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ON WNEB IDEALS AND AD-NILPOTENT ELEMENTS 
OF LIE ALGEBRAS(') 

BY 

GEORGIA B E N K A R T ~ ~ )  

ABSTIULCT. An inner ideal of a Lie algebra L over a commutative ring k is a 
k-submodule B of L such that [B[BL] ]  8.  This paper investigates proper- 
ties of inner ideals and obtains results relating ad-nilpotent elements and 
inner ideals. For example, let L be a simple Lie algebra in which D; = 0 
implies y = 0, where D, denotes the adjoint mapping determined by y. If L 
satisfies the descending chain condition on inner ideals and has proper inner 
ideals, then L contains a subalgebra S = (e, /, h), isomorphic to the split 
3-dimensional simple Lie algebra, such that 0: = 0: = 0. Lie algebras 
having such 3-dimensional subalgebras decompose into the direct sum of 
two copies of a Jordan algebra, two copies of a special Jordan module, and 
a Lie subalgebra of transformations of the Jordan algebra and module. The 
main feature O F  this decomposition is the correspondence between the Lie 
and the Jordan structures. In the special case when L is a finite dimensional, 
simple Lie algebra over an algebraically closed Field of characteristic p > 5 
this decomposition yields: THEOREM. L is cIussical if and only if ihere is an 
x + 0 in L such that I ) ~ P - ~  = 0 and if D; = 0 impIies y = 0. The proof 
involves actually constructing a Cartan subalgebra which has 1-dimensional 
root spaces for nonzero roots and then using the Block axioms. 

Introduction. One of the most productive concepts in the theory of associa- 
tive algebras is the notion of an algebra satisfying the descending chain 
condition on its left or right ideals. Jacobson and McCrimmon have success- 
fully paralleled the Artinian structure theory in their study of Jordan algebras 
which satisfy the minimum condition on Jordan inner ideals. This paper 
presents a systematic investigation of inner ideals and ad-nilpotent elements 
of Lie algebras. It is hoped that inner ideals will play a role analogous to 
Jordan inner ideals in the development of an Artinian theory for Lie algebras. 
Many of the definitions used have been coined to imitate the terminology of 
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62 GEORGIA BENKART 

the Jordan theory, Certain Jordan concepts will come into play in the Lie 
theory in such a way that there will be meaningful relationships between Lie 
and Jordan structures bearing the same name. 

The preliminary results on inner ideals in the first section yield a classifica- 
tion of minimal inner ideals. The classification gives relations between the 
ad-nilpotent elements of a Lie algebra and its inner ideals. The focus shifts to 
Lie algebras which satisfy the minimum condition on inner ideals with the 
added hypothesis that they contain nonzero ad-nilpotent elements. Suppose 
such an algebra L has no nonzero ad-nilpotent elements of index less than 
three. Then: 

There is an element e # 0 in L such that e E D~(L) and 
I*) D: = 0, where D, denotes the adjoint mapping determined 

by e. 

The second section investigates properties of Lie algebras satisfying the 
(*)-condition. Such a Lie algebra contains a copy of the split, 3-dimensional 
simple Lie algebra. The adjoint action of the 3-dimensional subalgebra 
decomposes the Lie algebra into the direct sum of copies of a Jordan algebra, 
copies of a Jordan module, and a Lie subalgebra of derivations of the Jordan 
algebra and module. The main feature of this decomposition is the correspon- 
dence between the Lie and Jordan structures. As a consequence of the Jordan 
structure theory necessary and sufficient conditions are given for the Lie 
algebra to be the direct sum of a finite number of simple Lie algebras which 
satisfy the minimum condition on inner ideals. 

In the final part the results on Lie algebras which satisfy the (*)-condition 
are employed to give a simplified criterion using ad-nilpotent elements for 
distinguishing the nonclassical from the classical Lie algebras over algebrai- 
cally closed fields of characteristic p > 5. 

1. Inner ideals and ad-nilpotent elements. Throughout this paper the term 
commutative ring wilI mean an associative, commutative ring with multiplica- 
tive unit. Let k be a commutative ring and assume L is a Lie algebra over k. 
A k-submodule B of L is an inner ideal of 1, if [B [ B L ] ]  c B. Every ideal is an 
inner ideal, but simple Lie algebras can have nontrivial inner ideais. For 
example, consider the Lie algebra sl(2, F) of 2 x 2 matrices of trace zero over 
a field F of characteristic not 2. Then 

e = ( ;  ) f ) and h = ( A  -9) 
form a basis, and the subspaces Fe and Fj are inner ideals. 

Let D, denote the adjoint mapping determined by a. For additive sub- 
groups A, B, C of L let AB = [A, B ]  and ABC = [A, BC]. Define A,  . - . A, 
inductively by A, . A, = [A,, A, . A,]. In this notation the lower central 
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series of A is given by A I  = A, A' = AA, and A' = AA " I .  In the new 
notation a k-submodule B of L  is an inner ideal of L provided BBL C B. 

LEMMA 1.1. Assume B is an inner ideal of L. 
(1) BBL is an inner ideal and subalgebra of L as well as an ideal of B. 
(2)  LB" c Bn-' for n 2 2. 
(3) If B = B, then B is an ideal of L. 
(4) For my k-submodule V of B with VVB c V, v3 is an inner idea1 of L. 
( 5 )  For eueg additive subgroup V of 3, v 2 ~ 2 ~  c VVB. 

PROOF. (1) Since BBL C B, 

[BBL[BBL,  L ] ]  C [ B [ B L ] ]  = BBL, 

and 

[BBL,  BBL] c [ B , B B L ]  = [ B [ B ,  B L ] ]  BBL. 

The proof of (2) follows by induction on n, and these standard results for 
additive subgroups U, V, W, X of L: 

UVW r VWU .t WUV, and [UV, WX] UVWX + VUWX. 

Part (3) is a consequence of (2) with n = 2. To prove (4) it suffices to look at 
the mapping Dbxr,ul,D,,,,,,,,l applied to L for u's, u's in V.  But this mapping 
is the sum of terms of the form D, D,D,D,D, Dl where a, . . . , f E V. Now 
DeDJ(L) 3, D, D,( B )  c V,  and D,D,( V )  c V3.  A similar argument gives 
(5). a 

This lemma shows that for each inner ideal B of L there is a descending 
chain of inner ideals given by 3, = 3, B, = BBL, 3, = B,B,L, . . . . More- 
over (4) applied to V = B shows B3 is an  inner ideal whenever B is. Still 
another way of manufacturing inner ideals is to begin with an arbitrary 
additive subgroup A of L and to define T ( A )  to be ( r € L][A[tL]]  A >. 
LEMMA 1.2. T(A) is an inner ideal and subalgebra of L which contains A if A 

is an inner ideal of L. 

PROOF. That T ( A )  contains A whenever A is an inner ideal follows 
immediately from the definition of T(A) .  To show T ( A )  is itself an inner 
ideal let s, t E T(A) ,  x, y E L, a E A. Then 

= Omod A. 
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The arguments that T ( A )  is a subalgebra and a k-submodule are of a similar 
nature. I7 

The inner ideals T ( A )  defined in this manner often enable us to reduce our 
considerations to inner ideals which are also subalgebras for which more can 
be said: 

LEMMA 1.3. Let T be an inner ideal and subalgebra of L.  Then for all n 3 1, 
Tn is an inner ideal of L and n r- T" is an ideal of L. 

PROOF. The lemma is a consequence of Lemma 1.1, part (2). 0 
An inner ideal B # (0) is said to be minimal if there exists no inner ideal C 

of L such that B s C 2 (0). Trivially, Fe and Ff are minimal inner ideals of 
si(2, F), though it is not true in general that every minimal inner ideal is 
1-dimensional. An element z is an absolute zero dioisor of L if 0: = 0. An 
absolute divisor generates an inner ideal which will be minimal if k is a field. 
Absolute zero divisors cannot exist in finite dimensional semisimple Lie 
algebras over fields of characteristic 0 because every ad-nilpotent element can 
be imbedded in a subalgebra isomorphic to sl(2, k) as seen in Jacobson [lo, 
p. 1001. One can verify readily that sI(2, k) has no absolute zero divisors. 
However, there do exist finite dimensional simple Lie algebras over algebrai- 
cally closed fields of prime characteristic such as the Witt algebra having 
absolute zero divisors. The role of absolute zero divisors has been explored 
previously in the work of Kostrykin [14], 1151. They appear to distinguish the 
classical Lie algebras from the nonclassical over algebraically closed fields of 
characteristic p > 5. The final section of this paper will demonstrate further 
results along these lines. 

THEOREM 1.4. Let B be a minimal inner ideal of a Lie algebra L owr a 
commutatiue ring k .  Then either: 

(1) B = kb where b is an absolute zero dioisor of L , or 
(2) B = BBL and 3 ' = {O), or 

(3 )  B is a simple ideal of L and for euety proper inner ideal V of B,  V = (0). 

PROOF. If B contains a nonzero absolute zero divisor B, the minimality of B 
gives B = kb. So we can assume B has no absolute zero divisors different 
from zero. Since BBL is an inner ideal of L contained in B, BBL = B or 
BBL = (0). But the last possibility can be excluded because B has no nonzero 
absolute zero divisors. So B = BBL and by Lemma 1.1 B is a subalgebra of 
L. By the remarks following Lemma 1.1, there are two possibilities: B 3  = 0 or 
B3 = B. In the first case Lemma 1.1(5) applied t o B  gives BZB2L c B-' = (0). 
That is to say, every element of B Z  is an absolute zero divisor of L. Since B is 
a subalgebra B~ c B, SO B 2  = (0) must necessarily hold. We may suppose 
then that BBL = B and also B3 = B. Because B is a subalgebra B 2 B2 3 
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B 3  = B and B 2  = 3. According to Lemma 1.1(2), B is an ideal of L. Any 
ideal of B is an inner ideal of L, so B is simple. For any inner ideal V of B 
with V # (0) or B we have 

v 2 v 2 ~  v 2 v B  VVVB v2 
showing V 2  is an inner ideal of L contained in 3. If V2 = 3, then V2 2 V 
and V 3 v3 3 V 2  = B, contrary to assumption. So it must be for every 
inner ideal V of B that vZ = (0). C! 

For any inner ideal B of L such that B = (01, if b E B then 0: = 0. If V 
is an inner ideal of an ideal 3 with V2 = (0), then 0: = 0 for D E V.  Thus 
Theorem 1.4 shows that the existence of minimal inner ideals implies the 
existence of ad-nilpotent elements (of index < 4) except when every minimal 
inner ideal is a simple ideal having no proper inner ideals. In particular, if a 
simple Lie algebra has proper minimal inner ideals, it has ad-nilpotent 
elements. On the other hand as we see next, the existence of ad-nilpotent 
elements generally implies the existence of nontrivial inner ideals. 

Let L be a Lie algebra over a commutative ring k and let n be an 
integer 2 2. We say L is n-torsion free if, for x E L, nx = 0 implies x = 0. 
Kostrykin [12] has proved the following fundamental result concerning ad- 
nilpotent elements in L. 

PROPOSITION 1.5. Suppose D," = 0 for a # 0 and m > 3. If L is n-torsion 
free for all n < m, then 

( D - ) m '  = 0 for all e E L. 

COROLLARY 1.6. If a and L are as in the preceding proposition, there is a 
b # 0 in L with D: = 0. 

LEMMA 1.7. LRi L be a 3-torsion free Lie algebra and suppose a f L with 
D: = 0. Let A = D, andfor x E L let X = D,. Then: 

(0 A ~ X A  = A X A ~ ,  
(ii) A ~ X A ~  = 0, 
(iii) 2 2 2  D 2 , t b l = A X A ,  

(iv) D:1,,, = 0. 

PROOF. Because A ~ ( x )  = 0 for all x E L, 0 = DATx, = [A[A[AX]]]. From 
this we see - ~ A ~ X A  + ~ A X A '  = 0, and since L is 3-torsion free (i) follows. 
Multiplying (i) on the right by A gves (ii). Now 

so (i) and (ii) can be used to prove (iii). Finally the last statement holds 
because 
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Glb)= D ~ ~ ( ~ ~ & ~ ~ ) =  (A2X - 2AXA + X A ' ) A ' X ~ A ~  = 0, 

LEMMA 1.8. Lei L be 3-torsion free and a E L be such that 0: = 0. l l e n  
D:(L) is an inner ideal of L, and D:(L) is abeliun. 

PROOF. It suffices to show D,D,(L) C D:(L) for x = D:(b) and y = 
D ~ ( c ) .  Let A = D,, B = D,, C = D,. Then 

DxD, = (A2B - 2ABA + BA~)(A'C - 2ACA + CA2).  

Using (ii) above we eliminate the terms involving A 2 ~ A 2  and A2cAZ.  Thus, 

DxD, = - ~ ( A ~ B A ) C A  + ~ ( A B A ~ ) C A  + A2BCA2 

Equation (i) applied to this gives 

(1 .9) D,D, = A ~ B C A ~ .  

Consequently, DxDy(L) c D ~ ( L ) ,  and D:(L) is an inner ideal of L which is 
abelian since 

D, ( y )  = (A2B - 2ABA + 3 A 2 ) ( A 2 ( c ) )  = 0. 

This Iemma shows that the existence of an ad-niIpotent element a # 0 of 
index < 3 impIies the existence of a proper inner ideal unless D ~ ( L )  = 0 or 
D:(L) = L. The nilpotency of D, rules out the second case, and in the first 
case ka is a proper inner ideal except when L = ka. To summarize: 

LEMMA 1.10. Let L be a 3- torsion free Lie algebra. If 02 = 0 for some a # 0 
in L, then L has a proper inner ideal unless L = kz. 

COROLLARY 1.11. Let L be a Lie algebra and 0 # a E L with D," = 0. I f  L 
is n-torsion jree for n < m, then L has a proper inner ideal unless L = kz. 

These considerations yield the following strengthening of the minima1 inner 
ideal theorem: 

THEOREM 1.12. Lxt B be a minimal inner ideal of a Lie algebra L which is 2 
and 3- torsion free. Then either: 

(I)' B = kb where b is an absolute zero divisor of L, or 
(2)' B = D&L) for ail b # 0 in B, and B 2  = (01, or 
(3)' B is an ideal which is simple as a Lie algebra and which contains no 

proper inner ideals. 

PROOF. Only (3)' needs some explanation. Recall (3) in the original theorem 
is the case when B is a simple ideal of L such that V2 = (0) for every inner 
ideal V # B of B. For every r, in such a V, 0; = 0, SO that by Kostryhn's 
result, for any x E L if u = D:(x), then 0: = 0. Since u E B, D:(L) is an 
inner ideal of L contained in B, and hence must be (0) or B. Using D: = 0 
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and the fact that B is an ideal of L, we note that D ~ ( L )  = B implies 
B = D:(L) = (0), a contradiction. The case D ~ ( L )  = 0 gives u = 0, and thus 
D: = 0. By the same reasoning applied to u we obtain V = (0). 

We say a Lie algebra is Artinian if every descending chain of inner ideab 
terminates. The term Artinian Lie algebra is well chosen for if R is a simple 
Artinian ring of characteristic not 2 or 3 with center 2, then [ R R ] / [ R R ]  n Z 
is a simple Artinian Lie algebra. If R has an involution * and if K is the set of 
skew elements relative to *, then [ K K ] / I K K ]  n Z is a simple Artinian Lie 
algebra provided the dimension of R over Z is greater than 16. (Proofs of 
these statements appear in [2].) We shall call a Lie algebra L nondegenerute if 
it contains no absolute zero divisors different from zero. One justification for 
calling these algebras nondegenerate is the fact that if L is a finite dimen- 
sional Lie algebra with nonzero absolute zero divisors, then the Killing form 
is degenerate, as seen in Kostrykin [13]. The next result will not be used in the 
remainder of the paper; however, it illustrates the way Lemma 1.2 can be 
used to study arbitrary inner ideals. 

LEMMA 1.13. k t  L be a nondegenerate, simple, Artinian Lie algebra. For 
euery inner ideal V # L o j  L, V2 = (0). 

PROOF. Assume initially that V  is also a subalgebra. By Lemma 1.3, 
n Fa, Vn is an ideal of L which must then be (0). The subalgebras V = V' 2 
V 2  2 . . . form a descending chain of inner ideah. Therefore there is an 
integer m such that 'vm = n ;==, V n  = (0). If m = 2, then v2 = (O), the 
desired conclusion. If m > 2, then 

Every element of V"-' is an absolute zero divisor of L. Thus v"-' = (O), 
and an inductive argument shows V2 = (0). Now if V # L is an arbitrary 
inner ideal, define T ( V )  as above. Since T(V) is an inner ideal and subalge- 
bra of L containing V, T(V) = L or T ( v ) ~  = (0). In the last case V2 = (0). 
However, if T ( V )  = L, then VLL V. Because L is simple L = L~ and so 
VL r V.  This says V is an ideal of L which is impossible. So only the case 
v2 = (0)canoccur. 

The lemma can be applied to finite dimensional simple Lie algebras over 
fields of characteristic 0 or to classical Lie algebras over fields of characteris- 
ticp > 3  to show inner ideals of these algebras are necessarily abelian. 

We now investigate nondegenerate, Artinian Lie algebras having ad-nilpo- 
tent elements. Such Lie algebras will be shown to contain a copy of s1(2, k). 
Results derived from studying the adjoint representation of this subalgebra on 
the Lie algebra wilI be the main topic of the next section. 

LEMMA 1.14. Let L be a nondegenerate, Artinian Lie algebra. Assume there is 
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an a # 0 in L with Dr = 0 for some m > 3, and that jor n < m, L is n-torsion 
free. Then there is an e # 0 in L with D: = 0 and e E D:(L). ij 4, E k ,  
then L contains a copy ojsl(2, k). 

PROOF. By Kostrykin's result we can suppose that there is an element 0 # b 
in L with D: = 0. For such an element @(L) is an inner ideal of L which is 
nonzero because L is nondegenerate. The collection of all such inner ideals is 
nonempty, and so must possess a minimal element, say Di(L). Let e # 0 be 
in D ~ ( L )  and observe that from (iv) of Lemma 1.7,D: = 0. From (iii) of that 
lemma 0 # D:(L) C D ~ ( L ) .  Minirnality then implies e E D ~ L )  = DAL). 
Assume now k E D,(L) is chosen so that {he] = 2e. If i, 3 Ek, then 
Seligman 114, p. 1221 has shown there is an f E L with [hfl = -2f and 
[ef] = h. The subalgebra generated by e, f, h is isomorphic to sI(2, k). 

We will say a Lie algebra is a *-Lie algebra if it satisfies the following 
condition : 

(*) There is an e # 0 in L with 02 = 0 and e E D,Z(L). 

The preceding lemma shows every nondegenerate, Artinian Lie algebra which 
has an ad-nilpotent element and which is suitably torsion-free is a *-Lie 
algebra. In particular, every finite dimensional semisimple Lie algebra over a 
field of characteristic 0 which has a nonzero ad-nilpotent element is a *-Lie 
algebra. 

2. *-Lie algebfas. Throughout this section L will be a +-Lie algebra over a 
commutative ring k such that 3, E k. 

LEMMA 2.1. There exist k-submodules v. such that 
(1) L = vz $ v, $ v, €B v-, €B v-,, 
(2) V, decomposes as the sum of submodules Vo = Z d3 T, 
(3) Vz, V -  2, T are isomorphic as k-submodules of L as are V,, V- ,, and Z is 

a subalgebra of L. 

PROOF. Suppose e # 0 in L is such that D: = 0 and e E D ~ ( L ) .  Let h,fbe 
chosen as in $ 1 .  Then H = D, is algebraic over k with minimum polynomial 
a factor of p(h) = (A - 2)(A - l)X(X + 1)(A + 2) (see for example Jacobson 
[81 or 191). Let pi@) = p(X) / (A + i) and observe: 

As a consequence we can decompose L as a k-module into eigenspaces 
relative to H. Thus L = VI /,$ V, CB V, V-, @ V-, where Hq = ioi for 
u, E K.. Because H is a derivation, [Y, ,  Yj] C V;+, where V, = (0) if m > 2 
or m < - 2 .  Let E = D, and F = Dp The mapping EZ:  V a 2 +  V2 is a 
k-isomorphism with inverse 4 F2. Also V-, and Vl are k-isomorphic under 
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the map E which has inverse F, Define a map a on Vo by a(u) = u - EF(u). 
One verifies readily that u2(u) = u for all u E V,. Let Z = { u  E V,ja(v) = 
u )  and T = {c E V,la(u) = - u ) .  Then Vo = Z G3 T and the map E is a 
k-isomorphism sending T to V,. If o(o) = u, then EF(o)  = 0. This implies 
0 = FEF(o) = - HF(o) = F(u). Similarly E(o)  = 0, and from this it 
follows that Z is just the centralizer of the subalgebra generated by e, f, h; 
hence itself is a subalgebra. 

Let us note that for u E V* if E(o )  = 0, then EF(o) = FE(o) + H(u)  = 
0 and o E Z. Similarly u E Vo and F(u) = 0 implies v E 2. - 

Adopt the notation A = V,, 2 = V-, ,  a * - I F2(a) E 7 and a* = 

- $ F ( a )  € T for a E A. For a, b E A define a product on A by a .  b 
= [a[fn]],  and for z E Z let z(a)  = [z, a]. 

LEMMA 2.2. A is a Jordan algebra relaiiue to this product and Z acts as 
deriuarwns on A. 

PROOF. TO begin let us observe that the product in A is commutative since 
[a, b]  = 0. Because ;[a[ jell = ;[ha] = a, the element e acts as the identity in 
A. What remains to be shown is the Jordan identity and the last assertion. - 
Since Z centralizes f, it is clear that [ z ,  a*] = z(a)*, [z ,  Zj =z(a),  and 
z(a . b)  = z(a)  . b + a .  z(b). As a further consequence of the definition we 
have [a*, b] = a b = [b*, a]. The equation 

when rewritten in the above notation, gives an expression for [a, 61, namely: 

(2.3) [ a ,  b]  = 2(a b)* + 2[a*,  b*].  

Now [a*, b*] E Vo and [[a*, b*]e] = 0. So by the above remarks [a*, 
b*] E 2. Applying D, to both sides of (2.3) shows [a*, 4 = -a. Using 
these results we calculate the Jacobi identity for a, b; c* and obtain 

(2.4) [ ( a  b)*, c* ] + [ ( b  c)*, a * ]  + [ ( c  a)*, b* 1 = 0. 

The element a* acts as left multiplication by a on A. Therefore if a = b = c 

in (2.41, [(a2)*, a*] = 0 and this shows A is a Jordan algebra. 
As yet we have ignored the spaces V,, V -  , which may in fact be zero. This 

particular case has been studied previously in the work of Tits (191 and 
Hirzebruch (61 for fields, and for commutative rings in an unpublished work 
of Jacobson. In the situation in which V, occurs, let a u = [a[ fo]]  and 
z(u)  = [t, 01 for a E A, il E V,, z E 2. In light of the isomorphism between 
V, and V - ,  let us adopt the notation i? = I ju], V = V,  and = V-,. 

LEMMA 2.5. V is a special uniial A-module with skew bilinear mapping 
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and trilinear product 

v x v x v{1;> v 
so that (A, V) is a J-ternary algebra ~ I I  the seme ofAllison [I]. 

PROOF. From the definition of a .  o it is clear that e .  u = u and [a, 
i7J = a u. It is also immediate that [a*, u] = f a  o, and applying Df to both - 
sides of this equation shows [a, u] =a  u. The effect of a* on 3 is given by 

[.*,GI =$[[a,f];] =f[[a ,C]f]  = f [ a . u , f ]  = -fG. 
We are now in a position to calculate the action of the product a .  b on V. 
For 

(a .  b1.u =[[a*,b]C] = [ [ a * , ~ ] b ]  +[a+[b,i?]] 

= i b .  ( a - u )  +,la- ( b - u ) .  

That is, V is a special unital A-module. The commutator in L defines a skew 
bilinear map ( , ) of V X X into A, and the Jacobi identity applied to a*, u, u 
yields 

We define (u, u, w) to be [u[v, 41 E V, and compute [a*, (u, u, w ) ]  to show 
a ~ ( u , . u , w ) = ( a ~ u , v , w ) + ( u , a ~ c , w ) - ( u , u , a ~ w ) .  

Now Axiom (Tl) in 111 is just the specialization of the Jacobi identity with 
u, u, fi. From the Jacobi identity with f, a, w we have -2(u, w)* = [c, 
4 - [w,  4. Taking the product of both sides with u shows (T2) holds. 
Condition (T3) is a consequence of calculating [[ula, q]xl.  Finally by 
applying (T2) we see [e[fiIx, A11 = ( w ,  Y ,  x>. Thus, [Glx, A1 = ( w , ~ ,  x>. 
Using this fact (T4) results from computing I[u[u, 41, [dl. (Compare 
Theorem I in Allison jl] and results in Hein [5].) 

Let us observe that Z acts as derivations on V in the sense that z(a u) = 
z (a )  - u + a z(u).  The element D (u, o) = 4 ([ud + [uuj) belongs to V, and 
commutes with e so it is in 2. Therefore the product [ u q  is given by 
[ud = D(u,  u) - (u ,  v>*. The elements D(u, v )  will be useful later in 
describing ideals in a *-Lie algebra. 

To discuss the relationship between the Lie and Jordan structures in *-Lie 
algebras some Jordan concepts are needed. Assume A is a Jordan algebra 
over a commutative ring k. A k-submodule 3 of A is a Jordan inner ideal of 
A if Ublnbl(a) E B for every b, ,  b, E B, a E A ,  where 

Ub,,bl(a) = (b,.a). b ,  + ( a .  b,)b, - a .  (6,. b,). 

If a* denotes left multiplication by a, then 
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Ubl,bl (4 = 1 b:, a* I (b2) f ( b ,  a)*(b,), 
An eIement b of A is an absolute zero divisor if U,,, = 0. Clearly an absolute 
zero divisor generates a Jordan inner ideal which is minimal if k is a field. 
The results for minimal Jordan inner ideals (Jacobson [ l l ,  p. 1541) bear a 
striking resemblance to the theorem on minimal Lie inner ideals in the first 
section. 

Suppose now that L = A 93 V CB Z A* 7 is a *-Lie algebra, 
and let B be an inner ideal of L contained in A. Such inner ideals exist since 
A itself is an inner ideal of L. For b,, b, E B, a E A,  [[b,, qb,] E B, but 

[ [ b , ,  q b , ]  = 2[b;*  a* I(b2) - 2(bl a)*(b,) = 2Ub,,bz(a) 

according to (2.3). Thus B is a Jordan inner ideal of A, and conversely any 
Jordan inner ideal of A is an inner ideal of L. 

LEMMA 2.6. Let L = A $ V $ A* $ Z 03 €B 2 be a *-Lie algebra. 
( I )  If L is Artinian, then A satisfies the minimum condition on Jordan inner 

ideals. 
(2)  I f  L is nondegenerate, then A has no absolute zero divisors. 
(3) If L is nondegenerate and Artinian, then A is the direct sum oj  a finite 

number of simple ideals which satisSy the minimum condition on Jordan inner 
ideals, and for each a E A, a E D:(L) and D: = 0. 

PROOF. Only (3) needs discussion. One knows from McCrimmon [I61 that 
under the assumption df the minimum condition for Jordan inner ideals the 
condition "no absolute zero divisors" is equivalent to the Jordan algebra 
being regular. That is, A is regular if for each a E A there is a b in A with 
U,,=(b) = a. Regularity and the minimum condition imply the Jordan algebra 
is the direct sum of simple ideals which then must aIso satisfy the minimum 
condition. The last assertions follow from the regularity of A and from the 
fact that [F, V,] c V c j .  A similar result holds for each E A. 
LEMMA 2.7. Let L = A CB V @ A S  t0 Z @ 2 be a nondegemrate, 

Artinian *-Lie algebra such lhal the k-submodule generated by h = 2e* is a 
maximal splil lorus of L, hen A is a Jordan diuision algebra. 

PROOF. For 0 # a f A since 0: = 0 and a E D ~ ( L ) ,  then there is a b E A 
with [a, bj = h', [h' i ]  = -26, and [h'a] = 2a. This implies Dw is a semisim- 
ple transformation with eigenvalues among 2 2 ,  2 1, 0. Because h' centralizes 
h, the maximality of the torus forces h' to be a nonzero multiple of h. That is, 

h' = [a ,  b]  = 2[a*,  b*]  + 2(a.  b)* = h e *  

Therefore [a*, b*] = 0 and a - b = ae. But 2a = [[aaa]  = 2aa so that or = 1 
and a - b = e. Then 
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= 2(a - b a2 + a), 

giving a = b . a*. These two conditions say A is a Jordan division algebra. 

In general it is not true that for a nondegenerate, Artinian *-Lie aIgebra 
that the ~ordan algebra is necessarily a division algebra. However, as we see 
in the next lemma, there is some decomposition of the Lie algebra so that the 
Jordan algebra is a division algebra. 

LEMMA 2.8. Let L be a nondegenerate, Arlinian *-Lie algebra. Then L = A ' 
G3 V' 03 A'* $ 2' €0 9 $ A' where A' is a Jordan diuision algebra. 

PROOF. Consider the collection of all inner ideals of the form D ~ ( L )  where 
D: = 0. It is nonempty and so possesses a minimal element, say A'. By the 
same argument used in the proof of Lemma 1.14, there is an e' E A' with 
e' E D ~ ( L )  = A' and D,! = 0. Then L = A' G3 V' El3 A'* 93 2' G3 93 A' 
and for each a E A', D,2(L) = A'. Because A' is a minimal inner ideal of L, 
A'  is a Jordan algebra without proper Jordan inner ideals. One can see from 
the Jordan minimal inner ideal theorem that A' must be a division algebra. 
0 

The Lie and Jordan correspondence can be further evidenced in the study 
of ideals of a *-Lie algebra. 

LEMMA 2.9. k t  L be an arbitrary *-Lie algebra and J be an ideal of L. Then 
I = I @  W03 Y @ I * G 3 W @ j w h e r e :  

(i) I is an ideal of A  such that Z ( I )  I ;  
(ii) W is an A-submodule of V  with Z ( W )  C Wand IV G W C (u € V1 

(a, c 1 ) ;  
(iii) Y is an ideal of Z and 

D ( V ,  W )  -t- [ A * ,  I * ]  G Y C ( z  E Z\z (A)  C I ,  z ( V )  C W ) .  

Any k-submodule formed by I,  W, Y satisfying these properties is an ideal of 
L. 

PROOF. Since J is stable under the action of the subalgebra generated by e, 
f = Z, h = 2e*, J decomposes into submodules as claimed. The remaining 
assertions can be verified using results derived in the proof of Lemmas 2.2 
and 2.5. Let us note that in (ii) we may choose W = I V  or W = ju E Vl(u, 
V) I). Likewise in (iii) Y may be taken to be either extreme. In particular, 
if R = ju E Vl{u, V) = 0), then R + Y + R is an ideal where Y is any 
ideal of Z which satisfies 

D ( V ,  R )  C Y G { z  E Z l t ( A )  = (O), z(V) G R } 
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R is just the radical of the bilinear form ( , ). Also 

2, = (2 E Z [Z ( A )  = 0, z( V) = 0) 

and 

are ideals of L. 

LEMMA 2.10. Let L be a 5 and 7 torsion-free *-Lie algebra such that R = (0) 
and 2, = (0). Then L has absolute zero diuisors if and onIy if A does. 

PROOF. Every absolute zero divisor of A is an absolute zero divisor of L, 
For the other direction let Q be the set of absolute zero divisors of L and 
assume D # (0). The projection of an element of 0 onto A is an  absolute zero 
divisor of A, and Iikewise for So suppose $2 C_ V CB A* $ Z 93 T / ,  and 
observe that Lie automorphisms of L leave the set Q invariant. The element 
x = u + z + d* + ZE il if and only if expD,(x) = u + z + d* - d + iT 
+ w E a. So by the above remarks we can,assume d = 0 and D c V G3 Z 

For each u E V the projection of exp D,(x) E D on A * is (u, w )  which 
must be zero. But the nondegeneracy of the form then implies w = 0, and 
similarly u = 0. The only remaining possibility is D C 2. Applying exp D, 
and exp D, for a E A ,  u E V to z E fl c Z shows z E Zo. So it must be 
D # 0 forces A to have nonzero absolute zero divisors. 

LEMMA 2.1 1.  Assume' L is a *-Lie algebra. 
(1) I f 2  = D (V, V) -k [A*, A*] and 2, = R = (0), then A a simple Jordarr 

algebra implies L is a simple Lie algebra. 
(2) I f  L is simple and Artinian then A is a simple Jordan algebra, or 

A = S @ k [ x , ,  . . . , x,] where S is a simple Jordan algebra of prime 
characteristic and k[x , ,  . . . , x,] is a ring of truncated pobnomials. 

( 3 )  If L is simple, nondegenerate, and Artinian, then A is simple. 

PROOF. According to Lemma 2.9 A is derivation simple if L is simple, and 
A possesses a minimal ideal if L is Artinian. So, in (2) A is asserted by a result 
of Block [4j. Now A has absolute zero divisors in (2) unless A is simple, so (3) 
follows, and (1) is just a direct consequence of Lemma 2.9. 

THEOREM 2.12. Let t be a nondegenerate, Artinian *-Lie algebra. Suppose 
I , - A $  V $ A * € B Z $  F @ A w h e r e ~ = ~ ( v ,  V ) + [ A * , A * l a n d ( , )  
is nondegenerate. Tken L is the direct sum of a finite number of simple Lie 
algebras which saiisb these hypotheses; and the conuerse holds also. 

PROOF. We know from Lemma 2.6(3) that we can write A = I, €3 . @ I, 
where I j  are simple ideals of A.  It is easy to verify that the I j  are left invariant 
by derivations of A; hence by 2. We show L = 932 L, where 
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~ = ~ @ ~ V @ D ( V , ~ V ) + [ A * , ~ ] @ ~ @ ~ + + .  

Because each 3 is a simple Jordan algebra satisfying the minimum condition, 
it has a multiplicative identity e,. Now for any representation p of A one has 
from Jacobson [ I  1, p. 961 that 

[ap, ( b  - c)'] + [bp ,  ( e  a)'] + [ e p ,  (a. b)'] = 0. 

This identity with the specialization a = ai E Ii, b = aj f 4, and c = ej 
shows J(4. V) = (0) for i # j. This in turn leads to 4 V n Ii V = (0) for i # j, 
and, consequentIy, L = @ELr To argue each L, is simple we need only 
invoke Lemma 2.10, The rest is straightforward to verify. 

Theorem 2.12 says that in many instances the study of nondegenerate, 
Artinian *-Lie algebras can be reduced to considering simple algebras. One 
place to begn is with finite dimensional simple Lie algebras over algebraically 
closed fields. The characteristic 0 case has been studied extensively, so the 
next section investigates nondegenerate finite dimensional simple *-Lie alge- 
bras over dgebraically closed fields of prime characteristic. 

3. Ad-nilpotent elements and classical Lie algebras. It has been the god of 
work of Kostrykh and Jacobs to determine whether the existence of nonzero 
absolute zero divisors is a necessary and sufficient condition for distinguish- 
ing the nonclassical from the classical simple Lie algebras over algebraically 
closed fields of prime characteristic. To this end Kostrykin [15j proved 

THEOREM 3.1.  fn a finite dimensional simple Lie algebra mer an algebraically 
closed field F of characteristic p > 5 ,  assume the following conditions are 
satisfied: 

(i) There is a Cartan decomposition L = H f3 2,+oLa relatitle to a Cartan 
subalgebra H of L such that D,P-' = 0 for some a # 0 in H or La. 

(ii) L is nondegenerate. 
(iii) L is a p-Lie algebra. 

Then L is classical. 

Later in [7] Jacobs was able to remove hypothesis (iii). We will replace (i) 
with the assumption that L contain an x # 0 with Di- '  = 0 and omit (iii) as 
welt This is advantageous for conltion (i) is not an invariant of the Lie 
algebra, and hence, necessitates making a judicious choice of the Cartan 
subalgebra. This result was orignally proved using Jacobs' theorem by the 
author in her doctoral dissertation and, independenfly, by Strade (181. 
However, the investigations of *-Lie algebras in the preceding section give us 
a means of attacking the problem directly, thereby eliminating or simplifying 
many of calculations in Kostryhn's and Jacobs' papers. In addition to results 
on *-Lie algebras our approach will use a theorem due to Block [3] to prove a 
sequence of steps which lead to 
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THEOREM 3.2. LR1 L be a finite dimensional simple Lie algebra owr an 
algebraicalIy dosed field F oj characteristic p > 5 .  Assume: 

(i) there is an x # 0 in L such thar D:-l = 0; 
(ii) L is nondegenerate. 

Then L is classical. 

Step I. Under the hypotheses of the theorem L is a *-Lie algebra and there 
is a decomposition L = V2 d3 V ,  fB V,, CB V - ,  @ V-, such that V,, V - ,  are 
I -dimensionaL 

PROOF. By Proposition 1.5 there is a c # 0 such that 0: = 0 and D,Z(L) is 
an inner ideal. Using the same argument as in the proof of Lemma 2.8, we see 
L is a *-Lie algebra, and, moreover, there are elements e, f, h in L with 
e E D:(L) = V2 and D: = 0 such that the decomposition of L into eigen- 
spaces relative to D,, is given by L = V2 $ V, $ V, $ V-, f3 V-, where V2 
is a Jordan division algebra. But then V2 = Fe and V-, = FZ for 2 = f since 
F is algebraically closed. 

Now let H be a Cartan subalgebra of V,. The element h centralizes Vo, so it 
must belong to H. Therefore H is in fact a Cartan subalgebra of L which 
leaves each V, invariant, and accordingly each yi decomposes into root 
spaces relative to H .  The space V, corresponds to a root which we will denote 
by a, and V- , belongs to the root - a. Our next objective will be to show that 
the root spaces of V, and V-, are also I-dimensional. The steps will follow 
the general outline used'by Kostrykin [ 151. 

For u, 0 E V, we will write [u, u] = (u ,  tl)e so that if ii, ii E V- ,, then [ K  
4 = - (u ,  u)E The symbol v-,, will denote the root space of q. correspond- 
ing to the root 6. On numerous occasions we will be concerned with an 
element s with the property that D:(L) = Fs. In this situation there is a t 
such that D?(t) = - 2s and DI,,,l is a semisimple transformation with eigen- 
values among 5 2 ,  f 1, 0. The decomposition af L relative to [s ,  t ]  will be 
given by 

L = v2 ( s )  @ v, (s) CB v, (3) @ v- 1 (3) @ v- , (s) 
where V2/,(s) = F,, V- , (s)  = Ft, and V,(s) = Z ( s )  $ F[s,  r ] .  We will make 
use of the following result of Kostrykin [15]: 

P R O P O ~ ~ T I O N  3.3. If u E V, and Di(a = Ofor i = 3 or 4, then Di = 0. 

Step 2. If 0 # u E V, , ,  and D:(F) = 0, then V,, is I-dimensional. 

PROOF. In order to obtain a decomposition as above we first show D ~ ( L )  = 

Fu. We need only consider D: on Vo = Z Z Fh and on V-, because it is 
zero everywhere else. Now ~ : ( h )  = - D,(u) = 0, and for every z E 2, 
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Therefore 

{ z  (u), U) = 0 and 0; ( 2 )  = {Z (u), u)e = 0 

for every z E Z .  For ii E V-,, 

Consequently, D:(L) c Fu, and since L is nondegenerate, DAL) = Fu nec- 
essarily holds. We can take iT E V-,,-, so that D,Z(G) = -2u and is 
semisimple with eigenvalues among 22, -t. 1, 0. The element [u, 4 belongs to 
H and y(iu7 q) = 2. From this it follows that V , ,  c V,(u) = Fu. 

Step 3. Assume there is some 0 # u E V,,? with 0; = 0. Then V , ,  is 
1 -dimensional. 

PROOF. We suppose D;(Z) = b # 0 and proceed to show D,2(L) = Fb. The 
element b belongs to V,, and according to Lemma 1.7, 0: = 0, D: = 
D ~ D ~ D ; .  Therefore 

- 
so that b must belong to 2. Now b2(e) = b2(F) = O and b2(u) = b2 (3  = 0. 
This shows that B,Z(L) = D ~ ( z ) .  For z E 2, 

D,' ( 2 )  = D:D$ZD,~ ( 2 )  = D;D: ( (2  (u) ,  u)e)  

Thus D ~ ( L )  = Fb. The element b belongs to V,,,-,, so there exists an a E Z 
with a f Va-v+za such that D;(a) = - 2b and Di,,a, is semisimple with 
eigenvalues among 5 2, 5 1, 0. Since [b, a] E H and y - 2a(Ib, an = 2, 
V, , y - ,  , c V,(b) = Fb. For every o, w E V1,y, D,D,(F) E VOJY-,, so 
D,D,(Fj is a scalar multiple of b. If V , ,  is more than 1-dimensional there 
wouId be an x # 0 in V , ,  with ~ j ( i )  = 0. Step I would give the contradic- 
tion that V , ,  is I-dimensional. So we are forced to conclude V , ,  is i-dimen- 
sional. 0 

Step 4. V , ,  is 1-dimensional for each root y of V,. 

PROOF. In view of the previous steps and Kostrykin's result we can suppose 
D:(Z) # 0 for every i E V,,.  Let us assume initiaIly that there is some 
u f VIgY with 0; = 0. Now u = D ; ( a  is ad-nilpotent of index 3 so the root 
space V,,,,-, to which it belongs is 1-dimensional. If V , ,  is more than 
1-dimensionaI there is an x # 0 in V , ,  with D:(Z) = 0. Thus we would 
contradict the assumption that D;(Fj # 0 for any t E V,,  unless V, ,  is 
I-dimensionaI. It is sufficient to suppose then that for every o E v , ,~D: # 0. 
By Kostrykin's result O # D:(4 f V2 = Fe. If V1,, has two independent 



INNER IDEALS OF LIE ALGEBRAS 77 

elements we can find an x # 0 in V , ,  with D , ~ ( Z )  = 0. Consequently, in this 
case aIso, V,,, is 1-dimensional. 

Step 5 (COROLLARY). Each root space of V- , is 1-dimensional. 

Step 6 (COROLLARY). For euery root y of V ,  and etlery u E V ,  ,y ,  D: = 0. 

PROOF. By Kostrykin's result we can assume 0 # D , ~ ( Z )  = te .  Then 2 y  = or 
and D:(Z) E V,,?. Hence D:(@ = Xu b y  the 1 -dimensionality of But 
then ~ : ( a  = D,(Xu) = 0, contrary to assumption. 

Next we specialize to the case V, = [V,, V-,] + [V,, V-,I. This is always 
true if L is simple for V2 €B V, $ [V,, V-,I + [V,, V-,j @ V-, 63 V-, is an 
ideal of L. We have not as yet used the hypothesis of simplicity, and indeed 
all we will use to prove Theorem 3.2 will be the weaker assumption that V,  
has this t o m  and the next theorem due to Block. 

THEOREM 3.4 (BLOCK [3]). Assume L is a finite dimensional Lie algebra mer 
an algebraicaib closed field F of characteristic p > 5, and suppose H is a 
Cartan subalgebra of L such that: 

(i) Lz = L. 
(ii) The center of L is (0). 
(iii) For euey nonzero rmt of L relatiue to H, Lp is 1-dimenrioml and 

PULP, L-,?l) + 0. 
Then L is the direct sum oj  simple classical algebras or Albert-Zmsenhuus 

algebras. 

Under assumptions (i) and (ii) of Theorem 3.2 and the hypothesis Vo = 
[ V2, V-,I + [V,, V -  ,I, it is clear that (i) and (ii) of Block's theorem are 
satisfied. Moreover, we have shown thus far that the root spaces of Vz, V-,, 
V,, V- , are I-dimensional and, for the root a, (iii) holds. 

Step 7. For every root y of V,, - y is a root of V-, and 

PROOF. If 0 # u E VIny and D:(Z) = 0, then as was observed in the proof 
of Step 2, there is a i7 E V- ,,_, so that [u, 4 E H and DIU4 is semisimple 
with eigenvaIues 2 2, + 1 ,  0. Also ( u ,  w )  = - 1 and y ([u,  GI) = 2 in this case. 

If O # u E V,,  and D i  = 0, but D:(Z) = b # 0, then from Step 3 there is 
an a E Z with @(a) = -2b. In addition, [b, a] E H and DI,,al is semisimple 
with eigenvalues 4 2 ,  + 1, 0. Now since u is a root vector [[b, a]u] is a 
multiple of u. The fact that u commutes with b implies that u E V,(b) or 
u E Z(b) .  We note from Step 3 that ~ t ( a )  = -2{a(u), u )b  = -2by so 
a(u)  # 0 and (a(#) ,  u) = 1. Thus u E Z ( b )  and u E V,(b). The element - - 
0 # a(u)  belongs to V -  ,,-, and we proceed to show y flu, a ( u ) ] )  # 0. A 
computation of [b, a] yields: 
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16, a ]  = [a (u ) ,  ii] + [u, a ( i ) ]  = 2D(u, a(u)). 

From 32, 

Thus - 
[ [ u ,  a(u) ]u ]  = [ i [ b , a ]  i - i h , u ]  = u, 
- 

showing y ([u, a(u)]) # 0. 
In light of these reductions we can suppose u E V , ,  and D;(q  = s # 0 

where s belongs to V,,, ,- , .  From Step 6 and Kostrykin's result mentioned in 
81  it follows that D$ = 0 SO that s is as in the first or second paragraph. 
When DD;,+ = 0 is appIied to Z, one obtains D,D,D:(F) = 0. Expanding D, 
in terms of D,, D, and using this result, one can show that D;(C) = 0. 
Therefore, according to the first paragraph, there is a E V -  ,,-,,+, with [s, 
i] E H, Dy,j semisimple with eigenvalues k2.  + 1, 0, (s, t )  = - 1, and 
3 y  - aas, 11) = 2. We will prove that 0 #*(;)E V-,,-, and that 

r cr ~1 o,' (ill) .t 0. 
To begin, observe that [[s, t]e] = -(s, ~ ) e  = e so that e E V , ( s )  and 

y([s, i]) = 1 and, as a further consequence, yus, 4) = 1. For each root 
/3 # 3 y - a, V I n p  is orthogonal to V l ,  -3v+2a relative to ( , ). Therefore [u, 
t ]  = (u ,  t )e  = 0 provided y # 3y - a. However, it is true that y # 3y - a 
in this case since ~ ( [ s ,  i]) = 1 = a([$, i]). Because [u ,  i ]  = 0 the mappings D, 
and D, commute. This gives 

o + ( s ,  i ) e  = [D;(P), r ]  = D,D: ( P )  = - D:D, (P) = [u, ~:(i)]. 

Thus 0; ( E )  # 0, and y(lu, 0; ( I ) ] )  # 0 wi11 follow from this calculation: 

= 3 [u, D: (i) ] - h. 

Therefore [u, D:(;)] = ([s, t] + h ) / 3  and y ( [ u ,  D ; ( i ) ] )  = 2 / 3 .  C] 

It remains to be shown that the nonzero root spaces of Vo are l-dimen- 
sional, and for every root space VOj8 of V,, V0,-, is also a root space with 
6 ([ V0,&, V0,-,J) # 0. Under the assumption that V, = I V2, V-,I 4- I V,, V -  ,I, 
the elements [u, 4 for u E V,,, and E V -  ,< - with fl  # y generate these 
root spaces. It suffices to show that there exist root vectors q, r with 
D:(L) = F, and [q, rj E H such that Iu, 4 E K-(q) for some i = * 1 or k 2. 
For if 6 = y - p, then S ( [ q ,  r]) = i implies V,,, c v.(q). All our previous 
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considerations applied to the decomposition 

L = F4 @ VI (4) @ Vo(q) @ v-l (4 )  @ Fr 

instead of to the one determined by e, j, h yield Vo, , is 1-dimensional and 

6 fl VO,~, vo, - 61) + 0- 
Step 8.  Each nonzero root of V, satisfies hypothesis (iii) of Block's theorem. 

PROOF. Let 0 # [u, 4 E Vo,, where u E Vl,y, i? E V -,,- and y # f i .  The 
first observation to make is that [u, u] = 0. Indeed if [u, u] # 0, then 
y - /3 + a = a and y = p contrary to assumption. Thus the product [u, a is 
symmetric in u and u because Iu, 4 = D (u, u) = [o, 4. 

Let us restrict first to the case D:(Z) = 0. Then there is iT E V -  ,,,, such 
that 

L = Fu CB V ,  (u) $ V,, (u) @ V -  I (u) @ FG. 

Relative to this decomposition C E V,(u), Vo(u) or V-,(u). Now i? E V,(u) 
can be ruled out since [ u ,  # 0. If i? E V,(u) then [u, 4 E V,(u) = Fu C 
Vl which contradicts lu, E Yo. So C E V-,(u) necessarily holds and [u, 
4 E V,(u) in this instance. 

Because of the symmetry of [u, 4 we can assume D:(Z) # 0, D ~ ( Z )  # 0. 
Let us suppose D,3 = 0 SO that b = D:(F) E Z leads to the decomposition 

L = F b B  Vl(b)@ Vo(b)  CB V-,(b) $Fa .  

Recall that u E Vl(b) and e ,  2, h E Z (b) in this situation so that C must be in 
Vl(b),  Vo(b) or V-,(b). In case 5 € Vo(b), then Iu, 4 E V,(b) as desired. On 
the other hand if 5 E Vl(b), then [u, 4 E V,(b). Lastly in the event 5 E 
V-l(b), o E V-,(b) also, and 0 # D:(3 E V-,(b). But this says -2P + a 
= - 2y + a, and /3 = y contrary to assumption. 

In the finaI consideration D: # 0 and D: # 0. The element s = D:(Z) 
gives the decomposition 

L = Fs GI Vl(s) 93 Vo(s) 63 V - ,  (s) @ F; 

where both u, e are in V,(s) and 2 E V, , (s ) .  Now i, belongs to some V-(s) 
but not to V2(s) = Fs since 0; = 0. Also u B ~i since they are different 
eigenspaces relative to h. It u E Vl(s), then i7 E V,(s) and [ u d  E Vl(s). If 
o E V- l(s), then C E V-,(s) and Iu, 4 E VL The finat case is v f 
V,(s). But then D:(F) E V-,(s) and so 0 # [s, D:(Z)] = (s, D : ( Z ) ) ~ .  This 
leads to 3 y - a - 3 P  + 2a = a. That is, P = y, contrary to assumption. 
Thus, in all possible situations the nonzero root spaces satisfy Block's 
assumptions. [j 

To conclude the proof of Theorem 3.2, we need only eliminate the 
possibility of having Albert-Zassenhaus algebras. However, by the proof of 
Step 7, H has a basis of elements whose adjoint mappings are semisimple with 
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eigenvalues k2, k 1, 0. The proof of Block's theorem shows that if the 
algebra is not classical then there is a root a # 0 such that a, 2a, . . . , 
(p - I)a are all roots. But then, since p > 5, a(g)  = O for every g E H, 
contradicting the fact that H is self-normalizing. So it must be that algebras 
satisfying the hypotheses of Theorem 3.2 are classical, and each classical 
algebra satisfies these hypotheses. 

Kostrykin 1141 has been concerned with conditions under which the degen- 
eracy of the KiHing form implies the algebra has nonzero absolute zero 
divisors. In light of Theorem 3.2 we have the following: 

THEOREM 3.5. Let L be a finite dimensional simple Lie algebra over an 
algebraically closed field of characteristic p > 5. Assume: 

( i)  there is an x # 0 such that D,P-' = 0;  and 
(ii) the Killing form of L is degenerate. 

Then L has nonzero absolute zero divisors unless L is classical of gpe A, or C,, 
for p dividing n + 1 ,  of type B,, for p diuiding 2n - 1 or of Vpe D, for p 
diuiding n - 1 .  
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