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We study Lie algebras generated by extremal elements (i.e., elements spanning
inner ideals) over a field of characteristic distinct from 2. There is an associative
bilinear form on such a Lie algebra; we study its connections with the Killing form.
Any Lie algebra generated by a finite number of extremal elements is finite dimen-
sional. The minimal numbers of extremal generators for the Lie algebras of type
An �n ≥ 1�, Bn �n ≥ 3�, Cn �n ≥ 2�, Dn �n ≥ 4�, En �n = 6� 7� 8�, F4 and G2 are
shown to be n + 1, n + 1, 2n, n, 5, 5, and 4 in the respective cases. These results
are related to group theoretic ones for the corresponding Chevalley groups. © 2001
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1. INTRODUCTION

Let k be a field of characteristic not 2 and L a Lie algebra over k.
We study the role of extremal elements in L, that is, those x ∈ L with
�x� �x�L�� ⊆ kx. Since an inner ideal of L is by definition [1] a linear
subspace I of L such that �I� �I�L�� ⊆ I, this amounts to kx being an inner
ideal. By � or, if necessary to express dependence on L, by ��L� we shall
denote the set of all nonzero extremal elements of L.
We are mostly interested here in Lie algebras generated by extremal ele-

ments. The main motivation stems from the fact that long root elements
are extremal in Lie algebras of Chevalley type (i.e., those Lie algebras
over k that are given by the multiplication table of a Chevalley basis,
coming from a simple Lie algebra in characteristic 0). They were used
by Chernousov [4] in his proof of the Hasse principle for E8. The asso-
ciated root groups were studied in a more abstract group theoretic set-
ting in [15]. Sandwiches, that is, elements x ∈ L with �x� �x�L�� = 0, are
extremal elements of a special kind; they are prominent in the classification
of finite dimensional simple modular Lie algebras over algebraically closed
fields of characteristics 5 and 7 and could well be useful in a similar way
for other positive characteristics; cf. [11]. Extremal elements themselves
are common in Lie algebras, as, by [10], any finite-dimensional Lie alge-
bra over an algebraically closed field of characteristic p > 5 has extremal
elements.
We shall be particularly concerned with Lie algebras which are generated

by a finite set of extremal elements. Such a Lie algebra has finite dimension;
see Section 4. By the work of Zel’manov and Kostrikin [18], there is a
universal Lie algebra �r generated by a finite number of sandwich elements
x1� � � � � xr ∈ �r ; it is nilpotent and of finite dimension. This leads to the
question of a description of these universal Lie algebras. Some information
about these for small values of r is given.
Using functions arising from the definition of extremal elements, we

are able to define an associative bilinear form f on L. In particular, if
x ∈ � and y ∈ L, then �x� �x� y�� is a multiple of x and so we can set
�x� �x� y�� = f �x� y�x. In Section 9 we discuss the connection of f with the
Killing form and give some information about the radical of this form. In
Section 8 we determine the minimal number of generators by extremal ele-
ments for the Lie algebras of Chevalley type. Exponentiation by adx for x
an extremal element gives an automorphism of L. The group generated by
these automorphisms satisfies some conditions defined by Timmesfeld [15],
which we discuss in Section 10.
We gratefully acknowledge some extremely useful discussions with

Gabor Ivanyos as well as computer verifications of our results on �5 by
Willem de Graaf.
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2. GENERAL PROPERTIES OF EXTREMAL ELEMENTS

Throughout the remainder of this paper k is a field of characteristic
distinct from 2 and L is a Lie algebra over k. By the linearity of �x� �x� y��
in y an element x of L is extremal if and only if there is a linear functional
fx 
 y �→ fx�y� on L such that, for all y ∈ L, we have

�x� �x� y�� = fx�y�x� (1)

Note that fx�y� = 0 if x and y commute.
The following three lemmas are known; see [4].

Lemma 2.1. If x� y ∈ � then fx�y� = fy�x�.
Lemma 2.2. Let x ∈ �. Then, for all y� z ∈ L,

2��x� y�� �x� z�� = fx��y� z��x+ fx�z��x� y� − fx�y��x� z�� (2)

2�x� �y� �x� z��� = fx��y� z��x− fx�z��x� y� − fx�y��x� z�� (3)

Lemma 2.3. Let x� y ∈ � and z ∈ L. Then

2��x� y�� �x� �y� z��� = fy�z�fx�y�x+ fx��y� z���x� y�
− fx�y��x� �y� z��� (4)

2��x� y�� ��x� y�� z�� = �fx��y� z�� − fy��x� z����x� y� + fx�y��fx�z�y
+ fy�z�x− �y� �x� z�� − �x� �y� z���� (5)

Proof. Expression (4) is the first identity of Lemma 2.2 with �y� z�
replacing z. Identity (5) follows from two applications of (4) and Jacobi.

The lemmas above also make it clear why we are assuming that the
characteristic of k is not 2.
Let x ∈ �. Because ad3x = 0, the exponential of the derivation s adx for

s ∈ k is given by

exp�x� s� 
= 1+ s adx +
s2

2
ad2x�

This is an automorphism of L in view of Identity (2) of Lemma 2.2. Denote
by G (or G�L� if necessary) the group of automorphisms of L generated
by all exp�x� s� for x ∈ � and s ∈ k.
We use these automorphisms to show that if a Lie algebra is generated

(as a Lie algebra) by extremal elements then it is also linearly spanned by
extremal elements.

Lemma 2.4. If L is generated as a Lie algebra by extremal elements then
it is linearly spanned by the set � of all extremal elements.
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Proof. We use induction on the length of z ∈ L as a bracketing of
elements from � (that is, obtained by forming successive brackets of ele-
ments from �). It readily reduces to the case where this length is 2, the
case of length 1 being z ∈ �. Suppose z = �x� y� with x� y ∈ �. Now let
m = exp�x� 1�y = y + �x� y� + 1

2fx�y�x. As exp�x� 1� is an automorphism
m is extremal, and so �x� y� is in the linear span of the extremal elements
x�m� y.

As a consequence of Lemma 2.4, the maps fx (x ∈ �) defined in the
beginning of this section give rise to a symmetric bilinear associative form.
Since its proof is a routine use of the identities above, we omit it.

Theorem 2.5. Suppose that L is generated by �. There is a unique bilinear
symmetric form f 
 L × L → k such that, for each x ∈ �, the linear form
fx coincides with y �→ f �x� y�. This form is associative, in the sense that
f �x� �y� z�� = f ��x� y�� z� for all x� y� z ∈ L.

The following consequence is direct from Identity (5) of Lemma 2.3 and
the above theorem.

Corollary 2.6. Let x� y ∈ � with fx�y� = 0 but �x� y� �= 0. Then �x� y� ∈
�, with f�x�y��z� = 1

2 �fx��y� z�� − fy��x� z��� for z ∈ L. If, moreover, fx = 0
then �x� y� ∈ � with f�x�y� = 0.

3. SOME EXAMPLES

We first discuss Lie algebras generated by two extremal elements.

Lemma 3.1. Let L be generated by two extremal elements x� y ∈ �. Then
one of the following three assertions holds.

(i) L = kx+ ky is Abelian, � = L \ �0�, and f = 0.

(ii) L = kx + ky + kz with z = �x� y� �= 0, its center Z�L� and
its commutator subalgebra �L�L� coinciding with kz, and L/Z�L� Abelian.
Thus, L is a Heisenberg algebra. Moreover, � = L \ �0� and f = 0.

(iii) L ∼= ��2 and � consists of all nilpotent elements of L. Thus,

� ∪ �0� = kx ∪ ky ∪ ⋃
δ∈k\�0�

k
(
δx+ δ−1λy + �x� y�

)
�

where λ = 1
2f �x� y� �= 0.

Proof. Clearly, x, y, and �x� y� linearly spanL. The rest is straightforward.
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Example 3.2. To see that there are real differences in the characteristic
2 case, let us take k = �/2� and look at the case where L is generated by
two extremal elements x� y with �x� �x� y�� = x. Then L = kx+ k�x� y� + ky
is not isomorphic to ��2, as it is simple whereas ��2 is not.

Next we deal with finite dimensional Lie algebras of Chevalley type.
A long root element of such a Lie algebra is an element of the form xα as
explained below with α a long root or the image of such an element under
a Lie algebra automorphism.

Proposition 3.3. Let L be a Lie algebra of Chevalley type over k. Then
� contains the long root elements of L. In particular, L is generated by �.
Moreover, if k has characteristic distinct from 2 and 3, every element of � is
a long root element.

Proof. Consider a Chevalley basis B of L with respect to a given Cartan
subalgebra H of L. Write � for the corresponding root system, and xβ for
the element of B associated with a given root β ∈ �. Suppose that α is a
long root in �. Then, for h ∈ H, we have �xα� �xα� h�� = α�h��xα� xα� = 0.
Moreover, for β ∈ �, the sum β + 2α is not a root in � unless β = −α,
so �xα� �xα� xβ�� = 0 unless β = −α, in which case the result is a multiple
of xα.
To see that L is generated by the long root elements, observe that L is

generated by the root elements of the basis B and (by analysis of the Lie
rank 2 case) that any short root element can be written as a sum of three
long root elements, as is clear from the following computations in the Lie
algebras of type B2 and G2, respectively.
For B2,

exp�xε1� 1�x−ε1+ε2︸ ︷︷ ︸
long

= x−ε1+ε2︸ ︷︷ ︸
long

± xε2︸︷︷︸
short

±xε1+ε2︸ ︷︷ ︸
long

�

For G2,
exp�xα� 1�xβ︸ ︷︷ ︸

long

+ exp�xα�−1�xβ︸ ︷︷ ︸
long

= 2 xβ︸︷︷︸
long

±2 x2α+β︸ ︷︷ ︸
short

�

As for the last assertion, let e ∈ �. Under the given characteristic restric-
tion for k, the proof of Lemma 2.1 of [1] and the paragraph following
Step 1 in the proof of Theorem 3.2 of [1] show that there exists a Cartan
subalgebra of L with eigenspace ke. Thus e is a root element. If the dia-
gram of L is not simply laced, short root elements of L are easily seen not
to be extremal. Hence e is a long root element.

We expect that, in characteristic 3, each extremal element is also a long
root element. Such an assertion might follow from a classification of nilpo-
tent elements in the Lie algebras of Chevalley type, but we have not been
able to verify this completely.
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4. L IS FINITE DIMENSIONAL IN THE FINITELY
GENERATED CASE

The following theorem is immediate from the work of Zel’manov and
Kostrikin [18].

Theorem 4.1. If L is generated as a Lie algebra by a finite number of
extremal elements, then L is finite dimensional.

Proof. Suppose that L is generated by extremal elements x1� � � � � xr .
Denote by f the associated bilinear form. We first consider the case in
which f is identically zero.

Lemma 4.2. Suppose that L is generated by elements x1� � � � � xr with
ad2xi = 0 for i = 1� � � � � r. Then L is finite dimensional and is nilpotent.

Proof. This is Theorem 1 of [17] except in characteristic 3, which is
covered by Theorem 1 of [18].

Let �r be the universal Lie algebra generated by r elements x1� � � � � xr
satisfying ad2xi = 0 for i = 1� � � � � r. In particular, �r is the quotient of the
free Lie algebra F generated by r elements f1� f2� � � � � fr with respect to
the ideal J generated by all �fi� �fi� u�� where u is a bracketing in the fi.

Lemma 4.3. Suppose that L is generated by r extremal elements where the
values of f need not all be 0. Then the dimension of L is at most dim�r . In
particular, L is finite dimensional.

Proof. For a nonzero bracketing in F , its length is understood to be
the total number of the fi which appear, counting multiplicities (e.g., the
length of ��f1� f2�� �f1� f3�� is 4). Choose bracketings w1� � � � � wt in the fi
such that �w1+ J� � � � � wt + J� is a basis of F/J, and let U be the linear span
of w1� � � � � wt . Then F = U + J. Consider the surjective homomorphism˜ 
 F → L determined by fi �→ xi. We claim that �w̃1� � � � � w̃t� linearly
spans L; i.e., Ũ = L.
Any element of J is a linear combination of terms

�us� �� � � � �u1� �fi� �fi� u��� � � ��� (6)

with u� u1� � � � � us bracketings in the fi. Suppose that Ũ is properly con-
tained in L. Then there exists a nonzero bracketing g ∈ F of minimal
length with g̃ �∈ Ũ . We may write g as a linear combination of the wi and
terms Ti as in (6) with all wi� Ti of the same length as g. Among these
terms Ti there is a term T = �us� �� � � � �u1� �fi� �fi� u��� � � ��� as in (6) with
T̃ �∈ Ũ . Set T0 
= �us� �� � � � �u1� fi� � � ���. Then f �xi� ũ�T̃0 = T̃ �∈ Ũ . Hence
f �xi� ũ� �= 0 and T̃0 �∈ Ũ with T0 a bracketing of shorter length than g, a
contradiction with the choice of g.

pulsa aceptar
Lemma 4.2. Suppose that L is generated by elements x1� � � � � xr withad2xi = 0 for i = 1� � � � � r. Then L is ﬁnite dimensional and is nilpotent.



128 cohen et al.

Combining these two lemmas proves Theorem 4.1.

Remark 4�4� We have worked out the Lie algebra for up to five gen-
erators and summarize the dimensions below. Let �r be the universal Lie
algebra generated by r extremal generators subject to f being identically 0.
Also, let �r be the free associative algebra over k generated by r elements
y1� y2� � � � � yr for which y2i = 0 and yiwyi = 0 where w is any bracketing in
the yis. Then �r/Z��r�, the image of �r under ad, is a quotient of �r in
view of (3) of Lemma 2.2. Our computations have found the values of the
corresponding dimensions in the table below.

Number of Generators dim�r dim�r

1 1 2
2 3 5
3 8 19
4 28 193
5 537 ?

The work of [16] gives upper bounds for dim�r which are much higher
than these actual values.
By way of example, consider the case r = 2. Put A1 = adx1 and A2 =

adx2 . Then a basis for �2 is x1� x2� �x1� x2� of size 3. A basis for �2 is I,
A1, A2, A1A2, A2A1, of size 5, as can be seen immediately. This explains
the corresponding entries for r = 2 in the above table.
We will explain in later sections how some of the other entries have been

determined. For the remainder we refer the reader to the algorithmic meth-
ods described in [13] and [8] using Lyndon words and to the computational
algebra packages GAP [5] (including the FPSLA program by Gerdt and
Kornyak) and LiE [9].
Let Rad�f � denote the radical of f , that is, the set of all y ∈ L for which

f �y� z� = 0 for all z ∈ L.

Corollary 4.5. If L is simple and generated by a finite number of
extremal elements, then f is nondegenerate and there is no x ∈ L, x �= 0, with
ad2x = 0. (This means that L is nondegenerate in the sense of [1].)

Proof. We know that f is nontrivial by Lemma 4.2. (Otherwise f is
identically 0 and L is nilpotent.) Thus, Rad�f � is a proper ideal of L and
so, as L is simple, Rad�f � = 0. This means that f is nondegenerate.
Suppose x ∈ L with ad2x = 0. Then x is extremal and �x� �x� y�� = 0 for

all y ∈ L. Hence x ∈ Rad�f �. This means x = 0.
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Remark 4�6� By the above corollary and the proof of Theorem 3.2 in [1],
for p > 5, the only modular finite dimensional simple Lie algebras over
an algebraically closed field of characteristic p and generated by extremal
elements are quotients of those of Chevalley type.

5. THE THREE GENERATOR CASE

Suppose that L is generated by three extremal elements x, y, z. We want
to determine the various possibilities for L. The identities of Lemmas 2.2
and 2.3, together with the identity

2��x� �y� z��� �y� �x� z��� = − 1
2
(
fy�z�fx��y� z��x+ fx��y� z��fx�z�y

+ fx��y� z��fx�y�z� − fy�z�fx�z��x� y�
+ fy�z�fx�y��x� z� − fx�z�fx�y��y� z��

show that

x� y� z� �x� y�� �x� z�� �y� z�� �x� �y� z��� �y� �x� z��
linearly span L. In particular, L is at most eight-dimensional. Hence, �3 is
also of dimension at most 8. It is readily checked, though, that the above
eight bracketings provide a basis in the free case, so dim�3 = 8.

Example 5.1. The algebra ��3 can be generated by three elements. It
can be realized as

x =
 0 1 0
0 0 0
0 0 0

 � y =
 0 0 0
1 0 0
0 0 0

 � z =
 1 1 1

1 1 1
−2 −2 −2


In this example, we have

f �x� y� = f �x� z� = f �y� z� = −2 and f �x� �y� z�� = 0�

The actions of adx and ady on the linear generators of L can be fully
described by means of the identities in terms of the four parameters f �x� y�,
f �x� z�, f �y� z�, and f �x� �y� z��.
We can describe the four parameters pictorially by drawing a tri-

angle with vertices x, y, and z and labeling the edge �x� y� with the
edge parameter f �x� y�, and so on, and putting the central parameter
f �x� �y� z�� in the middle, with an indication of orientation (note that
f �x� �y� z�� = f ��x� y�� z� = f �z� �x� y��, so the value is invariant under
cyclic permutations of the nodes).
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We shall reduce f �x� �y� z�� to zero by transforming the generators
using elementary transformations. To begin reduction, consider the triple
x� y� exp�x� s�z, where s ∈ k. It has the parameters

f �x� y� = f �x� y�
f �x� exp�x� s�z� = f �x� z�

f �y� exp�x� s�z� = f �y� z� − sf �x� �y� z�� + 1
2
s2f �x� y�f �x� z�

f �x� �y� exp�x� s�z�� = f �x� �y� z�� − sf �x� z�f �x� y��
Clearly, this triple again consists of extremal elements and generates the
same algebra as x, y, and z. If at least two of the three edges have nonzero
labels (e.g., f �x� z� and f �x� y�), then we can transform the central param-
eter to 0 (by taking s = f �x� �y� z��/�f �x� z�f �x� y��).
On the other hand, if at most one edge is nonzero, say f �x� y�, and

the central parameter f �x� �y� z�� is also nonzero, then the above trans-
formation shows that we can move to three extremal generators x, y,
exp�x� s�z with one more edge (namely, f �y� exp�x� s�z� and, if applicable,
f �x� y�) nonzero. Hence, we can reduce to the previous case (if necessary
in two steps), and so we may assume that the central parameter is zero:
f �x� �y� z�� = 0.
Next, we scale x, y, z to αx, βy, γz for nonzero α�β� γ ∈ k. This leaves

f �αx�βγ�y� z�� = 0 and changes the edge labels to

αβf �x� y�� αγf �x� z�� βγf �y� z��
We claim that, at the cost of a field extension of k, all nonzero edge labels
may be transformed into −2. If at least one of them is zero, this is obvious.
Otherwise, take

α =
√

−2f �y� z�
f �x� y�f �x� z� � β =

√
−2f �x� z�

f �x� y�f �y� z� � γ =
√

−2f �x� y�
f �x� z�f �y� z� �

Thus we are left with four essentially different cases, distinguished by the
number of nonzero labeled edges in the triangle. Straightforward computa-
tion using GAP [5] leads to the following descriptions of the resulting four
Lie algebras.

Theorem 5.2. Suppose that L is generated by three extremal elements.
Then after extending the field if necessary, L is generated by three extremal
elements whose central parameter is zero and whose nonzero edge parameters
are −2. In particular, L is a quotient of a Lie algebra M generated by extremal
elements x, y, z with f �x� �y� z�� = 0 and dimM = 8. Moreover, according to
whether the number of nonzero edge parameters is 0, 1, 2, or 3, the Lie algebra
M has the form �0�, �1�, �2�, or �3� below.



extremal element generated lie algebras 131

(0) f = 0 and M ∼= �3. Thus, M is nilpotent, with �M�M� = k�x� y� +
k�x� z� + k�y� z� + Z where Z = k�x� �y� z�� + k�y� �x� z�� = ��M�M��M� is
the center of M .

(1) f �x� y� = −2, f �x� z� = f �y� z� = 0, and M = Z ⊕ �M�M� where
Z = k�z − �x� �y� z�� − �y� �x� z��� is the center of M . The solvable radical of
M is R = kz + k�x� z� + k�y� z� + k�x� �y� z�� + k�y� �x� z��. The subalgebra
S = kx+ k�x� y� + ky is isomorphic to ��2 and M is the semi-direct product
of S and R. The S-modules k�x� z� + k�y� �x� z�� and k�y� z� + k�x� �y� z�� are
irreducible.

(2) f �x� y� = f �x� z� = −2, f �y� z� = 0, and M is the semi-direct prod-
uct of S = kx + k�x� y� + ky, which is isomorphic to ��2, and the solvable
radical R of M . Moreover, R = k�y − 1

2 �y� �x� z��� + k�z − 1
2 �y� �x� z��� +

k��x� y� − �x� z�� + k�y� z� + k�x� �y� z��, �R�R� = k�y + z − �y� �x� z��� +
k�y� z� + k�x� �y� z��, and �R� �R�R�� = k�y� z� + k�x� �y� z��. The center of
M is trivial and �M�M� =M . The subspace k�y + z− �x� �y� z�� − �y� �x� z���
of �R�R� is centralized by S.

(3) f �x� y� = f �x� z� = f �y� z� = −2 and M ∼= ��3 as described in
Example 5.1.

The algebra �3 can be determined easily. Again let Ai = adxi .

Words Conditions Number

I identity 1
Ai 3

AiAj i, j distinct 6
AiAjAk i, j, k distinct 6

AiAjAkAi i, j, k distinct 3

Note that in the last line as Ai�Aj�Ak�Ai = 0 we get AiAjAkAi =
AiAkAjAi and so there are only three of these. Note that these are the
only possibilities as multiplying one of the words of length 4 by any Al

obviously gives 0 on one side and gives 0 on the other side after using the
commutation rule just given. There is such an algebra, as we found by using
the four generator Lie algebra �4, to be described in the next section.

6. THE FOUR GENERATOR CASE

Definition 6.1. A monomial of length s is a bracketing of the form

�x1� �x2� � � � �xs−1� xs� � � ����
A monomial is reducible if it is a linear combination of monomials of strictly
smaller length.
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Lemma 6.2. Let L be generated by a subset D. Then L is the linear span
of all monomials in elements of D.

Proof. The proof is by induction on the length of a bracketing (with
respect to D) and Jacobi.

Proposition 6.3. Let L be generated by the extremal elements x� y� z� u.
Then L is linearly spanned by the following 28 monomials of length ≤5:

x� y� z� u�

�x� y�� �x� z�� �x� u�� �y� z�� �y� u�� �z� u��
�x� �y� z��� �x� �y� u��� �x� �z� u��� �y� �x� z��� �y� �x� u��� �y� �z� u���

�z� �x� u��� �z� �y� u���
�x� �y� �z� u���� �x� �z� �y� u���� �y� �x� �z� u���� �y� �z� �x� u����

�z� �x� �y� u���� �z� �y� �x� u����
�x� �y� �z� �x� u����� �y� �x� �z� �y� u����� �z� �x� �y� �z� u�����

�u� �x� �y� �z� u�����

Proof. Since L is linearly spanned by the monomials in x� y� z� u, we
have to show that each monomial may be written as a linear combination
of the given 28 elements.
All monomials of length 1 are on the list. There are 4 · 3 monomials of

length 2 with different factors. Since �a� b� = −�b� a� for all a� b ∈ L, all of
them may be expressed by the six monomials of length 2 on the list.
All monomials of length 3 which involve only two letters are reducible,

since x� y� z� u are extremal. There are 4 · 3 · 2 monomials of length 3 with
three different letters. With antisymmetry, all �x� �a� b�� and all �y� �a� b��
may be expressed. By Jacobi this holds also for the remaining ones.
All monomials of length 4 which involve only three letters are reducible;

see the identity for 2�x� �y� �x� z��� in Lemma 2.2. There are 4 · 3 · 2 mono-
mials of length 4 with different factors.
With Jacobi we have the following equations

�x� �y� �z� u��� − �x� �z� �y� u��� + �x� �u� �y� z��� = 0� (7)

�y� �x� �z� u��� − �y� �z� �x� u��� + �y� �u� �x� z��� = 0� (8)

�z� �x� �y� u��� − �z� �y� �x� u��� + �z� �u� �x� y��� = 0� (9)

The elements in the first two columns are on the list. Hence all mono-
mials beginning with x, y, or z may be expressed as a linear combination
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of the given 28 basis elements. For the monomials beginning with u, we
calculate

�u� �x� �y� z��� − �x� �u� �y� z��� + ��y� z�� �u� x�� = 0� (10)

�u� �y� �x� z��� − �y� �u� �x� z��� + ��x� z�� �u� y�� = 0� (11)

�u� �z� �x� y��� − �z� �u� �x� y��� + ��x� y�� �u� z�� = 0� (12)

The products of the form ��a� b�� �c� d�� may be expressed as

�x� �y� �z� u��� − �y� �x� �z� u��� + ��z� u�� �x� y�� = 0� (13)

�x� �z� �y� u��� − �z� �x� �y� u��� + ��y� u�� �x� z�� = 0� (14)

�y� �z� �x� u��� − �z� �y� �x� u��� + ��x� u�� �y� z�� = 0� (15)

Hence also the monomials of length 4 beginning with u may be expressed
as a linear combination of the monomials on the list.
We obtain monomials of length 5 by multiplying a letter from the

left with a monomial �a� �b� �c� d��� of length 4. This yields four pos-
sibilities: first, �a� �a� �b� �c� d����, which obviously is reducible; second,
�b� �a� �b� �c� d����, which is of the form �b� �a� �b� e��� and hence is
reducible; third, �c� �a� �b� �c� d����. There is no obvious way to rewrite
this. And fourth we have �d� �a� �b� �c� d����, which yields the previous case
by interchanging c and d. We are left with the monomials of the form
�c� �a� �b� �c� d���� or �d� �a� �b� �c� d����, where �a� �b� �c� d��� is one of the
monomials of length 4 on the list. This yields the following 12 monomials
m11�m12� � � � �m34 (mij is in row i and column j):

�z� �x� �y� �z� u����� �y� �x� �z� �y� u����� �z� �y� �x� �z� u�����
�x� �y� �z� �x� u����� �y� �z� �x� �y� u����� �x� �z� �y� �x� u�����
�u� �x� �y� �z� u����� �u� �x� �z� �y� u����� �u� �y� �x� �z� u�����
�u� �y� �z� �x� u����� �u� �z� �x� �y� u����� �u� �z� �y� �x� u�����

Our intended basis vectors are m11�m12�m14�m23. We may express the
other eight elements as follows:

m24: with (7),
m13�m31: with (13) and (12),
m32: with (8),
m21�m33: with (14) and (11),
m22�m34: with (15) and (10).

Finally, we show that all monomials of length 6 are reducible. We multi-
ply the monomials of length 5 on the list with a letter. Note that all these
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monomials of length 5 are of the form ±�c� �a� �b� �c� d����. Multiplica-
tion from the left with c or a yields reducible monomials. Next, we deal
with �b� �c� �a� �b� �c� d�����. With Jacobi we may pass from �a� �b� �c� d���
to �b� ��c� d�� a�� and ��c� d�� �a� b��. From ��c� d�� �a� b��, we pass to
�d� �c� �a� b��� and �c� ��a� b�� d��. Now we multiply first with c, then with
b from the left. This yields products of the form �b� �c� �b� ��c� d�� a����,
�b� �c� �d� �c� �a� b�����, and �b� �c� �c� ��a� b�� d����, which are all reducible.
(Look for patterns of the type �u� �v� �u�w���.) The last monomial we have
to reduce is of the form �d� �c� �a� �b� �c� d�����. We pass from �b� �c� d�� by
Jacobi to v1 = �c� �d� b�� and v2 = �d� �c� b��. The products �d� �c� �a� v1���
and �d� �c� �a� v2��� are reducible. (In the second one, the two letters d are
at distance 3.)
As a consequence all monomials of length ≥6 are reducible and may be

written as a linear combination of the 28 vectors on the list.

Remark 6�4� Removing all elements involving a letter u from the list
for the 4-generator case yields a spanning set of size 8 for the 3-generator
case. More generally, for r ∈ �, r > 1, the Lie algebra �r−1 is a Lie sub-
algebra of �r , generated by the first r − 1 elements of a set �x1� � � � � xr�
of extremal generators for �r . The module generated by xr under the ad
action of �r−1 gives the algebra �r−1 defined in Remark 4.4. (This can be
proved by observing that the defining relations for �r are homogeneous
with respect to the multidegree counting the number of each xi, so that a
nontrivial relation amongst bracketings in �r−1xr would lead to a nontrivial
homogeneous relation of xr-degree 1. Thus, no relation in �r−1xr involves
relations coming from ad2xr = 0, and so any linear relation amongst brack-
etings in �r−1xr is a consequence of the defining relations of �r−1.)
Counting the monomials with a single u in the list of Proposition 6.3, we

find dim�3 = 19, distributed according to length as follows, where length
of course stands for the length in �3, which is one less than the length of
these monomials of Proposition 6.3.

Length: 0 1 2 3 4

Number 1 3 6 6 3

The algebra �4 has dimension 193. This can be seen by routine enumer-
ation which we do not include. However, we list the numbers of words of
each length in the table below.

Length: 0 1 2 3 4 5 6 7 8 9

Number 1 4 12 24 36 40 36 24 12 4

Note that in all of these algebras �2, �3, �4 the number of words with a
given length is symmetric about the highest number after deleting the one
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word of length 0 which is the identity. We wonder if this behavior persists
for �m with m ≥ 5.

7. QUADRATIC MODULES

Definition 7.1. Let L be a Lie algebra generated by extremal elements.
We call an L module U quadratic if there is a generating set D of extremal
elements of L such that x · �x ·U� = 0 for all x ∈ D.

Remark 7�2� Suppose that L is generated by n extremal elements. Con-
sider the subalgebra A generated by the set D of any n− 1 extremal gen-
erators of L. Since A is an A-submodule of L, the quotient L/A is also an
A-module. Clearly, x · �x · L/A� = 0 for all x ∈ D, and D ⊆ ��L� ∩A ⊆
��A�. Therefore, L/A is a quadratic A module.

Because of this it is natural to study quadratic modules. We give the
irreducible quadratic modules for Lie algebras of Chevalley type.

Proposition 7.3. Let L be a Lie algebra of Chevalley type and k a field
of characteristic distinct from 2 and 3. The highest weights of its nontrivial
quadratic highest weight modules of finite dimension are given in the table
below.

Type of L Highest Weights

An ω1� � � � � ωn

Bn ω1, ωn

Cn ω1� � � � � ωn

Dn ω1�ωn−1�ωn

E6 ω1�ω6
E7 ω7
F4 ω4
G2 ω1

Proof Sketch. (A strongly related result for groups can be found in [12].)
Let V be a nontrivial quadratic highest weight module for L of finite dimen-
sion. By Proposition 3.3, there is a single G orbit of extremal elements in
L. Moreover, all these (long root) elements have the same nilpotency index
on V (because the highest weight representation is equivalent to a compo-
sition of itself with conjugation by an element of G). Consequently, each
element x ∈ ��A� satisfies x · �x · V � = 0.
In particular, for every long root α, the corresponding Chevalley basis

element xα is nilpotent of index 2. It follows that if µ is a weight of V
then µ− 2α is not. Since the set of weights for V is a convex subset of the
coset of the root lattice containing the highest weight, only small weights
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can occur. Thus, the result can be readily established by use of the LiE,
program, cf. [9], and the following argument for the case of a single root
length.

Lemma 7.4. Suppose that L is a Lie algebra of Chevalley type with only
one root length. If U is an irreducible quadratic finite dimensional L-module,
then U is a minuscule weight representation.

Proof. Let λ be the highest weight of U . Suppose µ is a weight for U .
Then there is a path of weights from µ to λ such that for each adjacent
pair �µ1� µ2� from the path the difference µ2 − µ1 is a positive root. Since
there is only one root length, each of these differences is a root whose root
element is extremal. Now take the fundamental ��2-triplet containing this
root element. Quadraticity means that the nontrivial irreducible subrepre-
sentations in U of the corresponding subalgebra isomorphic to ��2 all have
dimension 2. But µ1, µ2 are in the same representation, so they belong to
a two-dimensional module. But then they are conjugate by an element of
the corresponding subgroup of type A1. This establishes that U has a basis
of weight spaces which are all conjugate, which can be taken as a definition
of minuscule.

Remark 7�5� For the Lie algebra of type E8 there are no nontrivial
finite dimensional quadratic modules. Thus, this Lie algebra can only
occur as a direct component of a bigger Lie algebra generated by extremal
elements.

8. THE MINIMAL NUMBER OF EXTREMAL GENERATORS
FOR LIE ALGEBRAS OF CHEVALLEY TYPE

Let � be a Lie algebra of Chevalley type over k (of characteristic distinct
from 2). As we have seen in Proposition 3.3, the long root elements of �
are extremal elements and � is generated by these extremal elements. Write
t��� for the minimal number of these extremal generators of �. In this
section, we determine t�g�. We discuss implications for the group analog in
Section 10.
Fix a Cartan subalgebra 	 of � and let � be the corresponding root

system. Throughout this section xα and hα denote, respectively, the root
element and the element in 	 of � corresponding to the root α in �. Also,
exp�xα� denotes exp�xα� 1� in the notation of Section 2. The signs appearing
here in the multiplication rules for the xα are the ones arising from the
implementations in the relevant packages. In general, the signs depend on
the choice of a Chevalley basis.
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Lemma 8.1. Let � be a Lie algebra of Chevalley type and let α1� � � � � αn

be the simple roots in �. Denote by β the root of highest height. Then � is
generated by the root elements xα1� xα2� � � � � xαn� x−β.

Proof. The simple root elements with respect to � generate the sub-
algebra 
 = ∑

α∈�+ �α where �+ is the set of positive roots and �α is a
root space. The lemma follows from the fact that the 
-submodule of �,
generated by the root element corresponding to the root of lowest height,
coincides with �.

Theorem 8.2. Let � be a Lie algebra of Chevalley type over the field k of
characteristic distinct from 2. Then the number t��� is as given in the table

Type of � t��� Condition

An n+ 1 n ≥ 1
Bn n+ 1 n ≥ 3
Cn 2n n ≥ 2
Dn n n ≥ 4
En 5 n = 6� 7� 8
F4 5
G2 4

The proof of the theorem will be given in the rest of this section.

Lemma 8.3. If � has an irreducible representation of dimension N and
its extremal elements have rank m in this representation, then the number of
extremal elements generating � is at least N/m.

Proof. If � is generated by the extremal elements x1� � � � � xt , then the
image of � in V , the underlying N-dimensional vector space, is generated by

�Im x1� � � � � Im xt� = �Im x1� + · · · + �Im xt��
of dimension at most tm. Thus, irreducibility of the representation implies
tm ≥ N; whence we have the lemma.

Here is an upper bound for algebras without multiple bonds.

Lemma 8.4. If the root system of � has just one root length, then t��� ≤
n+ 1, where n is the rank of �.

Proof. This follows immediately from Lemma 8.1.

Lemma 8.5. If � is generated by t extremal elements, then t��� ≥ 4 if
dim � ≥ 9, and t��� ≥ 5 if dim � ≥ 29.

Proof. This is immediate from the dimensions given in Section 5 and in
Proposition 6.3.
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The previous lemmas suffice for the proof of all exact lower bounds
on t���.
For An, consider the natural representation of dimension N = n + 1.

Since extremal elements have rank 1 in this representation, Lemma 8.3
gives t�An� ≥ n+ 1.
For Bn, Lemma 8.3 applied to the natural module for � (of dimension

2n+ 1, in which the extremal elements have rank 2), we find t��� ≥ �2n+
1�/2; whence t�Bn� ≥ n+ 1. Observe that for n = 2, this bound is not sharp.
Since the Lie algebra of type B2 has dimension 10, at least four extremal
generators are needed in view of Lemma 8.5. This lower bound coincides
with the result for the Lie algebra of type C2 (which is isomorphic to the
one of type B2).
For Cn, Lemma 8.3 applied to the natural module for � (of dimension

2n, in which the extremal elements have rank 1), we find t�Cn� ≥ 2n.
For Dn, recall that the Lie algebra has a natural representation of dimen-

sion 2n, in which extremal elements have rank 2; hence, by Lemma 8.3,
t�Dn� ≥ n.
For the exceptional Lie algebras, Lemma 8.5 shows that the Lie alge-

bra of type G2 is generated by no fewer than four extremal elements and
the other four (types F4 and E6, E7, E8) are generated by no fewer than
five extremal elements. When k has characteristic 3, the Lie algebra � of
Chevalley type G2 has a seven-dimensional simple quotient. This quotient
is isomorphic to a quotient of ��3 by its center, and is generated by three
extremal elements. Nevertheless, � itself, being 14-dimensional, cannot be
generated by fewer than four extremal elements.
To prove the theorem, it remains to show that there is a generating

set of extremal elements of the size indicated in the table. To this end,
we often argue along the following lines. Let � be the Lie algebra under
consideration. We shall work with a fixed Chevalley basis � of � and a fixed
root system whose simple roots α1� � � � � αn are labeled as in [3]. When we
talk about root elements corresponding to specific roots we mean elements
from this basis.
We shall select a Lie subalgebra M of � of Chevalley type generated by

extremal elements, usually chosen from �. Let � = M ⊕ V1 ⊕ · · · ⊕ Vr be
the decomposition of the M-module � into irreducible M-modules. The
modules Vi are often spanned by certain elements of � and usually the
index i corresponds to coefficients of simple roots not supported in M . We
shall write down an element d which is the image of an extremal element
under a composition of exponentials of root elements. It is an extremal
element whose projections onto many of the modules Vj �j = 1� � � � � r�
are nonzero. Next, we take C to be the Lie algebra generated by M and
d, and, by suitably bracketing d by elements of C, we find vectors from
each Vj , usually again elements of �. Once those are found, we see that C
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coincides with �, so t��� ≤ t�M� + 1. (In the case � is of type Cn, we need
two additional extremal elements instead of one outside M , and there we
show that t��� ≤ t�M� + 2.)
We start with the classical Lie algebras. In this case, with the exception of

An, we will write the simple roots using the unit orthonormal vectors in �n,
ε1� � � � � εn with αi’s expressed in terms of εi’s as in Bourbaki. To treat the
algebras F4, E6, E7, and E8 we use the fact that each contains a D4 which
is generated by four extremal elements. We then look for a fifth “generic”
additional vector which has components in all factors of a decomposition
of L/D4 as a D4 module.
All computations were made using the ELIAS routines [6] in GAP

[5] and LiE [9]. The signs appearing here are the ones arising from the
implementations in the relevant packages. In general, the signs depend on
the choice of Chevalley basis.

8�1� Type An. By Lemma 8.4 we know that An can be generated by
n+ 1 extremal elements, that is, t�An� ≤ n+ 1. So there is nothing left to
prove.

8�2� Type Bn. Let � be the Lie algebra of type Bn.
First assume that n = 3. Take M to be the Lie subalgebra of � generated

by the root elements corresponding to the first two simple roots, ε1 − ε2
and ε2 − ε3, and their negatives. Then M is of type A2 and contains the
root elements x±�ε1−ε2�, x±�ε2−ε3�, and x±�ε1−ε3�. Moreover, � decomposes as

� =M ⊕ V−2 ⊕ V−1 ⊕ V1 ⊕ V2 ⊕H0�

where V1 is the natural M-module linearly spanned by root elements xε1 ,
xε2 , and xε3 ; V2 is spanned by root elements xε1+ε2 , xε1+ε3 , and xε2+ε3 . Their
dual M-modules V−1 and V−2 are natural M-modules linearly spanned by
x−ε1 , x−ε2 , x−ε3 and x−�ε1+ε2�, x−�ε1+ε3�, x−�ε2+ε3�, respectively, and H0 is the
trivialM-submodule of L, spanned by the torus element hε3

centralizingM .
Now we write

d = exp�x−�ε1+ε2�� exp�xε1�x−�ε1−ε2�
= x−�ε1−ε2� − xε2 + xε1+ε2 + x−ε1 + h−�ε1+ε2� − x−�ε1+ε2��

Consider the Lie subalgebra C of � generated by M and d. As xε1−ε2 ∈
M , we have −xε1 − x−ε2 +M = �xε1−ε2� d� +M ⊆ C, whence xε1 + x−ε2 ∈
C. Bracketing by the element xε2−ε3 of M , we find x−ε3 ∈ C. In particular,
the M-submodule V−1 generated by this element belongs to C, whence also
x−ε1 , and so e 
= d − x−�ε1−ε2� − x−ε1 ∈ C.
Taking brackets of x−ε1 with e gives 2x−�ε1−ε2� − xε2 + x−ε1 ∈ C, whence

xε2 ∈ C. In particular, xε3 , which lies in the same M-submodule, belongs
to C and hence so do all root elements corresponding to positive roots.
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But then e + C = x−�ε1+ε2� + C ⊆ C, and so also the lowest root element
belongs to C. The root elements corresponding to the simple roots and to
the lowest root generate �, so C = �. Thus t��� ≤ t�M� + 1 = 4.
Next, assume n ≥ 4. In the Lie algebra � of type Bn we have the Lie

subalgebra M of type Dn generated by all long root elements (extremal
elements) of the form xεi±εj �1 ≤ i < j ≤ n�. As an M-representation space,
� decomposes into the adjoint module M and the natural representation
V1 of degree 2n. Here, V1 is linearly spanned by the elements x±εj �j =
1� � � � � n� from the Chevalley basis �.
Now

d 
= exp�xε2�xε1−ε2 = xε1−ε2 − xε1 − xε1+ε2

is an extremal element. Let C be the Lie subalgebra of � generated
by M and d.
We show that it is �. Because d +M = xε1 +M , we see xε1 ∈ C; whence

V1 ∩ C �= �0�. By the irreducibility of V1, we find that x±εj ∈ C for all j.
Thus, C contains all root elements of the standard Chevalley basis � of �
and so coincides with �.
The conclusion is that t�Bn� ≤ t�Dn� + 1. In particular, the proof of the

theorem for Bn is complete once the theorem is shown to hold for Dn (as
then t�Dn� = n).

8�3� Type Cn. Suppose n ≥ 2 and let � be the Lie algebra of type Cn.
Take M to be the Lie subalgebra of type Cn−1 generated by the root ele-
ments with roots in the linear span of ε2� � � � � εn. Then � decomposes as

� =M ⊕ V1 ⊕ V−1 ⊕ V2 ⊕ V−2 ⊕ V0�

where V1 and V−1 are natural M-modules, spanned by all root elements
with first simple root coordinate 1, respectively −1, and V2, V0, V−2 are
trivial modules, spanned by x2ε1 , h2ε1 , and x−2ε1 , respectively.
Now take

d1 = exp�x−�ε1+ε2��x2ε1 = x2ε1 − xε1−ε2 − x−2ε2

and

d2 = exp�xε1+ε2�x−2ε1 = x−2ε1 + x−�ε1−ε2� − x2ε2 �

Let C be the Lie subalgebra generated by M , d1, and d2. Then d1 +M =
x2ε1 − xε1−ε2 +M and d2 +M = x−2ε1 + x−�ε1−ε2� +M .
Now C = �x−2ε2� d2� + C = x−�ε1+ε2� + C, and C = �x2ε2� d1� + C =

xε1+ε2 +C; so generators for each natural M-submodule of � are in C. But
then C = d1 + C = x2ε1 + C and C = d2 + C = x−2ε1 + C, so V2 and V−2
are also contained in C. We have established that � ⊆ C, whence C = �.
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The conclusion is that t��� ≤ t�M� + 2. If n = 2, then M is of type A1,
so we have t�M� = 2 and t��� ≤ 4. By induction, we find t��� ≤ 2n for
arbitrary n.

8�4� Type Dn. First we consider the case n = 4. LetM be the subalgebra
of � generated by the root elements corresponding to the roots x±�ε1−ε2�,
x±�ε2−ε3�, and x±�ε1−ε3�. Then M is of type A2 and � decomposes as

� =M ⊕ Vε3−ε4 ⊕ Vε3+ε4 ⊕ V1�0 ⊕ V0�1 ⊕ V1�1 ⊕ V−1�0 ⊕ V0�−1 ⊕ V−1�−1�

where Vi�j is a three-dimensional module linearly spanned by the root ele-
ments corresponding to simple roots of the form λ�ε1 − ε2� +µ�ε2 − ε3� +
i�ε3 − ε4� + j�ε3 + ε4� where λ, µ are scalars and Vε3−ε4 and Vε3+ε4 are
one-dimensional M-modules.
Consider

d = exp�xε1+ε4� exp�x−�ε3−ε4�� exp�x−�ε1+ε3��xε3−ε4
= −xε1+ε3 − 2xε1+ε4 + xε3−ε4 − 2x−�ε3−ε4�
−x−�ε1+ε3� + x−�ε1+ε4� + h−�ε3−ε4� + hε1+ε4 �

This is an extremal element as it is the image of a root element under
an automorphism of �.
Denote by C the Lie subalgebra of � generated by M and d. A compu-

tation shows that

�x−�ε1−ε3�� �xε1−ε2� d�� = −x−�ε2−ε3� + x−�ε1+ε2��

Since x−�ε1−ε3�, xε1−ε2 , x−�ε2−ε3� ∈ M , we derive x−�α1+2α2+α3+α4� =
x−�ε1+ε2� ∈ C; that is, the lowest root element belongs to C. It follows
that V−1�−1 ⊆ C.
Another computation yields

�x−�ε2−ε3�� �x−�ε1−ε2�� d�� = −2xε3+ε4 + x−�ε1−ε3��

Similar to the above, we derive xα4 = xε3+ε4 ∈ C. So V0�1 ⊆ C.
By computation, we have

�xε1−ε2� �hε1−ε3� �x−�ε1+ε3�� d��� = x−�ε2+ε4��

Since xε1−ε2 , hε1−ε3 ∈M and x−�ε1+ε3� ∈ V−1�−1 ⊂ C, we see that x−�α2+α4� =
x−�ε2+ε4� ∈ C, whence V0�−1 ⊂ C.
Since x−�ε1+ε4� ∈ V0�−1 ⊆ C and hε1−ε3 ∈M , we have

C = �x−�ε1−ε3�� �xε1−ε3� d�� + C

= x−�ε1+ε4� + 2hε1−ε3 + xε3−ε4 + C = xε3−ε4 + C�

and so xα3 = xε3−ε4 ∈ C. So V1�0 ⊆ C.



142 cohen et al.

We have seen that the root elements corresponding to all four simple
roots and to the lowest root belong to C. Since they generate �, we conclude
that C = �; whence t��� ≤ t�M� + 1 = 4.
Assume, from now on, that n > 4. We show that the Lie algebra � of

type Dn satisfies t��� ≤ n.
Let M be the Lie subalgebra of � generated by all root elements corre-

sponding to the subrootsystem on εi ± εj for 2 ≤ i < j ≤ n. Then M has
type Dn−1. As an M-module, � decomposes as

� =M ⊕ V1 ⊕ V−1 ⊕H0�

where H0 is a one-dimensional toral subalgebra centralizing M , and V1, V−1
are natural modules spanned by all root elements whose root vectors have
first coordinate (with respect to the basis of simple roots) equal to 1, or
−1, respectively.
By induction t�M� ≤ n− 1, so we need to find an extremal element of �

that, together with M , generates �. Take

d = exp�x−�ε1−ε2��xε1−ε2 = xε1−ε2 − hε1−ε2 − x−�ε1−ε2��

Now �xε2−ε3� d� +M = −xε1−ε3 +M , so xε1−ε3 ∈ C; whence every root ele-
ment whose root has first root coordinate 1 belongs to C. That is, V1 ⊆ C
and therefore xε1−ε2 ∈ C. Similarly, C = �x−�ε2−ε3�� d� + C = −x−�ε1−ε3� +
C, and so also every root element whose root has first coordinate −1
belongs to C. That is, V−1 ⊆ C and therefore x−�ε1+ε2� ∈ C. Thus, all root
elements from the standard Chevalley basis belong to C, proving C = �,
and t��� ≤ t�M� + 1 = n.

8�5� Type E6. Let us denote by α1� α2� α3� α4� α5� α6 the simple roots
of 6. Let M be a subalgebra of 6 generated by M = �xα2� xα3� xα4� xα5�
x−�α2+α3+2α4+α5��. Then M is of type D4. One has the decomposition of 6

6 =M ⊕W ⊕ V0�1 ⊕ V1�0 ⊕ V1�1 ⊕ V0�−1 ⊕ V−1�0 ⊕ V−1�−1�

where Va�b is the module generated by all xα with a the coefficient of α1
and b the coefficient of α6 in α. The action of M on W is trivial.
We need one more extremal element.

d = exp�x−�α1+α3+α4�� exp�xα3+α4+α5+α6� exp�x−�α1+α2+α3+2α4+2α5+α6��xα1
= xα1 − x−�α2+α3+2α4+2α5+α6� + xα1+α3+α4+α5+α6 + x−�α2+α4+α5�

−x−�α3+α4� − x−�α1+α2+2α3+3α4+2α5+α6�

+xα5+α6 − x−�α1+α2+α3+2α4+α5��

We claim that the subalgebra C generated by M and d is the whole
algebra 6.
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The root elements x−�α2+α4+α5� and x−�α3+α4� belong to M , so e 
= d −
x−�α2+α4+α5� + x−�α3+α4� is in C. Since xα3 , x−α5 , and x−α2 are in M , the
following brackets are in C:

�xα3� e� = xα1+α3� �x−α5� e� = xα6� and

�x−α2� e� = −x−�α1+2α2+2α3+3α4+2α5+α6��
But xα1+α3 ∈ C implies V1�0 ⊂ C, and so xα1 ∈ C.
Now C contains all the simple root elements and the lowest root element.

By Lemma 8.1, we are done.

8�6� Type E7. Let us denote by α1� α2� α3� α4� α5� α6� α7 the simple roots
of 7. Take the subalgebra M of type D4 in 7 exactly as in 6.
To generate the whole algebra 7, consider the extremal element

d = exp�xα2+α3+α4+α5+α6+α7� exp�x−�α1+α3��
exp�x−�α1+α2+α3+2α4+α5+α6�� exp�xα3+α4+α5+α6�
exp�x−�α1+α2+α3+2α4+2α5+α6+α7��xα1

= xα1 + xα4+α5+α6 + xα1+α3+α4+α5+α6 + xα2+α4+α5+α6+α7
+ xα1+α2+α3+α4+α5+α6+α7 − xα1+α2+2α3+3α4+2α5+α6
+ xα1+2α2+2α3+3α4+2α5+α6+α7 − x−α3 + x−�α2+α4� − x−�α4+α5�

− x−�α1+α2+α3+α4� + x−�α1+α3+α4+α5� − x−�α2+α3+2α4+α5+α6�

− x−�α1+α2+2α3+2α4+α5+α6� − x−�α2+α3+2α4+2α5+α6+α7�

− x−�α1+α2+2α3+2α4+2α5+α6+α7� − x−�α1+2α2+2α3+4α4+3α5+2α6+α7�

+ x−�2α1+2α2+3α3+4α4+3α5+2α6+α7��

We show that the subalgebra C generated by M and d is the whole algebra
7. The root elements x−α3 , x−�α2+α4�, and x−�α4α5� belong to M , so e 
=
d + x−α3 − x−�α2+α4� + x−�α4+α5� is in C. The Lie algebra 7 decomposes as

7 =M ⊕W ⊕ V0� 0� 1 ⊕ V0� 1� 0 ⊕ V0� 1� 1 ⊕ V0� 2� 1 ⊕ V1� 0� 0 ⊕ V1� 1� 0

⊕V1� 1� 1 ⊕ V1� 2� 1 ⊕ V2� 2� 1 ⊕ V0� 0�−1

⊕V0�−1� 0 ⊕ V0�−1�−1 ⊕ V0�−2�−1

⊕V−1� 0� 0 ⊕ V−1�−1� 0 ⊕ V−1�−1�−1

⊕V−1�−2�−1 ⊕ V−2�−2�−1�

where W is a three-dimensional module with trivial M action. The modules
V1�0�0, V0�1�1, V0�1�0, and V1�2�1 have dimension 8 and Va�b�c is generated by
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all root elements not in M such that a is the coefficient of α1, b of α6, and
c of α7.
The bracket �xα2+α3+2α4+α5� �xα3� e�� is easily computed to be a nonzero

scalar multiple of xα1+α2+2α3+2α4+α5 , and, since both arguments of the
bracket belong to M , the element xα1+α2+2α3+2α4+α5 belongs to C. Conse-
quently, V1�0�0 is contained in C and so xα1 ∈ C.
Since x−�α4+α5�� xα5 ∈ C, we have �xα5� �x−�α4+α5�� e�� = −xα5+α6 ∈ C. So

V0�1�0 ⊂ C and xα6 ∈ C. Also, �x−α5� �xα3� e�� belongs to C. Expanding it,
we find x−�α1+α2+α3+2α4+2α5+α6� ∈ C. Hence C contains V−1�−1�0 and taking
brackets with xα1 we obtain V0�−1�0 ⊂ C.
Now xα7 ∈ C, as �x−�α3+α4+α5+α6�� �x−�α1+α2+α3+α4+α5+α6�� e�� is a nonzero

element of kxα7 + V0�−1�0 which also belongs to C.
Finally, as xα5+α6 ∈ C and �x−α4� e� = xα5+α6 − x−�α1+α2+2α3+3α4+2α5+α6+α7�,

we find V−1�−1�−1 ⊂ C. Taking brackets with a convenient element of
V−1�−1�0, we see that also the lowest root element is in C. Now C = 7 by
Lemma 8.1.

8�7� Type E8. Let α1� α2� α3� α4� α5� α6� α7� α8 be the simple roots
of 8. Adopt here the notation �a1� a2� a3� a4� a5� a6� a7� a8� for a root
α = ∑8

i=1 aiαi. Consider the subalgebra M of type D4 in 8 as in 6. We
have the following decomposition of 8 into M modules.

8 =M ⊕W ⊕ ⊕
a� k� l�m∈I

Va� k� l�m�

where W is a 28-dimensional trivial module, Va�k�l�m is an irreducible
8-dimensional module generated by all roots elements xα where a, k, l, m
are respectively the coefficients of α1, α6, α7, α8 in α, and

I = ±��0� 1� 0� 0�� �0� 1� 1� 0�� �0� 1� 1� 1�� �1� 0� 0� 0�� �1� 1� 0� 0��
�1� 1� 1� 0�� �1� 1� 1� 1�� �1� 2� 1� 0�� �1� 2� 1� 1�� �1� 2� 2� 1��
�1� 3� 2� 1�� �2� 3� 2� 1���

To generate the whole algebra 8, consider the extremal element

d = exp�x01111110� exp�x−11121110� exp�x01122111� exp�x−10111111�
exp�x12343321� exp�x−23354321�x10000000

= x10000000 − x01011000 + x01111100

+ x00111111 + x11111110 + x11122111 − x11222211 − x12232210

− x12233221 − x22343321 − x13354321 − x23465432 + x−10000000

− x−00010000 − x−01011000 − x−00111111 + x−11121100 − x−01121110

− x−11122111 − x−12232210 − x−11232221 + x−12243211 + x−22343321

+ x−13354321 − x−23465432�
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Let C be the Lie subalgebra generated by M and d. Bracketing and using
the decomposition of 8 as an M-module, one can again derive equality
between C and 8. We omit further details, as they are very similar to the
other cases dealt with (but lengthier).

8�8� Type F4. Write α1, α2, α3, and α4 for the simple roots of �4. So,
α1 = ε2 − ε3, α2 = ε3 − ε4, α3 = ε4, and α4 = 1

2 �ε1 − ε2 − ε3 − ε4�.
Let M be the subalgebra of �4 generated by xα1 , xα2 , xα2+2α3 , xα2+2α3+2α4 ,

and x−�2α1+3α2+4α3+2α4�. That is, M = �xε1−ε2� xε2−ε3� xε3−ε4� xε3+ε4�
x−�ε1+ε2��. According to Lemma 8.1, M is of type D4. By 8.4 we know then
that M is generated by four extremal elements.
Define the following element in �4:

d = exp�x−�α1+2α2+3α3+α4�� exp�xα4��xα2+2α3� = xα2+2α3 − xα2+2α3+α4
− xα2+2α3+2α4 − x−�α1+α2+α3� − x−�α1+α2+α3+α4� − x−�2α1+3α2+4α3+2α4��

The element d is extremal since α2 + 2α3 is long. Consider the subalgebra
C generated by M and d.
The root elements xα2+2α3 , xα2+2α3+2α4 , and x−�2α1+3α2+4α3+2α4� are in

M . So f 
= d − xα2+2α3 + xα2+2α3+2α4 + x−�2α1+3α2+4α3+2α4� = −xα2+2α3+α4 −
x−�α1+α2+α3� − x−�α1+α2+α3+α4� is in C.
The Lie algebra �4 decomposes as

�4 =M ⊕ V0�1 ⊕ V1�0 ⊕ V0�0 ⊕ V1�1 ⊕ V1�2

⊕V0�−1 ⊕ V−1�0 ⊕W0�0 ⊕ V−1�−1 ⊕ V−1�−2�

where V0�1 is the module generated by xα4 , xα3+α4 , xα2+α3+α4 , and
xα2+2α3+α4 , and V1� 0 = �xα1+α2+α3�, V0� 0 = �xα3� xα2+α3�, V1�1 = �xα1+α2+α3
+α4� xα1+α2+2α3+α4� xα1+2α2+2α3+α4� xα1+2α2+3α3+α4�, and V1� 2 = �xα1+2α2
+3α3+2α4�. The module W0� 0 is generated by x−α3 , x−�α2+α3�, and obvi-
ously the remaining modules are generated by the negative root elements.
We have �xα1+α2+2α3� f � + C = xα3 + C since xα1+α2+2α3 ∈ M . Hence xα3

is in C and then V0�0 ⊂ C.
Now the bracket of xα1+α2+2α3+2α4 ∈ M with f leads to the conclusion

that xα3+α4 ∈ C, thus V0�1 ⊂ C. In particular, xα4 ∈ C.
By Lemma 8.1, the algebra �4 is generated by xα1 , xα2 , xα3 , xα4 , and

x−�2α1+3α2+4α3+2α4�. But C contains all these root elements. Therefore C =
�4. The conclusion is that t��4� ≤ t�D4� + 1 = 5.

8�9� Type G2. Let α and β be the simple roots of �2. Let M be the Lie
subalgebra of �2 generated by the long root elements xβ, x3α+β, x−�3α+2β�.
This subalgebra is of type A2.
Consider the extremal element d = exp�x−�2α+β���x3α+2β�; it is extremal

since 3α+ 2β is a long root. We have

d = x3α+2β + xα+β − x−α�
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Let C be the subalgebra of �2 generated by M and d. We will prove that
C is actually �2. Since xα, xβ, and x−�3α+2β� generate �2, and the latter two
are obviously in C, it is enough to show that xα is also in C.
Since d − x3α+2β ∈ C, so is the bracket

�x−�3α+2β�� d − x3α+2β� = �x−�3α+2β�� xα+β − x−α� = −x−�2α+β��
Therefore �x3α+β� x−�2α+β�� = xα is also in C.
As before we conclude that C = �2 and so �2 is generated by four

extremal elements.

9. THE BILINEAR FORM AND THE KILLING FORM

Throughout this section, L is a finite dimensional Lie algebra (over a field
k of characteristic not 2) generated by extremal elements. Recall that the
Killing form κ is defined by κ�x� y� 
= tr�adxady� for x� y ∈ L. We consider
connections between the associative bilinear form f defined in Theorem
2.5 and the Killing form κ.
Fix x ∈ � and y ∈ L. Set ϕ 
= adxady .

Lemma 9.1. We have ϕ2 + 1
2f �x� y�ϕ 
 L→ kx+ k�x� y�.

Proof. For z ∈ L, using Lemma 2.2, we find

ϕ2�z� = �x� �y� �x� �y� z���� = 1
2
�f �x� �y� �y� z���x

− f �x� �y� z���x� y� − f �x� y��x� �y� z����
This implies that ϕ2 + 1

2f �x� y�ϕ maps L to kx+ k�x� y�.
Lemma 9.2. Let x ∈ �, y ∈ L. Then ϕ satisfies the following properties.

(a) If f �x� y� = 0, then all eigenvalues of ϕ are 0. In particular,
κ�x� y� = 0.

(b) If f �x� y� = −2, then ϕ has eigenvalue 2 with multiplicity 2, eigen-
value 1 with multiplicity s − 2, and the remaining eigenvalues are 0. Here
s = dim adx�L�. In particular, κ�x� y� = s + 2.

Proof. Note that ϕ�x� = −f �x� y�x and (by Lemma 2.2) ϕ��x� y�� =
−f �x� y��x� y�. Hence U = kx+ k�x� y� is invariant under ϕ. Furthermore,
ϕ2+ 1

2f �x� y�ϕ is zero on L/U by Lemma 9.1. We write ϕ on L/U in Jordan
normal form with eigenvalues 0 or − 1

2f �x� y�. Now (a) is obvious. Next
suppose that f �x� y� = −2. Then x� �x� y� are linearly independent. Denote
by E the eigenspace of ϕ (with eigenvalue 1). Then E +U/U = adx�L�/U
and dimE = dim adx�L� − 2. This proves the lemma.
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We now consider connections between the radicals of the two forms.
Recall that Rad�f � denotes the radical of f ; similarly, we write Rad�κ� for
the radical of κ.

Corollary 9.3. We have Rad�f � ⊆ Rad�κ�.
Proof. Let y ∈ Rad�f �. Then f �x� y� = 0 for all x ∈ �. Hence κ�x� y� =

0 for all x ∈ � by Lemma 9�2. Therefore y ∈ Rad�κ�.
Remark 9�4� Lemma 9.2 gives a way to tell if one of the Lie algebras

of Chevalley type is the radical of its Killing form. (In this case Rad�f �
is properly contained in Rad(κ�.) For a root α, set γα = dim adxα�L� − 2.
Then by Lemma 9.2, κ�xα� x−α� = γα + 4. When there is only one root
length, γα is the number of roots which have inner product −1 with α. We
look at the case of ��3. For α = ei − ej , there are exactly two such roots,
ek − ei, and ej − ek, so κ�xα� x−α� = 2+ 4 = 6. Hence ��3 has Killing form
zero if k is of characteristic 3. Similarly, for E8, we have κ�xα� x−α� = 60,
and so the Killing form is identically zero in characteristics 3 and 5.

Lemma 9.5. If char�k� = 0, then Rad�f � = Rad�κ�.
Proof. One inclusion comes from Corollary 9.3. Let y ∈ Rad�κ�.

Assume that y �∈ Rad�f �. Then there exists x ∈ � such that f �x� y� = −2.
Hence κ�x� y� = dim adx�L� + 2 �= 0 in characteristic 0. This is a
contradiction.

In what follows we determine some more properties about the radicals
of the Killing form and of f .

Lemma 9.6. Let J be an ideal of L and N 
= spank�x ∈ � � x /∈ J�. Then
f �N� J� = 0.

Proof. It is enough to show for x ∈ � \ J and y ∈ J that f �x� y� = 0. We
have f �x� y�x = �x� �x� y�� ∈ J. Hence f �x� y� = 0.

Lemma 9.7. Suppose that K is a solvable ideal of L. Then � ∩ K ⊆
Rad�f �.
Proof. Let x ∈ � ∩K. Take y ∈ �. If y /∈ K, then f �x� y� = 0 by Lemma

9.6. If y ∈ K, suppose f �x� y� �= 0. Then �x� y� � ��2. Hence �x� y� is a
non-solvable Lie subalgebra of K which is a contradiction. So f �x� y� = 0.
This means that f �x� y� = 0 for all x ∈ � ∩ K and y ∈ �. The lemma

follows as � linearly spans L; cf. Lemma 2.4.

Let Rad�L� be the maximal solvable ideal in L.

Proposition 9.8. We have Rad�L� ⊆ Rad�f �.



148 cohen et al.

Proof. Suppose that K is a solvable ideal of L and let x ∈ K. For y ∈ �,
either y ∈ � \ K, in which case f �x� y� = 0 by Lemma 9.6, or y ∈ � ∩ K,
and then f �x� y� = 0 by Lemma 9.7.

Remark 9�9� An example where Rad�L� is properly contained in
Rad�f � is the 14-dimensional Lie algebra L of type G2 over a field k of
characteristic 3. Then, Rad�L� = 0 but Rad�f � is a 7-dimensional ideal,
generated by the short root elements of a Chevalley basis. Proposition 9.12
shows that characteristic 3 is indeed exceptional.
In fact, Rad�f � and Rad�L� are just two ideals of a chain of five. Denote

by SanRad�L� the linear span of all sandwiches of �, that is, those x ∈ �
for which ad2x = 0. We claim that SanRad�L� is an ideal of L. Indeed, if
x ∈ SanRad�L� ∩ � and y ∈ �, then fx = 0, so Corollary 2.6 shows that
either �x� y� = 0 or �x� y� ∈ � with f�x�y� = 0, that is, �x� y� ∈ SanRad�L�.
Since the restriction of f to SanRad�L� vanishes, the latter is a nilpotent Lie
subalgebra of L by Lemma 4.2, so SanRad�L� is contained in NilRad�L�,
the nilpotent radical of L. We thus have the chain

SanRad�L� ⊆ NilRad�L� ⊆ Rad�L� ⊆ Rad�f � ⊆ Rad�κ��
We know that the last two inclusions may be proper, and, in view of Case (2)
of Theorem 5.2, we have examples where SanRad�L� is strictly contained
in Rad�L�.
Lemma 9.10. Suppose x ∈ � \Rad�f � and y ∈ Rad�f �. Then �x� y� sat-

isfies ad4�x�y� = 0.

Proof. Put X = adx and Y = ady . Then, by (3) of Lemma 2.2, for z ∈ L,

2XYXYz = 2�x� �y� �x� �y� z���
= f �x� �y� �y� z���x− f �x� �y� z���x� y� − f �x� y��x� �y� z�� = 0�

For the last equality, use that f is associative and y ∈ Rad�f �. We obtain
XYXY = 0. Also,X2Y = 0, asX2Y �L� ⊆ Rad�f � ∩kx = 0. Consequently,

ad4�x�y� = �XY − YX�4 = �XYXY −XY 2X − YX2Y + YXYX�2

= �YXYX −XY 2X�2

= XY 2X2Y 2X + �YX�4 −XY 2�XY �2X − YXYX2Y 2X = 0�

Lemma 9.11. Let K be an ideal of L which is contained in Rad�f �. Then
L 
= L/K is linearly spanned by extremal elements with induced form f
defined by f �x� y� 
= f �x� y� for x� y ∈ L.

Proof. Since K ⊆ Rad�f �, the expression f �x� y� 
= f �x� y� is well-
defined for x� y ∈ L. For x ∈ �, y ∈ L, �x� �x� y�� = f �x� y� · x, whence
x ∈ ��L�.
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We owe the proof of the following result to Gabor Ivanyos.

Proposition 9.12. If the characteristic of k is not 2 or 3, then Rad�f � =
Rad�L�.

Proof. Recall that Rad�L� ⊆ Rad�f �, so if Rad�f � is contained in the
center Z�L� of L, there is nothing to prove. Suppose, therefore, Rad�f � �⊆
Z�L�. We show that SanRad�L� �= 0.
By Lemma 9.10, there is a nonzero element y ∈ Rad�f � with ad4y = 0. (If

� ∩ Rad�f � �=  , any element of the intersection will do; otherwise, take
y ∈ Rad�f �, and x ∈ � such that �x� y� �= 0, whose existence is guaranteed
by the hypotheses that L = ��� and Rad�f � �⊆ Z�L�, and apply Lemma
9.10.) By Proposition 2.1.5 of [7] (see also Proposition 1.5 of [1]), if the
characteristic of k is not 2 or 3, the element z = ad3y�x� for any x ∈ L

satisfies ad3z = 0. In particular, there is a nonzero element y ∈ Rad�f � with
ad3y = 0.
If ad2y = 0, then we are done. Otherwise, there is b ∈ � with x = ad2y

�b� �= 0.
If b ∈ Rad�f �, then b ∈ Rad�f � ∩ � ⊆ SanRad�L�, and we are done.

So, assume b �∈ Rad�f �. By Lemma 1.7(iii) of [1], as k has characteristic
not 2 or 3, we have ad2x = ad2yad

2
bad

2
y . Since y ∈ Rad�f � we have ad2y�L� ⊆

Rad�f �, and since b ∈ � \Rad�f � we have ad2b�Rad�f �� = 0; whence ad2x =
0, proving that � ∩Rad�f � �= 0.This establishes SanRad�L� �= 0.
Thus, if Rad�f � �⊆ Z�L�, it contains a nonzero sandwich, and so

NilRad�L� �= 0. But then, in view of Lemma 9.11 and by induction on the
dimension, Rad�f � is solvable.

We finish this section with a result identifying Rad�f � and Rad�L� in
arbitrary characteristic distinct from 2 under additional hypotheses on the
structure of L. It shows that f plays a role similar to κ in the theory of Lie
algebras of characteristic 0.

Lemma 9.13. Let L = L1 ⊕L2 be a direct sum of ideals. Then L1 and L2
are linearly spanned by extremal elements (with form f restricted to L1 and
L2, respectively). Furthermore, L1 and L2 are orthogonal with respect to f .

Proof. As �L1� L2� = 0, we have ��Li� ⊆ � for i = 1� 2. Let x ∈ ��L�
and y ∈ L. Write x = x1 + x2, y = y1 + y2 with x1� y1 ∈ L1, x2� y2 ∈ L2.
We calculate that f �x� y�x1+ f �x� y�x2 = �x1� �x1� y�� + �x2� �x2� y��. Hence
�xi� �xi� y�� = f �x� y�xi for all y ∈ L, and xi ∈ � �i = 1� 2�.
Since L is linearly spanned by �, each Li is linearly spanned by the

projections. Hence Li is linearly spanned by extremal elements (with form
f restricted to Li).
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Finally, for z ∈ ��L1�, l2 ∈ L2, we have f �z� l2�z = �z� �z� l2�� = 0. Since
L1 is linearly spanned by extremal elements, this shows that the decompo-
sition L = L1 ⊕ L2 is an orthogonal one with respect to f .

Proposition 9.14. We have Rad�f � = 0 if and only if L is a direct sum
of simple ideals.

Proof. Assume that L = L1 ⊕ L2 ⊕ · · · ⊕ Lr is a direct sum of sim-
ple ideals Li. By Lemma 9.13, the decomposition is an orthogonal one
with respect to f . Suppose that Li ⊆ Rad�f � for some i. Then the form
f restricted to Li is trivial. But then Li is nilpotent by Lemma 4.2, a con-
tradiction. This means that the form f restricted to each Li has a trivial
radical. Hence Rad�f � = 0.
As for the converse, assume Rad�f � = 0. Suppose that I is a minimal

nonzero ideal of L. By Proposition 9.8, I is not Abelian. Let J be the
orthoplement of I with respect to f . As f is associative, J is an ideal of L.
We claim that L = I ⊕ J. For I ∩ J �= 0 would imply I ⊆ J by the minimality
of I, and hence �I� J� = I as I is not Abelian; so f �I�L� = f ��I� J�� L� =
f �I� �J�L�� ⊆ f �I� J� = 0, yielding the contradiction I ⊆ Rad�f �.
Hence, if K is a nonzero ideal of I it also is an ideal of L, and so it

coincides with I. This means that I is simple. Moreover, by Lemma 9.13, J
is generated by extremal elements with the form f �J . Note that Rad�f �J� ⊆
Rad�f � = 0, so by induction on the dimension, we find that L is a direct
sum of simple ideals.

Corollary 9.15. We have that L/Rad�L� is a direct sum of simple ideals
if and only if Rad�L� = Rad�f �.

Proof. In Lemma 9.8, we have already proved that Rad�L� ⊆ Rad�f �.
Set L = L/Rad�L� and let f be as in Lemma 9.11.
Since Rad�f � = Rad�f �, we have Rad�L� = Rad�f � if

and only if Rad�f � = 0, so the corollary is a direct consequence of
Proposition 9.14.

10. ANALYSIS OF ROOT GROUPS

Definition 10.1. For y ∈ �, we define Uy 
= �exp�y� t� � t ∈ k� to be
the root group associated to y. Since exp�cy� t� = exp�y� ct� for all c ∈ k,
the group only depends on the one-dimensional subspace ky.
By @ 
= �Uy � y ∈ �� we denote the set of root groups associated

to extremal elements of L. Set G 
= �@� ≤ Aut�L�. For calculations in
G, we use �·� ·� for commutators in their group theoretic meaning. Thus
for g� h ∈ G and A�B ≤ G, we write �g� h� 
= g−1h−1gh and �A�B� =
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��a� b� � a ∈ A�b ∈ B�. Furthermore, we denote the conjugate of A under
g by Ag, so Ag = g−1Ag. Observe that G preserves the bilinear form f .

Definition 10.2. Let A, B be two Abelian subgroups of G. Following
Timmesfeld [15], we call �A�B� a rank 1 group if the following holds: For
each 1 �= a ∈ A there exists some 1 �= b ∈ B with Ab = Ba, and vice versa.
If in addition ab = �b−1�a, then we call the rank 1 group special.

Theorem 10.3. For x� y ∈ � and s� t ∈ k, the group G has the following
properties.

(1) exp�y� s� exp�y� t� = exp�y� s+ t�. In particular, Uy is isomorphic to
the additive group of k.

(2) exp�y� s�x ∈ � with �Ux�exp�y�s� = Uexp�y�−s�x.

(3) If �x� y� = 0, then �Ux�Uy� = 1.

(4) If f �x� y� = 0, but �x� y� �= 0, then �exp�y� t�� exp�x� s�� =
exp��y� x�� ts�. In particular, the group �Ux�Uy� is nilpotent of class 2 and
�Ux�Uy� = �u�Uy� = �Ux� v� = U�x�y� for all 1 �= u ∈ Ux, 1 �= v ∈ Uy .

(5) If f �x� y� = −2, then, for s ∈ k, s �= 0, exp�y�−s� exp�x� s−1t�
exp�y� s� = exp�x�−s−1� exp�y�−ts� exp�x� s−1�� In particular, the group
�Ux�Uy� is a special rank 1 group in G.

Proof. All equations can be verified in a straightforward manner by
using the definition of exp�y� t�. In the calculations we use the Jacobi
identity, associativity of f (e.g., f �y� �y� z�� = 0, f �x� �y� �x� z��� = 0 when
f �x� y� = 0 and f �x� �y� �x� z��� = 2f �x� z� when f �x� y� = −2), and the
rewriting rule for �x� �y� �x� z��� of Lemma 2.2.

Remark 10�4� Theorem 10.3 shows that the set @ of root groups in G
associated to extremal elements of L is a set of so-called abstract root sub-
groups in the sense of Timmesfeld [15]. If @ is a conjugacy class and G is
quasi-simple, then we may apply Timmesfeld’s classification [15] of groups
generated by abstract root subgroups to determine the structure of L.

WheneverG is analgebraicgroup its long root subgroupscorrespond topro-
jective points (that is, one-dimensional linear subspaces) spanned by extremal
elements in itsLiealgebraL�G�. The geometry of these long root subgroups,
which is well known, can thus also be studied in the Lie algebra L�G�.
For instance, in a Chevalley group, consider the subgroup M generated

by two different long root subgroups Uα, Uβ, with α+ β not a root. Then
either M is partitioned by the long root subgroups contained in it or it con-
tains no other long root subgroups than Uα and Uβ, depending on whether
α − β is a root or not. In the lemma below, we describe the correspond-
ing behavior in Lie algebras for the case of a partitioning. For recognition
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of such pairs, we can take the general setup of a Lie algebra containing
extremal elements and do not need to assume that it is the Lie algebra of
an algebraic group.

Lemma 10.5. Let x� y ∈ � with �x� y� = 0. Then the following are
equivalent:

(1) For s� t ∈ k, s� t �= 0, the element sx+ ty is extremal.

(1′) There are s� t ∈ k, s� t �= 0, such that the element sx+ ty is extremal.

(2) 2�y� �x� z�� = f �x� z�y + f �y� z�x for all z ∈ �.

(2′) 2�y� �x� z�� = f �x� z�y + f �y� z�x for all z ∈ L.

Moreover, in these cases, we have exp�y� t� exp�x� s� = exp�sx + ty� 1� for
s� t ∈ k.

Proof. Note that (2) and (2′) are equivalent by Lemma 2.4. For z ∈ �,
0 �= s� t ∈ k, we have �sx + ty� �sx + ty� z�� = s2f �x� z�x + t2f �y� z�y +
2st�y� �x� z�� and f �sx + ty� z��sx + ty� = s2f �x� z�x + t2f �y� z�y +
st
(
f �x� z�y + f �y� z�x). Hence (1′) implies (2). If (2) holds, then sx + ty

is extremal and a short calculation shows that exp�y� t� exp�x� s�z =
exp�sx + ty� 1�z. Note that �x� �y� z�� = �y� �x� z�� here. This yields the
result.

Corollary 10.6. If three points on a projective line of L represent com-
muting extremal elements, then the whole line consists of commuting extremal
elements.

An example of the occurrence of projective lines consisting fully of
extremal elements as described in the previous lemma is given in the next
lemma. Note the correspondence with the group geometries of [15].

Lemma 10.7. Let x� y ∈ � with f �x� y� = 0, but �x� y� �= 0. Then the
conditions of Lemma 10.5 hold for x and �x� y�.
Proof. By Lemma 2.2 we have 2��x� y�� �x� z�� = f �x� �y� z��x +

f �x� z��x� y� + 0. By the associativity of f (cf. Theorem 2.5) we see
that f �x� �y� z�� = f ��x� y�� z�, which proves Condition (2′) of Lemma 10.5,
as required.

Many more results in this direction can be derived, such as the nonexis-
tence of a chain x1, x2, x3 of extremal elements such that x1, x2 are as x,
y in Lemma 10.5, �x2� x3� = 0, and f �x1� x3� �= 0.
To finish, we relate the results on the generation of L by extremal ele-

ments and corresponding properties of G. Let � �@� denote the graph
whose vertices are the elements of @ and whose edges are the unordered
pairs �A�B� with �A�B� a rank 1 group.
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Lemma 10.8. Assume that the graph � �@� is connected. If G = �Uxi
� i ∈

I�, then L is generated as a Lie algebra by the xi (i ∈ I�.
Proof. Denote by W the Lie algebra generated by �xi � i ∈ I�. Let

z ∈ � with f �z� xi� �= 0 for some i ∈ I. Since W is invariant under
Uxj

for j ∈ I, it is also invariant under G. Hence �z� xi� + 1
2f �z� xi�z =

exp�z� 1� xi − xi ∈ W . We apply exp�z� 1� to this vector and see that
�z� xi� + 1

2f �z� xi�z + f �z� xi�z is in W . Hence also the difference, which is
f �z� xi�z, is in W . Since f �z� xi� �= 0, we conclude that z ∈ W .
The graph � �@� is connected, so we obtain that � ⊆ W ; whence

L = W .

For the case where k is algebraically closed and L is of Chevalley type,
we can prove the converse as well.

Theorem 10.9. Suppose that k is algebraically closed. Let L be a Lie
algebra of Chevalley type over k of characteristic distinct from 2, 3, and letG be
the corresponding group of automorphisms generated by long root groups. Then
t�L�, the minimal number of extremal elements generating L, determined in
Theorem 8.2, is the minimal number of long root groups needed to generate G.

Proof. Every element of � is a long root element by Proposition 3.3.
Suppose that L is generated by the extremal elements x1� � � � � xt . Write
G = �Ux � x ∈ �� (as usual) and H = �Uxi

� i = 1� � � � � t�. It suffices to
show that H coincides with G. Put � = �x ∈ � � Ux ⊆ H�. Note that,
for x� y ∈ �, also exp�x� 1�y ∈ �. Hence, by the argument of the proof of
Lemma 2.4 with � instead of �, we obtain that L is linearly spanned by �.
Subgroups of the algebraic group GL�L� generated by connected

algebraic subgroups are connected algebraic subgroups (see [2, Proposi-
tion I.2.2]), so H is a closed algebraic subgroup of the connected linear
algebraic group G. Clearly, the derivative dι of the embedding ι 
 H → G
at the identity of H is the embedding L�H� → L�G� of the Lie alge-
bra of H in the Lie algebra of G. As � linearly spans L, we have
L�H� = L = L�G� and so dι is surjective. By Theorem 3.2.21 of [14], this
implies that ι is dominant, that is, that H is dense in G. But H is closed as
well, so H = G. This establishes that G is generated by at most t�L� long
root subgroups.
The converse is handled by the previous lemma.
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