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Abstract

Maximal Abelian subgroups of diagonalizable automorphisms of Lie algebra (so-called
MAD-groups) play a crucial role in the construction of fine gradings of Lie algebra. Our aimis
to give a description of MAD-groups for real forms of classical Lie algebras. We introduce four
types of matrix subgroups &/ (n, C) calledOut-groups,Ad-groups,Out*-groups andid*-
groups. For each type of these subgroups, we define a relation of equivalence. The problem of
classifying of all non-conjugate MAD-groups on real formsstxfz, C), o(n, C) or sp(n, C)
is transformed to the problem of classifying these equivalence classes. The classification of
these equivalence classes is presented here. © 2000 Published by Elsevier Science Inc. All
rights reserved.
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1. Introduction

In physics, mathematics and elsewhere, real forms of classical Lie algebras are
among the most frequently applied parts of Lie theory. The results of this paper shed
new light on the structure of real forms.
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The main result of this paper is a complete and explicit description of the Maximal
Abelian subgroups of diagonalizable automorphisms (MAD-groups) in the group of
automorphisms of the real forms. The motivation for this work is the prime impor-
tance of MAD-group for the classification of the fine gradings of reals forms of a Lie
algebra. (Recall that a grading is fine if it cannot be further refined [3,14].)

There are numerous and varied applications of gradings of Lie algebras in the
literature. The best known examples are the gradings by maximal tori of the simple
Lie algebras ovef, also called Cartan or root decompositions. Indeed, such gra-
dings underlie most of our ability to compute with the representations of such Lie
algebras, as gradings transform the inherently continuous problems of Lie theory to
discrete problems involving roots, weight lattices and the corresponding reflection
groups (Weyl groups) (see for example [2]). In contrast to fine gradings, the coarsest
gradings are obtained from the cyclic grodp of order 2. The role o¥, gradings
is well known in the classification of the real forms of a semisimple Lie algebras,
as the compact and non-compact part of such an algebra are the eigenspaces of the
corresponding@, transformations.

A systematic study of all the gradings of a given complex Lie algebra has only
recently [5,14] been completed, and it is natural to make a similar study of real Lie
algebras.

A number of applications exploiting the grading structures of Lie algebras have
appeared mostly in the physics literature. Typically, they are related to studies of
grading preserving deformations of Lie algebras [1,9]. The present work is a natural
extension of [5], where the same problem was solved for the classical Lie algebras
over the complex number field. The complications arising by the restriction §om
to R are of two types: Firstly each complex simple Lie algebra splits into several
cases, corresponding to its real forms. Secondly, many automorphisms, which were
equivalent ovefC, have to be distinguished ovBr The best known case is the max-
imal torus. All tori are conjugate ovét, but not overR. In spite of this, it turns out
that the real case has some inherent simplicity which is not obvious for complex Lie
algebras.

The article consists of seven sections and an appendix. Section 1 is preparato-
ry for our study; in Section 2, the abstract problem is set up in terms of matrices.
Sections 3 and 4 are devoted to the study of special groups of matrices. The main
results on the real forms of the Lie algelgign, C) are contained in Theorems 5.1.1,
5.2.1,5.3.1 and 5.3.2 of Section 5. The main results on the real forms of orthogonal
and symplectic Lie algebras are in Theorems 6.1.1, 6.2.1, 6.3.1 and 6.4.1. Several
examples are worked out in Section 7. Appendix A contains some relevant lemmas
from matrix calculus.

1.1. Real forms of classical complex Lie algebras

In this section, we recall pertinent properties of the real forms of classical Lie
algebras.
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Any real form of Lie algebré. is determined by an involutive antiautomorphism
J and has a form
Ly={xeL|Jx =x}.

Many of these real forms are isomorphic: to be more precise, two real forms corre-
sponding toJ; andJ; are isomorphic if there exists an automorphigng .«/ut L
suchthatP Ly, = Lj,.

Recall some well-known facts [7, Theorem 6, p. 308] concerning automorphism
groups of our algebras. Let us denote Jyythe complex conjugation oh; Jg is
the simplest involutive antiautomorphism. Each antiautomorphisin loas a form
J = Jo F, whereF is an automorphism oh. Moreover, one must choo$ein such
a way, thatl = Jg F is involutive, i.e.

J? = (Jo F)? = Identity. (1)

The antiautomorphisms of algehta= gl(n, C), o(n, C) orsp(n, C) are well known
[10].
(i) The group of automorphism/ut gi(n, C) of the general linear Lie algebra
consists of the subgroup of inner automorphistasg,

AdpaX = A"1XA with A € 9I(n,C), X € gl(n,C),
and the set of outer automorphisi@ar,,
OutpX = —(A"1XA)"T forA e %ln, C), X egln,C).
(ii) The group of automorphisms/ut o(n, C) of the orthogonal Lie algebra
on,C) ={X €gln,C)| X+ X" =0}

consists, with the exception of = 3, 6, 8, of inner automorphisms only; in
other words

Auton,C) = Ad O(n,C) :={Ada| A € 4l(n,C), AAT = I}.
(i) In the case of symplectic Lie algebra
sp(n,C) ={X € gl(2n,C) | XJ + JX" =0},

where
0 1
JEO'2®I;1= <_1 O)®Ina

the group of automorphisms is
dut sp(n,C) = Ad Sp(n, C) :={Ads | A € 91(2n, C), AJAT = J}

forn > 3.
The group of automorphisms in the remaining cases can be obtained by known
isomorphisms: 0(3, C) ~ s1(2, C), 0(6, C) ~ si(4, C), sp(1, C) ~ s1(2,C) and
sp(2, C) ~ o(5, C). The only case not covered by the theorem(&& C).
Combiningd = Jo F and the requirement of Eq. (1), we obtain:
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Lemmal.1.1.
(i) Each involutive antiautomorphism @fi(n, C) has either a formd = Jg Adk,

where K is circular or anticircular matrixi.e. K K = I or K K = —1I, where
the bar denotes complex conjugatjaor a formJ = Jg Outg, where E is a
non-singular hermitian matrixi.e. E = E*).

(iiy Each involutive antiautomorphism efin, C), n # 8, has a formJ = Jg Adk,
where the matrix K satisfiek K = +/ andK KT = I.

(iif) Each involutive antiautomorphism ap(n, C) has a formJ = Jg Adk, where
the matrix K satisfie§ K = +7/andKJK' = K(02 Q@ [,)K' =02 @ I, = J.

Rewriting the condition for isomorphism of two real forms for our Lie algebras
and their automorphisms, one obtains easily:

Lemma1.1.2.

(i) Let Adgr € <«Zut L. Real forms corresponding td; := Jo Adx and Jz :=
Jo AdRKF are isomorphic.

(i) LetR € ¥l(n, C). Real forms okl(n, C) corresponding tdl; := Jg Outg and
J2 := Jo Outyrpr+ are isomorphic.

The previous lemma, together with basic properties of hermitian, circular and an-
ticircular matrices, enables us to determine the number of non-isomorphic real forms.
For each hermitian matrik, there existR € 4/(n, C) such thatRER* = I,,_; &

(—1Ir) = E, k. The discrepancy: — 2k| between the number of positive eigenvalues

of E and number of negative eigenvaluedokill be denoted by sgfE). According

to Lemma 1.1.2 (i), we have only-t [#/2] non-isomorphic real forms ogi (n, C)

given by an outer automorphism. Real forms corresponding to the antiautomorphism
Jo Outg, , will be henceforth denoted by

u(n —k, k) ={X € gl(n,C)| JoOutg, X =X < XE,; =—E,; X"}
fork=0,1,...,[n/2].
Furthermore, for each circular mattikthere exists a matrik such thatRK R—1
= I and for each anticircular matrk there exists a matri® such thattK P~1 = J
(see Lemma A.1 in Appendix A). Note that the existence of an anticircular matrix
K € %l(n, C) forcesn to be even. Thus, fan even, we have ol (n, C), two extra
real forms
gln,R) ={Xeglin,C)| X =X <= Xisrea}
corresponding to antiautomorphisthsAd; = Jo and
u*(n) ={X egln,C)|XJ =JX}
corresponding tdo Ad;. On the other hand, farodd, onlygi(n, R) is possible. As
su™(2) = su(2), we may assume for*(n) thatn = 4,6, ...
In a similar way, for each circular, orthogonal matikisthere exists an orthogonal
matrix R such thatRK R—1 = E, ; and for each anticircular orthogonal mat#x
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one can find an orthogonal matisuch thatP K P—1 = J (see Lemma A.2). Thus,
ono(n, C), we have L+ [n/2] non-isomorphic real forms

so(n —k,k)={X € o(n,C) | Jo Adg, X = X <= XE,; = —En X"}
=(Xecun—k, k)| X+ X" =0}

corresponding tdo Adg,, for k =0,1,...,[n/2]. Whenn is even, we have one
more real form

so*) ={X €con,C) | XJ=JX})={Xeu*n)| X+ X =0}

corresponding tdo Ad;.

Using again Lemma A.3, one can easily prove that for each anticircular matrix
K € Sp(n, C) C %l(2n, C) there existsR € Sp(n, C) such thatRKR1 =0, ®
Enk, Wherek =0,1,...,[n/2] and E,, € 9l(n,C) as defined above. For each
circular matrixk e Sp(n, C) there existR € Sp(n, C) suchthatR KR~1 = 1.

So we have 2+ [n/2] non-isomorphic real forms asp(n, C), explicitly given by

sp(n —k, k) = {X € sp(n, C) | X (02 ® Ep k) = (02 ® En )X}

fork=0,1,...,[n/2]. If we use in the above definition of pseudounitary Lie al-
gebrau(2n — 2k, 2k) the matrixE, x ® E,x = > ® E, x instead ofE, 2 we may
write

spin —k, k) ={X € u(2n — 2k, 2k)| XJ + JX' = 0}.
The last real form ofp(n, C) is
spin,R) ={X esp(n,C) | X =X} ={X € gl(2n,R)| XJ +JX' =0}.

1.2. Automorphisms of real forms

Here, we review the properties of automorphisms of real forms. As we are inter-
ested in MAD-groups, we focus here on conditions under which two automorphisms
(inner or outer) commute and are diagonalizable.

Let F be an automorphism of a real forfry. Since each elemei#t € L can be
writtenasZ = X +iY,with X,Y € Lj,

FY X 41iY) := F(X) +iF(Y)

is an automorphism of (such an automorphism is called a complexification of
F). Thus, F© and thereforeF, as well, has on a real formj of L = gl(n, C)

the formAdy or Outg, A, B € %l(n, C). An automorphism on a real form; of

L =so(n,C)orsp(n, C) hastheformid,, A € O(n, C)andSp(n, C), respective-

ly. If Fis diagonalizable odj, thenFC is diagonalizable oh and which has a real
spectrum. In [5, 2.3 and Lemma 4.1], we have proved that an inner automorphism
Ady4 on the complex Lie algebrag (n, C), so(n, C) or sp(n, C) is diagonalizable
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iff Ais diagonalizable. If the spectrum Afis denoted by (A) = {A1, ..., A, }, then
the spectrum

Ai
o (Ady) = {T
J

i,j:l,...,n}.

The following auxiliary lemmas are mentioned without proofs. The reader can
find proofs in [5] or can prove them by using Schur’s lemma.

Lemma 1.2.1. Let Ad4 be a diagonalizable automorphism é3. Then A is a diag-
onalizable matrix with a spectrum(A) = {a@A1, ..., ok, }, where);’s are real and
aeC, oo =1

Convention. In this article, we are interested exclusively in diagonalizable auto-
morphisms with real spectrum. Since, according to the previous lera—
Adya for any constantr € C*, we can find, for any inner automorphisris the
matrix A € 9l(n, C) such thatF = Ad4 and

detA € {1, -1,i,—i}, Aisdiagonalizable o(A) Cc Roro(A) CiR.

Such matrices will be calleddmissible There are precisely four admissible matri-
ces, namely: A, +iA which give the same inner automorphisgids. When we will
speak, in the sequel, abotd 4, the matrixA will be always chosen to be admissible.

Corollary 1.2.2. Let Outc be a diagonalizable automorphism on a real form of
gl(n,C). ThenC(C~1)T is admissible and its spectrum is either positive or negative
i.e.o(C(CHT) c (0, +00) or o (C(C™HT) C (=00, 0).

Lemma 1.2.3. Let Ady, Adp be commuting automorphisms @3. ThenAB =
+BA.

The following three lemmas concern only real formsgé(:, C).

Lemma 1l.2.4. Let Ady, Outc be commuting automorphisms on a real form of
gl(n,C). ThenACAT = +C.

Lemma 1.2.5. Let a real formL; on gl(n, C) be given by the antiautomorphism
J =Jg Outg, with E = E*. Then:

e Ady is an automorphismoh; < AEA* = +F,

e Outc is an automorphismoh; <= C(E™H)TC* =yE,y e R.

SinceOut,c = Outc, for a # 0, we will without loss of generality suppose that
y = +£1.
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Lemma 1.2.6. Let a real formLj on gl(n, C) be given by an antiautomorphism
J = Jo Adg with KK = +1. Let Ad4 and Outc be diagonalizable automorphisms
ongl(n, C) with real spectra. Then

e Ad, is an automorphismoh; <= AK = +KA;

e Outc is an automorphismoh; <= KCK' =yC, yy = 1.

Lemma 1.2.7. Let L; be a real formso(n — k, k) corresponding to the antiauto-

morphism) = Jo Adg, . LetAda be a diagonalizable automorphism with real spec-

trum ongl(n, C). Then

e Ady is an automorphism oy <= AE,; = +E, A and AAT = 4] —
AE, jA* =+E, andA AT = +1.

Lemma 1.2.8. Let L; be a real formso™(n) corresponding to the antiautomor-
phismJ = Jg Ad;. Let Ad4 be a diagonalizable automorphism with real spectrum
ongl(n, C). Then

e Ady is an automorphismohy <= AJ =+JAandA AT = +/.

Lemma 1.2.9. Let L; be a real formsp(n — k, k) corresponding to the antiauto-

morphism] = Jg Ad;. Let Ad4 be a diagonalizable automorphism with real spec-

trum ongl(2n, C). Then

e Adyisanautomorphismohy <= A(LQE,)A*=xtDb ® E, randA J AT=
+J.

Lemma 1.2.10. Let Ad4 be a diagonalizable automorphism with real spectrum on
gl(2n, C). Then _
e Ady is an automorphism osp(n, R) <= A =+AandAJAT = +J.

2. Properties of MAD-groups of real forms of gl (n, C)

To study some properties of real forms, one usually fixes a real foyrand
need not consider real forms isomorphicltg. For description of MAD-groups on
real forms, it turns out to be more fruitful to consider a real form in its different
isomorphic appearances. Such an approach enables us to use a wider list of matrix
manipulations forbidden within the framework of one concrete fixed real form.

2.1. MAD-groups ozl (n, C)

Recall thata MAD-group oh is an Abelian group? C .<Zut L of diagonalizable
automorphisms such that any diagonalizable element-7ut L commuting with all
elements in# lies in 7.
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Let .# be a MAD-group on a real fornij. Then its complexification#® :=
{FY|F € #) is a subgroup of some MAD-groug on a complex Lie algebra
gl(n, C). These groups are described in [5]. The%&t:= {H € | H which has a
real spectrum is called ttreal part of 4. Of course, #* € %® and%" is, in fact, a
subgroup. Note that i1 and¥%, are two conjugate MAD-groups itVut gl (n, C),
then their real part?i'* and%R are conjugate as well.

Let %1 and%, be two different MAD-groups inZut gl(n, C). It may happen that
4% is a proper subgroup of. In any case, it#* € 47 then#® C 45 and so, we
can concentrate to the “maxima#®, meaning that there exists no MAD-gro@gn
/ut gl(n, C) such that¢® is a proper subgroup o Using the results of [5], we
give a list of all “maximal” non-conjugatg®.

Notation. Let us first define some important groups of admissible matri#gss
the subgroup o¥1(2, C) defined as?2 = {nox | n = £1, +i, k =0, 1, 2, 3}, where

1 0 0 1
op=1I= o 1) 2=\1 o)
(0 1 (1 0
2=\-1 o) 270 -1)°

Thus, the matrices forming the grodf» mutually commute or anticommute.
Let , andT>, ; denote the Abelian groups of admissible matriceglim, C),
respectively, defined by

Dy ={D =ndiagdy. ....d,) |d; € R*, n=1,i, detD = +1, +i},

Iops={ndiagey, ..., &, a1, ail, ...,ap,oe;l)|si=:i:1, a; € R*, n=1,1i}
fors>1, p>0, n=p+2s

and

T2p,0={ndiag(a, 5051_1, ce p, 805;1) le =%1,a; € R*, n=1,i}
fors =0, p>1, andn = 2p.

Let us further denote bl (r, m) andK (r, p, s) the groups
Hrrm=20 - ® 2207, and K(,p,9)=22Q - 22Q0T2,
r-times r-times
and by C, ,, the matrices from%l(2"(2p +s), C) defined byC, ,; =I» ®

(Is @ (Ip ® Ul)) .
Let M be a set of regular matrices, and set

AdM = {Ads|A e M} and Out M := {Outs| A € M).

A MAD-group ¢ in <Zut gl(n, C) either contains outer automorphisms#iis
formed by inner automorphisms only. In [5], we have proved that any MAD-group
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% without outer automorphisms is conjugate to a grodpgs | A € 2, ® Z, ®
@ Py, & Dy}, Wwherening - - -n.m = n and?y C %l(k, C) is the group of gen-
eralized Pauli matrices. These matrices were introduced in [15] as follows:det
€@/k) and denote by

1 0 O ... O O 0 0 ... 0 1
0O o 0 ... 0 1 0 O 0 O
p=|0 0 o ... 0 |adg=|0 1 0 00
0 0 0 ... ot 0 00 ... 1 O
Note thatP andQ are similar matrices satisfyingQ = wQ P. The group?; =
{0*P'Q"|s,t,u=0,1,...,k— 1} is called the generalized Pauli group. Recall
that the spectrum of an inner automorphisrtd,) is {A;/A; i, j=1,...,k}
if the spectrumo (A) is {11,..., Ax}. It is easy to see that all automorphisms in

{Ads | A € 2} have the real spectrum only fér= 2. Therefore, each maximal
part%™ of MAD-group without outer automorphisms is conjugate to

AdH(r,m), wheren=2"m andm > 3.

Full description of a general MAD-group is/ut gl(n, C) with outer automor-
phisms is more complicated. It calls for notation not required for MAD-groups on
the real forms (see [5]). Fortunately, the maximal real parts of these MAD-groups
can be extracted and expressed very simply. Inspecting the list of MAD-groups with
outer automorphisms, one finds that any maximal real part containing an outer auto-
morphism is conjugate to

AdK(r,p,s) U Out Cy, (K(r,p,s),
wheren=2"(s+2p) and (p, s)+# (0, 2).

Remark 2.1.1.

(i) As H(r,1) = K(r,0,1), H(r,2) = K(r,1,0) andK(r, 0, 2) is a proper sub-
set ofK(r + 1,0, 1), we see thatdd H(r, 1), AdH(r, 2) and AdK(r, 0, 2) U
Out Cr02K(r, 0, 2) are not maximal real parts of any MAD-groups.

(i) K(r, p,s) andK(r’, p/, s) are conjugate iffr, p, s) = (+/, p’, s’). Analogously,
H(r, m) andH(r’, m’) are conjugate iffr, m) = (r', m’).

2.2. MAD-groups ozl (n, R)

It is remarkable that one is able to choose, in each class of mutually conjugate
real parts¥®, a representative such that all its automorphistds and Ouzc are
determined by matriced and C satisfyingA = +A, C = +C (see above). This
means that all of these automorphisms are also automorphisas:irg!/(n, R).

Thus we proved
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Proposition 2.2.1.
(i) Letn = 2%u, u odd u > 3. Then.<Zut gl(n, R) hasn + 2w — (u — 3)/2 non-
conjugate MAD-groups.
(i) Letn = 2¥. Then</ur gl(n, R) hasn + 2w — 2 non-conjugate MAD-groups.
(These numbers correspond to the number of all possible choices of pairs of pa-
rameters:, m for H(r, m), wheren = 2"m, m > 3, and triples of parameters p, s
for K(r, p,s), wheren = 2"(s + 2p), (p, s) # (0, 2).)

2.3. Properties of MAD-groups ann — k, k)

In this subsection, we transfer properties of MAD-groups into the world of
matrices and we show the correspondence between MAD-groups and special
subgroups of¢%l(n, C). We start with MAD-groups containing an outer automor-
phism.

LetJ = Jg Outg, E = E* and# be a MAD-group on the real forrh; with an
outer diagonalizable automorphigbuzc, i.e.C (C~1)T is admissible and (E~1)T
C* = £E by Corollary 1.2.2 and Lemma 1.2.5.

If Ady € #,thenAEA* = e, E, ¢4 = 1 by Lemmas 1.2.5 and 1.2.1.Afdp
is another inner automorphism frosf, thenAB = +BA by Lemma 1.2.3. Since
Ad, andOutc commute, we havd CAT = y4C, y4 = +1 by Lemma 1.2.4. Note
thaty, ore4 may be equal te-1 only if the dimensiom is even. Moreovet 4 may
be equal to-1 only if number of positive eigenvalues Bfand number of negative
eigenvalues oE coincide, i.e. sgit = 0.

The task of finding MAD-group o 3 with an outer automorphisi@uzc has thus
been transformed into the task of finding certain subgrougi¢i, C), introduced
by the following.

Definition 2.3.1. Let E andC be non-singular matrices il (n, C) such thatt =

E*, C(E-YHTCc* = £E, andC (C~HT an admissible matrix with negative or posi-

tive spectrum. LeH C %l (n, C) be amaximalset ofadmissiblenatrices such that:
(i) AB=+BAforeachA, B € H,

(i) AEA* = £E foreachA € H,

(i) ACAT = £C foreachA € H.

Then the triplg H, E, C] will be calledOut-groupin %I (n, C).

Remark 2.3.2.
(i) Let A, B be admissible matrices satisfying 2.3.1(i)—(iii). Th&n! andAB are
also admissible and satisfy 2.3.1(i)—(iii). Thus, the maximalitiAafplies that
H is a subgroup o%!(n, C).
(i) When[H, E, C]is an Out-group, then

H ={Ads| A € HYU{Outac | A € H}
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is a MAD-group with an outer automorphism on the real fatg whereJ =
Jo Outg. We say that MAD-group#’ corresponds to the tripleH, E, C].
Moreover, any MAD-group on the real formL; (J = Jo Outg, E = E¥*)
with an outer automorphism@urp corresponds to some Out-grol@, E, D].

(i) If the triple [H, E, C] is an Out-group, thepH, E, AoC] is the Out-group for
an arbitraryAg € H. If we replace in 2.3.2(ii) the matri€ by AoC, we obtain
the same MAD-group.

(iv) If R e %l(n,C) and [H, E, C] is an Out-group, thefRHR 1, +RER*,
RCRT]is the Out-group as well. Since the matrié@and+RE R* determine
isomorphic real forms (see 1.1.2(ii)), the aforementioned triples correspond,
according to 2.3.2(ii), to the conjugate MAD-groups.

We are looking for the list of mutually non-conjugate MAD-groups. Thus, we
introduce the following equivalence on the set of Out-groups.

Definition 2.3.3. Let [H, E, C] and[G, F, D] be Out-groups ir¢l(n, C). We say
thattriples H, E, C] and[G, F, D] areequivalenif there exist matriced € H and
R € %l(n, C) such that

RHR =G, RER*=+F and R(AC)R" = D.

Remark 2.3.4. Two MAD-groups »# and % on the isomorphic real forms of
%l(n, C) are conjugate if and only if the Out-groyiiy, E, C] associated with#’
and Out-groupG, F, D] associated witly are equivalent under our definition.

Note that the equivalence of tripl¢#/, E, C] and[G, F, D] implies sgriE) =
sgn F). To describe all non-conjugate MAD-groups of a real far@m — &, k) means
to describe all equivalence classes of Out-groud {in, C) and to find among them
those classes in which matricEshave the suitable signature. Therefore, the next
section is devoted to the study of equivalence classes of Out-groups. Here, we will
be satisfied with proving a basic property of any Out-grpHp E, C], namely the
non-triviality of H.

Theorem 2.3.5. Let[H, E, C] be an Out-group ingl(n,C), n > 2. Then His a
non-trivial subgroup of4l(n, C), i.e. H always contains some £ +1, +il.

Proof. Recall thatC andE satisfy the conditions
E=E* CEH'c*=xE and c(CHTis admissible
Suppose that the only diagonalizable matriadsr which AEA* = +E andACAT
= +C are the matricest = 7 or +i/. SinceA = C(C~ 1T also satisfies these
conditionsC(C~HT = +1,i.e.CT = +C.
Let us first discuss the case whefé = C. For thisC, there exists a matriR
such thattCPT = I. Then
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(PEPY™HT = (PCPTY(PHTEHT(PHHT(PCPT)* = £PEP*,

i.e. PE P* is a circular or anticircular hermitian matrix.

According to Remark 2.3.2(iv), it is sufficient to show that any Out-gridtipE,
I1-group, whereZ is hermitian circular or anticircular matrix, is non-trivial. Using
Lemma A.2 from Appendix A, we can find a real matRsuch thatk/R"T = I and
RER* is in the “canonical” form of the type (A.1) or (A.2). Again, according to
Remark 2.3.2 we can restrict ourselves to the Out-groHpg:, 7] with E in the ca-
nonical form. Such & contains any matrid = diag(e1, ..., &) ® u1lo ® -+ - ®
uplr with g, u; € {1, =1}, wheres +r 4+ 2p = n > 2, and the matrid = o2 in
the caser = 2.

Next, suppose that = —CT. SinceC is a regular matrix ir¢/(n, C), n must be
even and there exists a matfxsuch that

~ 0 L2
C=pPCPT = n2) = .
<—1n/2 0 >

Using E = PE P*, thenE is a hermitian matrix satisfying JET = ¢J.

Applying Lemma A.3 to the matrlx/_E € Sp(n/2,C), we can assume without
loss of generality thay/eE = D @ D1, D—diagonal and” = J. Then[H, E, C]
with trivial H is not an Out-group, since we can addHoany matrixA = 03 ®
diag(eq, ..., en2) Withe; € {1, -1}. O

Let us now look for MAD-groups# on Lj (J = Jo Outg) without outer auto-
morphisms. Any inner automorphism frogf is associated with an admissible ma-
trix A, which, according to Lemma 1.2.5, can be chosen in such waytRat* —
+E. Moreover, matrices corresponding to two inner commuting automorphisms
commute or anticommute. Similarly, the MAD-groups without outer automorphisms
can be associated with some sets of matrices defined as follows:

Definition 2.3.6. Let E € %l(n, C) be a hermitian non-singular matrix arid C
%l (n, C) be amaximalset ofadmissiblamatrices such that
(i) AB=+BAforeachA, B € H,
(i) AEA* = +F foreachA € H.
The pair[H, E] will be called anAd-groupin %l (n, C).

The setH is in fact a subgroup o¥l(n, C)—see Remark 2.3.2(i).

Remark 2.3.7.

(i) For each Ad-groupH, E1], there exists a group of inner automorphisps=
{Ads | A € H}. If there exists no matri such thatH, E, C] is an Out-group,
then# is a MAD-group. However, we will see that the Ad-groufd, E] can
be always extended to the Out-group, E, C] and thus there exists no MAD-
group onu(n — k, k) formed by inner automorphisms only.
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(i) The non-triviality of any Ad-group is clear because there exists a matsixch
that E = R (I,—; @ (—I)) R*. Then, an arbitrary matrid = Rdiag(ey, ...,
&,) R~ 1 fulfills the conditionAEA* = E.

Definition 2.3.8. We say that two Ad-groupgH, E] and[G, F] in %l(n,C) are
equivalent if there exist® € %l(n, C) suchthaRHR~1 = G andRER* = +F.

2.4. Properties of MAD-groups ori(n)

At the beginning of this section, we have described MAD-groupgign, R).
Here, we are going to introduce the special subgrougs 6f, C) which correspond
to MAD-groups oru*(n). We shall see later that MAD-groups efi(n) and MAD-
groups orgl(n, R) are very closely related.

Let K € 9l(n, C) be an anticircular matrix determining the real foim with
J = Jo Adg and consider the MAD-groug” on L.

Assume first that#” contains an outer automorphism, sa@yiz¢. According to
Lemma 1.2.6 and Corollary 1.2.2(C~1)T is admissible and CK T = €C. Since
Outc = Outyc for each non-zera, we can choose our matr&to satisfy

KCK' =cC. 2)

For an inner automorphismds € # we have, according to Lemma 1.24K =
+K A. Commutation oD utc andAd4 then implies, by Lemma 1.2.4,thaC AT =
+C. (Recall from Lemma 1.2.3 that two inner automorphistadg andAdp on real
form commute ifAB = +£BA.)

The facts summarized above show that the MAD-grefipwith an outer auto-
morphism can be described by the following group:

Definition 2.4.1. LetK € %I (n, C) be an anticircular matrixg € ¢I(n, C) satisfies
KCKT = C andc(Cc~HT admissible with a positive or negative spectrum. Het
be amaximalset ofadmissiblematrices such that
(i) AB=+BAforeachA, B € H,
(i) AK ==+KAforeachA € H,
(i) ACAT =4+ foreachA € H.
The triple[H, K, C] will be calledOut*-groupin ¥l (n, C).

Similarly, the MAD-group on thelLj, J= JoAdg formed by inner automor-
phisms only is related to the group € %l (n, C) defined as:

Definition 2.4.2. LetK € %I (n, C) be an anticircular matrix and let be amaximal
set ofadmissiblematrices such that
(i) AB=+BAforeachA, B € H,
(i) AK =+KAforeachA € H.
The pair[H, K] is calledAd*-groupin %l (n, C).
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Since two real forms given by = Jg Adx andJ = Jg AdRKﬁ—l are isomor-

phic by Lemma 1.1.2(i), the equivalence of two ©gtroups and two Atigroups,
respectively, implies an equivalence defined as follows.

Definition 2.4.3. We say that two Odtgroups H, K, C] and[G, W, D] are equiv-
alent if there exists a regular matiksuch thatRHR~! = G, RKR '=w and

R(AC)R" = D for someA e H. The equivalence for Adgroups is defined in the
same way, except that the condition on the matrix of outer automorphism is omitted.

Remark 2.4.4. In any Ad*-group[H, K], the groupH C %I(n, C) is non-trivial,

i.e. for arbitrary anticircular matrix there exists a matrid # +17, +il such that

AK = KA. Indeed, according to Lemma A.1, we can set, without loss of generali-
ty, K = 02 ® I,/2. Thenthe matrid = o3 ® I,,/» satisfiesAK = —K A. Moreover,

if n/2 > 2, then one can find a non-trivial matdy sayA = I ® diag(8y, . . ., 8,/2),

such thatAK = KA.

3. Out-groups and Ad-groups

If the groupH of an Out-groudH, E, C] is Abelian, then we say thaH, E, C]
is an Abelian Out-group. Similarly, Ad-group#/, E] are said to be Abelian i is
Abelian.

3.1. Non-Abelian Out-groups and Ad-groups

If [Ho, Eo, Co] is an Out-group ir¢l(n, C), then[?2 ® Ho, 0, ® Eo, I> ® Co]
for w = 0 or 3 is an Out-group iwl(2n, C). Note that?, ® Hp is a non-Abelian
group of matrices. We shall show that each Out-grpdpE, C] with non-Abelian
H is of this type.

Theorem 3.1.1.

1. Any Out-grouplH, E, C] in 91(2n, C) with non-Abelian H is equivalent to the
Out-group[? ® Ho, 0., ® Eo, I ® Col, wherep € {0, 3} and[Ho, Eg, Co]is an
Out-group in%l(n, C).

2. Any Ad-group[H, E] in %l(2n, C) with non-Abelian H is equivalent to the
Ad-group[? ® Ho, o, ® Eol, wherep € {0, 3} and[Ho, Eo] is an Ad-group in
Gl(n, C).

Proof. Let M, N be an anticommuting pair of matrices frd#h Then

MEM* =¢yE and NEN* =¢yE. (3)

We can assume that at least one gf ¢y is positive (if not, we choose, instead of the
anticommuting paiM, N, a new anticommuting paivl, M N). As M, N are admis-
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sible, we can further assume thatM), o (N) C R. Using Lemma 6.2 from [5] for
matrices with real spectrum, we find a matfsuch thatRM R~! = o3 ® My and
RNR™1 = o1 ® No, whereMy, No are diagonal matrices with real positive elements
on the diagonal.

(i) Suppose that botky; andey are equal to 1. Then, an easy computation shows
that

(03 ® Mo) (RER*) (03® Mo)* = (RMR 1) (RER*)(RMR™Y* = (RER")
and

(01® No) (RER*) (61 ® No)* = (RNR ) (RER*)(RNR™YH* = (RER™),
which implies that

RER* =1, ® Eo,

whereEg is a hermitian matrix.
(i) If epr = 1 andey = —1, then a similar computation gives

RER* = 03 ® Ej.
SinceM, N € H, it must hold that

MCM" =yyC and NCN' = yyC. (4)
If yy =1, yy = —1, we have

MMC)M" = (MC) and N(MC)NT = —-MNCN'T = (MC).

Thus we can replace Out-groQfd, E, C] by the equivalent Out-groyi, E, MC]

(see Definition 2.3.3) and so, we can consider both coeffigignt/y to be 1. Sim-
ilarly, replacing the matrixC by NC (in the caseyy; = —1, yy = 1) and byMNC

(inthe case/y, = yy = —1), we may suppose without loss of generality that—=

yn = 1. Furthermore,

(03® Mo) (RCR") (03® Mo)' = RMR™ M) (RCRHBRMR™HT=(RCR")
and
(01® No) (RCRT) (01 ® No)"=RNR)(RER)RNR™H)T=(RER")
so that
RCR" = I ® Co.
Moreover, Lemma 6.3 from [5] says that
RHR™' € 25 ® (Mo, No}',

where{ Mg, No}’ denotes the commutant of the matridés and No.

ChooseF € H. ThenRFR 1 =0;® Fo forsome =0, ..., 3andFy € {Mo, No} .
The consequence of the equatidh8 F* = +E andFCFT' = £CisthatFoEoF =
+EpandFyCoFy = £Co. The maximality oH then gives tha?, ® Fo € RHR™!
and soRHR~1 = #, ® Ho, where[Ho, Eg, Co] is an Out-group.
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The proof of the case wheH, E] is an Ad-group is similar. In fact it is much
easier, since we do not need to work with a ma@ix [J

The previous theorem enables us to work with Abelian Out-groups and Ad-groups
only.

3.2. Abelian Out-groups and Ad-groups

Important examples of Abelian Out-groups and Ad-groups are related with the
aforementioned groud,, ;. More precisely, for a givesandp, let

Es,p = {diaqsl,...,gs) ® (I,, ®O’1) le; = :I:l}.

Any matrix Xo in &5, , is hermitian andXg satisfiesXg (Xal)T = ]. So, it makes
sense (see Definitions 2.3.1 and 2.3.6) to st@iy-groups[H, Xo, Xo] and Ad-
groups(H, Xo].

Proposition 3.2.1. For any pair of integers(s, p), s, p € {0,1,2,...} (with the
exception of p, s) = (0, 2)) and any matrixXg € &, ,, the triple[T2, s, Xo, Xol is
an Abelian Out-group and the pdif2,. s, Xol is an Abelian Ad-group.

Proof. It is easy to check that the matricelse T3, ; and Xg € &, , fulfill re-
quired conditions. The maximality db,, ; needed for the first part of an Out-group
[T2p.5, Xo, X0l is a consequence of the fact tHatd, | A € T2, s} U{Outax, | A €
T2, s} form a real part™ of the complex MAD-group (see the beginning of Section
2).

Since anadmissible diagonamatrix A lies in H, where[H, Xg, Xo] is an Out-
group iff it lies in H, where[H, Xo] is an Ad-group, the maximality of th&,
needed for the first part of Ad-groufz, s, Xol is also shown. [

The following theorem shows that the groufss, ; cover all cases of non-equiv-
alent Abelian Out-groups and Ad-groups. (Remark 2.1.1(i) explains why the group
To,2 is not included into our considerations.)

Theorem 3.2.2.

1. For any Out-group[H, E, C] in %l(n, C) with Abelian H there exist natural
numbers, p(s + 2p = n) and a matrixXo = diag(e, ..., &) @ (I, ® o1) such
that[H, E, C] is equivalent to the Out-groud?, s, Xo, Xol.

2. For any Ad-group[H, E] in %l(n, C) with Abelian H there exist natural num-
berss, p(s + 2p = n) and a matrixXo = diag(ey, .. ., &) @ (I, ® o1) such that
[H, E]is equivalent to the Ad-groud>, s, Xol.

Proof. (1) Instead of Out-groups, we will prove the theoremdart-groups defined
as follows.
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We say thafH, E, C] is an Out-groups ifH is a maximal set of mutually com-
muting admissible matrices satisfyidgc A* = +E andACAT = 4C for eachA ¢
H.An Out-group[H, E, C] needs not to be an Out-group (s&g) but Out-group
is always subgroup of some Out-group.

We will prove by induction om that eachOut-group is equivalent in the sense
of Definition 2.3.3 to some groufz, s, Xo, Xol, which together with the previous
proposition proves part (1) of the theorem.

As H is Abelian, we can assume that all its elements are diagonal matrices. These
matrices are assumed to be admissible He: D, (see Section 2) anH = H® U
(iH®™), whereH® consists of real matrices. We will show that real dft is conju-
gate to real part of»,, ;. Extension to “imaginary” parts of these groups is clear. We
will consider thereforeeal matricesonly.

If n = 1, then we can suppose that= (1). The only matrices with real spectrum
satisfyingAEA* = +E are A = (£1). The conditionC(E~1)TC* = +E implies
for the matrixC = (c) thatce = 1, i.e.c = €%. SetR = (e7'¢/2). Then

RER*=RCR"=(1) and RHR '=H =Ty1.

Let nown = 2. Suppose that at least one real ma#tix H has an eigenvalue #
+1. SinceAEA* = ¢E(s = +1), the second eigenvalue Afis s 1, which implies

(G o) <=0 o)
From the equalityC (E~1)TC* = +E, we obtain

cd = +bb (5)
SetR = ei¢diag(1, (b)~1), with ¢ to be specified later. Then

. (0 1
Xo:= RER _(1 O)’

———
RCR" = <(E)(1)dei¢ C(b)o ¢ ) and RBR™1=B

for eachB € H. We can now choose reglsuch thate(b)1€¥ = y is real. Then,
from (5) we obtain thath) 1deé? = £y 1, i.e.

0
T_ Y
wer = (.0, 7).

Moreover, the diagonal matr& satisfies equalities

0 1\ .. 0 1 0 Y\ T 0 y
B(l O)B _j:<1 O) and B(iyl 0>B _i<iyl /
if and only if B = diag(8, £871), i.e. RHR™! = T» . If we chooseA such that

RAR™! =diagly, £y 1), thenRER* = R(AC)R" = Xo. Thus we have shown
that[H, E, C]is equivalenttd 72,0, Xo, Xol, whereXg = o1.
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In the case where every matrix Bf has in its spectrum onl1, one can show
using the non-triviality ofH that the matrixE = diag(a, b), «, b real, whileC =
diag(c, d). The equalityC(E~1)TC* = +E givesce = a? anddd = b2. This en-
ables us to fing andy such that, using the matrix = diag(?/|a=1|, €¥/|b1)),
we obtain

RER* = diag(e1,62), RCR'=1, and RHR !=Ty,.

Now, let us suppose that> 3. Our discussion will be divided into three parts:
(i) Suppose first that there exists a real mattix H such that its spectrum(A)
contains at least three different eigenvalues, i.e. all eigenvalugé afe positive
and at least one of them is not equal to 1. Then we can ggliinto two parts
=diagA1, ..., Ayy) @ diag(ua, - . ., 1n,) in a such way thaty +n» = n and
,/L, + 1 for all s and p’s. The equationsi?EA2 = E and A2CA? = C then
yield

(3 £) e=(3 &)
Write each matrixB € H as B=B1 ® By, where B1 € 4l(n1,C) and B> €
%l(ny, C). Let

Hi={B1 € % (n1,C)|B1® By € H}
and

Ho = {B> € %l(n>, C) | BL® B> € H}.

Because of the form of matrix andC, H; and H, are subsets aff; and Ho, respec-
tively, where[ Hy, E1, C1] and[Ha, Eo, C2] are Qut-groups.

If the original groupH contains a real matriA such thatAEA = —E, then both
Hy's, k = 1, 2, contain matricesi;’s such thatd Ex Ay = —Ey. If we suppose the
validity of the theorem forn < n, we see that the only maximal group among all
maximal groups with this property is conjugate to ter-group[7;,.o. E, C] with
E=C= m/2 ® o1. The real part of the group,, o is then composed of two parts
T, oUT"n0, where

m,

-1 -1
. " o = {diag(as, oy ", 2, O‘m/z) laj € R*},

T" .0 = {diagla, —(xIl, e Oy2, —ocn:/lz) laj € R*}.

If DeT! , thenDED =E and if D € ", 0, thenDED = —E. This implies

thatny, n are even and that, without loss of generall, = T,,,.0, Hz = Tp,.0-
The maximality ofH in turn implies that

H={nB1®nBz2|n=1iand(By €T, gandBz €T, )

or(Bre T "y 0andBz2 € T"1,.0)} = Thytny.0-
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If BEB = E for each realB € H, then fork = 1,2 we haveH; = Top,.s, With
sk =1, 2pg 4 sx = ny, or Hy = TZ/pk o With 2p; = ny. The maximality ofH then
implies that at most one dfs is equal td’;, 4 and that

H=H ® H = T2p1+2p2,51+52-

(il) We shall now discuss the case where each matrix H has in its spectrum
at most two different eigenvalues and there exists a mdigix H with eigenvalues
a #++1.

As AgE A = £E, the spectrums (Ag) = {a, a~1}. The spectrum ofd2 is
{e?, &2} and without loss of generalith3 = a?1, /> & a 21, 2. It follows from
the form of A3 that

0 F 0 D 1
E = (F* 0) , C= (D O) and B = Blnj2 ® B " Inj2

(B € R* ande = +1) for eachB € H. SinceC (C~1)T e H, it must hold thatD =
y DT, with y real.

The equality C(E-HTC* = +E implies y~X(FD-1)(FD ') = 1,2, i€
VIy|7 FD~1is a circular or an anticircular matrix. Thus we can fiRds %I (n/2,
C) such that |7/|*1F571 =PSPL, whereS=1,2 or S=02® I,a (see
LemmaA.l).

Choose the matriX = —Ij,/4) ® j(n+2)/4) € 91(n/2, C) and set

Y =PXP ‘@ DT(PY)*x P*(DT) ! e %, C).
Then,Y is a diagonalizable matrix satisfyingEY* = E, YCY' = C andYB =
BY for eachB € H. The maximality ofH says thatt € H andAgY € H as well.
But the spectrum ofigY = {«, —a, @1, —a~1}—a contradiction with (ii), thus (ii)
is impossible.

(iii) 1t remains to deal with the case when a spectrong) C {1, —1} for all
A € H.Denote bys4 € {1, —1} andy, € {1, —1} the coefficients in the equations
AEA = ¢pE andACA = y4C.

If there exists a matrid #+ +7 such that4 = 1 andy, = 1, we can writed =
In, ® (—1,,) (n1+n2=mn). Then

(5 2 e (5 2)
Write each matrixB € H asB = B1® By, whereB1 € 91(n1, C) andBz € %l(n», C).
Denote
Hi = {B1 € %l(n1,C)| B1® By € H}
and

Hy> ={By € 9l(n2,C)| B ® B> € H}.
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Hj and H> contain only diagonal matrices with1 in their spectrum. The only max-
imal Out-groups with this property amority,, ; are the group%p ;. Using the in-
duction hypothesis, we get

H = TO,nl ) TO,nz = TO,n-

If there exists amatrid € H, A # £I,suchthaty = y4 = —1,thenA =1, ®
(_111/2) and

0 F 0 D
E=<F* 0) and C:<l3 O)‘

Itis possible to add7,,» @ a‘lln/z, (o arbitrary) toH—a contradiction to (iii).

Now assume that for each € H, A #+ +1, exactly one of the coefficients,
andy, is equal to—1. If A1, Ap # £1, thenea,a, = ya,4, and thusA1A, = £1.
Itmeansthatl = {I,, —I,, I,j2 ® (—1n/2), (—1,/2) ® In,2}. Itis then easy to show
a contradiction with the maximality condition bf.

The proof of the part 2 of the theorem is only an easier version of the proof of
part 1 and we omit it. (]

For any Abelian Ad-group(T2,s, Xol, Xo € &p,5, we have an Out-group
[T2p.5, Xo, Xol. This means thatd T», , is nota MAD-group. Hence we can always
add an outer automorphis®urx,toAd T, s (cf. Remark 2.3.7(i)). From this fact
and Theorem 3.1.1, any MAD-group ain — k, k) contains an outer automorphism
and thus we need not consider Ad-groups at all.

3.3. Equivalence classes of Out-groups

Inview of Theorems 3.2.2 and 3.1.1, we conclude that each Out-gragigin C)
is equivalent in the sense of Definition 2.3.3 to one of the Out-griiipg s, X, Y1
with

X =0y ®---0i, ® Xo, and Y = I» ® Xo,

where Z(s + 2p) = n, Xo € &5, p ando;, = I orozforeachk =1,2,...,r.
Consider
1 0 O
0O 0 1 O
R=10 1 0 ol
0O 0 0 1
It satisfies:

R(03®03)R* =03® D>, R(LQ )R =1L ® I,
RZPQIPR =2 2.

CombiningR suitably in tensor product with matricds, we find that the above
groups are equivalent to Out-grolié (r, p, s), X, Y], whereX has only matrices
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I in the positionk = 2, ..., r of the tensor product. In accordance with Definition
2.3.3, the Out-groupd, E, C]land[H, E, AC], A € H, are equivalent. Therefore
we can standardizé = I»r ® XotoY = I> ® (I; ® (I, ® 61)) = Cp,p.s.

We know that Out-groups with different triplé€s, p, s) are not equivalent (see
Remark 2.1.1). The next remark gives some observations about equivalence of Out-
groups with fixed triplgr, p, s).

Remark 3.3.1. (i) Itis easy to see that the Out-groups(r, p, ), I>» ® Xo, Cy 5]
and[K(r, p,s), I ® Xo, C;, ;] are equivalent iff sgio = sgnXo.

(i) Similarly, [K(r, p, s), 03 ® Ir-1 ® Xo, Cy p 5] and[K(r, p,s),03 ® Cr_1 p s,
Crp,s] are equivalent. Without loss of generality, we may assulie= Iy
® (—IL,—y) ® (I, ® 01). Then the equivalence matrix has a form

R=I" (I, 1® (Uy ® I2) ® (I;_y ® 01) ® Ip)) 11,

wherell is a permutation matrix/ € O(2"(2p + s), R) such thatll(A ® B =
B A,Acgl2,C), Begl(Z 12p+s),0C).

(”I) [K(r, p, 0),03® Crfl,p,Ov Cr,p,O] and[K r,p, 0.2® Crfl,p,Ov Cr,p,O] are
equivalent forp > 1. We show this equivalence in the special case for the triples
[K(1,1,0),03® 01, C1,10]l and[K(1, 1, 0), I2 ® 01, C1.1,0]. The assertion for gen-
eral cas&K (r, p, 0) is a consequence of this special case.Rret diag1, 1, 1, —1).
Then

RC110R" = AC11.0,WhereA =03 ® I e K(L, 1, 0)

R(03®01)R* = [ ® 01 = C11.0andRK (1, 1,0)R~1 = K (1, 1,0).

The last equality follows from the facts that

R (O"u ® diag(«, 505_1)) R 1= o, @ diag(a, ea b forpu =0,3,

R (O"u ® diag(«, 505_1)) R 1= o, ® diag(c, —ea YHforp=1,2.

(iv) Let s > 1. Then[K(r,p,s),03® Ir-1 ® Xo, Cy p 5] and[K(r, p,s), [r ®
Xo, C Cy.p.s1, WwhereXo, Xo € ép,s, are non-equivalent, because there exists for the
first triple with E =03 ® I5-1 ® Xo a matrix A = o1 ® I € K(r, p. s) such that
AEA* = —E, whereas, for the second triple with= I, ® Ir-1® Xo, We see that
AEA* = +E foreachA e K(r,p, ).

Now we put together our results concerning equivalence classes in the set of Out-
groups.

Proposition 3.3.2. Let [H, E, C] be an Out-group in%l(n, C). Then there exist
natural numbers, p, s satisfying: = 2"(2p + s) such that the group H is conjugate
toK(r, p, s). Moreover
(i) if s =0andp > 1, then[H, E, C]is equivalent tdK (r, p, 0), C;, .0, Cr, p.0;
(i) if r=0ands > 1, then[H, E, C] is equivalent to[K (0, p, s), Xo, Co,p,s],
whereXo = I, ® (—I,) ® I, ®01), s1+ 52 =135, 51 = 52 > 0;
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(i) if s >1andr > 1, then[H, E, C] is equivalent either tdK(r, p, ), 03 ®
Cr—l,p,s, Cr,p,s] orto [K (r, P, ), Ir ® Xo, Ci’,[J,S]a WherEX() = Isl S (_Isz) ©®
(Ip®o01), s1+s52=15,51>5220.

Out-groups with different tripleé,, p, s) or different signaturesgn E) are not equiv-

alent Out-groups listed if{iii ) are not equivalent as well.

The triples mentioned in the items (i)—(iii) are chosen representatives of equiv-
alence classes. In the next sections we shall see that it is important to find those
equivalence classes which contain an OQut-gi{@diipE, I1or[H, E, J],J =02 Q 1.

Such classes are described here. For this we need the following notatidi:Hect
the matrix

1 1 1

U:=— A and U, p =T QU ® (I, ®U)).
«/é —I |

Set

O(r.p. 9 := Uy . K(I.p, S)U}‘T;:)L,s‘

It is then easy to see that

Or.p.9=220--®@22002p.s. (6)
r-times
where
P .
. h —ish
O2p,s = {ndla%sl, s ) @,U«k (icsh(sz C,j ¢Z)k> &js ik = £1,
n==1+i, ¢ e R

fors > 0 and

02p.0

P .
o chor —lishoy . _ .
—{nke?luk (ishd)k ch éy )‘/Ak—:tl,n—il,:tl,me@}

p .
Shd)k _|Ch¢k _ B .
U!nl@luk (iSCh¢k sh ¢ )‘“k_ﬂ’”—il’ih ¢keR}.

The matrixX which determines the real form can be written)as= 0, ® I--1 ®
Xo, whereu € {0, 3} andXg € & ;. Itis transformed to the matrix

Z=Up XU, =0, ® Ip1® Zo, @)
where

Zo€ &y = (diagen, ..., &) ® (I, ® 03) | & = £1}.
The matrixC;. , ; corresponding to outer automorphismiis transformefd$oU, ,
CrpsUT, s
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Proposition 3.3.2 can be rewritten by using other class representatives.

Corollary 3.3.3. Any equivalence class of Out-groups4in, C) contains a triple
[H, E, I] for some subgroup H and some non-singular hermitian matrix E. More
precisely

(i) [K(r,p,0),Cy,p0,Crpolis equivalent tqO(r, p, 0), I, ® 03, I];

(it) [K(0,p,s), Xo, Co,p,s] is equivalent tgO(0, p, s), Zo, 7], whereXg = I, ®
(—I,)®UpR01), Zo=1I; ®(—I,) ® (I, ®03)ands; +s2 =5 > 1,51 >
522 0;

(i) [K(r,p,9),03Q® Cr_1,p.5, Crps] is equivalent to[O(r,p,s),03® Irr-1 ®
Iy ® I, ® 03), ITand[K(r, p, ), Ir ® Xo, C;, 5] is equivalenttgO(r, p, s),
I ® Zo, I, where Xo = Isl @ (_Isz) @D (Ip ®o01), Zo= Isl S?) (_Isz) @
(Ip®o3z)andsy +s2=s>1 51 >5220,r > 1.

Now, consider the equivalence classes which contain a {riplez, J].

Since O(r, p, s) containsJ for » > 1, we have according to Definition 2.3.4,
that[O(r, p,9), Z, I] is equivalent tgO(r, p, 9), Z, J]. In the case- = s = 0, the
matrix A =1, ® 03 € K(0,p,0) has the property thatCo , 0= 1, ® 02 and
thus

[K(0, p, 0), Co,p,0, Co,p.0]
=[K(0,p,0), I, ® 01, I, ® o1] is equivalent tdK (0, p, 0), I, ® 01, I, ® o2].

Using the permutation matri® which changes matrice$ ® B to B ® A, we see
that

[K(0,p,0), 1, ®0o1,1, ®o2] is equivalent to[Wp, 01 ® I),, J],

where W = PK(0,p,0)P~t = {ydiages. ....ap. syt ... cayh) e = £1,
n=11i, o € R*}.

In the remaining cases where= 0, s > 0, the class representatiyi (0, p, s),
Xo, Co, p,s]1 does not contain any Out-grofiff, E, J] with skew-symmetric matrix
J for an outer automorphism, because there is no matrixK (0, p, s) such that
ACo, p,s is skew symmetric. ThereforEACo,p,SRT is not skew-symmetric for any
regularR. We can summarize these observations in the following,

Corollary 3.3.4. Let[H, E, J] be an Out-group ingl(n, C). Then[H, E, J] is
equivalent to one of the following Out-groups

@ [O(r,p,s), I ® Zo, J]forr > 1, whereZp =I5, ® (—15,) ® (I, ® 03);

(0) [O(r,p,9),03@ -1 Q@ (I; ®(I ®03)), J]forr > 1,5 > 1;

(©) [Wp,01® I, J].

This result is not sufficiently detailed for its applicatiorsig(n — k, k), where we
need to know as well which equivalence class contains Out-giduf ® E, k., J].
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Let us consider all non-equivalent clasgés, E, J] mentioned in the previous
corollary.

Case(a): For the matrix = I> ® I,-1 ® Zo, we first findk such that sgfE) =
sgnl2 ® E, k). Since there exists a matrik = I> ® P, whereP is a permutation
matrix such thaRER* = I, ® E,, andRJRT = J it follows that

[O(r, p,9), Ir ® Zo, J] is equivalent to[RO(r, p, s)Rfl, I Eqk, J]

for any tripler, p, s, withr > 1.

Case(b): We divide this case into two subcases:

(b1) Forr > 2, we choosel = —01 ® 02 ® L2245 € O(r, p,s) and putk =
(I ® diag(1, i)IT) ® Ipr-2(2,45), Wherell is a permutation matrifl € O(4, R)
such thatll(X @ Y)II" = Y ® X for eachX, Y € gl(2, C). We see that

RAANRT =02 ® Iy-19, 15 = ]
and
R(03®Cr1,p)R*=hL®03® Iy 20 Zo=LQE.

To transforml, @ E to I» ® E,.n/2, We use the permutation matrix of the previous
case (note that the signature s@n® Cr_1,,.s) = 0).
(b2) Now,r = 1. Suppose that there existe O(1, p, ) andR such that

R(AHRT =J and R(03® Cop)R* = I ® Ennj2. (8)
From the fact that

J(03® Co,ps) HTJ* = —03® Co .
and

J(I2® Epnj2) D" = +1® Epuj2
it follows that the matrixA must fulfill

A(03 ® CO,p,S)A* =-03® CO,p,s- (9)
From equality (8), we have
(AT = —AJ. (10)

It is easy to see that there exists no mattix O(1, p, S) with properties (9) and
(10). Thus[O(1, p, 9), 03 ® Co, p,5, J1 is Not equivalent to any Out-grodi@l, I ®
En,n/Z, J].
Case(c): The same arguments lead to the same conclusion as in the case (b2), i.e.
[Wp, 01 ® I,,, J1is not equivalent to any Out-grolipl, I> ® E, i, J]1.
We can summarize our observations as follows:

Corollary 3.3.5. Any Out-groudH, I2 ® E, k, J]in %l(2n, C) is equivalent either
to
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(i) [O(r,p,S), I>r ® Zo, J], where2n = 2"(2p + s) andr > 1 or to
(i) [O(r,p,s),03® Cr_1,p,5, J], Where2n = 2"(2p +s), r > 2ands > 1.

4. Out*-groups and Ad*-groups

Similarly as in the previous section, we start with the non-Abelian cases.
4.1. Non-Abelian Oditgroups and A#-groups

If [H, K, C]is Ouf-group in%l(n,C), then[?® H, > ® K, I ® C] is Ouf*-
group with an anticommuting pair i®l(2n, C). Unlike in the previous case of
Out-groups, there is another possibility for building non-Abelian*@rbups: The
triple [ ® K(r,p,s,),02® I, > ® C 5] is also Out-group in%l(2n, C). We
are going to show that these two cases exhaust all possibilities.

Theorem 4.1.1.

1. Let[H, K, C] be Out-group in%l(2n, C) containing a pair of anticommuting
matricesM, N € H. Then[H, K, C] is equivalent either to Otitgroup [? ®
Ho, I ® Ko, I ® Col, where[ Hg, Ko, Co] is Out*-group in%l(n, C), or to Out'-
group[Z ® Hp, 02 ® I,, I» ® Col, whereHp is a group andCg is a matrix such
that Ad Ho U Out (CoHp) is a MAD-group orgl(n, R).

2. Let[H, K] be Ad-group in%l(2n, C) containing a pair of anticommuting ma-
tricesM, N € H. Then[H, K] is equivalent either to Adgroup[# ® Hp, I ®
Kol, where[Hp, Ko] is Ad*-group in¥%l(n, C), or to Ad‘-group[# ® Hp, 02 ®
I1, whereHjy is such thatAd Hp is a MAD-group ongl (n, R).

Proof. Using Lemma 6.2 of [5] for matrices with real spectrum (compare proof of
Theorem 3.1.1), we find a matrsuch that

RMR'=03®@ Mg and RNR™!=01® No,
whereMo, Ng are diagonal matrices witleal positivediagonal elements. From the
definition of Out‘-group it follows that

MK =eyKM and NK =eyKN.

Without loss of generality we can assume thgt> ¢y. From Lemma 6.2, [5],

we have that each eleméPtcommuting or anticommuting with bots ® Mo and
01 ® No, belongs to the grou@? ® {Mo, No}', where{Mp, No}’ is a notation for the

commutator of matricesfp andNo, i.e. RHR™1 c 2 ® {Mo, No} .
Suppose first thaty, = ey = 1. The equalities

(03 ® Mo)(RKR ) =ep (RKR1) (03 ® Mo)
=en(RK R~1)(03 ® Mo) (11)
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(01 ® No)(RK R-1)=en(RK R~1)(01 ® No)
—en(RK R~1)(01 ® No) (12)

mean thaiR K R—1 commutes with botls ® Mo, o1 ® Ng and so that
RKR1=DL®Ko, Koe{Mo, No}.

In the second case, whergg = 1 andey = —1, we get from (11) and (12) that
RKR1=03® Ko, Ko e (Mo, No}.

In the third casesy; = ey = —1, we obtain
RKR1=0,® Lo, Loe {Mo, No.

SinceK is an anticircular matrix,
KoKo= —1Ip, KoKo=—1I, and LoLo= I,.

It is well known [4] that for anycircular matrix Lg there exists a real matrix such
thatLo = €7. Hence in (11) and (12) we can use the matfix® e (/2F)R instead
of R, and we can assume thiag = I,, without loss of generality.

We know thatM CM T = y,C andNCNT = ynC, whereyy, yv = +1. Again,
we can assume that, = yy = 1. Otherwise we would tak®utyc, Outyc or
Outy nc instead of the outer automorphisthezc. The equalities

(63 ® M)(RCR ) (03 ® Mg)" = (03 ® Mo)(RCR")(03® Mg) = RCR',

(061 ® No)(RCR") (01 ® NMp)" = (61 ® No)(RCR") (01 ® No) = RCR"

then imposeRCRT = I, ® Co.

For eachX € H we haveRXR™ 1 = oj ® Xo. SinceX fulfills XK = +KX and
XCXT = £, the matrixXo satisfiesXoCo X = +CoandXoKo = +KoXo (in the
first caseK — I» ® Ko), or XoKo = £KoXp (in the second cas& — o3 ® Ko),
or Xog = +Xo in the third case. Maximality off implies thatRHR~! = 2 ® Ho,
where[ Ho, Ko, Co] is in the first two cases an Gugroup, and in the third caséy
corresponds to a MAD-group qfi(n, R) with an outer automorphismuzc.

Now, we may reconstruct an Gugroup equivalent to the original Ougroup
[H, K, C]. Because the OtHgroup[Z ® Ho, 03 ® Ko, I» ® Co] reconstructed from
the second case is equivalent to the Guitoup[Z ® Ho, I> ® Ko, I> ® Col by the
matrix R = diag(1, i) ® I,, we can omit the second case of our construction.

Demonstration of the second item of Theorem 4.1 is included in the above proof.

O

If [H, K, C] in the previous theorem is equivalent to an ©gtoup[Z? ® Ho, 02
® Ko, [>®Col, we can use the results of Section 2.2, where MAD-groups 0n R)
were described. IfH, K, C] in the previous theorem is equivalent to an ©gtoup
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[Z? ® Hp, I> ® Ko, I2 ® Col, one can look for the anticommuting pair#y. If such

a pair exists, we can use again the previous theorem. It remains to settle the case
of an AbelianHp. Fortunately, as it will be shown subsequently, that case does not
occur.

Theorem 4.1.2. Any Out-group and Ad-group in%!(2n, C) contains an anticom-
muting pair.

We are going to prove the theorem only for &groups. The proof for At
groups is a simpler version of the same proof.

Proof. Let[H, K, C] be an Out-group and letH C H be its maximal commu-
tative subgroup. We show that ++ H. That is, we find an admissible matrix ¢
H such thatbK = +K &, ¢CP" = +C whered commutes or anticommutes with
each element if.

SinceH is a commutative subgroup f, we can suppose without loss of gener-
ality that elements ofl are in the diagonal form. Leftly be the subgroup dfl of all
matrices with real spectrum. Becaude= Hp U i Hp, any matrix® which commutes
or anticommutes with every elementB§, also commutes or anticommutes with the
whole H. The maximality ofH forces the grougHy to be saturated with respect to
K andC. In Definition A.1 found in Appendix A, we introduced just for this proof
the notion of saturated groups. Following Appendix A, we also use the notation
Hi, H _,H, andH_,.

Because is a subgroup of somk (0, p, s), there exist integers,, s, ..., s,
p1, ..., pesuchthaty +---+s7+2p1+---+2p.,=s+2p =2nand

Hiy Cleals, @ -efls, ©arlp @ agtly,
D Do, ae_llpe ej = £l ande; € R*}.
Consequently, it is possible to split the diagonal into blocks of lemgtkp, ..., sy,
pi, ..., Pe, Where elements front/ . are constant. Let us choose such splitting

into the smallest possible number of such blocks. ThA&h= KA = K A for any
A € Hi..Itimplies that

K=K1® - - ®Keyy and C=C1®---® Coqy,
whereK;,C; € 94l(s;,C) fori =1,..., f and K;, C; € 91(2p;,C) for i = f +

1,..., f +e. SinceK is anticircular,K;’s are anticircular as well, and thus all
are even.

Let a1, a2, ..., a2, denote the standard basis ©f* and let us splitC%" in-
to subspaces with the corresponding dimensionsFie= {1, ..., o, }in, F2 1=
(@141, -+ o Osgpsptling -+ oo Fe p = {020-2p,+1, - - - » @20 }lin-

Consider the restrictions di,s for ¢, § € {+, —} to these subspaces and put

Hes(i) := Hes/F, and  Ho(i) :== Ho/F;.
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Maximality of the Abelian groupd then implies that (i) is saturated with respect
to K; andC;, and that

Hes = Hes (1) @ -+ @ Hes(f +€) :={A1© A2 @ --- @ Acy s | Ai € Hes(D)}-

Moreover, if Hy,s #+ @, thenHs(i) £ @ fori =1,..., e+ f. SinceH is a maximal
commutative group, the matri€ (C~1)T belongs toH as well. From the fact that
KCKT = C, one can deduce tha€(C " H"K = K(C(C~1)T) and(C(c"HT)C
(c(c~HNT = ¢, which impliesc(C1T € H,,. Note that the spectrum af
(C™HT is real and therefor€ (C~1)T € Ho. Since the automorphismd -1y
equals to( Outc)?, the whole spectrum af (C~1)T is either positive or negative.
From the construction aflp(i) we directly obtain thatio(i) fulfills assumptions
of Lemma A.4 fori = 1, ..., f and that it fulfills assumption of Lemma A.5, for
i=f+1, ..., f+e Combining results of the two lemmas, one can deduce that
Hp, K andC can be transformed to satisfy

K=8100® - ®38020020 L& -®02® I, wheres; = +1.

e—times

o Hi Clealo® - - ®eflo® 2 ® diag(a1, (XIJ') @ - ® L diagae, (xe_l) | &i
=41, o; € R*}.
o Hy_ C{lh®diaga1, —a; ) @ - ® L ® diagae, —; 1) |; € R*}, note that
Hi_ #+ ¢implies f = 0.
o H  Cle103@ - Dero3do3® diag(a1, aIl) @ - ® o3 diaga,, oz;l) |
& = :l:l, o € R*}.
o H._ C {£103®--- ®eso3 @ 03 ® diagar, —a; ) ®- - - Boz @ diagae,
—a; Y e = %1, 0 € R*),
The form of the matrixC depends oI, s. It is necessary to realize that the whole
spectrum ofC(C~1HT is either positive or negative. Thus all blocks, . . ., Csir
forming C must have the same character. From Lemmas A.4 and A.5 we have

0 1 0 1
CZGuGB---@Uu@Iz@(M 0)69---6912®<ye O)’

f-times
wheref =0, if H._ # ¢ (call it Case 1). WherH_ = ¢, the matrixo,, is given
as follows:

I, if Hy= H,, and spectrum of (C~1)T positive (Case 2)

o2 if Hy= H, and spectrum of (C~1)T negative (Case 3)
o= if H.L #§(Case4)

o1 if H._ # ¢ and spectrum of (C~1)T positive (Case 5)

o2 if H__ # ¢ and spectrum of (C~1)T negative (Case 6)

Finally we can determine the matrik as it was promised at the beginning of this
proof. Fork = 1, 2, put
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Op=i"1on@ @O D B (0k ® I2)

f-times e-times

Both matricesP; and @, are diagonalizable with real spectrum. It is easy to verify
that in Cases 2, 4 and 5, we can take= ¢; and in Cases 1, 3 and 6, we can take
b=y, [

Results of this section can be summarized in the following proposition.

Proposition 4.1.3.

(i) Let[H, K, C]be an Out-group in%l(2n, C). There exist natural numbersp, s
satisfyingr > 1, (p,s) # (0,2) and 2"(2p + s) = 2n such that Out-group
[H, K, C]is equivalent to the Otitgroup[K(r, p, S), J, Cr p s1.

(i) Let[H, K] be an Ad-group in%l(2n, C). Then there exist natural numbetsn
satisfyingr > 1 and2"m = 2n such that Ad-group[H, K] is equivalent to the
Ad*-group[H(r, m), J1.

4.2. Equivalence classes of the ©gtroup

We are interested in equivalence classes of thé-Qudup with a particular prop-
erty, namely the classes containing a tripig J, 7]. We will need them when Ottt
groups will be used omo*(n). In order to show that such a triple is found in each
equivalence class, we pRb = U,_1,p,s andR = Ro & Ro. Then

R(02® Izrfl(SJrzp))R_l =02® Izr—l(SJrzp) and RCr,p,sRT = Ipr(s12p)-
PuttingO*(r, p, s) = RK p sR™1, we see that
[K(r,p,9),J,C,ps] isequivalentto[O*(r,p,s), J, I1.

We need to writeD*(r, p, s) explicitly. For that we us&;, ; from Section 3.3,
and we introducéV,,, ; for s > 1 by

_ N, (—chen ishé
Wap.s = {ndiagen, ..., &) P i ishop choy )| &M= +1,
k=1
n=11i, ¢k€|R},

and fors = 0 by

" —chor  ishoy
W2p,0= :nkEPluk < i sh oy Chd)k)‘uk:il,n:l,l, Or € R}
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P —shop  ichog
U nke?luk <ich¢k shcpk)‘“":il’":l"’ dreRy.
Now O*(r, p, s) can be written explicitly as follows:

O*(r,p,s = (13 v%)‘pzil’Aey(@...@g}@szJ

UOB
vB 0

5. MAD-groups on real forms of gl (n, C)

(r—1)-times

v=%1l, Be2® - Q2Wz;
—_—

(r—1)-times

Here the results of previous section are used for an explicit description of the
MAD-groups acting on the real forms of the Lie algefé:, C).

5.1. MAD-groups orgl(n, R)
It is convenient to rewrite Proposition 2.2.1 in a more revealing form.

Theorem 5.1.1.

(i) For any MAD-group# on gl(n, R) without an outer automorphisrthere exist
numbers, m such thatt = 2"m, m > 3andJ# is conjugate toAd H(r, m).

(i) For anyr,m, m > 3, the groupAd H(r, m) is a MAD-group ongl/(2"m, R).
Different pairs(r, m) provide non-conjugate MAD-groups.

Theorem 5.1.2.
(i) For any MAD-group# on gl(n, R) with an outer automorphism, there exists
numbers., p, s such thats = 2" (2p + s) and.# is conjugate to

AdK(r,p,9 U Out C, p, ;K(r,p,9). (23)

(i) For any triples(r, p, s) with the exception afr, 0, 2), the group(13) is a MAD-
group ongl(2"(2p + ), R) with an outer automorphisnuzc, , . Different
triples (r, p, s) provide non-conjugate MAD-groups.

5.2. MAD-groups omw(n — k, k)

It was explained early in Section 2.3 that Out-gr¢Qgr, p,s). Z, I, Z =0, ®
Iy1® Zo, Zo € &p5, 1 = 0, 3, gives us the MAD-group?’,

H = AdO(r,p,s) U OutO(r, p,s),
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onreal formL; of g/(n, C) and corresponding to the antiautomorphise Jo Outz.

If sgnZ = sgnkE, k, thenLj is isomorphic tau(n — k, k). SinceZ is a diagonal
matrix with +£1's on the diagonal, we can find a permutation maRisuch that
PZP* = E, k. In such a case

4 = Ad PO(r,p, 9P 1 U Out PO(r,p,9 P!

is a MAD-group ornu(n — k, k). In Corollary 3.3.3, we have seen th@ir, p, s) for
a fixed triple(r, p, s) is compatible only with certain signatures of the ma#ixn
order to describe that compatibility, we define, farp, s), asetZ, , ; of admissible
matrices:

forr > 0,p > 1, put

', p.0:={Ir @ o3};
forp > 0,5 > 1,(p,s) # (0, 2), put

Zops:=1{ZolZo= I, ® (1) ® U, ®03)|s1+52=15, 512> 52 >0}
forr > 1,5 > 1, put

ff,,p,s ={03 Q@ -1 Q (I ® I, ® 03)} U {lr ® Zo| Zg € gqp,s}.
Finally, we can give a complete description of MAD-groups@n — k, k).

Theorem 5.2.1.
(i) For any MAD-groups# onu(n — k, k) there exist a permutation matrix P and
numbers, p, s such that: = 2" (2p + s) and . is conjugate to

Ad PO(r,p,s)P~*U Our PO(r,p, 9P . (14)

(i) (and vice versaFor each triple of parameters p, s, (p, s) # (0, 2), and the
setZ, , s containing a matrix Z with the signature— 2k, wheren = 2"(2p +
s), there exists a permutation matrix P such thaz PT = E,rand(14) is a
MAD-group onu(n — k, k).

Remark 5.2.2. The MAD-groups on«(n — k, k) corresponding to different triples
(r, p, s) or to different matriceg € %, ; are non-conjugate.

Observe a remarkable fact: 4f> 1, the matrices fron®©(r, p, s) are pseudoor-
thogonal. The same is true if= 0 for the “first half” of 0, 0. The rest ofQ, o
contains pseudounitary matrices with real or purely imaginary spectrum which are
not orthogonal.

5.3. MAD-groups om*(n)
Here we consider the non-degenerate situation with evandn > 4. We have

again, as in the case gf(n, R), two types of MAD-groups; with or without an outer
automorphism. From Proposition 4.1.3 we have:
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Theorem 5.3.1.

(i) For any MAD-groups# on u*(n) without an outer automorphisnthere exist
numbers, m (r > 1, m > 3, n = 2"'m) such that the group#? is conjugate to
AdH(r,m).

(i) The groupAd H(r, m) is a MAD-group onu*(n) for any pairr, m such that
n=2"m,r > landm > 3. MAD-groups corresponding to different pairsn
are non-conjugate.

MAD-groups with an outer automorphism correspond to'@uoupq O*(r, p, ),
J, Il described in Section 4. We observe the same situation as in the case of pseudou-
nitary algebras: ‘most’ of matrices fro@*(r, p, ) are not only from:*(n) but also
fromso*(n) C u*(n).

Theorem 5.3.2.

(i) For any MAD-group# onu*(n) with an outer automorphism there exist num-
bersr, p,s (r 2 1, (p,s) # (0,2), n = 2"(2p + s)) such that# is conjugate
to

AdO*(r,p,9) U Out O*(r, p, S). (15)

(i) For any tripler, p, s withr > 1 and(p, s) # (0, 2), the group(15) is a MAD-
group onu™*(2"(2p + s)). MAD-groups corresponding to different triplesp, s
are non-conjugate.

6. MAD-groups on real forms of o(n, C) and sp(n, C)

MAD-groups# on real forms of these two algebras are formed by inner automor-
phisms only. (We disregard here Lie algeb(8, C), see Section 1.1.) We associate
to each MAD-group# a group of admissible matricés$ in a usual way. That is,

A = {A| A—admissible Ady € #}. As we shall see, these groups of matrices
represent Out-groups or Gugroups involving appropriate special matrideskK
andC for each real form.

6.1. MAD-groups oBo(n — k, k)

Let # be a MAD-group orso(n — k, k). Using Lemmas 1.2.1,1.2.3 and 1.2.7,
we can describe properties of admissible matrices belongiklg to
e AB=+BAforeachA, B € H;
e AE, yA* = +E, foreachA € H;
e AAT = +] foreachA € H.
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Comparing these properties with definition@fit-group, we see thati, E, x, 1]
is an Out-group. Using the description of equivalence classes in Corollary 3.3.3 and
the notationZ’,. , ; introduced in the previous section, we obtain:

Theorem 6.1.1.

(i) For any MAD-group# onso(n — k, k), there exist permutation matrix, _Rnd
numbers., p, s such thatt=2"(2p+s) and # is conjugate taAdd PO(r, p, )
pPL

(i) (and vice verspFor each parameters, p, s, (p,s) # (0, 2), such thatn =
2'(2p + s5) and the set of matriced’, , ; contains a matrix Z with the signa-
ture n — 2k, there exists a permutation matrix P such thg PT = E,r and
Ad PO(r, p,s)P~Lis a MAD-group orso(n — k, k).

MAD-groups onso(n — k, k) corresponding to different triples, p, s) or to dif-
ferent matrice € %, , ; are non-conjugate.

6.2. MAD-group orso*(n), n-evennu > 4

Now the group of matriceld, associated to MAD-groug onso*(n), is formed
by admissible matrices, which, according to Lemmas 1.2.3 and 1.2.8, satisfy the
following conditions:
e AB=+BAforeachA, B € H;
e AJ =+JAforeachA € H;
e AAT = +] foreachA € H.

Therefore[H, J, I']is an Out-group. It was shown in Section 4.2 that any equiv-
alence class of Oti#groups contains as its representative @group [O*(r, p, S),
J, I1. It means, that the number of MAD-groups @i (n) equals to the number of
possibilities to writenasn = 2"(2p + s) forr > 1.

Theorem 6.2.1.

(i) For any MAD-groups# on so*(n) there exist numbers p, s such thatr > 1,
(p,s) #(0,2),n =2"(2p + s) and # is conjugate taAd O*(r, p, 9).

(i) (andvice versgFor anyr, p, s withr > land(p, s) # (0, 2), the groupAd O*
(r,p, s is a MAD-group orso*(n), wheren = 2"(2p + s).

MAD-groups corresponding to different triplés p, s) are non-conjugate.

6.3. MAD-groups oBp(n — k, k)

Let # be MAD-group onsp(n — k, k). Using Lemmas 1.2.1,1.2.3and 1.2.9 we
can describe properties of admissiblematrices belongikg to
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e AB=+BAforeachA, B € H;
e A(L®E, 1 )A* =+ ® E, i foreachA € H;
e AJAT =4 foreachA € H.

Comparing again these properties with definition of Out-group, we seghhdp
® E,k, J1is a Out-group. All equivalence classes containing Out-gi¢iipE, J]
were found in Corollary 3.3.5, from which we conclude:

Theorem 6.3.1.
(i) For any MAD-groups# on sp(n — k, k) there exist numbers, p,s, 2n =
2"(2p + s) and a permutation matrix P such that is conjugate to

Ad PO(r,p,s) P2 (16)

(i) Letn — k > k. For any triples(r, p, s), r > 1 such thaten = 2"(2p + s) and
Zr p,s cOntains a matrix Z with the signatusgnZz = 2n — 4k, there exists a
permutation matrix P such thakZP* = > ® E, ; and the group(16) is a
MAD-group onsp(n — k, k).

(i) Letn —k =k =n/2. For anyr > 2, s > 1 and p such that2n = 2"(2p +
s), there exists a permutation matrix P such thtoz ® Io-1 ® (I; ® I, ®
03))P* =1, ® E; n2 and PO(r, p, P lisa MAD-group orsp(n/2,n/2).

6.4. MAD-groups onp(n, R)

The group of matricebl associated to MAD-groug# onsp(n, R) is formed by
admissible matrices, which according to Lemmas 1.2.3 and 1.2.10 satisfy:
e AB=+BAforeachA, B € H;

e A=+AforeachA € H;
e AJAT =4 foreachA e H.

We see that matrices df with above listed properties form the group! H
which can be embedded into a MAD-group @hn, R) with the outer automor-
phismOut,. Recall that MAD-groups ogl (2n, R) are described by (13). For> 1,
Out C, , K(r,p,s) = Out JK(r, p,s) and so,AdK(r, p, s) is a MAD-group on
sp(n, R). Forr =0 ands > 1, Out Co , ;K (0, p, s) does not contain any skew-
symmetric matrix and thu& (0, p, s) cannot correspond to any MAD-group on
sp(n, R).The remaining cask (0, p, 0) leads again to a MAD-group.

Theorem 6.4.1.
(i) For any MAD-group# onsp(n, R) there exist numbers p, s such that# is
conjugate toAd K(r, p, s) and2n = 2"(2p + s).
(i) For any triple (r, p,s), r > 1 the groupAdK(r,p,s) is a MAD-group on
sp(2 71 2p +9). R).
(ii2) The groupAd Wp, where

Wy = {diagas. ... ap. ca;t . s, ) |6 = £1, 0 € RY}
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is a MAD-group orsp(p, R).
(i) MAD-groups described i(ii) are non-conjugate.

7. Concluding remarks and examples

Recall a simple observation made at the opening of Section 2.1 concerning MAD-
group.# on a real form. Namely, that the complexificatiofi® is a subgroup of a
maximal real part#™ of some MAD-group? on complex Lie algebra, i.e#’* C
%™, In fact, the rest of the article is devoted to a complicated proof of the equality
#° = 4", This fact plays an important role for construction of gradings of the Lie
algebras.

(a) Grading!l” of Lie algebral. is a decompositioff : L=L1 ® Lo ®--- D Ly,
with the property that

forall i,j=1,...,kthereexists =1,...,ksuchthatG# [L;, L;] S L,.

Refinementl” of I is another grading obtained by further splitting of some of the
subspace$; into the direct sum of smaller spaces. A grading which cannot be fur-
ther refined is calledine grading Let.# C .«Zut L be a set of mutually commuting
diagonalizable automorphisms &an Then the decompositioh = L1 @ - - - & Ly,
whereL;’s are eigenspaces of any automorphismznforms a grading. A grading
determined by a set of automorphismisis denoted a&r (.#).

(b) An explicit construction of the grading decomposition of a given Lie algebra
may sometime be the only objective one has in mind. For that it often suffices to use
only several suitably chosen elements of the corresponding MAD-group.

As a transparent example of this possibility take the Lie algeliBa C) as 3x 3
matrices and a suitably chosen single outer automorphismX beta 3x 3 matrix
representing a generic elementsdf3, C). Thus we have the eigenvalue problem

(o 6 (o 8 =+ )

where

0 & 0 _
0=1& 0 0], ==V
0 0 i

There are eight distinct eigenvalues= ¥, k =0,1,...,7, and eight non-emp-
ty eigenspaces. Consequently, the grading subsgacase one-dimensional. They
can be labeled (additively) by the value of the exponéninod 8. One finds.;
represented by the following matrices:

1 0 0 0 0 0
Lo=C|0 -1 0}, L, =C 0O 0 —-i]),
0 0 0 -1 0 0
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0 1 0 0 0 i
L,=C|0 0 0}, Lz3=C|0 0 0],

0O 0 O 0 -1 0
i 0 0 0 0 O
Ly=C| O —i O], Ls=Cc|0 O 1}
0 0 2 00

0
Le=C|1
0

[oNeoNe)

0 0 0 1
0], L7;=C|0 0 O0}.
0 0O —-i O

There are eight grading subspaces, each being one-dimensional, no further refine-
ment is possible. Our choice of the grading automorphism is far from unique.

(c) Given the fine gradings of a Lie algelirathere are a number of other follow-
up questions one may ask which would be interesting and sometimes useful to have
answered. For example, when the grading relations are saturated? Thatis, when there
is the equality in O# [L;, L;]1 = L rather than inclusiokt.

(d) Find all (not only fine) non-equivalent gradingslof

(e) Identify the subalgebras (and their normalizerk)imvhich are displayed in a
given grading. We say that a subalgebra is displayed by a grading if it is formed by
all elements of several grading subspaces.

(f) Find the gradings which display a given subalgebrh.of

(g) Describe the action of the MAD-groups on representation spacesTie
maximal torus has been the main tool of the representation theory since the work
of Weyl. Elements of finite order in the group have only a finite number of distinct
eigenvalues. Therefore they are the spaces in a rather coarse way. In general, such
elements have different order on various representations. For example the element
diagw®, o1, =% is of order 7 when acting on the Lie algebra (adjoint representa-
tion) but of order 21 when acting in the three-dimensional representation space.

(h) For a given grading ok, find the grading subspaces which are equivalent
under the group of all automorphisms; the grading subspaces that consist entirely of
nilpotent or semisimple elements, elements that commute, etc.

(i) Using d; for the dimension ofL ;, compare gradings by the value of their
entropyk,

E = —Zdj Indj.
J

()) Graded contractions of Lie algebras [8] became recently a relatively frequent
topic in physics literature (for example [13]). The idea is to study only those deforma-
tions L’ of a given Lie algebra, which preserve a chosen fixed gradind.afather
than all its deformations. It turns out to be a problem where all such contractions
can be classified relatively easily [13] and with simple means (solving systems of
quadratic equations for the contraction parameters). Moreover, in this way one can
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consider at the same time ‘contractions’ of representatiohgo@fepresentations of
the contracted Lie algebi [9]. A brief review of the method is in [12].

(k) It is proved in [14], that a grading’ of a simple Lie algebrd over C is
fine if and only if there exists a MAD-groug C .«ut L such thatl' = Gr(%). It
follows from [5] that if " is a maximal real part of some MAD-grogpon a simple
complex Lie algebré, then

Gr(%™) = Gr (%),

i.e. Gr(9%) is fine. Let us consider a real forfy of this algebrd.. Since we have
proved that the complexification of any MAD-growg on a real formL; equals to
4™ for some complex MAD-groug, we have immediately that grading Gr ()
of a real formL; corresponding to &MAD-group 2# is always fine The opposite
question, whether any fine gradings on a real form corresponds to some MAD-group,
is still open.

() In the end, we give a list of MAD-groups for real forms of some classical
Lie algebras with small dimension. Since the relationship between MAD-group and
grading is so straightforward, we do not list gradings of real forms.

7.1. MAD-groups on real forms @f (n, C)

Using Theorems 5.1.1,5.1.2,5.2.1, 5.3.1 and 5.3.2, we obtain the following lists
of MAD-groups.

Example 7.1.1. Real forms ofgl(2, C)

u(3) gl(2,R) |AdK(1,0,1) U OutK(1,0,1); AdK(0,1,0)

UOut Co 1,0K (0, 1, 0);

u(3) u(2) AdO(1,0,1) U Out O(L, 0, 1)

u@@ ul, 1) |AdO(,0,1) U OurO(L,0,1); AdO(0,1,0)U OurO(0,1,0)

Note that MAD-groups orl(2, R), su(2) andsu(1, 1) consist of “Ad-parts” of
above MAD-groups, because any automorphism of these real forms is inner. Known
isomorphism ofs/(2, R) andsu(1, 1) given by the mappinids : si(2, R) +—
su(1, 1), where

also transforms MAD-groups 61 (2, R) to MAD-groups ofsu (1, 1).
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Example 7.1.2. Real forms ofgl(3, C)

¢l(3,R) | AdK(0,0,3)U OutK (0,0, 3);

AdK(0,1,1) U Out Co1.1K (0, 1, 1); AdH(O, 3)

u(3d) Ad O(0,0,3)U Out 0(0,0,3)

u(2,1) | AdO(0,0,3)U OurO(0,0,3); AdO(0,1,1)U Our O(0,1, 1)

Explicit form of all non-conjugate gradings of all real forms g3, C) corre-
sponding to these MAD-groups can be found in [6].

Example 7.1.3. Real forms ofgl (4, C)

gl(4,R) | AdK(0,0,4) U OutK(0,0,4); AdK(0,1,2)U OutCo12
K(0,1,2);

AdK(0,2,0) U Out Co2,0K(0,2,0); AdK(1,1,00UOutCi10
K(1,1,0);

AdK(2,0,1) U OutK(2,0,1); AdH(0,4)

u(4) Ad O(0,0,4) U Out O(0,0,4); AdO(2,0,1)U Our O(2,0, 1)

u(3,1) | AdO(0,0,4)U Out O(0,0,4); AdO(0,1,2)U OutO(0, 1, 2)

u(2,2) | AdO(0,0,4) U Out O(0,0,4); Ad PO(0,1,2)PT U
Out PO(0,1,2)PT;

Ad PO(0,2,0)PT U Out PO(0,2,0)PT; Ad PO(1,1,0)PT U
Out PO(1,1,0PT;

Ad0O(2,0,1) U Out O(2,0, 1);

u* (4) Ad O*(1,1,0) U Out O%(1,1,0); AdO*(2,0,1)U
Out 0*(2,0, 1)

The matrixP used in the table is a permutation matixe O (4, R) such that
Pdiagl, —1,1, —1)PT = Eg4,
7.2. MAD-groups on real forms ofn, C) andsp(n, C)

Using Theorems 6.1.1, 6.2.1, 6.3.1 and 6.4.1, we obtain the following lists of
MAD-groups.
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Example 7.2.1. Real forms ob (3, C)

so(3) | AdO(0,0,3);
s0(2,1) | AdO(0,0,3), AdO(0,1,1)

Example 7.2.2. Real forms ob (4, C)

so(4) | AdO(0,0,4); AdO(2,0,1)

s0(3,1) | AdO(0,0,4); AdO(0,1,2)

50(2,2) | AdO(0,0,4); Ad PO(0,1,2)P"; Ad PO(0,2,0)P;
Ad PO(1,1,0)PT; AdO(2,0,1);

so*(4) | AdO*(1,1,0); AdO*(2,0,1)

The matrixP used in the table is a permutation matixe O (4, R) such that
Pdiagl, -1, 1, —1)PT = E4 .

Example 7.2.3. Real forms ob (5, C)

so(5) Ad O(0, 0, 5);
so(4,1) | AdO(0,0,5); AdO(0,1,3);
50(3,2) | AdO(0,0,5); Ad PO(0,1,3)P"; Ad PO(0,2,1)PT;

The matrixP used in the table is a permutation mat#xe O (5, R) such that
Pdiagl,1,-1,1, —1)PT = Es».

Example 7.2.4. Real forms ofsp(1, C)

sp(LR) | AdK (1,0, 1), Ad W
sp(1) AdO(1, 0, 1)

Sincesp(1, R) is isomorphic tou(1, 1) andsp(1) is isomorphic tou(2), we can
compare this table with the Example 7.1.1.

Example 7.2.5. Real forms ofsp(2, C)

sp(2,R) | AdK(1,1,0), AdK(2,0,1), AdW>
sp(2) AdO(2,0,1);
sp(1,1) | AdO(2,0,1), AdO(L, 1,0);
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The real formsp(2, R) is isomorphic taso(3, 2), the real formsp(2) is isomor-
phic toso(5), and the real formp(1, 1) is isomorphic taso(4, 1). We can compare
this table with Example 7.2.3.

Example 7.2.6. Real forms ofsp(3, C)

sp(3,R) | AdK(1,1,1), AdK(L,0,3), AdWs3
sp(3) AdO(1,0, 3);
sp(2,1) | AdO(1,0,3), AdO(L, 1,1);

Appendix A

For the reader’s convenience, some relevant theorems from matrix calculus are
listed in the first part of the appendix. As these facts are not so easy to find in the
literature, we have decided to supply them with proofs.

LemmaA.l.
(i) LetA € 9l(n, C) be acircular matrix. Then there exis&se %l(n, C) such that
RAR 1 =1.
(i) Let A € 9l(n, C) be an anticircular matrix. Then n is even and there exists
R € %l(n, C) such that

- 0 L2
RAR =7 = /2y
<—1n/2 0 )

(i) LetB € %l(n, C) be a hermitian matrix. Then there exi®te ¥4I1(n, C) and an
integerk =0,1,...,nsuchthatR BR* = I,_x ® (— k) = E, .

Proof. (i) Let AA = I. Choosét e C such that is not in the spectrum oA and
£& = 1. Then choosa/ € C such thatt 2 = —1 and putR = y(A — £I). It is
easy to verify thaR is a regular matrix satisfying A = R as needed.

(i) Analogously, choose € C such thatk = €*A + e71%J is a regular matrix.
ThenRA = JR as needed.

(i) As B is hermitian, there exists a unitary matiik such thatB = U diag
(81, ...,8,) U*. Without loss of generality we can assume that. . ., §; > 0 and
8k+1,...,0, <0forsomek =0,1,...,n.

The non-singular matrix
R:Udiag(i,...,i, 1 ! ) vt
Vo Ve V=l Vo
has the required property[]
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LemmaA.2.
(i) LetC €O(n, C) be a hermitian matrix. Then there exigtss O(n, R)=0(n, C)
N %l(n, R) such thatRCRT = RCR* equals

chp1 —ishor cho, —ish¢
IV@(_Ii’)@El ('Sh¢l Ch¢1 )@@8[) <|Sh¢l; Ch¢pp>’ (Al)

wheres +r +2p =n, ¢; € {—1,+1} and¢;’s are real.
(i) LetC € O(n, C) be an anti-hermitian matrix. The there exigts= O(n, R) such
that

RCRT=RCR*=81( Ish ¢y .Ch¢1)

—ch¢r ish¢s
isho ch¢
D Dep <—ch ¢pp i sh ;p) , (A.2)

where2p =n, ¢; € {—1,+1} andg;’s are real.

Proof. (i) As Cis hermitian,C has a real spectrum and eigenvectors corresponding
to different eigenvalues are orthogonal. Lebe an eigenvalue of matrig to the
eigenvectox. Thenx = Ix = C'Cx = CCx = ACx which impliesCx = A~ 1x.

If P, is an eigensubspace tq then P, is the eigensubspace to 1. In the
caseir = £1, it is P, = P, and we can find a real orthonormal baseRf say
{x1, x2, ..., x5} and areal base df_1, say{y1, y2, ..., yr}.

For # +1, find an orthonormal base &, (which does not need to be real), say
zh. 25, ...,z Thenz}, 25, ..., Z} is an orthonormal base @, and

1 1
E(zﬁwt 71, wz—lﬁ(zl Z1)s s wh 1\/—(Zz+21)

wy

A
wy;

1( 7))
|ﬁZl 2

is a real orthonormal base & @ P;.

Denote byP the matrix which columns are formed by vectoss. . . x5, y1, ..., ¥r
and by vectorswﬁ, R w%l for all eigenvalues., |1| > 1. Since the eigenvectors
corresponding to the different eigenvalues are orthogonal, we have

() Cyi=(x;)"(=y) =0, (w})*Cxi=w})*x;i=0, W))*Cyi=w})*(=y)=0,
WH*Cw}) =0 forr+# p.

Moreover,

(wh;_)*Clwy;_y)= \/— @+ C7 &k +7h)

—(z +T)* A H)——(HA b,
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and analogously
1 1
(w3; _1)*C(w};) = z()\ —-2Y and (w5;)*C(w3;) = é()\ +27h.

As ) is real, we can write it in the forme?, whereg is real. It means that the product
H*CH is of the form (A.1), and we can p& = H*.

(i) In this case, we have an easier situation, since it is impossible?hand P;,
are eigenspaces to the same eigenvalue. The similar calculation shows thatGnatrix
can be transformed to the form (A.2)0J

Lemma A.3. LetE € Sp(n, C) be a hermitian or anti-hermitian matrix. Then there
exists unitary matri® € Sp(n, C) such that

D 0

* -1 _

RER* = RER ' = (o D‘l) ,
where D is a diagonal matrix.

Proof. As E is hermitian or anti-hermitian, there exists a unitary matlixsuch
that U*EU is a diagonal matrix. The equatia/ ET = J implies that if a vec-
tor (x1,...,xu, ¥1, ..., yn) IS the eigenvector of matrik to the eigenvalug, then
31, ---» Y, —x1, ..., —Xp) IS the eigenvector to/&.. This property enables us to
choose the unitary matrid in the form

P S
v=(5 )

whereP, S € gl(n, C) and

(5 26 2= )

D—a diagonal matrix. Note that the unitarity of mattiximplies P P* + SS* = I
andPTs = STP. Itis easy to see that the matk:= U* fulfills R/JRT = J. O

In the remaining part of this appendix, we present two auxiliary statement need-
ed to prove Theorem 4.1.2. In the sequel we supposeKhéat € 91(2n, C) are
matrices satisfying:

c(c™HT admissible with positive or negative spectrum

KCK'=C and KK = —1I,. (A.3)
Denote byZ,, the group of real diagonal matrix il (n, C). We will study saturated
subgroup$y C Z2,.

Definition A.1. We say that a group
Ho C {A € D9,| ACA = £C, AK = +K A}
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is saturated with respect to K andi€there exists no admissible matrk ¢ Hop with
real spectrum, such that

BCB"=C, BK=KB, and AB=BA forall A e Ho. (A.4)

A saturated groupiy can be written as a union of the following four sets:
Hy, ={A e Hy|AK = +KA, ACA = +C},
H, ={AeHy|AK =+KA, ACA =—C},
H_. ={A€Hy|AK = —KA, ACA = +C},
H__={Ac€Hy|AK = —KA, ACA=—C}.
Condition (A.4) means that the groufy cannot be extended by adding a new el
menttoH, 4, i.e. Hy is maximalin the previous sense.
Let us list several obvious properties of a saturated group:
e H,. isasubgroup oHp, i.e. H, contains at leask,,, —I2,.
e Condition (A.4) impliesC(C™H)T € H, ..
o If Hy_ #+ (), thenH, _ = AH,, foranyA € H,_ and analogously foH__ and
H_+.
e Itis impossible that among the sdis._, H__, H_ is exactly one empty set.
LetagroupHo C %2, be saturated with respectkcandC and a grougdo C %o,
be saturated with respect& andC. We say that the tripleHo, K, C] is transform-
ableto the triple[ Ho, K, C] if there exists a matri® such that

Ho= RHoR™!, K =RKR1, and C=RCR".

We will focus on saturated groug# with special form offH, .

Lemma A.4. Let Hy C 22, be a saturated group with respect to K and C and

H,, = {*+I,}. ThenH,_ is empty anch = 1.

Moreover

() ifH_, =@andH__ + ¢, then[Hp, K, C]is transformable t¢{+12, +03}, o2,

o1] or to [{£12, +03}, 02, 02];

(i) if H-y # ¥ and H__ = ¢, then[Hp, K, C] is transformable td{+1>, +o3},
02, I2];

(i) if H-y = @YandH__ = @, then[Hp, K, C]is transformable t¢{+ 1>}, noo, I2]
orto [{£12}, no2, o2], wheren = +1.

Proof. LetAe H,_UH_, UH__.SinceA? € H,, = {+I,} andA is real di-
agonal, we can suppose without loss of generalitythat I, & (—I),r +s = 2n.
SuchA fulfills conditionsACA = usC and KA = n4 AK, where at least one of
constantsy4 or wy4 is —1, which impliesr = s = n. Thus for a given fixed matrix
Ae H,_UH_{UH__,we can writeA = I, ® (—1,). Since alway< (C" 1T ¢
Hy,,we haveC = ¢CT, wheres = +1.

e_

et



44 M. Havli€ek et al. / Linear Algebra and its Applications 314 (2000) 1-47

Suppose now thatt = I, ® (—1,) € H4_. RelationsAK = KA and ACA =
—C force

(0 (K1 O
c_<C2 0) and K_<0 K2>’
where C1, Co, K1, K2 € %l(n, C). But then the matrixB = A1, ® B~ 11, can be
added toH, ; for any 8 € R*. It is a contradiction with maximality off; . Thus
H, _ is necessarily empty.

(i) Now suppose thatt = I,,  (—1I,) € H-_. The relationsACA = —C, C =
eCT, e = =1, imply

. 0 Cy
C‘(eCI o)-

If we transform the tripl¢ Hg, K, C] by the matrixR = Cl‘1 @ I,, we do not change
Hp and we obtain a new

0 I,
¢= <81,1 0) ’

SinceAK = —K A andK K = —I,, the matrixK has a form

0 K1
K = — .
—K; 0

Putting such matrice€ andK to the equalityKk CKT = C, we obtainkKy = eKj.
SinceK1 is hermitian or anti-hermitian, and thus diagonalizable, we can find a uni-
tary matrix P € %l(n, C) such thatPK1P* = \/e D, whereD is diagonal matrix.
SetM = Pdiagy,....8,)P* andB =M & (M~HT. ThenB is an admissible
matrix with real spectrum satisfyin@CBT = C and BK = K B for any choice
of §1,...,8, = £1. If n > 2, then we can enlargé/, ;. by matrix B #+ +1,—a
contradiction with maximality o/ ;. Thusn = 1.

(if) Now suppose thatt = I, ® (—1,) € H_. SuchA implies

_(C1 O _ 0 K3
C‘(o C2> and K_<—Kl_1 0)’
whereC1, Ca, K1 € %l (n, C). SinceC = ¢CT, the matrice<1, andC, are sym-
metric or skew-symmetric. The relaticiCK" = C givesKlfzKlT = (1. Using

transformation by the matri® := K{l @ I, we do not changé/p and we obtain a
newK andC

_ C, O (0 I,
C_<O C2> and K_<—In 0).

If n > 2, then there exists a matri® € ¥l(n, C) such thatRCoRT = I, (whenC»
is symmetric) orRC2RT = 0o ® I,/2 (whenC5 is skew-symmetric). Pub := diag
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(-1, 1,...,1)inthe cas&z = C] or D := 01 ® I, /2 in the case&”, = —C,. Then
the matrixM = R~1DR satisfiesM CoMT = ¢C5. Let us define a matrig := M &
M. Such matrixB is admissible with real spectrum and satisf@& = KB and
BCBT = C. For symmetricC, the matrixB can be added téf, . — a contradic-
tion. For skew-symmetri€, we have found3 € H,_—a contradiction as well. We
have again deduced= 1.

(iii) It remains to discuss the casé__ = H._ =), i.e. H.+ = Ho.

If C = CT, then there exists a matri such thatPCP" = I,. Using transfor-
mation by this matrixP, we can without loss of generality suppose that I,.
For C = I,,, condition (A.3) readsk KT = I which together with anticircularity
of K gives thatK is anti-hermitian. According to Lemma A.2(ii), there exigtse
O(2n, R) such that

1 ishg1r chor ishg, chaoy
RKR ™™ =¢1 (—chd)l i sh ¢ ©- e —ch¢, isheo,)”

Because the matriR is orthogonal, ouC = I, is not changed by transformation.
If n > 2, then a matrixA = diag(—1, 1, ..., 1) ® I> can be added té/, —a con-
tradiction with maximality ofH ..

If C = —CT, then there exists a matrixsuch thatCPT = o> ® I, = J. Again
without loss of generality we can assume that we work with the triple transformed
by P and conside€ to be equab, ® I,,. For suchC condition (A.3) givesiK J) €
Sp(n, C) and (iK J)—hermitian. According to Lemma A.3, there exists a unitary
matrix R € Sp(n, C) such that

D& D™t =RKNHR = (RKRT) (RIR") = RKR L

and thus
— 0 D
-1 _
RKR- 1= <—D—1 O)’
whereD is a diagonal matrix. If2 > 2, then a matrixB = I> ® diag(é1, . .., 8,),
with arbitrary choice of1, ..., §, = +1 can be added t&, . —a contradiction.

So far we have proved that any saturated group with trifial lives in%i (2, C).
To show the rest of statement is now an easy exercise.

LemmaA.5. Let Hy C 22, be a group saturated with respect to K and C. Let
{£12) # Hiy C {al, ® a1, |a € R*}. Themn = 2and[Ho, K, C]is transform-
able to[ Hp, K, C], where

K=0o® I, C=Iz®<§ é),forsomeyelR*,

and
e Ay, C (I ®diaga,a™t)|a € R*};
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o Hi_ C {h®diaga, —a 1) o € R*);
° H,Jr C {oz®@diage, o 1) |a € R*});
e H__ C {03 ®diage, —a 1) |a € R*}.

Proof. Since H, contains at least one matrix +1/,, the maximality of H
forcesH, | = {al, ® a LI, |« € R*}. ChooseA € H,,, for exampleA = 21, ®
31,. From the equalitdCA = C and the facC(C~T € H,, we have

0 C1
C = - ,
yC; 0

wherey € R*. On the other handdK = K A and anticircularity ofK give K =
K1 ® K2, where K1, K» are anticircular matrices i&#l(n, C) and thereforen is
even. Any matrixB € Hp can be written a8 = D1 & D>, whereD; and D; are
real diagonal matrices. AB? € H, ., the matrixD, = o~ 1diagé1, . . ., 8,), with
a € R, 81,...,68, = £1. Let us transform the triplgHp, K, C] by the matrixR =
Cy 1o 1, Then

0 I, _ K;HT o
RCR'" = . RKR 1= (K25 .
yl, O 0 K>

The last equahty isa consequencelstKT C Any matrix B from Hp is trans-
formed toRBR™ = C{'D1C1 @ Dy = e D;* @ Dy, whereep = 1if BCBT =
Candeg = —11if BCBlr =—C.

Without loss of generality we can assume tRat (Kz_l)T @ Ko,

0 I
C =

Ho C {diague, ™) @ diagy, ..., 8,) | € R*, w, 8 = +1}.

At first, suppose thatlp = H, andn > 4. SinceK> is anticircular, according to
Remark 2.4.4, there exists an admissible makfix- +1, with real spectrum such
that XK» = K»X. Then the matrixB := (X 1T & X can be added té/, ., — a
contradiction. In the casHp = H4 4, we have deduced = 2.

At second, suppose that there exse Hp such thatBK = —K B. SuchB has
spectrum symmetric with respect to origin, and we can waite diag(epa, o™ 1) ®
(In/Z 2] (_In/Z))-

If H_ # 0, thenH_| = {o 1,0 ® (—a VLo ® aly2 ® (—a) L2 | a € R*}.

If H__ #@,thenH__ = {((—a Do @ a0 @ aly2 ® (—a) 2|« € R*).
In both casesk> has a form

0 L
K> = S .
-L71 0

and
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If n/2 > 2, thenthematri8 := (L - )"D1LT® D 1@ LDL 1 & D, whereDis
an arbitrary real diagonal matrix i#i/(n/2, C) satisfiesBK = K BandBCBT = C,
this contradicts the maximality df; ;. and thus: = 2.

It remains to deal with the casd__ U H_, = ¢ and H,_ # (. Without loss
of generality we can assume thAte H,_ has a formB = (—a)I; ® al,,—s &
o @ (—a I, If s > 1 andn —s > 1, then the equalitBK = K B gives
K> =L1® Ly, whereLq € %l(s,C) and L, € ¥l (n — s, C). Then a matrixB :=
(—a) s ®aly_y ® (—a Y, & a1l,_,, can be added t&, . —a contradiction.

Now suppose that = n, i.e. Hy_ = {(—a)l, ® « 11, |« € R*}. If n > 4, then
according to Remark 2.4.4, there exists an admissible m&tvisth real spectrum
such thatX # +1, andX K> = K»X. Thenamatrix8 := (X )T @ X € H, ,—a
contradiction. Again we have = 2. To transform triplg Hg, K, C] to the desired
form is now an easy task.[]

Acknowledgement

We acknowledge partial support from the National Science and Engineering
Research Council of Canada, FCAR of Quebec.

References

[1] M.A. Abdelmalek, X. Leng, J. Patera, P. Winternitz, Grading refinements in the contractions of Lie
algebras and their invariants, J. Phys. A 29 (1996) 7519-7543.
[2] M.R. Bremner, R.V. Moody, J. Patera, Tables of Dominant Weight Multiplicities for Representations
of Simple Lie Algebras, Marcel Dekker, New York, 1985.
[3] D.Z. Djokovic, J. Patera, P. Winternitz, H. Zassenhaus, Normal forms of elements of classical real
and complex Lie and Jordan algebras, J. Math. Phys. 24 (1983) 1363-1374.
[4] A.Horn, D. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[5] M. Havlicek, J. Patera, E. Pelantovd, On Lie gradings I, Linear Algebra Appl. 277 (1998) 97-125.
[6] M. Havlicek, J. Patera, E. Pelantova, On Fine gradings of real forsef C), in: H.-D. Doebner,
V.K. Dobrev, J. Hilgert (Eds.), Lie Theory and its Applications, World Scientific, Singapore, 1998,
pp. 119-129.
[7] N. Jacobson, Lie Algebras, Dover, New York, 1979.
[8] M. de Montigny, J. Patera, Discrete and continuous graded contractions of Lie algebras and
superalgebras, J. Phys. A: Math. Gen. 24 (1991) 525-547.
[9] R.V. Moody, J. Patera, Discrete and continuous graded contractions of representations of Lie
algebras, J. Phys. A 24 (1991) 2227-2258.
[10] M.A. Naimark, Teoria predstavlenii grup, Nauka, Moskva, 1976.
[11] J. Patera, Graded contractions of Lie algebras, their representations and tensor products, Proc. Symp.
Symmetries Phys., Cocoyoc, Mexico, 1991.
[12] J. Patera, AIP Conference Proceeding 266 (1992) 46-54.
[13] J. Patera, G. Pogosyan, P. Winternitz, Graded contractions of the Lie algéhB, J. Phys.
A: Math. Gen. 32 (1999) 805-826.
[14] J. Patera, H. Zassenhaus, On Lie gradings |, Linear Algebra Appl. 112 (1989) 87-59.
[15] J. Patera, H. Zassenhaus, The Pauli matrices-dimensions and finest gradings of simple Lie
algebras, J. Math. Phys. 29 (3) (1988) 665-673.



