The Ring of Fractions of a Jordan Algebra

C. Martínez¹

Departamento de Matemáticas, Universidad de Oviedo, C/ Calvo Sotelo s/n, 33007 Oviedo, Spain E-mail: chelo@pinon.ccu.uniovi.es

Communicated by Efim Zelmanov

Received May 15, 2000

We derive a necessary and sufficient Ore type condition for a Jordan algebra to have a ring of fractions. © 2001 Academic Press

1. INTRODUCTION

Let *R* be an associative ring. Let *S* be a subset of *R* which is closed under multiplication and which consists of regular elements (not zero divisors). An overring $R \subseteq Q$ is called a (right) ring of fractions of *R* with respect to *S* if (1) all elements from *S* are invertible in *Q*, (2) an arbitrary element $q \in Q$ can be represented as as^{-1} , where $a \in R$, $s \in S$. Ore (see [8]) found a necessary and sufficient condition for a right ring of fractions to exist:

The Ore Condition. For arbitrary elements $a \in R$, $s \in S$ there exist elements $a' \in R$, $s' \in S$ such that as' = sa'.

Jacobson *et al.* [2] proved the existence of rings of fractions of Jordan domains satisfying some Ore-type conditions. In this paper we derive a necessary and sufficient Ore-type condition for an arbitrary Jordan algebra to have a ring of fractions. Goldie's theorems in Jordan algebras (an important application of Ore localization) have been studied in [11, 12].

Throughout the paper we will consider algebras over a field F, char $F \neq 2, 3$.

¹ Partially supported by DGES PB97-1291-C03-01, FICYT PGI-PB99-04.

$$(J1) \quad xy = yx,$$

(J2)
$$(x^2y)x = x^2(yx)$$
.

For an element $s \in J$ let R(x) denote the right multiplication R(x): $a \rightarrow ax$ in J.

The linearization of (J2) can be written in terms of operators as

$$R((xy)z) + R(x)R(z)R(y) + R(y)R(z)R(x)$$

= R(xy)R(z) + R(xz)R(y) + R(yz)R(x)
= R(z)R(xy) + R(y)R(xz) + R(x)R(yz).

We will refer to it as the Jordan identity.

For elements x, y, z in J, by $\{x, y, z\}$ we denote their Jordan triple product, $\{x, y, z\} = (xy)z + x(yz) - (xz)y$.

By U(x, y) (resp. V(x, y)) we will denote the operators $zU(x, y) = \{x, z, y\}$ (resp. $zV(x, y) = \{x, y, z\}$).

For arbitrary elements $x, y \in J$ the operator D(x, y) = R(x)R(y) - R(y)R(x) is known to be a derivation of J (see [1]).

We denote U(x) = U(x, x). An element a of a Jordan algebra J is called regular if the operator U(a) is injective.

DEFINITION 1.1 (compare to the definition in [2]). An Ore monad (or simply a monad, by short) S of J is a nonempty subset of J, consisting of regular elements such that for arbitrary elements $s, s' \in S$

(i)
$$s^2, sU(s') \in S$$
,

(ii) $SU(s) \cap SU(s') \neq \emptyset$.

DEFINITION 1.2. Let J be a Jordan algebra. A Jordan algebra $Q, J \subseteq Q$ is said to be a ring of fractions of J with respect to a monad S if

(i) an arbitrary element of S is invertible in Q,

(ii) for an arbitrary element $q \in Q$ there exists an element $s \in S$ such that $q \cdot s \in J$, $q \cdot s^2 \in J$.

For a Jordan algebra J let $R\langle J \rangle$ denote its multiplication algebra, i.e., the subalgebra of $End_F(J)$ generated by all multiplications $R(a), a \in J$.

DEFINITION 1.3. Let $S \subseteq J$ be a monad of a Jordan algebra J. We say that J satisfies the Ore condition with respect to S if for an arbitrary element $s \in S$ and for an arbitrary operator $W \in R\langle J \rangle$ there exist an element $s' \in S$ and an operator $W' \in R\langle J \rangle$ such that W'U(s) = U(s')W. The main theorem of this paper is

THEOREM 1.1. Let J be a Jordan algebra and let S be a monad in J. Then J has a ring of fractions with respect to S if and only if J satisfies the Ore condition with respect to S.

We construct a ring of fractions Q(J) inside the ring of partially defined derivations of the Tits-Kantor-Koecher Lie algebra L(J) following the idea of Johnson, Utumi, and Lambek (see [6, 8]).

For an element $s \in S$ denote $K_s = JU(s) + Fs + Fs^2$, which is an inner ideal of J. Let $R\langle K_s \rangle$ denote the subalgebra of $R\langle J \rangle$ generated by all multiplications R(a), $a \in K_s$.

2. NECESSITY OF THE ORE CONDITION

We will start this section with some equivalent characterizations of the Ore condition.

PROPOSITION 2.1. Let J be a Jordan algebra and let S be a monad in J. The following conditions are equivalent:

(1) *J* satisfies the Ore condition with respect to *S*. That is, for an arbitrary element $s \in S$, an arbitrary operator $W \in R\langle J \rangle$, there exist an element $s' \in S$ and an operator $W' \in R\langle J \rangle$ such that W'U(s) = U(s')W.

(2) For arbitrary elements $s \in S$, $a \in J$ there exist an operator $W' \in R\langle J \rangle$ and an element $s' \in S$ such that W'U(s) = U(s')R(a).

(3) For arbitrary elements $a \in J$, $s \in S$ there exists an element $s' \in SU(s)$ which annihilates the element a modulo K_s , that is,

- (i) $a \cdot s' \in K_s$ and
- (ii) $D(a, s') \in R\langle K_s \rangle$ (compare with [10]).

Proof. Clearly (1) implies (2).

(2) implies (1). Let us show that the set of operators $W \in R\langle J \rangle$ with the property that for an arbitrary element $s \in S$ there exists an element $s' \in S$ such that $U(s')W \in R\langle J \rangle U(s)$ is a subring of $R\langle J \rangle$.

Suppose that the operators $W_1, W_2 \in R\langle J \rangle$ have this property and let *s* be an arbitrary element of *S*. Then there exist elements $s_1, s_2 \in S$ such that $U(s_1)W_1 \in R\langle J \rangle U(s)$ and $U(s_2)W_2 \in R\langle J \rangle U(s)$. By the definition of an Ore monad $SU(s_1) \cap SU(s_2) \neq \emptyset$. Let $s_3 \in SU(s_1) \cap SU(s_2)$. Then $U(s_3)(W_1 + W_2) \in R\langle J \rangle U(s)$.

There exists an element $s_4 \in S$ such that $U(s_4)W_1 \in R \langle J \rangle U(s_2)$. Then $U(s_4)W_1W_2 \in R \langle J \rangle U(s)$.

Since this subring contains generators R(a), $a \in J$, of $R\langle J \rangle$, it follows that it is equal to $\overline{R}\langle J \rangle$.

(2) implies (3). Let's assume that J satisfies (2). Then given arbitrary elements $a \in J$, $s \in S$ there exist an element $s_1 \in S$ and an operator $W' \in R\langle J \rangle$ such that $U(s_1)R(a) = W'U(s)$.

Since $SU(s_1) \cap SU(s) \neq \emptyset$, let $s' = s_2U(s_1) \in SU(s_1) \cap SU(s)$. Hence $s' \cdot a = s_2U(s_1)R(a) = s_2W'U(s) \in K_s$. Consequently, $D(a, s'^2)$ $= 2D(as', s') \in R\langle K_s \rangle.$ On the other hand, $s'^2 = (s_2U(s_1))^2 = s_1^2U(s_2)U(s_1)$ and so

$$s'^{2}a = s_{1}^{2}U(s_{2})U(s_{1})R(a) = s_{1}^{2}U(s_{2})W'U(s) \in K_{s}.$$

The element $s'^2 \in SU(s)$ annihilates *a* modulo K_s . (3) implies (2). Now we will assume that given arbitrary elements $a \in J$ and $s \in S$ there exists an element $s' \in SU(s)$ that annihilates *a* modulo K_s .

We have U(s')R(a) = 2U(s', s'a) - R(a)U(s').

If $s' = s_2 U(s)$ then $U(s') = U(s)U(s_2)U(s)$ and besides $s'a \in K_s$. Hence $U(s', s'a) \in R \langle J \rangle U(s)$. This implies the assertion.

Remark 1. We can define in a similar way the "right Ore condition." Proceeding as in the proof of (3) implies (2) above, we can prove that (3) implies that for arbitrary elements $a \in J$, $s \in S$ there exist an element $s' \in S$ and an operator $W \in R\langle J \rangle$ such that R(a)U(s') = U(s)W. Consequently, the "left Ore condition" implies "the right Ore condition."

LEMMA 2.1. Let S be a monad in a Jordan algebra J. Let Q be a Jordan algebra that contains J. For an arbitrary element $q \in Q$ the condition that there exists an element $s \in S$ such that $qs \in J$, $qs^2 \in J$, is equivalent to the condition that there exists an element $t \in S$ such that $qK_t \subseteq J$.

Proof. If $qK_t \subseteq J$ then $qt \in J$ and $qt^2 \in J$.

Conversely, if $s \in S$ and $qs, qs^2 \in J$ then $qK_t \subseteq J$, where $t = s^2$. Indeed, $qR(s^2) \in J$ and $qR(s^4) = q(-2R(s)^2R(s^2) + 2R(s)R(s^3) + R(s^2)^2) \in J$. Moreover, for an arbitrary element $b \in J$ we have

$$qR(bU(s^{2})) = 2\{qs, bU(s), s\} - \{qU(s), b, s^{2}\} \in J.$$

The lemma is proved.

PROPOSITION 2.2. If a Jordan algebra J has a ring of fractions with respect to a monad $S \subseteq J$, then J satisfies the Ore condition with respect to S.

Proof. Let Q be a ring of fractions of J with respect to S. We need to prove that for arbitrary elements $a \in J$, $s \in S$ there exists an element $s_1 \in S$ and an operator $W \in R\langle J \rangle$ such that $U(s_1)R(a) = WU(s)$, or equivalently, $U(s_1)R(a)U(s^{-1}) \in R\langle J \rangle$. Since $R(a)U(s^{-1}) + U(s^{-1})R(a) = 2U(s^{-1}a, s^{-1})$ we have

$$U(s_1)R(a)U(s^{-1}) = -U(s_1)U(s^{-1})R(a) + 2U(s_1)U(s^{-1}a,s^{-1})$$

Linearizing the identity $U(x)U(y) = 4V(x, y)^2 - 2V(x, xU(y))$ we get

$$U(x)U(y,z) = 2V(x,y)V(x,z) + 2V(x,z)V(x,y) - 2V(x,xU(y,z)).$$

In particular,

$$U(s_1)U(s^{-1}a, s^{-1}) = 2V(s_1, s^{-1})V(s_1, s^{-1}a) + 2V(s_1, s^{-1}a)V(s_1, s^{-1}) - 2V(s_1, s_1U(s^{-1}, s^{-1}a)).$$

Denote $q_1 = s^{-1}$, $q_2 = s^{-1}a$. By Lemma 2.1 there exist elements $t_1, t_2 \in S$ such that $q_i K_{t_i} \subseteq J$, i = 1, 2. Choose an element $t \in SU(t_1) \cap SU(t_2) \cap SU(s)$. Then $K_t \subseteq K_{t_1} \cap K_{t_2}$.

We have $V(q_i, K_t^2) \subseteq D(q_i, K_t^2) + R(q_i K_t^2) \subseteq R\langle J \rangle$ since $q_i K_t^2 \subseteq q_i K_t$ $\subseteq J$ and $D(q_i, K_t^2) \subseteq D(q_i K_t, K_t) \subseteq R\langle J \rangle$. Let $s_1 = t^2 \in K_t^2$. Then

$$U(s_1)U(s^{-1})R(a), V(s_1, s^{-1})V(s_1, s^{-1}a), V(s_1, s^{-1}a)V(s_1, s^{-1}a) \in R\langle J \rangle$$

and it remains to show that $V(s_1, s_1U(s^{-1}, s^{-1}a)) \in R\langle J \rangle$.

Linearizing the identity V(x, xU(y)) = V(yU(x), y) we get the identity V(x, xU(y, z)) = V(yU(x), z) + V(zU(x), y). Hence

$$V(s_1, s_1U(s^{-1}, s^{-1}a)) = V(s^{-1}U(s_1), s^{-1}a) + V((s^{-1}a)U(s_1), s^{-1}).$$

Now, $s^{-1}U(s_1) = s^{-1}U(t)U(t) \in K_t$, and therefore $V(s^{-1}U(s_1), s^{-1}a) \in R \langle J \rangle$.

Similarly, $(s^{-1}a)U(s_1) = q_2U(t)U(t) \in JU(t) \subseteq K_t$, which implies

$$V((s^{-1}a)U(s_1), s^{-1}) \in R\langle J \rangle.$$

The proposition is proved.

3. CONSTRUCTION OF THE RING OF QUOTIENTS

Throughout this section we will assume that a Jordan algebra J satisfies the Ore condition with respect to a monad $S \subseteq J$.

Let us show that to embed J in a ring of fractions it is sufficient to embed J in a Jordan overring \tilde{Q} in which all elements from S are invertible.

PROPOSITION 3.1. Let $J \subseteq \tilde{Q}$ and all elements from S are invertible in \tilde{Q} . Then the subalgebra $Q = \langle J, S^{-1} \rangle$ of \tilde{Q} generated by J and by all inverses $s^{-1}, s \in S$, is a ring of fractions of J with respect to S.

Proof. Say that an element $q \in \tilde{Q}$ has property (*) if for an arbitrary element $s' \in S$ there exists an element $s \in S$ such that $q \cdot K_s \subseteq K'_s$. From Lemma 2.1 it follows that elements of J have property (*).

Let us show that an arbitrary inverse $t^{-1}, t \in S$, has property (*). Choose $s' \in S$. There exists an element $s \in S$ such that $tK_s \subseteq K_{s'}$. Then $t^{-1} \cdot K_{sU(t)} \subseteq K_s \cdot t \subseteq K_{s'}.$

It is clear that if elements $a, b \in \tilde{Q}$ have property (*) then their sum a + b has property (*).

Suppose that an element $a \in \tilde{Q}$ has property (*). We will show that a^2 has property (*).

Let $s' \in S$. There exists an element $s_1 \in S$ such that $a \cdot K_{s_1} \subseteq K_{s'}$. Similarly, there exists an element $s \in S$ such that $a \cdot K_s \subseteq K_{s_1} \cap K_{s'}$. We can also assume that $s \in K_{s'}$. We have

$$a^{2}R(K_{s}^{2}) = aR(a)R(K_{s}^{2})$$
$$\subseteq aR(K_{s})R(a \cdot K_{s}) + aR(K_{s})R(a)R(K_{s}) + aR(a \cdot K_{s}^{2}).$$

Furthermore, $a \cdot K_s \subseteq K_{s'}$, $aR(K_s)R(a) \subseteq K_{s_1} \cdot a \subseteq K_{s'}$. Hence, $a^2 \cdot K_s^2 \subseteq K_{s'}$ and $a^2 \cdot K_{s^2} \subseteq K_{s'}$. From what we proved it follows that an arbitrary element from Q =

 $\langle J, S^{-1} \rangle$ satisfies (*). By Lemma 2.1, Q is a ring of fractions of J. The proposition is proved.

A Jordan algebra J gives rise to a \mathbb{Z} -graded Lie algebra $K(J) = K(J)_{-1}$ $+ K(J)_0 + K(J)_1$, which is known as the Tits-Kantor-Koecher construction tion (see [3, 4, 9]). Let $\{a, b, c\} = (ab)c + a(bc) - b(ac)$ denote the socalled Jordan triple product of elements $a, b, c \in J$. Consider two copies J^-, J^+ of the vector space J. We identify an element $a \in J$ with elements a^- in J^- and a^+ in J^+ . For arbitrary elements $a^- \in J^-$, $b^+ \in J^+$ we define a linear operator $\delta(a^-, b^+) \in End_F J^- \oplus End_F J^+$ via

$$\delta(a^-,b^+): \begin{cases} c^- \to \{a,b,c\}^-\\ c^+ \to -\{b,a,c\}^+. \end{cases}$$

Jordan identities imply that for arbitrary elements $a, b, c, d \in J$ we have $\delta[(a^-, b^+), \delta(c^-, d^+)] = \delta(\delta(a^-, b^+)c^-, d^+) + \delta(c^-, \delta(a^-, b^+)d^+),$ so the linear space $\delta(J^-, J^+)$ of all operators $\delta(a^-, b^+)$; $a, b \in J$, is a Lie algebra.

Now consider the direct sum of vector spaces

$$K(J) = J^- \oplus \,\delta(J^-, J^+)J.$$

Define a bracket [,] on K(J) via $[J^-, J^-] = [J^+, J^+] = (0)$; for arbitrary elements $a^- \in J^-$, $b^+ \in J^+$, $[a^-, b^+] = -[b^+, a^-] = \delta(a^-, b^+)$; for an arbitrary element $x \in J^- + J^+$ and for an operator $\delta \in \delta(J^-, J^+)[\delta, x] = \delta(x) = -[x, \delta]$; elements from $\delta(J^-, J^+)$ are commutated as linear operators. A straightforward verification shows that K(J) is a Lie algebra.

Denote $L_s, L_s = K(K_s) = K_s^- + [K_s^-, K_s^+] + K_s^+$, a Lie subalgebra of L = K(J).

PROPOSITION 3.2. Let $K_{s'} \subseteq K_s$ (and so $L_{s'} \subseteq L_s$) and let $D: L_s \to L$ be a derivation such that $D_{|L_s'} = 0$. Then D = 0.

Before proving Proposition 3.2 we need some preliminary lemmas.

LEMMA 3.1. The centralizer of L_s in L is zero.

Proof. Let us show that no nonzero element from J^- commutes with $[K_s^-, K_s^+]$. If $a^- \in J^-$ and $[a^-, [K_s^-, K_s^+]] = (0)$ then $\{a, K_s, K_s\} = (0)$. Therefore $\{a, s, s\} = a \cdot s^2 = 0$ and $\{a, s^2, s^2\} = a \cdot s^4 = 0$. This implies that s^4 lies in the annihilator $Ann_J a$ in the sense of [10]. Since s^4 is a regular element it follows that a = 0.

Similarly, no nonzero element from J^+ commutes with $[K_s^-, K_s^+]$. Now let $a^0 \in [J^-, J^+]$ lie in the centralizer of L_s . If $[J^-, a^0] = [J^+, a^0] = (0)$ then $a^0 = 0$. Let us assume that $0 \neq [b^-, a^0]$ for some element $b^- \in J^-$. By Proposition 2.1 there exists an element $s' \in \{s, S, s\}$ such that $[b^-, [K_{s'}^+, K_{s'}^-]] \subseteq K_s^-$.

Hence, $[[b^-, a^0], [K_{s'}^+, K_{s'}^-]] = [[b^-, [K_{s'}^+, K_{s'}^-]], a^0] \subseteq [K_s^-, a^0] = (0)$, which contradicts what was proved above.

Since the centralizer of L_s is a graded algebra we conclude that it is equal to (0). The lemma is proved.

LEMMA 3.2. For arbitrary elements $a \in L$, $s \in S$ there exists an element $s' \in S$ such that $[a, L_{s'}] \subseteq L_s$.

Proof. Let's assume that for given elements $a, b \in L$ there exist elements $s', s'' \in S$ such that $[a, L_{s'}] \subseteq L_s$ and $[b, L_{s''}] \subseteq L_s$. Choose an element s''' such that $L_{s'''} \subseteq L_{s'} \cap L_{s''}$. Then $[a + b, L_{s'''}] \subseteq [a, L_{s'''}] + [b, L_{s'''}] \subseteq [a, L_{s''}] + [b, L_{s'''}] \subseteq L_s$.

Hence we can assume that $a \in J^- \cup [J^-, J^+] \cup J^+$. It is sufficient to assume that $a \in J^- \cup J^+$. Indeed, suppose that for elements from $J^- \cup J^+$ the assertion of the lemma is valid. Let $a^- \in J^-$, $a^+ \in J^+$, $s \in S$. Then there exists an element $s' \in S$ such that $[a^-, L_{s'}] \subseteq L_s$, $[b^+, L_{s'}] \subseteq L_s$. Similarly, there exists an element $s'' \in S$ such that $[a^-, L_{s''}] \subseteq L_{s'}$, $[b^+, L_{s''}] \subseteq L_{s'}$. Then

$$\begin{split} \left[\left[a^{-}, b^{+} \right], L_{s''} \right] &\subseteq \left[a^{-}, \left[b^{+}, L_{s''} \right] \right] + \left[b^{+}, \left[a^{-}, L_{s''} \right] \right] \\ &\subseteq \left[a^{-}, L_{s'} \right] + \left[b^{+}, L_{s'} \right] \subseteq L_{s}. \end{split}$$

So let $a^- \in J^-$, $s \in S$. We need to prove the existence of an element $s' \in S$ such that $[a^-, K_{s'}^+] \subseteq [K_s^-, K_s^+]$ and $[a^-, [K_{s'}^-, K_{s'}^+]] \subseteq K_s^-$.

By Proposition 2.1 there exists an element $s' \in K_s$ that annihilates *a* modulo K_s . Hence

$$\left[a^{-}, \left[\left[K_{s'}^{+}, K_{s'}^{-}\right], K_{s'}^{+}\right]\right] \subseteq \left[a^{-}, K_{s'}^{+}, K_{s'}^{-}, K_{s'}^{+}\right] \subseteq \left[K_{s}^{+}, K_{s}^{-}\right] \subseteq L_{s}.$$

Since $s'^3 \in SU(s')$ also annihilates *a* modulo K_s and $K_{s'^3} \subseteq \{K_{s'}, K_{s'}, K_{s'}\}$, it follows that $[a^-, L_{s'^3}] \subseteq L_s$. The lemma is proved.

Proof of Proposition 3.2. Let $L_{s'} \subseteq L_s$ and let $D: L_s \to L$ be a derivation such that $D(L_{s'}) = 0$. Let us assume that there exists an element $a \in L_s$ such that $D(a) \neq 0$.

By Lemma 3.2 there exists an element $s'' \in S$ such that $[a, L_{s''}] \subseteq L_{s'}$ and we can assume without loss of generality that $L_{s''} \subseteq L_{s'}$.

Then $D(L_{s''}) = (0)$ and $[D(a), L_{s''}] \subseteq [a, D(L_{s''})] + D([a, L_{s''}]) \subseteq D(L_{s'}) = (0)$. Hence $[D(a), L_{s''}] = (0)$, which contradicts Lemma 3.1. The proposition is proved.

For an element $s \in S$ let \mathscr{D}_s^* denote the set of all derivations $d: L_s \to L$. Let $\mathscr{D}^* = \bigcup_{s \in S} \mathscr{D}_s^*$.

For derivations $d, d' \in \mathcal{D}^*$, $d \equiv d'$ if and only if there exists an element $s \in S$ such that d, d' are both defined on L_s and $d_{|L_s} = d'_{|L_s}$.

Clearly, this is an equivalence relation. Consider the quotient set $\mathscr{D} = \mathscr{D}^* / \equiv$. Abusing notation we will denote the class of a derivation $d \in \mathscr{D}^*$ as d.

Let's define a structure of a vector space on \mathscr{D} . Consider elements of \mathscr{D} represented by derivations $d: L_s \to L, d': L_{s'} \to L$. Let $\alpha, \beta \in F$. There exists an element $s'' \in S$ such that $L_{s''} \subseteq L_s \cap L_{s'}$. Define $\alpha d + \beta d': L_{s''} \to L$, $\alpha d + \beta d': a \to \alpha d(a) + \beta d'(a)$.

For an arbitrary $s \in S$ the algebras L_s and L are \mathbb{Z} -graded. We say that a derivation $d \in \mathscr{D}^*$ has degree *i* if $d((L_s)_k) \subseteq L_{k+i}$ for k = -1, 0, 1. Clearly, $\mathscr{D}^* = \sum_{i=-2}^{2} (\mathscr{D}^*)_i$.

This \mathbb{Z} -gradation induces a \mathbb{Z} -gradation on \mathscr{D} , $\mathscr{D} = \sum_{i=-2}^{2} \mathscr{D}_{i}$.

LEMMA 3.3. $\mathscr{D}_{-2} = (0) = \mathscr{D}_{2}$.

Proof. Let $d: L_s \to L$ be a derivation of degree 2. Then $d: K_s^- \to J^+$, $d: [K_s^-, K_s^+] \to (0)$ and $d: K_s^+ \to (0)$.

We will define a linear mapping $\varphi: K_s \to J$ via $a\varphi = b$ if and only if $a^-d = b^+$.

For arbitrary elements $a, a', a'' \in K_s$ we have

$$\begin{bmatrix} a^{-}, a'^{+}, a''^{-} \end{bmatrix} d = \begin{bmatrix} \begin{bmatrix} a^{-}, a'^{+} \end{bmatrix}, a''^{-} \end{bmatrix} d$$

= $\begin{bmatrix} a^{-}d, a'^{+}, a''^{-} \end{bmatrix} + \begin{bmatrix} a^{-}, a'^{+}d, a''^{-} \end{bmatrix} + \begin{bmatrix} a^{-}, a'^{+}, a''^{-}d \end{bmatrix}$
= $-\begin{bmatrix} a'^{+}, a^{-}, (a''\varphi)^{+} \end{bmatrix},$

since $[a^{-}d, {a'}^{+}] = 0$ and ${a'}^{+}d = 0$.

Hence, $\{a, a', a''\}\varphi = -\{a', a, a''\varphi\}.$

On the other hand, $[a^-, a'^+, a''^-] = [a''^-, a'^+, a^-]$ and so

$$\{a, a', a''\}\varphi = -\{a', a, a''\varphi\} = -\{a', a'', a\varphi\} = -\{a\varphi, a'', a'\}.$$

In particular

$$a^{5}\varphi = \{a^{3}, a, a\}\varphi = -\{a, a^{3}, a\varphi\} = -(a\varphi)R(a^{4})$$
$$= -\{a^{3}\varphi, a, a\} = \{\{a\varphi, a, a\}a, a\} = (a\varphi)R(a^{2})R(a^{2}).$$

Therefore $b(R(a^4) + R(a^2)R(a^2)) = 0$ for $b = a\varphi$. Similarly

$$a^{7}\varphi = \{a^{3}, a, a^{3}\}\varphi = -\{a^{3}\varphi, a^{3}, a\} = (a\varphi)R(a^{2})R(a^{4})$$
$$= \{a, a^{3}, a^{3}\}\varphi = -\{a\varphi, a^{3}, a^{3}\} = -(a\varphi)R(a^{6})$$

and so $b(R(a^6) + R(a^2)R(a^4)) = 0$.

But by the Jordan identity $R(a^6) + 2R(a^2)^3 = 3R(a^2)R(a^4)$. So

$$b(R(a^{2})R(a^{4}) + R(a^{2})^{3}) = 0 = b(R(a^{6}) + R(a^{2})R(a^{4}))$$
$$= b(-2R(a^{2})^{3} + 4R(a^{2})R(a^{4})).$$

This implies that $bR(a^2)^3 = 0 = bR(a^6) = bR(a^2)R(a^4)$.

If a is a regular element (for example, an element from S), then $bR(a^2)U(a^2) = 0$ implies that $bR(a^2) = 0$ and $bR(a^4) = bR(a^6) = 0$.

Consequently the element a^4 annihilates b (in the sense of [10]), which implies b = 0.

We have proved that $S\varphi = (0)$, which implies that $s^-d = 0$. We have $L_s^- = Fs^- + F(s^2)^- + [s^-, J^+, s^-]$. This implies that $L_s^-d = (0)$.

In the same way we can prove that $\mathscr{D}_{-2} = (0)$. The lemma is proved.

Our next aim is to define a Lie bracket on \mathcal{D} .

PROPOSITION 3.3. For an arbitrary derivation $d: L_s \to L$ there exists an element $s_1 \in SU(s)$ such that $L_{s,d} \subseteq L_s$.

Let us show that it it sufficient to prove the proposition for homogeneous derivations d. Indeed, let $d: L_s \to L$ be a derivation, $d = d_{-1} + d_0 + d_1$, where the d_i 's are homogeneous derivations. Suppose that there exist elements $s_i \in SU(s)$, $-1 \le i \le 1$, such that $L_{s_i}d_i \subseteq L_s$. If $s' \in \bigcap_{-1 \le i \le 1} SU(s_i)$, then $L_{s'}d \subseteq L_s$.

LEMMA 3.4. Let $d: L_s \to L$ be a homogeneous derivation of degree 0. Then there exists an element $s' \in SU(s)$ such that $L_{s'}d \subseteq L_s$.

Proof. Let $s^+d = a^+$, $s^-d = b^-$; $a, b \in J$. There exists an element $t \in SU(s)$ which annihilates both elements a, b modulo K. Let s' = tU(s). We have $JU(s') \subseteq JU(t)U(s)$. Hence,

$$(JU(s')^{+})d \subseteq [(JU(t))^{-}d, s^{+}, s^{+}] + [(JU(t))^{-}, s^{+}d, s^{+}]$$
$$+ [(JU(t))^{-}, s^{+}, s^{+}d]$$
$$\subseteq (JU(s))^{+} + \{a, JU(t), s\}^{+} \subseteq K_{s}^{+},$$

and ${s'}^+ d \in K_s$, $({s'}^2)^+ d \in K_s$. Similarly $K_{s'}^- d \subseteq K_s^-$. This implies $L_{s'} d \subseteq L_s$. The lemma is proved.

LEMMA 3.5. Let $b \in J$, $s \in S$. Then there exists an element $s' \in SU(s)$ such that $L_{s'}ad(b^{-}) \subseteq L_s$.

Proof. Let's consider an element of degree zero, $d_0 = [s^+, b^-]$. By Lemma 3.4 there exists $t \in SU(s)$ such that $[L_t, d_0] \subseteq L_s$. Let s' = tU(s). We need to prove that $[J^+, t^-, t^-, s^+, s^+, b^-] \subseteq L_s$.

This reduces to $[J^+, t^-, t^-, [s^+, b^-], s^+] + [J^+, t^-, t^-, [s^+, b^-]] \subseteq L_s$. But $[J^+, t^-, t^-, d_0] \in K_s^-$ by the choice of t. Then

$$\left[J^+,t^-,t^-,d_0,s^+\right]\subseteq \left[K_s^-,K_s^+\right]\subseteq L_s.$$

As for the second summand, $[J^+, t^-, t^-] \subseteq K_s^-$ and $[s^+, [s^+, b^-]] \in K_s^+$. Hence $[J^+, t^-, t^-, [s^+, [s^+, b^-]]] \subseteq L_s$.

On the other hand,

$$[J^+, t^-, t^-, s^+, d_0] = [J^+, t^-, t^-, d_0, s^+] = [J^+, t^-, t^-, s^+d_0] \subseteq L_s$$

since $[J^+, t^-, t^-, s^+d_0] = [[J^+, t^-, t^-], [s^+, [s^+, b^-]]] \subseteq [K_s^-, K_s^+] \subseteq L_s$. The lemma is proved.

LEMMA 3.6. Let d be a derivation of degree 1. Then there exists an element $s' \in SU(s)$ such that $L_{s'}d \subseteq L_s$.

Proof. Let $b^- = [s^-, s^-d]$. By Lemma 3.4 there exists an element $t \in SU(s)$ such that $[L_t, s^-d] \subseteq L_s$.

By Lemma 3.5 there exists an element $u \in SU(s)$ such that $[L_u, b^-] \subseteq L_s$. Let $s' \in SU(t) \cap SU(u)$. Then

$$\begin{bmatrix} J^{-}, s'^{+}, s'^{+}, s^{-}, s^{-}, d \end{bmatrix} \subseteq \begin{bmatrix} J^{-}, s'^{+}, s'^{+}, s^{-}, d, s^{-} \end{bmatrix} \\ + \begin{bmatrix} J^{-}, s'^{+}, s'^{+}, d, s^{-}, s^{-} \end{bmatrix} \\ + \begin{bmatrix} J^{-}, s'^{+}, s'^{+}, [s^{-}, [s^{-}, d]] \end{bmatrix}.$$

But

$$\begin{bmatrix} J^{-}, s'^{+}, s'^{+}, b^{-} \end{bmatrix} \subseteq L_{2} \quad \text{and}$$
$$\begin{bmatrix} J^{-}, s'^{+}, s'^{+}, s^{-}, d, s^{-} \end{bmatrix} \subseteq \begin{bmatrix} J^{-}, s'^{+}, s'^{+}, [s^{-}, d], s^{-} \end{bmatrix} \subseteq L_{s},$$

since $s' \in SU(t)$. Consequently $L_{s'}d \subseteq L_s$. The lemma is proved.

We can prove in a similar way the corresponding result for a derivation of degree -1.

This finishes the proof of Proposition 3.3.

Now we can define a Lie bracket on \mathscr{D} . Let $d' \in \mathscr{D}_{s'}^{*}$, $d'' \in \mathscr{D}_{s''}^{*}$. Choose an element $s \in SU(s') \cap SU(s'')$. By Proposition 3.3 there exists an element $t \in SU(s)$ such that $L_{t}d' \subseteq L_{s}$ and $L_{t}d'' \subseteq L_{s}$.

Define the derivation $d: L_t \to L$ via

$$xd = (xd')d'' - (xd'')d', \qquad x \in L_t.$$

Define $[d'/\equiv, d''/\equiv] = d/\equiv$.

It is easy to see that with the thus defined bracket \mathscr{D} becomes a graded Lie algebra, $\mathscr{D} = \mathscr{D}_{-1} + \mathscr{D}_0 + \mathscr{D}_1$.

Since char $F \neq 2, 3$ the pair of spaces $\mathscr{P} = (\mathscr{D}_{-1}, \mathscr{D}_1)$ is a Jordan pair (see [7]) with respect to operations

$$\left\{d_1^{\epsilon}, d_2^{-\epsilon}, d_3^{\epsilon}\right\} = \left[\left[d_1^{\epsilon}, d_2^{-\epsilon}\right], d_3^{\epsilon}\right] \in \mathscr{D}_{\epsilon}, \qquad \epsilon = \pm 1.$$

We will prove that the Jordan pair (J^-, J^+) associated to J can be embedded into \mathcal{P} .

Define

$$\begin{split} \varphi : (J^-, J^+) \to \mathscr{P} &= (\mathscr{D}_{-1}, \mathscr{D}_1) \quad \text{via} \\ \varphi(a^{\epsilon}) &= ad(a^{\epsilon}), \quad \epsilon = \pm, a \in J. \end{split}$$

By Lemma 3.1 the linear transformation φ is injective. Since Jordan products in (J^-, J^+) and \mathscr{P} are defined via Lie brackets, it follows that φ is a homomorphism of Jordan pairs.

Let us show that for an arbitrary element $s \in S$ the pair $(\varphi(s^-), \varphi(s^+))$ is invertible.

Let $\tilde{K}_s = JU(s)$, $\tilde{L}_s = \tilde{K}_s^- + [\tilde{K}_s^-, \tilde{K}_s^+] + \tilde{K}_s^+$. For an arbitrary element $s' \in SU(s)$ we have $K_{s'} \subseteq \tilde{K}_s$, $L_{s'} \subseteq \tilde{L}_s$. We will construct two derivations $q^- : \tilde{L}_s \to L$, $q^+ : \tilde{L}_s \to L$ of degrees -1, 1, respectively. Their restrictions to $L_{s'}$ will define the inverse of $(\varphi(s^-), \varphi(s^+))$.

Let $\tilde{K}_{s}^{-}q^{-}=(0)$. For an element $(aU(s))^{+} \in K_{s}^{+}$ we let $(aU(s))^{+}q^{-}=[a^{-},s^{+}]$. Consider an element $x_{0} = \sum[k_{i}^{-},(a_{i}U(s))^{+}] \in [\tilde{K}_{s}^{-},\tilde{K}_{s}^{+}]$; let $x_{0}q^{-} = \sum_{i}[k_{i},[a_{i},s^{+}]] = -\sum_{i}[k_{i}^{-},s^{+},a_{i}^{-}]$.

We need to verify that q^- is well defined. An element from $\tilde{K_s}$ can be expressed in the form aU(s) uniquely. Hence q^- is well defined in $\tilde{K_s^+}$. However, we need to verify that $\sum_i [k_i^-, (a_i U(s))^+] = 0$ implies $\sum_i [k_i^-, s^+, a_i^-] = 0$.

If $-\sum_{i}[(a_{i}U(s))^{+}, k_{i}^{-}] = \sum_{i}[a_{i}^{-}, s^{+}, s^{+}, k_{i}^{-}] = 0$ then $\sum_{i}[a_{i}^{-}, s^{+}, s^{+}, k_{i}^{-}, s^{+}] = 0$.

Since $(ad(s^+))^3 = 0$ and the characteristic is $\neq 3$, it follows that for an arbitrary element $b^- \in L_{-1}$ we have

$$ad(s^{+})^{2}ad(b^{-})ad(s^{+}) = ad(s^{+})ad(b^{-})ad(s^{+})^{2}$$
 (*)

(see [5]).

Hence $\sum_i [a_i^-, s^+, k_i^-, s^+, s^+] = 0$. Since *s* is a regular element, it implies that $\sum_i [a_i^-, s^+, k_i^-] = 0$.

The linear mapping q^- has been well defined. Similarly, we can define a mapping $q^+: \tilde{L}_s \to L$ of degree 1.

Let's prove now that q^- (resp. q^+) is a derivation.

Let $e^{\bar{0}}, a^0 \in [K_s^-, K_s^+], e^- \in K_s^-, e^+, a^+, b^+ \in K_s^+$.

Since we know that $[e^0, e^-]q^- = 0 = [e^0q^-, e^-] = [e^0, e^-q^-]$, we only need to check:

(i)
$$[a^+, b^+]q^- = 0 = [a^+, q^-, b^+] + [a^+, b^+q^-],$$

(ii)
$$[e^0, e^+]q^- = 0 = [e^0q^-, e^+] + [e^0, e^+q^-],$$

(iii) $[e^0, a^0]q^- = [e^0q^-, a^0] + [e^0, a^0q^-].$

Let
$$a^+ = \{s^+, \alpha^-, s^+\}, b^+ = \{s^+, \beta^-, s^+\}$$
. Then
 $[a^+q^-, b^+] + [a^+, b^+q^-] = [\alpha^-, s^+, b^+] + [a^+, [\beta^-, s^+]]$
 $= -[\alpha^-, s^+, [\beta^-, s^+, s^+]]$
 $+ [\beta^-, s^+, [\alpha^-, s^+, s^+]]$
 $= [\alpha^-, s^+, s^+, [\beta^-, s^+]] - [\alpha^-, s^+, s^+, [\beta^-, s^+]]$
 $- [\alpha^-, s^+, [\beta^-, s^+], s^+]$
 $= -[\alpha^-, s^+, \beta^-, s^+, s^+] + [\alpha^-, s^+, s^+, \beta^-, s^+]0 = 0$

by (*). This proves (i).

In order to prove (ii), let's assume, by linearity, that $e^0 = [k^-, k^+]$, $k^+ = \{s^+, c^-, s^+\}$, and $e^+ = \{s^+, b^-, s^+\}$. Then

$$[e^{0}, e^{+}] = -[k^{+}, k^{-}, e^{+}] = -\{\{s^{+}, c^{-}, s^{+}\}, k^{-}, \{s^{+}, b^{-}, s^{+}\}\}$$

= -\{s^{+}, \{c^{-}, \{s^{+}, k^{-}, s^{+}\}, b^{-}\}s^{+}\}.

By definition of q^{-} ,

 $[e^{0}, e^{+}]q^{-} = -[\{c^{-}, \{s^{+}, k^{-}, s^{+}\}b^{-}\}, s^{+}] = -[c^{-}, [s^{+}, k^{-}, s^{+}], b^{-}, s^{+}].$ On the other hand,

 $e_0q^- = [k^-, [c^-, s^+]] = -\{k^-, s^+, c^-\}$ and $e^+q^- = [b^-, s^+].$ So we have to prove

$$\begin{bmatrix} c^{-}, [s^{+}, k^{-}, s^{+}], b^{-}, s^{+} \end{bmatrix} = \begin{bmatrix} [k^{-}, s^{+}, c^{-}], [s^{+}, b^{-}, s^{+}] \end{bmatrix}$$
$$- \begin{bmatrix} k^{-}, [s^{+}, c^{-}, s^{+}], [b^{-}, s^{+}] \end{bmatrix}.$$

But

$$\begin{split} \left[c^{-}, \left[s^{+}, k^{-}, s^{+}\right]\right] &= \left[c^{-}, \left[s^{+}, k^{-}\right], s^{+}\right] - \left[c^{-}, s^{+}, \left[s^{+}, k^{-}\right]\right] \\ &= \left[\left[k^{-}, s^{+}, c^{-}\right], s^{+}\right] + \left[c^{-}, s^{+}, \left[k^{-}, s^{+}\right]\right] \\ &= \left[x^{-}, s^{+}\right] + \left[c^{-}, s^{+}, k^{-}, s^{+}\right] - \left[c^{-}, s^{+}, s^{+}, k^{-}\right] \\ &= 2\left[x^{-}, s^{+}\right] + \left[k^{+}, k^{-}\right], \end{split}$$

where $x = \{k, s, c\}$. Hence,

 $[c^{-}, [s^{+}, k^{-}, s^{+}], b^{-}, s^{+}] = 2[x^{-}, s^{+}, b^{-}, s^{+}] + [k^{+}, k^{-}, b^{-}, s^{+}].$ On the other hand

$$\begin{split} & [[k^-, s^+, c^-], [s^+, b^-, s^+]] - [k^-, k^+, [b^-, s^+]] \\ & = [x^-, [s^+, b^-, s^+]] - [k^-, k^+, [b^-, s^+]]. \end{split}$$

So we need to prove that

$$2[x^{-}, s^{+}, b^{-}, s^{+}] - [k^{-}, k^{+}, s^{+}, b^{-}] = [x^{-}, [s^{+}, b^{-}, s^{+}]],$$

which reduces to

$$[k^{-}, k^{+}, s^{+}, b^{-}] = [x^{-}, s^{+}, s^{+}, b^{-}].$$

It is sufficient to prove that $[k^-, k^+, s^+] = [x^-, s^+, s^+]$. But, using (*), we have $[x^-, s^+, s^+] = c^- ad(s^+)ad(k^-)ad(s^+)^2 = c^- ad(s^+)^2 ad(k^-)ad(s^+) = -k^+ ad(k^-)ad(s^+) = [k^-, k^+, s^+]$. Finally, let's prove (iii).

Let $e^0 = [k^-, k^+]$ as above and $a^0 = [c^-, d^+]$. So $[e^0, a^0] = [[k^-, a^0], k^+] + [k^-, [k^+, a^0]]$. Using (ii) we have

$$\begin{split} [e^{0}, a^{0}]q^{-} &= -\left[k^{+}q^{-}, \left[k^{-}, a^{0}\right]\right] - \left[\left[k^{+}, a^{0}\right]q^{-}, k^{-}\right] \\ &= -\left[k^{+}q^{-}, k^{-}, a^{0}\right] + \left[k^{+}q^{-}, a^{0}, k^{-}\right] - \left[k^{+}q^{-}, a^{0}, k^{-}\right] \\ &+ \left[a^{0}q^{-}, k^{+}, k^{-}\right] \\ &= \left[\left[k^{-}, k^{+}\right]q^{-}, a^{0}\right] - \left[a^{0}q^{-}, \left[k^{-}, k^{+}\right]\right] \\ &= \left[e^{0}q^{-}, a^{0}\right] - \left[a^{0}q^{-}, e^{0}\right]. \end{split}$$

So we have proved that q^- is a derivation.

Finally we will prove that the pairs $(\varphi(s^-), \varphi(s^+))$ and (q^-, q^+) are mutually inverse.

Denote $l = [q^-, \varphi(s^+)]$. For an arbitrary element $a = bU(s) \in \tilde{K}_s$ we have

$$[a^+, l] = [a^+, q^-, \varphi(s^+)] = [s^+, b^-, \varphi(s^+)] = [s^+, b^-, s^+] = a^+.$$

Furthermore, for arbitrary elements $x \in J$, $s' \in SU(s)$

$$\left[\left[x^{-}, s'^{+}, s'^{+} \right], l \right] = \left[x^{-}, l, s'^{+}, s'^{+} \right] + 2\left[x^{-}, s'^{+}, s'^{+} \right] = \left[x^{-}, s'^{+}, s'^{+} \right],$$

which implies $[[x^{-}, l] + x^{-}, s'^{+}, s'^{+}] = 0$. Hence $[x^{-}, l] = -x^{-}$. Similarly we conclude that $[x^{+}, l] = x^{+}$.

Now let d_1 be a derivation of degree 1 defined on $L_t = (L_t)_{-1} + (L_t)_0 + (L_t)_1$, $t \in S$. For an arbitrary element $b_i \in (L_t)_i$ we have

$$[b_i, [d_1, l]] = [b_i, d_1, l] - [b_i, l, d_1] = (i + 1)[b_i, d_1] - i[b_i, d_1]$$

= $[b_i, d_1].$

Hence $[L_t, [d_1, l] - d_1] = (0)$. By Lemma 3.1, $[d_1, l] = d_1$.

Similarly $[d_{-1}, l] = -d_{-1}$ for a derivation of degree -1.

Arguing as above one can show that $[d_i, [q^+, \varphi(s^-)]] = -id_i$ for $d_i \in \mathscr{D}_i$, i = -1, 0, 1.

Since char $F \neq 2$ it implies that the pairs $(\varphi(s^-), \varphi(s^+))$ and (q^-, q^+) are mutually inverse.

Now we can finish the proof of Theorem 1.1. Without loss of generality we will assume that the algebra J is unital. If not consider the unital hull $\hat{J} = J + F1$ of J with the same monad $S \subseteq \hat{J}$. It is easy to see that \hat{J} still satisfies the Ore condition with respect to S.

Let us show that $(\varphi(1^{-}), \varphi(1^{+}))$ is an identity of the Jordan pair $\mathscr{P} = (\mathscr{D}_{-1}, \mathscr{D}_{1})$ (see [7]).

Clearly, $e = (\varphi(1^-), \varphi(1^+))$ is an idempotent of \mathscr{P} .

If $s \in S$ then we showed above that $\mathscr{D}_{\epsilon} = \{\varphi(s^{\epsilon}), \mathscr{D}_{-\epsilon}, \varphi(s^{\epsilon})\}, \epsilon = \pm 1$, which implies that the whole \mathscr{P} lies in the 1-Peirce component of e. Hence e is an identity of \mathscr{P} .

Let \tilde{J} be the Jordan algebra on \mathscr{D}_{-1} with the multiplication $x_{-1} \cdot y_{-1} = \{x_{-1}, \varphi(1^+), y_{-1}\}$. Then the mapping $J \to \tilde{J}, a \to \varphi(a^-)$ is an embedding and for an arbitrary element $s \in S$ its image $\varphi(s^-)$ has the inverse $q^- \in \tilde{J}$.

REFERENCES

- N. Jacobson, "Structure and Representation of Jordan Algebras," Amer. Math. Soc. Colloq. Publ., Amer. Math. Soc., Providence, 1969.
- N. Jacobson, K. McCrimmon, and M. Parvathi, Localization of Jordan algebras, *Comm. Algebra* 6 (1978), 911–958.
- I. L. Kantor, Classification of irreducible transitively differential groups, *Soviet Math. Dokl.* 5 (1965), 1404–1407.
- M. Koecher, Imbedding of Jordan algebras into Lie algebras, I, II, Amer. J. Math. 89 (1967), 787–816; 90 (1968), 476–510.
- 5. A. I. Kostrikin, On Burnside's problem, Izv. Akad. Nauk. SSSR Ser. Mat. 21 (1959), 3-34.
- 6. J. Lambek, "Lectures on Rings and Modules," Blaisdel, Waltham, MA, 1966.
- O. Loos, "Jordan Pairs," Lecture Notes in Math., Vol. 460, Springer-Verlag, Berlin/ Heidelberg, 1975.
- 8. L. H. Rowen, "Ring Theory," Academic Press, San Diego, 1991.
- J. Tits, Une classe d'algèbres de Lie en relation avec des algèbres de Jordan, *Indag. Math.* 24 (1962), 530–535.
- E. I. Zelmanov, Jordan algebras with finiteness conditions, *Algebra and Logic* 17 (1978), 450–457.
- E. I. Zelmanov, Goldie theorems for Jordan algebras, Siberian Math. J. 28 (1987), 899–906.
- 12. E. I. Zelmanov, Goldie theorems for Jordan algebras, II, Siberian Math. J. 29 (1988), 567–573.
- K. A. Zhevlakov, A. M. Slinko, I. P. Shestakhov, and A. I. Shirshov, "Rings That Are Nearly Associative," Academic Press, New York, 1982.