ad,, Adp implies g(4,B)X—
Xq(4,B) =0 as in Section 3, but now X € ax(n,C) C gl(n, C). Nevertheless,
q(A4,B) = ol,, a € C*, because ax(n, C) is an irreducible representation and
Schur’s lemma can be applied, ie. again 4B = ?BA. The equations
AKAT = K = BKBT give ¢* = 1 and, therefore, {1,i}G') fulfils our definition
of Outg-subgroup from Section 3.3. It is clear that for any Outg-subgroup
G = {1,i}Go(see Remark 2.1(b)) the group AdG, is a MAD-subgroup in
sutag (n, C)
So we have proved the following theorem.

Theorem 4.2. Any MAD-group 4 C /utag(n,C) has the form 4 = Ad Gy,
where G = {1,i}Gq is some Outg-subgroup of 41(n,C).

According to the Theorem 3.14 (11) and a Lemma 3.15 Outg-subgroup G is
conjugated to some Out - subgroup T2 (P Q) € K,; it means that there exist a
regular matrix R and 4 ¢ T2 (P Q) such that RGR™' =T, m) "(P,Q) and
RKR" = AC. Matrix RKRT is symmetric (skew-symmetric) for K =1 (K=J),
i.e. the same property has AC.



M. Havlicek et al. | Linear Algebra and its Applications 277 (1998) 97-125 119

On the other hand, any symmetric (skew-symmetric) matrix can be written
in the form RRT (RJRT) for some regular matrix R. We have the following pro-
portion.

Proposition 4.3.

(i) An Outc-subgroup G € K, is conjugated to some Out;-subgroup iff there
exists A € G such that matrix AC is symmetric.

(ii) An Outc-subgroup G € K, is conjugated to some Out,-subgroup iff there
exists A € G such that matrix AC is skew-symmetric.

5. Examples

5.1. We now give the explicit description of the sets H,, for n < 6. In accor-
dance with Section 3.2 we must find all possible decompositions of given » into
the product of powers of primes and the some residue. The set Hy does not con-
tain the group 2, ® 2, ® D(1) as it is, in fact, an Out;-subgroup and it is con-
tained in the set K, (see Section 3.4). Here is the promised list:

H, = {#,2D(1),D(2)}, H;={2;®D(1),D(3)},
H5 = {495 ®D(1),D(5)},
H¢ = {#Z ® D(1), 23, ® D(2), #,® D(3), D(6)}.

5.2. For the description of the sets K, we must write a given » in the form
n=2"(2p+ s) and to find all such decompositions. For the purpose of classi-
fication of the MAD-subgroups of remaining simple Lie algebras, we write also
the most general form of matrix C with respect to which the group is an Out-

subgroup.(In what follows, a; will be an arbitrary nonzero complex number.)
(i) The set K; has two elements:

a) O 0
To, = {"diag(e,o,a ) =0,l,e=+l,0 € C*} withC=[0 0 a
0 as 0

Tos = {i"diag(ei, &2, 6)|n=0,1, & = x1}, with Cdiag(a;,a,a;).
(i1) The set K, consists of six elements:
Tio = Too @ Do, where Ty = {i"diag(a,a”!)|y = 0,1, « € C*} with

. 0 a) 0 [25]
(o $)(a ©)

T:> = Ty & Tyo, where Ty, = {i"diag(ei, &)y = 0,1, & £ 1} with

_ 0 a as 0
(o 5)e(5 )

Tos = {i"diag(er, &2, 63, 81)[n = 0,1, & = =1} with C = diag(a,, a3, a3, a4)
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. 0 a
T (L) =To®#?;, with C = (a 0' ®a, for p=0,1,2,3
2

Ty (venh) = (Tz © D){Inh ® 6,iy/G ® 61,\/G @ o3}, with
_fa O 0 o

=% 2)ela ©)

T, 1), (L, L) {2, ® 25|70, 1}, with C = ay(6, ® a,), 1,0,1,2,3.

(iii) The set K5 consists of three groups:
aq 0 0

T, = VERRS) Lo with C = 0 0 ol < 0 a4>,
ds 0
0 as 0
. 0 a .
Tz}T)()@T()} with C = a 0 @dlag(ag,cu,as),
Tys = {i"diag(ey,. .., &s)|n=0,1,& =+1} with C = diag(a,...,as).

5.3. Now we describe MAD-groups for Lie algebras o(4,C), sp{4,C) and
o(5,C).

(i) Lie algebra o(4, C). Following 4.3, we must inspect the list Ky and choose
these subgroups G from the list for which the matrix C may be symmetric. We
see that it is possible in all six subgroups. Sometimes, we can choose more sym-
metric matrices C for given subgroup. Nevertheless, according to Proposition
3.16 all these choices of C for fixed subgroup G lead to the conjugated
MAD-groups. So we have just six MAD-subgroups which after translation
give the MAD-groups in 0(4, C).

The algorithm of translation: Choose some G with a symmetric matrix C
from the list 5.2 (ii). Find G, such that G = {1,:} G, (see Remark 2.1). As C
is symmetrlc we can also find a regular matrix R such that C = RRT. Then
G = RGoR™" consists of orthogonal matrices only and {Ad, |4 € G} is a corre-
sponding MAD-groups in o(4, C).

(ii) Lie algebra sp(4, C). There are only three MAD-subgroups, because we
can choose the matrix C to be skew-symmetric only for G = T4y, 2(0) and 7,
Writing the skew-symmetric matrix C in the form C = RJRT, the group RG,R™"
will belong to Sp(4, C).

(iil) We see that in all three subgroups of the set K5 the matrix C can be made
symmetric; therefore we have three MAD-subgroups for o(5, C). We see that
numbers of MAD-subgroups for sp(4,C) and o(5, C) coincide. Of course, it
is the consequence of the known isomorphism sp(4, C) ~ o(5, C).
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Appendix A

Lemma A.1. Let B € gl(n, C) be a regular matrix with diagonalizable B(B Ht,
Then there exists a regular matrix P and nonnegative integers m,p such that
n=m+2pand

177!

Proof. As B(B")T is diagonalizable, we can find a diagonal matrix D and a
regular matrix R such that B(B~')T = R"'DR. It may be rewritten equivalently
to (RBRT)((RBRT)™")T = D. Thus we can consider, without loss of generality.
B(B-"Y" =D, D - a diagonal matrix. The relations B = DBT and its transpo-
sition give B = DBD which implies that the matrix D is of the form
)~1]h| 0 /1/(1/,}‘ 0
D=1, (1) 0 i't, {e-a| 0o 'L

where n=m+r—+2b +---+2b and ri F 4y # E for each
i#j. i,j=1....k, and the matrix B has a form
0 uBT 0 4B
B=A1¢45 | B 0 o B | By 0

where 4, is a regular symmetric matrix m x m and 4- is a regular skew-symmet-
ric matrix » x r. (i.e. r is even), B; is a regular matrix b; x b, fori = 1.... k. Itis
well known that for any symmetric regular matrix 4, and any skew-symmetric
matrix 4> there exist matrices R, and R~ such that

0 1/',2
RAR =1, and RARI=| ~1,-» 0

If we put
Iy, 0 I, 0

R:RliRz ] 0 Brl =i 0 B/Tl
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we have
0 1,./2 0 )'11’71 0 }~k1hk
RBR"=ILa&| -1, O |®|Lh O |&-a|L O

1 k

To obtain the desired form of PBPT we can find a suitable permutation matrix
S and put P = SR (note, that S~' = ST for any permutation matrix S). [J

Lemma A.2. Let A B be diagonalizable elements of %1(n,C), such that
AB=gBA, where q = q; = exp(i2n/k) and k divides n. Then there exists a
regular matrix P such that

P'AP = diag(1,¢s,....q ") @ diag(d, ds, . . .. duy)

and
010 0
0 0 1 0
P'ap=|" | ® diag(, 65, ..., 6up0),
000 ..
0 0

where arg d;,arg 6, € (0,2n/k) for i =1,2,... n/k.
Proof. First-order eigenvalues A; of 4 with respect to the arg /;, so that
O<arg s,y <arg/h< - S arg 4, < 2m.

Consider a subspace F C C" of eigenvectors with arg 4; € (0,2n/k). Denote
dim F by s. As B* commutes with 4 we can choose a basis {e,....e,} CF
of common eigenvectors of 4 and B* | i.e.

koo ok
Ae; = Aie;, Ble; = Ve,

where degeneracy is allowed and where we may assume also arg v; € (0,27/k).
Let us define

1 . 1, . y
fi=el, f?_:v_Bels f}zv_zB“el«,---, _/k:vk—,lB er,
1 1 ']

1
Jei = ez, fk‘Zv_BeZs coes Ju =
5

1
k—1
f(sAl)Hl =€ ..., fu :—\"‘*]B €y .
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Obviously, f,...,fu are linearly independent eigenvectors of 4.

Suppose that sk < n. Then there exists an eigenvector x of 4, linearly inde-
pendent on fj,...,fw. Let x corresponds to eigenvalue 4 and
arg 4 € {(2r/k)j, 2n/k)(j + 1)); L.e. B7x is an element of F. Thus B7x can
be written as a linear combination of e, ...,e, and x as a linear combination
of Ble,....,Ble,; a contradiction. So sk =»n and f,...., f» form a basis of (.

Af| Ael—llel—llf],

1 1 ; o
Afs = ABey = -qBAe, = M 4Bei = igfs.
Vi Vi

: 1 B 1 e,
Aka‘T—ABk ey = L'~ —CIBA ey = hg" ' i
-

we have for some suitable P
PﬂIAP = d1ag(), s qll by qkﬁl/{[ , /17_, q/g e )
= diag(l,q,....¢" ") @ diag(’i, 4. .. Aup) -

Moreover,

Bfi = Be, = vi /5.

1
Bfr = —B’e = vifs,
v

: 1, Wt
Bfy = 4 B'ey = 5e1 = vi/i
Y v
and thus

01 0 0
0 0 1 0

PP =| - : ® diag(vy, va, .o, V) - O
0 0 0 ...
1 00 0

Remark A.3. Note, that in the statement of the previous lemma, it is possible to
replace the interval (0,2n/k) by the interval (—=n/k, n/k).
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Lemma Ad. Let D) = dldg(dl 7 S a’/), Dy, = diag, ((51(52, Ces ,(31) where
argd;, argo; € (0.2n/k). Put

A=W, %Dy and B:=P, & D,
then

{4.B}") = 2, & {D,. D>}

Proof. Let us consider first C € {4.B} < {4,B}'*). 4 is a diagonal matrix with
diq; on the diagonal, ¢, = exp(i2n/k). Since argd; € (0.2n/k), we have
diq; # d;q;, for s # t and so

AC=CA=C=CaC & & C,
where C; € 4/(1,C) and for each i it holds

C.Dy = D, C;. (28)
From the equality BC = CB we have

CD,=D,Cy fori=1.....k Cr.i. =C(
and thus C\D} = DgCl; for matrix elements of C, = (y,;) it gives

20 = 557,/- for each i. ;.

FjY i
If 3, # 0, then &} = & which implies 5, = ;. i.c.

C\Dy = DiCy <= CD> = D:C. (29)
Moreover C\D, = D,Cy = D,C> implies C; = C, and analogously

Ci=C= =0 (30)
According to (28), (29) and (30)

C=1,%C,. whereC, €{D.D)}. (31)

Now, let us consider H € {4.B}'%’, i.e.
HA = ¢;AH and HB = ¢,BH.
Put C := A*B*H, where x, y are integers and will be specified later. Then
CA = (A'B'H)A = q,q,A(4'B'"H) = ¢, AC,

CB = (4'B'H)B = q;q;B(4'B'H) = ¢;""BC.
For y = —s and x = —t is C € {4, B} and according to (31)
C=A"B"H=L2C, C {D.D}.
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12
n

H=WP&F,
where F = D;DECI S {D],Dg}/. ]

Lemma A.5. 2, ® 2, is conjugated to Py, iff k and m are relative primes.
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