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1. INTRODUCTION

The main aim of this paper is to describe finite Z-gradings of infinite-di-
mensional simple Lie algebras. Here, a finite Z-grading of an algebra A is
a decomposition A s [n A such that A A : A where A s 0 forisyn i i j iqj i
< <i ) n.

The results on Z-gradings of simple Lie algebras have numerous applica-
w xtions in various branches of mathematics. For instance, Kac 9 and

w xVinberg 22 employed the classification of Z-gradings of the finite-dimen-
w xsional simple complex Lie algebras given by Kantor 13 to study nilpotent

orbits of connected linear groups. In differential geometry a classification
of gradings of real simple Lie algebras leads to a classification of certain

w xclasses of affine symmetric spaces such as Riemannian spaces 19 , quater-
w x w xnionic symmetric spaces 3 , pseudo-hermitian spaces of K -type 11 , etc.e

Also, the study of gradings is relevant for different classes of non-associa-
w xtive algebras, e.g., Jordan algebras and pairs 12 , conservative algebras

w x w x13 , generalized Jordan triple systems 10, 13 , and structurable algebras
w x20 .

If L is a finite-dimensional simple Lie algebra over a field F of complex
or real numbers, the classification of Z-gradings which are necessarily
finite in this case is given in terms of partitions of fundamental root
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Ž w x.systems see 13, 14 , a tool which is not available in the infinite-dimen-
sional case. Our approach to this classification problem is based on

Ž w x.THEOREM 1.1 Zelmanov’s Classification Theorem 25 . Assume that
L s [n L is a simple graded Lie algebra o¨er a field of characteristic 0isyn i
or at least 4n q 1, L / L , and L / 0. Then L is isomorphic to one of the0 n
following algebras:

Ž . Ž . w x Žw x. Ž .I K 9 R, ) s K, K rCenter K, K where K s K R, ) is the
Lie algebra of skew-symmetric elements of an in¨olutory simple associatï e

Ž . nalgebra R, ) ; the grading of L is induced by a grading R s [ R of Risyn i
such that RU : R ;i i

Ž . Ž Ž ..II the Tits]Kantor]Koecher construction KK J V, f of the Jordan
Ž .algebra J V, f of a non-degenerate symmetric form f ;

Ž .III an algebra of one of the types G , F , E , E , E , or D , i.e., L is2 4 6 7 8 4
finite dimensional o¨er its centroid C and for the algebraic closure C of C the
algebra L m C is the one from the list abo¨e.C

Ž .For the Lie algebras of type I the classification of the gradings follows
Ž .from that of the corresponding associative algebra R, ) . The latter is

w xessentially done in 21 . On the other hand, the Lie algebras KK s
Ž Ž .. Ž .KK J V, f from II have a natural short Z-grading: KK s KK [ KK [ KK ;y1 0 1

Ž . Ž Ž ..however, if L falls under case II the isomorphism of L and KK J V, f
need not be graded. Thus, for infinite-dimensional Lie algebras of this type
the description of the gradings was unknown until now. Note that such a

Ž .Lie algebra also has the form K 9 R, ) for some simple associative algebra
Ž . Ž w x.R, ) see 8, p. 342 . Therefore, a classification of the gradings of
infinite-dimensional simple Lie algebras will follow as soon as we describe

Ž .the gradings of the Lie algebras of the form K 9 R, ) . In this paper we
address the second problem rather than the first one because we do not
need the characteristic restrictions of Zelmanov’s theorem cited above to

Ž . w xdescribe the gradings of K 9 R, ) . The Lie algebras K and K, K are also
considered here.

Ž .The main result of the paper Theorem 4.1 states that any grading

n

K 9 s K 9 1Ž .[ i
isyn

Ž .of the Lie algebra K 9s K 9 R, ) is induced in an obvious way by a unique
grading

m

R s R 2Ž .[ i
isym
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Ž .of the associative algebra R, ) . This fact along with the description of
w xthe gradings of associative algebras from 21 provides a classification of

Ž .the gradings of the Lie algebras K 9 R, ) . Analogous results for the Lie
w xalgebras K and K, K are obtained as well.

Ž . Ž .In general, the length of grading 1 of K 9 R, ) may be less than the
Ž .length of the corresponding grading 2 of R. This is what causes the

Ž .appearance of the Lie algebras of type II in Zelmanov’s classification
Ž .theorem. Having classified the gradings of algebras K 9 R, ) we study the

supports of these gradings and show that in fact the difference between
Ž . Ž .the supports of 1 and 2 is small. Namely, we prove that m F 2n, and

R s 0 for any n - i - m." i
Ž .If m s n, then the grading of K 9 R, ) is special in the sense of

w xZelmanov 25 . He proved that any grading of a simple finite-dimensional
Lie algebra of types A , C is special and that the algebras of types B , Dn n n n
have exceptional gradings. To give a generalization of this result for
infinite-dimensional algebras we extend the notion of symplectic involution
to the infinite-dimensional case and prove that any grading of the Lie

Ž .algebra K 9 R, ) is special if and only if ) is either of the second kind or
Ž .symplectic Theorem 6.5 . This is true modulo some known exceptions in

low dimensions.
As an immediate consequence of our results one has a quite simple

description of Z-gradings of the Lie algebras of types A , B , C , and Dn n n n
in terms of idempotents of their enveloping matrix algebras or, equiva-
lently, in terms of their standard modules: any grading of such a Lie
algebra is induced by a unique grading of its standard module. This leads
to significant simplifications in proofs of some classification results. For
example, it follows immediately from our results that the subspace K ofy1

Ž Ž . .the real simple graded Lie algebra K s K M R , ) s K [ K [n y2 y1
K [ K [ K is equal to e Ke q e Ke q e Ke for a suitable choice0 1 2 0 1 1 2 2 3

Ž . w xof idempotents of M R . This was proved in 10 using a case-by-casen
w xconsideration of root systems B , C , D . The same applies to 13 .n n n

Another corollary of the results of this paper is a graded version of
Zelmanov’s classification theorem, the original motivation for our work. In
a forthcoming paper we intend to use it to classify the simple objects in
some varieties of non-associative algebras.

This paper is organized as follows. In Section 2 we fix notation and
conventions, and gather some known results on simple algebras with
involution and gradings needed in the rest of the paper. Also, we extend
our description of the gradings of associative simple algebras to the case of
simple algebras with involution. In Section 3 we introduce the notion of
quadratic annihilators and study those which relate to symmetric and
skew-symmetric elements. This notion plays a major role in the following
section. It also allows one to define symplectic involutions in the case of
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arbitrary dimensions. Section 4 contains the main results of the paper on
Ž .the connections of gradings of a simple associative algebra R, ) and the

Ž . w xLie algebras K s K R, ) , K, K , and K 9. We describe supports of these
gradings in Section 5. Section 6 is concerned with the question of speciality

Ž .of gradings of the algebras K 9 R, ) . There we define symplectic involu-
tions and give the abovementioned criteria of existence of non-special

Ž .gradings of K 9 R, ) in terms of the involution ). We conclude that
section with the graded version of Zelmanov’s classification theorem.

2. PRELIMINARIES

Throughout the paper all algebras and modules are considered over a
1 1unital commutative ring F, , g F, unless otherwise specified. Algebras2 3

are not necessarily unital. By a simple algebra we mean an algebra with a
Ž . Ž .nontrivial product, which has no proper ideal. Z R and C R stand for

the center and the centroid of an algebra R. If M is a subset of an algebra
Ž . Ž .R, id M and alg M denote the ideal and the subalgebra generated byR R

M in R. We will omit the subscript when it causes no confusion. A
F-linear endomorphism ) of an algebra R is said to be an in¨olution if
Ž . Ž .xy * s y*x* and x* * s x for all x, y g R. In this case we denote the set

Ž . � 4of symmetric elements by H s H R, ) s r g R : r* s r , and the set of
Ž . � 4skew-symmetric elements by K s K R, ) s r g R : r* s yr . Due to

our restrictions on the characteristic we have R s H [ K. We say that R
Ž . 2is )-simple or that R, ) is simple if R / 0 and R has no proper ideal

invariant under ). Sometimes we say that R is involutory simple if ) is
understood.

For easy reference we compile here various notions and results needed
w xin the rest of the paper. Note that the results from 2, 15, 17 are true in

greater generality than stated here. Our restricted way of presenting these
is sufficient for our purposes and allows us to avoid the notions of
)-central closure and )-closed rings.

Any involution ) of R induces the involution ) on the centroid
Ž . Ž .C s C R : a* s )( a () for a g C. We put C# s H C, ) . Recall that

the involution ) is said to be of the first kind provided that C s C#;
otherwise it is called of the second kind. For any )-simple algebra R the
algebra C# is a field, it is isomorphic to the )-extended centroid of R, and

w xhence R is )-closed in the sense of Baxter and Martindale 2 . In the rest
of the paper we will often consider R as a C#-algebra. Note that H and K
are C#-subspaces of R. For any field extension F of C# the F-algebra

Ž .R s R m F has a natural involution r m a * s r* m a . It is easy toF C#

Ž . Ž .see that H R , ) s H m F and K R , ) s K m F. If F is theF C# F C#
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algebraic closure of C#, then following Baxter and Martindale we call the
˜Ž . Ž . Ž .algebra R , ) the superstar closure of R, ) and denote it by R, ) .F

Ž .THEOREM 2.1. Let R, ) be a simple algebra; let F be a field extension of
C#. Then

Ž . w x Ž .i 2, Theorem 8 The F-algebra R , ) is simple.F

˜Ž . w xii 17, Lemma 5.1 If ) is of the first kind, then R is simple.
˜Ž . w xiii 17, Lemma 5.1 If ) is of the second kind, then R is the direct

sum of simple ideals R s I [ I* and ) is the exchange in¨olution ex, i.e.,
Ž .ex Ž .x, y s y, x in I [ I*.

The submodule K is a Lie algebra with respect to the commutator
w xproduct x, y s xy y yx. Let K 9 be the derived algebra of K, i.e., K 9 s

w xK, K . Then one has

Ž .THEOREM 2.2. Let R, ) be a simple algebra, and let dim K ) 1.C#

Ž . w x Ž .i 5, Theorems 1.12, 2.15 The Lie algebra K 9s K 9rZ K 9 is simple
˜Ž .unless R, ) is the algebra of 4 = 4 matrices with orthogonal in¨olution. In

Ž .the former case KrZ K is prime; in the latter K 9 is either simple or the direct
sum of two simple algebras.

Ž . w xii 5, Theorems 1.5, 2.13 R s K 9 q K 9K 9 q K 9K 9K 9.

Further we will need the concept of GPI algebras. For a simple algebra
² :R with centroid C we let R X be the free product over C of R and the

² :free associative algebra C X . A submodule T of R is said to satisfy a
Ž .generalized polynomial identity to be GPI, for short if there is a nonzero

Ž . ² : Ž .element f x , . . . , x g R X such that f t , . . . , t s 0 for arbitrary1 n 1 n
elements t , . . . , t g T.1 n

w x Ž .THEOREM 2.3 15, Theorem 4.7 . i Let R be a simple GPI algebra.
˜Then R is primitï e with non-zero socle.

Ž . Ž .ii Let R, ) be a simple algebra, and let ) be of the first kind. If the
˜submodule K is GPI, then R is primitï e with non-zero socle.

Also we will need the Litoff theorem and its involutory analog due to
w xMartindale and Miers 17 .

THEOREM 2.4. Let R be a simple primitï e algebra with non-zero socle.
Then for any gï en k F dim R and any choice of elements x , . . . , x g RC 1 n
there exists an idempotent e of rank l G k such that x , . . . , x g eRe. More-1 n
o¨er, if R possesses an in¨olution of the first kind, then e can be chosen to be
symmetric.

An algebra A is said to be Z-pregraded if it is a sum of submodules
A s Ý A and A A : A for any i, j g Z, where Z stands forig Z i i j iqj
integers. If this sum is direct we say that A is a Z-graded algebra. A
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Ž . � 4pregrading resp., grading of A is a set of submodules A : i g Z suchi
Ž .that A s Ý A is Z-pregraded Z-graded algebra. A subalgebra B of aig Z i

pregraded algebra A s Ý A is said to be graded provided that B sig Z i
Ž .Ý B l A . One of the advantages of pregradings is that any image orig Z i

preimage of a pregrading is a pregrading. A pregrading is called finite if its
Ž . � 4support Supp A s i g Z : A / 0 is a finite set. In this case the algebrai

A can be written as the finite sum A s A q ??? qA of 2n q 1 submod-yn n
Ž .ules, and we refer to this as a 2n q 1 -pregrading. The pregrading is

Ž .called trï ial if A s A . From now on by a pregrading grading we mean a0
Ž .finite Z-pregrading Z-grading .

On connections of pregradings and gradings one has the following result
w x Ž w x.which was essentially proved in 24 see also 21 . The last two assertions

of this lemma show that any grading of a simple F-algebra considered as
an algebra over its centroid C is actually a C-algebra grading.

LEMMA 2.5. Let A s Ýn A be a pregraded associatï e or Lie algebraisyn i
Ž .with centroid C s C A .

Ž .i If A has no nilpotent ideals then the pregrading of A is a grading.
Ž .ii If A is simple then CA : A .i i

Ž .iii If A is associatï e )-simple and the pregrading is in¨ariant under
the in¨olution then C# A : A .i i

For any ideal I of graded algebra A the pregrading of ArI induced by
the grading of A is a grading if and only if I is a graded ideal. Hence,

COROLLARY 2.6. Let A s [n A be a graded associatï e or Lieisyn i
algebra. Suppose I is an ideal of A such that ArI contains no non-zero
nilpotent ideal. Then I is a graded ideal.

Gradings of simple associative algebras are directly connected with
Peirce decompositions. Recall that a decomposition of an algebra R into

m Ž .the direct sum of submodules R s [ R is called a generalizedi, js0 i j
Peirce decomposition if R R : d R for all i, j, p, q. In this case onei j p q j p iq
can define a grading of R s [m R by lettingisym i

R s R for i s ym , . . . , m.Ýi p q
pyqsi

� 4A system of submodules m s m : i s 0, . . . , m of an algebra R is said toi
be orthogonal if m m s 0 for i / j, and it is said to be complete ifi j

m w xmRm s R for m s Ý m . As we noticed in 21 if R is simple any suchis0 i
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system m gives rise to the Peirce decomposition,

m

R s R , where R s m Rm ,[ i j i j i j
i , js0

and hence induces the grading of R s [m R :isym i

R s m Rm for i s ym , . . . , m. 3Ž .Ýi p q
pyqsi

If a pregraded associative algebra R s Ým R has an involution )isym i
and RU : R for any i then we say that the pregrading is in¨ariant underi i
the in¨olution. In this case the Lie algebra K inherits the pregrading from
R, namely K s Ým K , where K s K l R . If R has an involution )isym i i i

� 4and a complete orthogonal system m s m : i s 0, . . . , m of R has thei
U Ž .property m : m for i s 0, . . . , m, then the grading 3 is invarianti myi

under the involution.

THEOREM 2.7. Let R s [m R be a graded algebra. If R is simple,ksym k
then there is a complete orthogonal system m in R which induces the grading.
If R is a )-simple algebra with in¨olution ) and the grading is in¨ariant
under in¨olution then there is a system m which induces the grading and
satisfies the condition mU : m for i s 0, . . . , m.i myi

w xProof. The first part of the theorem is proved in 21, Theorem 4.6 .
Namely, it is shown that if R / 0, then the system of submodulesym

� 4m s m : i s 0, . . . , m , where m s R R R , induces the given grad-i i i ym myi
ing of R.

Assume that R has an involution ) and the grading of R is invariant
under ). If R is simple, then the system m considered above has the
required property: mU : m . If R is not simple, then R s I [ I* for ai myi
simple ideal I, and ) is the exchange involution. Corollary 2.6 implies that

U �I is a graded ideal. Therefore, R s I q I for any p. Let l s l : i sp p p i
40, . . . , m be a system which induces the grading of I. Then it is straightfor-

U� 4ward to check that the system m s m : i s 0, . . . , m , m s l q l isi p p myp
a complete orthogonal system of submodules of R which satisfies the
theorem.

We conclude this section with two useful properties of a Peirce decom-
position R s [m R of a simple algebra R. Let X be a subset ofi, js0 i j
� 40, 1, . . . , m . Then R s Ý R is a subalgebra of R, and one hasX i, jg X i j

w xLEMMA 2.8 21, Lemma 3.7 . The algebra R is either 0 or simple.X

COROLLARY 2.9. For any pair p, q the submodule R is either 0 or anp q
Ž .irreducible R q R -bimodule.p p qq
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� 4Proof. Suppose R / 0, and put X s p, q . Then the algebra R isp q X
Ž .simple. Let I be a non-zero sub-bimodule of the R q R -bimodulep p qq
Ž .R . By simplicity of R one has that R s id I , and hence R sp q X X R p qX

Ž .id I l R : I q R IR : I. Thus, R is irreducible.R p q p p qq p qX

3. QUADRATIC ANNIHILATORS

The following notion plays an important role throughout the paper.

DEFINITION 3.1. For two subsets U, V of an algebra R we define
Ž . �the quadratic annihilator of V in U to be the set QAnn V s u g U :U

4uVu s 0 .

In general this set is not a submodule of R even if U and V are. For
Ž . Ž .example, one can consider the submodules U s H R, ) and V s K R, )

Ž . Ž .of the algebra R s M F , the algebra of n = n -matrices over F, withn
the co-transpose involution ), i.e., EU s E . In this algebrai, j nq1yj, nq1yi

Ž . Ž .E KE : FE l K s 0, so E g QAnn K . Analogously, E1, n 1, n 1, n 1, n H n, 1
Ž . Ž .Ž .Ž .g QAnn K , but E q E E y E E q E / 0. Hence,H 1, n n, 1 1, 1 n, n 1, n n, 1

Ž .E q E f QAnn K . Also, it follows from this example that1, n n, 1 H
Ž .QAnn K is not always zero even if R is simple. The next two lemmasH

show that certain quadratic annihilators are zero for )-simple algebras.
Ž .Throughout this section R, ) is a simple algebra such that dim K ) 1.C#

The last assumption implies in particular that dim R G 4.C#

LEMMA 3.2. Suppose the in¨olution ) is of the second kind. Then

QAnn K 9 s 0.Ž .H j K

˜ ˜Ž . Žw x.Proof. Since QAnn K 9 : QAnn K, K , one can assume˜ ˜H j K H j K
˜ Ž . Ž .without loss of generality that R s R. In this case R, ) s I [ I*, ex ,

Ž .where I is an ideal of R, I is a simple algebra, and QAnn K 9 sH j K
�Ž . w x 4 �Ž . w x 4x, x* : x g I; x I, I x s 0 j x, yx* : x g I; x I, I x s 0 .

Ž .Suppose that QAnn K 9 / 0. It follows that I is a GPI algebra andH j K
according to Theorem 2.3, I is primitive with non-zero socle. If x g

Žw x.QAnn I, I , then by Theorem 2.4 there is an idempotent e g I of rankI
greater than 1 such that x g eIe. Hence it suffices to show that

Žw x. Ž .QAnn I, I s 0 for I s M F , F is a field, n G 2. For x gI n
Žw x. Ž . w xQAnn I, I consider A s alg x . Then a I, I a s 0 for any a g A.I I

w xIt is noticed by Herstein 5, Lemma 1.8 that, whenever I is a simple
w xalgebra, I s l q I, I for any non-zero right ideal l of I. For any

Ž .idempotent u of A, the right ideal 1 y u I is not zero, since 1 f A.
Ž . w xTherefore, uIu s u 1 y u Iu q u I, I u s 0 implies u s 0. Thus, the fi-

nite-dimensional algebra A has no non-zero idempotent. It remains to
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show that A has no non-zero nilpotent element either. Consider a g A,
2 w xa s 0. If a / 0, then aI / 0, and I s aI q I, I . It follows that aIa s 0

and a s 0 by simplicity of I.

Ž .LEMMA 3.3. If QAnn K 9 / 0, then ) is of the first kind andH j K
K s K 9 s K 9.

Proof. It follows from the previous lemma that ) is of the first kind.
˜ ˜ ˜ ˜w x Žw x. Ž .Since K, K s K 9 m F and Z K, K s Z K 9 m F, one can assume that

˜R s R.
If dim R s 4, then the involution ) is symplectic; otherwise we wouldC#

have dim K s 1. In this case the statement of the lemma is trivial. So weC#

can assume that dim R ) 4.C#

Ž .Since QAnn K 9 / 0, the submodule K is GPI. It is immediateH j K
Ž . Ž .when QAnn K 9 / 0, and it follows from ii of Theorem 2.2 whenK

Ž .QAnn K 9 / 0. Hence, Theorem 2.3 implies that R is simple primitiveH
with non-zero socle. According to Theorem 2.4 for any k g K there is a
symmetric idempotent e g R of rank greater than 2 such that k g eRe,

Ž . Ž .eRe , M F , where n s rank e . It is well known that for any algebran
Ž Ž . . Ž Ž . . w Ž Ž . . Ž Ž . .xM F , ) , n G 3, one has K M F , ) s K M F , ) , K M F , ) .n n n n

w Ž . Ž .xTherefore, k g K eRe, ) , K eRe, ) : K 9.
Ž . Ž .Finally, Z R l K s 0 because ) is of the first kind. Besides, by ii of

Ž . Ž .Theorem 2.2 one has Z K 9 : Z R l K. Thus, K s K 9 s K 9.

Ž .COROLLARY 3.4. QAnn K 9 s 0.K

Ž . wProof. It suffices to notice that QAnn K s 0. This was proved in 18,K
xLemma 4 .

Ž . Ž .COROLLARY 3.5. QAnn K 9 s QAnn K .H H

Ž . Ž .Proof. Obviously QAnn K : QAnn K 9 . On the other hand, forH H
Ž .any h g Q Ann K 9 and any k g K one hasH

hkh g QAnn K 9 s 0.Ž .K

Ž .Thus, h g QAnn K .H

We conclude this section with some technical results which we need
w xin the next section. Here we use the notation a, b, . . . , c s

ww w x x x. . . a, b , . . . , c .
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Ž .LEMMA 3.6. Suppose that QAnn V s 0 and, for a pair a, b g U,U
w x qa, b s 0 and ab g U for any positï e integer q.

Ž .i If one has

b is nilpotent ;
4Ž .a V , b , . . . , b a s 0;^ ` _

p

then ab p s 0.
Ž .ii If one has

a2 b s b2a s 0;
5Ž .w xV , b , a ab s 0;

then ab s 0.

Ž . qq1Proof. If the conditions of i hold, we have ab s 0 for some
q Ž .positive integer q. We prove that if q G p, ab g QAnn V s 0. Indeed,U

q q q qypab Vab s b a V , b , . . . , b ab s 0.^ ` _
p

Ž . w w xxAssertion ii is immediate, since abVab s a, b, V ab s 0.

Ž . qCOROLLARY 3.7. Suppose QAnn V s 0, b g U for any positï e inte-U
w x pger q, b is nilpotent, and V, b , . . . , b s 0. Then b s 0.^ ` _

p

Proof. We can assume that R is unital; otherwise we can pass to the
a Ž .unital extension R s F1 [ R of R. Now the proof follows from i of the

lemma with a s 1.

Ž .4. GRADINGS OF K, K 9, AND K 9 R, )

We begin this section with basic examples of pregradings of Lie algebras
Ž . w x Ž . Ž .K s K R, ) , K 9 s K, K , K 9s K 9rZ K 9 , where R, ) is an associative

algebra with involution. Any pregrading of R
m

R s R 6Ž .Ý i
isym

invariant under the involution ) gives rise to a pregrading of K s
Ým K defined by K s K l R . The subalgebra of K 9 of K is graded,isym i i i
i.e., K 9 s Ým K X, where K X s K l K 9. The image of this pregradingisym i i i

Ž .under the canonical homomorphism : K 9 ª K 9rZ K 9 forms a pregrad-
Xming of K 9s Ý K .isym i
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We will refer to these pregradings of K, K 9, K 9 as the pregradings induced
Ž .by 6 .

Ž .Note that if 6 is a grading then the induced pregradings are gradings as
X w xwell, and for the algebra K 9 one has K s Ý K , K .i pqqsi p q
Ž .Our first step is to show that when R, ) is simple any pregrading of

the Lie algebra K 9 is induced by a unique grading of R modulo the center
Ž .of K 9. Here, let us make a comment on the center of K 9. The center Z R

Ž . Ž .of R is either 0 or isomorphic to the centroid C. Since Z K 9 : Z R by
Ž . Ž .ii of Theorem 2.2, Z K 9 is either 0 or one-dimensional over C#. In the

Ž .latter case any non-zero element of Z K 9 is invertible in R.
The next theorem is the main result of the paper. It was proved by

w x Ž .Zelmanov 25, pp. 382]384 under the assumptions that QAnn K s 0H
and the involution is of the first kind. Instead of separate consideration of
two remaining cases}involutions of the second kind and involutions of

Ž .the first kind with QAnn K / 0}we develop Zelmanov’s approach toH
treat the general case.

Ž .THEOREM 4.1. Suppose R, ) is a simple algebra. Then for any pregrad-
n X w xing K 9 s Ý K of the Lie algebra K 9 s K, K there is a unique gradingisyn i

R s [m R such that RU : R and for all iisym i i i

XK q Z K 9 s K , K q Z K 9 ,Ž . Ž .Ýi p q
pqqsi

where K s K l R .i i

Ž .To prove the theorem we study the Lie algebra L s K 9 q Z K with
n X Ž . X Ž .the pregrading L s Ý L , where L s K q Z K . If K : Z K forisyn i i i i

any i / 0, then the trivial grading R s R is as required. So we will0
Ž . Ž .assume that 0 / L / Z K . If dim K F 1, then K 9 s 0 and then C#

Ž .theorem is trivially true. We will consider the case dim K ) 1. Also, weC#

Ž .assume for now that the field F s C# is algebraically closed and card F
Ž .) dim R . We get rid of this technical assumption at the end of theF

proof.
We will define the required grading on R using the decomposition of Li

for i / 0 into the sum of the center and the nilpotent part of L . Thei
possibility of this decomposition follows from

Ž .LEMMA 4.2. For any i / 0 and any l g L , there is z g Z K such thati
the element l y z is nilpotent in R.

w xProof. We fix i and l. Consider the F-subalgebra A s F l l of R
w X xgenerated by l. Since for any a g A and any integer j one has a, K :j

Ž . X Ž .A q F ? 1 K A q F ? 1 , one can prove by induction on t thatiq j

atK X : Ra q A q F ? 1 K X A q F ? 1 .Ž . Ž .j t iqj
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Hence, a2 nq1K 9 : Ra. According to Theorem 2.2, R s K 9 q K 9K 9 q
K 9K 9K 9; therefore

aŽ2 nq1.3
R : Ra. 7Ž .

Ž . Ž .Consequently, if an element a g H A, ) j K A, ) is not nilpotent, then
Ž . Ž2 nq1.3
7 implies that R s Ra R s Ra. Similarly, R s aR, and hence R is

unital and a is invertible in R. So we can assume that l is invertible.
w xNext, we prove that A s F l l is finite dimensional. If A is not finite

dimensional, then, for any non-zero a g A, the element aa* s a*a is not
nilpotent; otherwise l would be algebraic. Then aa* is invertible in R, and

2 Ž . y1Ž 2 .so is a. Since l / ll for any l g F, the element 1 y ll s l l y ll
Ž . � Ž .is always invertible in R. Hence, Spec l s l g F : 1 y ll is not invert-

4 w xible in R s B. This contradicts Amitsur’s theorem 1, Theorem 3 be-
Ž . Ž .cause of our assumption that card F ) dim R . Thus, A is finite dimen-F

sional. This and the fact that A is generated by an invertible element
imply that A is unital.

Ž .It follows from 7 that any symmetric idempotent of A is equal to the
unit 1 of R. Hence, A is a unital subalgebra. If 1 is the only one-zero

Ž .idempotent of A, then ArRad A is a finite field extension of F, i.e.,
Ž . Ž .ArRad A , F and A s F1 [ Rad A . Then l s a l q n for n g

Ž .Rad A , l* s yl s a1 q n*, and a s 0, a contradiction to invertibility
of l.

Let e be an idempotent of A such that e / 0, 1. Then e q e* s 1 and
Ž .ee* s e*e s 0. Besides, 7 implies that e is a central idempotent of R.

Hence, ) is of the second kind, and e is unique with this property. It
Ž . Ž .follows that ArRad A s Fe [ Fe* and l s z q n, where z s a e y e*

for some a g F, and n is nilpotent. The lemma follows.

� 4For i / 0 put M s l g L : l is nilpotent in R . Note that M / 0i i n
Ž .because L / Z K . We will use these sets to define the required gradingn

on R, but first in the next two lemmas we study some properties of M ’s.i

LEMMA 4.3. Under the assumptions abo¨e one has:

Ž . 3i M s 0;n

Ž .ii for any i / 0 the set M is an submodule of L ;i i

Ž . w xiii L , L : M if i q j / 0.i j iqj

Ž .Proof. Assume first that QAnn K / 0. In this case according toH
Ž .Lemma 3.3 the involution ) is of the first kind, K s K 9, and Z K s 0.

Ž .Therefore, Lemma 4.2 implies that M s K for any i / 0. This makes iii i
Ž .and iii apparent.

Ž . Ž .To show i for this case we use the fact that QAnn R s 0 for anyR
semiprime algebra R. Consider an element m g M . Since R s K q KK,n n
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Ž . w xad m is a derivation of R, and K, m , m , m s 0, we haven n n n
w x 5R, m , m , m , m , m s 0. Therefore, m s 0 by Corollary 3.7.n n n n n n

4 4 3Ž . 4 wFurthermore, one has m xm s m m x q x*m m s y m x qn n n n n n n
x 4 w x 4x*m , m , m , m m g K, m , m , m m s 0 for any x g R. Hence, wen n n n n n n n n

4 Ž . 3 3 w x 3have m g QAnn R s 0. Finally, m Km : K, m , m , m m s 0,n R n n n n n n
3 Ž . 3 3i.e., m g QAnn K s 0. Now the linearization of m s 0 yields M s 0.n K n n

Ž .Assume now that QAnn K s 0. Then the corollaries after Lemma 3.3H
Ž .imply that QAnn K s 0.H j K

X p X q Ž X .maxŽ p, q.If m , m g M and m s m s 0, then m q m s 0 sincen n n n n n n
w xM , M s 0. Thus M is a submodule of R. We will show that, for anyn n n
i / 0, M is a submodule of R as well, and for any i, j, i q j ) ni

M M s 0. 8Ž .i j

w xSuppose that i s j s n. For m g M one has L, m , m , m s 0. Byn n n n n
Ž . 3i of Lemma 3.6, m s 0. Due to restrictions on characteristic F it followsn

3 Ž .that M s 0, which verifies i . Now, for any l g Ln

2 2 w x w x 2 2 22m lm s m m , l , m m s m , l , m m s ym lm ;n n n n n n n n n n n

2 w x2therefore M s 0. It follows that M , L , M s 0, son n yn n

w xM , L , M : M . 9Ž .n yn n n

If M m pq1 s 0 for j, p ) 0, then for any m g Mn j n n

p p pw x p p p py1 pq1m m K 9m m : m m , K 9, m m : m M m : m M m s 0.n j n j j n n j j n j j n j

Therefore, M M s 0 for any i ) 0. In particular, it follows thatn i

� 4M s l g L : lM s 0 when i ) 0. 10Ž .i i n

Thus, for i ) 0 the sets M are submodules of R and by virtue of Lem-i
ma 4.2

L s Z K [ M . 11Ž . Ž .i i

w xBesides, since, for any i, j ) 0, M , M M s 0, one hasi j n

M , M : M . 12Ž .i j iqj

Ž .Next, we show 8 by descending induction on i q j. One can assume
Ž .that i, j ) 0, because i q j ) n. Suppose that 8 is proved for any pair

whose sum is greater than i q j. Assume also that i G j. Then 2 i ) n and
w x 4therefore K 9, m , m , m , m s 0 for m g M , and m s 0 by Corollaryi i i i i i i
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w X x Ž .3.7. Moreover, since K , m , m , m : M by 12 , one hasp i i i 3 iqp

X X X2 3 3 3K , m , m m : m K , m , m m : K , m , m , m mp i i i i p i i i p i i i i

: M m3 s 03 iqp i

for any yn F p F n, since M M s 0 by the induction assumptions.3 iqp i
3 Ž . 3Hence, m s 0 by ii of Lemma 3.6. It follows that M s 0.i i

Suppose i s j. Then for any l g K 9

2 2 w x w x 2 2 22m lm s m m , l , m m s m , l , m m s ym lm ;i i i i i i i i i i i

therefore M 2 s 0.i
2 w x Ž .If i ) j then M s 0 and M K 9, M , M , M s 0. Therefore, i ofi i j j i

Lemma 3.6 implies that M M 2 s 0. Now, one can see thati j

m m lm m s m m , l , m m s m , l , m m m s ym m lm m ;i j i j i j i j j i i j i j i j

Ž .therefore M M s 0; i.e., 8 holds.i j
For elements m g M and l g L , 0 F j - n, one has m l m sn n yj yj n yj n

w x w x Ž .m , l , m s 0. If m , l s z q m for some element z g Z K ,n yj n n yj nyj
w x w xthen 0 s m , l m s zm and m s 0. Thus, M , L : M for anyn yj n n n n yj nyj

w x w x0 F j - n, and hence, for i ) j, M , L M s M M , L s M M si yj n i n yj i nyj
Ž . w x0 by 8 . It follows that M , L : M for i ) j G 0.i yj iyj

w x w xNext, we note that M / 0 since M , K 9, M : M , M , M .yn n n n yn n
Therefore our settings are symmetric with respect to changing the sign of
indices, and all we have proved for M when i is positive is true fori
negative i’s as well. In particular, the assertion proved in the previous

Ž .paragraph and 12 imply that

L , L : M 13Ž .i j iqj

for i q j / 0.

� 4LEMMA 4.4. If i q ??? qi ) 4n for i g Z _ 0 , then M M ??? M1 k j i i i1 2 k

s 0.

Proof. We prove this by induction on k. For k F 4 it follows from the
< <fact that M s 0 if i ) n. We suppose the statement is true for any l - ki

and prove that

M M ??? M s 0. 14Ž .i i i1 2 k
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Ž .First, we observe that 14 is true if not all integers i are positive. Indeed,j
the factors M commute in M M ??? M , since Lemma 4.3 implies thati i i ij 1 2 k

M ??? M , M ??? M : M ??? M ??? M s 0i i i i i i qi i1 t tq1 k 1 t tq1 k

if i q i / 0, and thatt tq1

M ??? M , M ??? M : M ??? M L M ??? M : ???i i i i i i 0 i i1 t tq1 k 1 ty1 tq2 k

: L M ??? M M ??? M s 00 i i i i1 ty1 tq2 k

if i q i s 0. Thus, if there are negative numbers among i , . . . , i , wet tq1 1 k
can assume that the first l are positive and the others are nevative. Then
i q ??? qi ) 4n; hence M M ??? M s 0 and M ??? M ??? M s 0.1 l i i i i i i1 2 t 1 t k

Assume now that there exist k positive integers i , and elementsj
m g M such that i q ??? qi ) 4n and m m ??? m / 0.i i 1 k i i ij j 1 2 k

Consider the set of k-tuples of positive integers

D s d , d , . . . , d : md1 md1 ??? mdk / 0 .Ž .� 41 2 k i i i1 2 k

Ž .By our assumptions 1, 1, . . . , 1 g D, and D is finite because every m isi j
Ž .nilpotent. Let d , d , . . . , d be an element of D with the maximal sum1 2 k

d q ??? qd . We will show that md1 md2 ??? mdk s 0 contrary to the choice1 k i i i1 2 k
Ž .of d , d , . . . , d . The first step in this direction is to prove that the1 2 k

factors md j commute in md1 md2 ??? mdk.i i i ij 1 2 k

To see this consider the product M M ??? M for j ) 0, l G k y 1.j j j p1 2 l

Assume that among 1, 2, . . . , l there are k y 1 different indices
s , s , . . . , s , such that j q ??? qj ) 4n. Then we claim that1 2 ky1 s s1 ky1

M M ??? M s 0. 15Ž .j j j1 2 l

Ž .Let t be the number of factors between M and M in 15 . We provep j js sp pq1

this claim by induction on t s t q ??? qt . For t s 0 it follows from the1 ky2
induction assumption on k. Suppose t s 0, . . . , t s 0, t / 0. Then1 py1 p

M M ??? M s ??? M M ??? M M ??? M ???j j j j j j j j1 2 l s s s s1 2 p pq1

: ??? M M ??? M , M ??? M ???j j j j js s s s1 2 p pq1

q ??? M M ??? M M M ??? M ??? .j j j j j js s s s s1 2 py1 p pq1

w x Ž .Since M , M : M and j q ??? q j q j q ??? qj ) 4n, thej j j qj s s ss s 1 p ky1p p

first summand is zero by the induction assumption on t. As for the second
one we can repeat the argument commuting M with M , and so on.j jspy1
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It follows that, for any choice of positive integers t , t , . . . , t , one has1 2 k
that

t t t t1 p pq1 km ??? m , m ??? m s 0,i i i i1 p pq1 k

since this product is the sum of elements and each of these elements has
w xk y 1 factors m , . . . , m m , m , m , . . . , m such that i q ???i i i i i i 11 py1 p pq1 pq2 k

Ž .q i q i q ??? qi ) 4n.p pq1 k
Ž .By the choice of the element d , d , . . . , d one has1 2 k

m md1 md2 ??? mdk s md1 ??? md jq1 ??? mdk s 0.i i i i i i ij 1 2 k 1 j k

Therefore,

d d d d d d y1 d d1 k 1 k 1 k 1 km ??? m Rm ??? m :m ??? m R , m m ??? mi i i i i i i i i1 k 1 k 1 k k 1 k

d d1 k: ??? : R , m , . . . , m , . . . , m , . . . , m m ??? m .i i i i i i1 1 k k 1 k^ ` _ ^ ` _
d d1 k

w xOn the other hand, K 9, M , . . . , M s 0 as soon as j q ??? qj ) n, andj j 1 s1 s

R s K 9 q K 9K 9 q K 9K 9K 9. Hence,

R , m , . . . , m , . . . , m , . . . , m s 0,i i i i1 1 k k^ ` _ ^ ` _
d d1 k

d1 d2 dk Ž .and m m ??? m g QAnn R s 0. This contradiction proves thei i i R1 2 k

lemma.

Proof of Theorem 4.1. Assume first that the field F s C# is alge-
Ž . Ž .braically closed and card F ) dim R , so we can use preceding lemmas.F

For every p g Z, put

R s Lk M ??? M : i q ??? qi s p; i , . . . , i / 0; k G 0 . 16Ž .� 4Ýp 0 i i 1 t 1 t1 t

Ž .Then R R : R by 13 ; in particular, Ý R is a subalgebra of R.p q pqq pg Z p
Moreover, according to Theorem 2.2 it is equal to R, since K 9 : Ý R .pg Z p
Hence, Ý R is a pregrading of R, RU : R . Also, Lemma 4.4 impliespg Z p i i

< < Ž .that R s 0 for i ) 4n. Thus, 16 defines a finite pregrading of R, andi
Lemma 2.5 implies that it is a grading.

Ž .In the general case, for a simple algebra R, ) we consider an alge-
Ž .braically closed field extension F of its )-centroid C# such that card F

ˆŽ .) dim R . Then by Theorem 2.1 the algebra R s R m F with theC# C#

Ž .involution r m a * s r* m a is )-simple with )-centroid F. Obviously,
ˆ ˆ ˆ ˆ ˆŽ . w xK s K R, ) s K m F, K 9 s K, K s K 9 m F and the system of sub-C# C#
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X̂ X ˆmodules K s K m F is a pregrading of K 9. As we have proved thei i C#
ˆ Ž .grading of R defined by 16 satisfies the conditions of the theorem. Now,

put
t

qX X X X XR s K K , K ??? K , K : i q j s p; q G 0 . 17Ž . Ž . Ž .Ý Ýp 0 i j i j s s1 1 t t½ 5
ss1

Then R R : FR . Besides, it follows from Theorem 2.2 that K 9 sp q pqq
w x w X X xK 9, K 9 s Ý K , K : Ý R . Therefore R s Ý R because R isi j pg Z p pg Z p

X X̂ X X̂w xgenerated by K 9 as an algebra. Furthermore, since K : K and K , K :i i j j&
Xˆ ˆ ˆw xM , K : M for i, i q j / 0, one has R : R . Thus, R s 0 fori j iqj p p p

< <p ) 4n.
Ž .By Theorem 2.2 the Lie algebra K 9s K 9rZ K 9 is semiprime and K 9s

Xw xK 9, K 9 . The images of K under the canonical homomorphism : K 9 ªi
Ž . Ž .K 9rZ K 9 form a pregrading of K 9 which is a grading by i of Lemma 2.5.

X X X Xw x Ž .Thus, one has K s Ý K , K for all i, or in terms of K 9: K q Z K 9i pqqsi p q i
w X X x Ž . X w X X xs Ý K , K q Z K 9 . It follows that K : Ý K , K qpqqsi p q i pqqsi p q

Ž . Ž .Z K 9 : R l K 9 q Z K 9 . Therefore, the two pregradings of K 9 si
mXnÝ K s [ R l K 9 give rise to the same grading of K 9, and henceisyn i isym i

X Ž . Ž .K q Z K 9 s R l K 9 q Z K 9 for any i. Besides, R l K 9 si i i
w x Ž .Ý K , K , where K s R l K. Thus, the grading defined by 17pqqsi p q i i

satisfies the theorem.
Finally, suppose that a grading of R s [l B is invariant under theisyl i

X Ž . Ž . Ž .involution and K q Z K 9 s B l K 9 q Z K 9 for all i. Since Z K 9 :i i
Ž . X w X X x w x Ž .Z R : B , K : B . Also, K , K : B , B . It follows from 17 that0 0 0 i j i j

R : B for any p, which implies that R s B . This completes the proof.p p p p

Ž .COROLLARY 4.5. Suppose R, ) is a simple algebra. Then any pregrading
of the Lie algebra K 9 is induced by a unique grading of R.

X XnProof. Given a pregrading of K 9s Ý K , we let K be the pre-isyn i i
X Ž .image of K under the canonical homomorphism : K 9 ª K 9rZ K 9 .t

Then one has the pregrading of K 9 s Ýn K X. This pregrading is inducedisyn i
by a unique grading of R, and so is the pregrading of K 9.

Next, from Theorem 4.1 we extract a similar result for the Lie algebra
K. To achieve this we need two more lemmas.

LEMMA 4.6. Let L be a prime Lie algebra which possess two gradings
L s [n L and L s [m T . Assume that L / L and L : T forjsyn j jsym j 0 j j
any j / 0. Then these gradings are the same.

Proof. It is easy to see that the subalgebra I of L generated by
� 4 Ž . �L : j/0 is a non-zero ideal of L and that the set Ann I s lgL :j 0
w x 4 w Ž .xl, L s 0 for any j / 0 is an ideal of L as well. Besides, I, Ann I s 0,j

Ž .which forces Ann I to be zero.
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First, we show that L s T for any j / 0. For an arbitrary elementj j
x g T , j / 0, one has x s Ýn l , where l g L . It follows that l gj j j jsyn j j j 0

w x w xÝ T . If q / 0, then l , L : L : T and at the same time l , L :p/ 0 p 0 q q q 0 q
w x Ž .Ý T , T : Ý T . Thus, l g Ann I s 0, which proves that x sp/ 0 p q p/ q p 0 j
l g L .j j

Now, consider an element l g L . If l s Ým t for t g T , then0 0 0 jsym j j j
Ž .l y t g Ý T s Ý L . It follows as before that l y t g Ann I0 0 p/ 0 p p/ 0 p 0 0

s 0. Similarly, T : L . Thus, L s T for all j as required.0 0 j j

Ž .LEMMA 4.7. Suppose R, ) is a simple algebra with a grading R s
[m R in¨ariant under in¨olution, and K s [m K is the inducedisym i isym i

w xgrading of K. Then K : K, K for any i / 0.i

Proof. Assume first that R is simple. By Theorem 2.7 there is a
� 4complete system of orthogonal submodules m s m : i s 0, . . . , m suchi

that mU : m and R s Ý m Rm for all i. Letting R be m Rm ,i myi i pyqsi p q i j i j
Ž . mone has the generalized Peirce decomposition of R, i.e., R s [ Ri, js0 i j

and R R : d R . It follows that R s Ý R and RU s Ri j p q j p iq i pyqsi p q i j myj, myi
for all i, j.

� 4Put K s x y x* : x g R . It is easy to see that K s Ý K fori j i j p iyjsp i j
any p. So to prove the lemma it suffices to show that if i / j and K / 0,i j
then K : K 9.i j

Suppose that i q j / m. Since i / j, 2 i / m or 2 j / m. We consider the
Ž .case 2 i / m. According to Corollary 2.9 the R q R -bimodule R isi i j j i j

irreducible; therefore R s R R s R R . Let x g R and x s a bi j 0 i j i i i j i j i j i j i i i j
for a g R , b g R . Then xU s bU aU for aU g R , bU gi i i i i j i j i j i j i i i i myi, myi i j

w U U x U UR . It is easy to check now that a y a , b y b s a b y b amy j, myi i i i i i j i j i i i j i j i i
s x y xU , since i / j, m y j, m y i. It follows that K : K 9 if i q j / m.i j i j i j

Suppose now that i q j s m. In this case the subalgebra A s R [ Rji i i
[ R [ R is invariant under involution and is simple by Lemma 2.8. Itj j i j
has 3-grading A s A [ A [ A , where A s R , A s R [ R ,y1 0 1 y1 ji 0 i i j j
A s R which is invariant under the involution ). Besides, K s A l K1 i j ji y1
and K s A l K. The submodule T s K q K is closed under thei j 1 ji i j

� 4trilinear composition x, y, z s xyz q zyx and forms a Jordan triple sys-
w xtem. Moreover, according to 23, Lemma 2 this Jordan triple system is

� 4 � 4simple. Particularly, T s T , T , T . It follows that K : K l T , t, T :i j i j
� 4 w xK , K , K : K , K , K , these inclusions being a simple calculation.i j ji i j i j ji i j
Thus, K : K 9. This completes the proof when R is simple.i j

If R is not simple, then R s I [ I* for a simple ideal I of R and ) is
Ž . Ž .the exchange involution: x, y * s y, x . Since RrI is a simple algebra,

Corollary 2.6 implies that I is a graded ideal. In fact, I s [m I , wherejsym j
I s R l I, and R s I q IU.j j j j j

w x �We want to show that I : I, I for any j / 0. Let m s m : i sj i
40, . . . , m be a complete system of orthogonal submodules of I determined
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by the grading of I, and I s m Im . Then I s [m I is a Peircep q p q p, qs0 p q
decomposition of I, and I s Ý I .j pyqsj p q

w x w xAs before, for p y q / 0 one has I s I I s I , I : I, I . It isp q p p p q p p p q
�Ž . 4 w x �Ž .only left to notice that K s x, yx* : x g I , and K, K s x, yx* : xj j

w x4g I, I . Thus, K : K 9 for any j / 0. The proof is complete.j

Ž .THEOREM 4.8. Suppose R, ) is a simple algebra. Then for any pregrad-
n Ž .ing K s Ý K of the Lie algebra K s K R, ) there is a unique gradingisyn i

R s [m R such that RU : R and for all iisym i i i

K q Z K s K l R q Z K .Ž . Ž .i i

Ž . Ž .Proof. If dim K F 1, then K s Z K and the theorem is obviouslyC#

Ž . Ž . Ž .true. If dim K ) 1, then thanks to i of Theorem 2.2 either KrZ K isC#

prime or K s K 9. Since in the latter case the result follows from Theorem
Ž .4.1, we can assume that KrZ K is prime.

Let K 9 s Ýn K X be the pregrading of K 9 inherited from K, i.e.,isyn i
K X s K X l K . According to Theorem 4.1 there is a grading of R si i

m X Ž .[ R invariant under involution such that K q Z K 9 s K 9 l R qisym i i i
Ž . mZ K 9 for any i. Let K s [ T be the grading of K induced byisym i

Ž . Ž .the grading of R, T s K l R . We claim that K q Z K s T q Z K fori i i i
all i.

w xIf K s T , then for any i q j / 0 one has K , K : K l K 9 :0 i j iqj
Ž . Ž .T q Z K s Z K . Consider the subalgebra I of K generated byiq j

� 4 w xK : j / 0 . It is an ideal of K. Besides, it is easy to see that I, I :j
w x Ž . ww x w xxÝ K , K q Z K and K , K , K , K s 0 if i, j / 0. It fol-i/ 0 i yi i yi j yj

ww x w xx Ž .lows that I, I , I, I s 0, and consequently I : Z K . In this case the
conclusion of the theorem is true.

Assume now that K / T . Lemma 4.7 implies that T s R l K 9 for0 i i
Ž . Ž .any i / 0; therefore T q Z K : K q Z K if i / 0. It follows that fori i

nŽ .the two pregradings of the quotient algebra KrZ K s Ý K sisyn i
mÝ T one has T : K for any i / 0. By Corollary 2.6 these pregrad-isym i i i

Ž .ings of KrZ K are gradings; hence one can apply Lemma 4.6 to argue
Ž . Ž .that these grading are actually the same. Thus, K q Z K s T q Z Ki i

for all i.

5. SUPPORT OF GRADINGS

Ž . � 4The set of integers Supp A s i g Z : A / 0 , where A s [ A isi ig Z i
Ža graded algebra, is called the support of the grading of A support of A, for

.short . It is an important numerical characteristic of the grading. For the
gradings we are interested in it is a finite set, and in general it could be
any finite subset of Z. However, an imposition of cerrtain conditions on A,

Ž .simplicity for instance, restricts possibilities for Supp A .
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w x Ž .In 21 we described the set Supp R for any graded simple associative
algebra R. Namely, if R s [m R is the grading of R andisym i
� 4m , m , . . . , m is a complete orthogonal system of submodules which0 1 m

Ž . � 4defines the grading, then Supp R s N y N, where N s i : m / 0 andi
� 4 Ž .N y N stands for i y j : i, j g N . In particular Supp R is symmetric in

the following sense. We say that a subset M of Z is symmetric if yM s M.
The object of this section is to describe supports of the induced gradings

of the Lie algebras K, K 9, and K 9 for an associative simple algebra with
Ž . minvolution R, ) and )-invariant grading R s [ R .isym i

Ž .We begin with the description of Supp K in the case when R is simple.
Ž .Let us fix a system of submodules m as in Theorem 2.7, then Supp R s

� 4N y N, where M s i : m / 0 . Moreover, N has the following property:i
if m is the maximal number of N, then

i g N implies m y i g N. 18Ž .

� 4Conversely, for any finite set N s 0, . . . , m of positive integers satisfying
Ž .the condition 18 the set N y N is the support of a certain graded simple

algebra with involution. We will establish this in the proof of the next
Ž .theorem which describes Supp K .

To describe supports of the Lie algebra K one needs to understand for
Ž .which s g Supp R the set R l K s 0. We study this situation in thes

following lemmas. Let us fix the notation of the two preceding paragraphs.

DEFINITION 5.1. Given a finite set of non-negative integers N, we say
that the element s g N y N is critical if there is only one pair of elements
i, j g N such that s s i y j.

For instance, m and ym are always critical, but 0 is not unless the
grading is trivial.

Ž .LEMMA 5.2. If s g Supp R and R l K s 0, then s is critical, and, fors
the pair i, j g N such that s s i y j, one has i q j s m.

Ž .Proof. Suppose s s i y j for i, j g N, and i q j / m. Then m Rm *i j
s m Rm / m Rm , so for any non-zero x g m Rm there is themy j myi i j i j
non-zero element x y x* g R l K. Thus, i q j must be equal to m, ands
this determines the pair i, j uniquely.

LEMMA 5.3. If R l K s 0, then R : H and aKa s 0 for any a g R .s s s

Proof. If R s 0, the statement is true. Suppose R / 0, i.e., s gs s
Ž .Supp R . Then by the previous lemma R s m Rm , and hence for anys i j

a g R we have aKa : m Rm Km Rm : m Rm s R . On the other hand,s i j i j i j s
a y a* g R l K s 0, so a s a* and aKa : K. It follows that aKa :s
R l K s 0.s
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The next theorem describes the structure of simple graded algebras
Ž . Ž . Ž .R, ) with Supp K / Supp R . They all have non-zero socle. The classi-
fication of simple rings with non-zero socle and their involutions is well

Ž w x.known e.g., see 8 . Any such ring R is isomorphic to the ring of all
continuous linear transformations of finite rank of a vector space V over a
division ring D. Here, V and D are defined uniquely up to isomorphism.
Any involution ) of R is the adjoint involution for some hermitian or
alternate form on V. In the first case we say that ) is orthogonal, in the
second case that ) is symplectic.

Ž .THEOREM 5.4. Let R, ) be a simple algebra with a grading R s
[

m R in¨ariant under in¨olution, and let K s [
m K be the inducedisym i isym i

Ž . Ž .grading of K. Assume that Supp K / Supp R . Then the following are true.

Ž .i R is a simple algebra with non-zero socle; ) is of the first kind.
Ž .ii The dï ision ring D associated with R is isomorphic to the centroid

C s C# of R, in particular ) acts as the identity on D.
Ž .iii ) is orthogonal. Moreo¨er, it is the adjoint in¨olution for some

symmetric form.
Ž . Ž . Ž . Ž .iv For any s g Supp R _ Supp K the algebra alg R , R s Rys s ys

Ž .q R R q R R q R ; it is isomorphic as a graded algebra to M C#s ys ys s s 2
with the co-transpose in¨olution considered with its natural 3-grading.

Ž . Ž .v For s as abo¨e, R l K s 0, and dim R s 1.ys C# " s

Proof. It follows from Lemmas 5.3 and 3.3 that ) is of the first kind.
Ž .Therefore, R is simple. To complete the proof of i we find a primitive

idempotent e in R.
Ž . Ž .Let s g Supp R _ Supp K . By Lemma 5.2 there exists a unique pair of

elements i, j g N such that s s i y j; in other words R s m Rm ands i j
R s m Rm . By simplicity of R one has Rm R s R, and henceys j i j
m Rm Rm s m Rm . So, R R s m Rm and similarly R R s m Rm .i j i i i s ys i i ys s j j

Ž . Ž . Ž .It follows that alg R , R s m q m R m q m , and according toys s i j i j
Lemma 2.8 it is a simple algebra. Besides, if k g R l K, thenys

kK alg R , R , ) k : k R l K k s 0.Ž . Ž .Ž .ys s s

Therefore R l K s 0 by virtue of Corollary 3.4.ys
From the equalities R l K s 0 we infer that the algebra R R is" s s ys

commutative. Indeed, for x , y g R , x , y g R one hass s s ys ys ys

x x y y s x x y *y s y x x y s y y x x .Ž .s ys s ys s ys s ys s ys s ys s ys s ys

Also, the algebra R R s m Rm is simple by Lemma 2.8. Thus, R R iss ys i i s ys
a field, and the unit e of R R is a primitive idempotent in R, sinces ys

Ž .eRe s R R . We established i .s ys

Magomez
Highlight



LIE ALGEBRAS WITH FINITE Z-GRADINGS 267

Next, the division ring D associated with R is isomorphic to eRe and
w xhence is commutative. Now, by Theorem V.5.2 of 7 the centroid C of R

Ž .is isomorphic to the center of D, which is D in our case. This verifies ii .
Obviously e* is the unit of R R , C#, ee* s e*e s 0, and e q e* isys s

Ž . Ž . Ž .the unit of alg R , R . It follows that alg R , R , M C# andys s ys s 2
Ž . Ž .dim R s 1. We notice that the restriction of ) on alg R , R isC# " s ys s

Ž Ž . .an orthogonal involution since the space H alg R , R , ) s R qys s ys
˜Ž .C# e q e* q R is three-dimensional. It follows that in R there is a sym-s

metric primitive idempotent. Therefore, ) is the adjoint involution of a
hermitian form. Due to the fact that ) is the identity map on D this
hermitian form is symmetric. The proof is complete.

THEOREM 5.5. Let R be a simple algebra with a grading R s [m Risym i
in¨ariant under the in¨olution ) of R, and dim K ) 1. Then, for theC#

induced grading K s Ým K , one hasisym i

Ž . Ž . Ž . � Ž . 4i Supp K sSupp R _ U, where Us igSupp R : R lKs0 ;i

Ž . Ž .ii U is a symmetric subset of Supp R and consists of critical ele-
Ž .ments, and dim R s 1 for any s g U.C# s

Con¨ersely, for any set of integers of the form M _ U, where M s N y N
Ž .for a finite set of non-negatï e integers N subject to the condition 18 , and U

is a symmetric subset of M which consists of critical elements, there exist a
simple algebra R with in¨olution ) and the )-in¨ariant grading such that

Ž .M _ U s Supp K for the induced grading of K.

Ž .Proof. The assertion i is an immediate consequence of the definition
Ž .of an induced grading; ii follows from Lemma 5.2 and Theorem 5.4.

To prove the second part of the theorem consider the set of integers
� 4N s 0, i , . . . , i . Assume that 0 - i - ??? - i s m and that N satisfies1 l 1 l

Ž .condition 18 . Let U be a subset of M s N y N such that U s yU and
any element of U is critical in M. We shall construct a simple associative

Ž . malgebra with involution R, ) with an invariant grading R s [ Risym i
msuch that K s K 9 s K 9 and for the induced grading K s [ K oneisym i

Ž .has Supp K s M _ U.
Let V s [ V be the direct sum of vector spaces V such thatig N i i
Ž . Ž .dim V s 1 if 2 i y m g U and dim V s 2 otherwise. Note that V isi i

Ž . Ž .finite dimensional and dim V s dim V for any i g N. It follows thati myi
there exists a non-degenerate bilinear symmetric form f on V such that
Ž . Ž .f V , V s 0 unless i q j s m. Put R s End V and let ) be the adjointi j F

involution of R with respect to f. Denote by p the projection of V ontoi
� 4V . Then the set p : i g N is the complete system of orthogonal idempo-i i

tents in R. It follows from the definitions of f and ) and that pU s p .i myi
� 4Thus, the system p : i g N defines an invariant grading of R si
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[m R , where R s Ý p Rp with support M s N y N. We claimisym i i sytsi s t
Ž . mthat Supp K s M _ U for the induced grading K s [ K .isym i

It is enough to prove that s g U if and only if R l K s 0 for s g M. Ins
any case s is critical in M, so s s i y j for a unique pair i, j g N with

Ž . Žj s m y i; therefore R s p Rp . The subalgebra B s p q p R ps i myi i myi i
. Ž .q p is isomorphic to End V [ V . Moreover, B* : B and themy i F i myi

restriction of ) on B is the adjoint involution with respect to the
restriction of f onto V [ V . It follows that R l K s 0 if and only ifi myi s

Ž .dim V s 1, which in turn is equivalent to the condition s g U by theF i
choice of V . The proof is complete.i

Now we assume that R is not simple. Then R s I [ I* for a simple
ideal I of R and ) is the exchange involution. Besides, as we noticed in
Theorem 2.7, I and I* are graded ideals, and

R s I q IU for any p. 19Ž .p p p

Ž . Ž . � 4It follows that Supp R s Supp I s N y N, where N s i : l / 0 fori
� 4the system l s l : i s 0, . . . , m which defines the grading of I.i

Conversely, for any set of integers of the form N y N there is a simple
Ž . malgebra R, ) with an invariant grading R s [ R such that R isisym i

Ž .not simple and Supp R s N y N.
Ž .Here we want to notice that in the case when R is not simple Supp R

� 4may be smaller than the set N y N if we define N to be i : m / 0 fori
the system m described in Theorem 2.7.

Ž .THEOREM 5.6. Suppose R, ) is a simple algebra with in¨olution and a
grading R s [m R in¨ariant under the in¨olution ), and R is notisym i

m Ž .simple. Then for the induced grading K s Ý K , one has Supp K sisym i
Ž .Supp R .

Con¨ersely, any set of integers of the form N y N for a finite set of
non-negatï e integers N ser̈ es as the support of cerrtain Lie algebra K with a

Ž .grading induced from a simple algebra R, ) such that R is not simple.

Ž .Proof. First statement of the theorem immediately follows from 19 .
The second follows from the fact that for any N there is a simple graded

m Ž . w xalgebra I s [ I such that Supp I s N y N 21, Proposition 4.7 .psym p
op Ž .If we consider R s I [ I with the exchange involution ), then K R, )

is as required.

Finally, on the supports of induced gradings on the Lie algebras K 9 and
K 9 one has

Ž .THEOREM 5.7. Let R, ) be a simple algebra with a grading R s
[m R in¨ariant under in¨olution, and dim K ) 1. Then for the in-isym i C#

X Xm m mduced gradings K s Ý K , K 9 s Ý K , and K 9s Ý K oneisym i isym i isym i
Ž . Ž . Ž .has Supp K 9 s Supp K 9 s Supp K .
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Proof. We assume that the grading of R is not trivial. Also, according
to Theorem 2.2 either K 9 is simple or K 9s K 9 s K. So we can assume the
former.

Ž . Ž .Obviously, 0 g Supp K and one has the inclusions Supp K 9 :
Ž . Ž . Ž .Supp K 9 and Supp K 9 : Supp K . Besides, Lemma 4.7 and the inclu-

Ž . Ž . Ž . Ž . � 4 Ž .sions Z K 9 : Z K : Z R : R imply that Supp K 9 j 0 s Supp K .0
Ž .So it suffices to show that 0 g Supp K 9 .

Ž . � 4First, we show that Supp K / 0 . Assume otherwise. Then, by Theo-
Ž .rem 5.6, R is simple; by Lemma 5.2, any non-zero element of Supp R is

Ž .critical; and hence for any i g N the equations i s i y 0 s m y m y i
Ž . � 4imply that either i s 0 or i s m. Consequently, Supp R s ym, 0, m . In

Ž . Ž .this case alg R , R is a non-zero ideal of R, ) , and Theorem 5.4ym m
Ž . Ž .implies the R, ) is isomorphic to M C# with an orthogonal involution.2

This contradicts our assumption that dim K ) 1.C#

Ž .Now, let n be the maximal number of Supp K . According to Theorems
Ž .5.5 and 5.6 the set Supp K is symmetric; therefore yn is the minimal

Ž . Ž .number in Supp K . We saw that n ) 0; thus yn, n g Supp K 9 . Assume
X XŽ . w xthat 0 f Supp K 9 . Then it follows that K , K s 0. It is easy to seen yn

that

X Xid K s K 9 , K 9 , . . . , K : s s 0, 1, . . . ; i - 0 .� 4Ž . i iÝ nK 9 n j1 s

X Xw x ww x xBesides, since K 9 , K 9 s 0 for any i - 0, K , K 9 , . . . , K 9 , K sji yn n i i ynj 1 sX Xw x w Ž . xK , K 9 , K 9 , . . . , K s 0. It follows that id K 9 , K 9 s 0, aK 9n yn i i n yn1 s

contradiction to simplicity of K 9. The proof is complete.

In concluding the section we want to compare the maximal number of
Ž . Ž .Supp R and that of Supp K . In other words we want to compare the

length of gradings of R and K. If R is not simple, they are equal since
Ž . Ž . Ž . Ž .Supp R s Supp K . If R is simple then Supp K s Supp R _ U, where
Ž . � 4Supp R s N y N for a set of positive integers N s 0, . . . , m which

Ž .satisfies 18 , and U is a symmetric subset of N y N which consists of
critical elements.

Ž .Let n be the maximal number of Supp K , and assume that n - m. We
claim that m y n is the minimal positive number of N. Indeed, if 0 - i -
m y n for some i g N, then n - m y i and hence m y i g U l N

Ž .by 16 and the choice of n. On the other hand, the element m y i s
Ž .m y i y 0 is not critical in N y N, a contradiction to Theorem 5.5. It

Ž .follows also from 18 that n is the next largest number in N.
This claim has two interesting consequences. First, let i be a positive

integer such that n - i F m. If i g N y N, then i s p y q for p, q g N
and p s m because n is the next largest number in N. Besides, q s m y i
- m y n, so by minimality of m y n has m y i s 0. Thus, we proved that
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Ž . Ž .i f Supp R if n - i - m. Since Supp R is a symmetric set, one has
Ž . < <i f Supp R if n - i - m.

Second, m y n F n implies that m F 2n. Combining the results of this
section we have

Ž .COROLLARY 5.8. Let R, ) be a simple algebra with a grading R s
[m R in¨ariant under in¨olution, and let dim K ) 1, K s Ým K ,isym i C# isym i

Ž .be the induced grading of the Lie algebra K s K R, ) . Assume that n and m
Ž . Ž .are the maximal numbers of Supp K and Supp R respectï ely, and n - m.

Then

Ž .a m F 2n;
Ž . < <b R s 0 for any i such that n - i - m, i.e.,i

K [ ??? [ K [ ??? [ Kyn 0 n
l l l

R [ R [ ??? [ R [ ??? [ R [ R ;ym yn 0 n m

Ž . Ž .c dim R s 1.C# " m

6. SPECIALITY OF THE GRADINGS

In this section we show how the type of the involution of an algebra
Ž . Ž .R, ) affects the gradings of K 9 R, ) . First, we recall the notion of

w xspecial grading introduced by Zelmanov in 25 . Actually, we give here a
definition which is equivalent to the original one given in terms of the
graded universal envelope.

DEFINITION 6.1. Assume that L is a Lie algebra with a pregrading
n n w xL s Ý L , L / 0, and L s Ý L , L . The pregrading is said toisyn i n 0 is1 yi i

be special if there is a pregraded associative algebra R s Ýn R , aisyn i
Ž .submodule Z : R l Z R , and a graded homomorphism of Lie algebras0 0

Žy. Ž .f : L ª R rZ such that Ker f l L s 0 for all i / 0.0 i

w xIn 25 Zelmanov proved that any grading of a simple finite-dimensional
Lie algebra of the type A or C is special, and that the algebras of then n
types B , D have exceptional gradings. To give a generalization of thisn n
result for the infinite-dimensional algebras we extend the notion of sym-
plectic involution to the infinite-dimensional case as follows.

Ž .DEFINITION 6.2. Assume that R, ) is a simple algebra with the
˜Ž .involution ) of the first kind. We say that ) is symplectic if QAnn K s0.H̃

Remark 6.3. In the proof of Theorem 6.5 we will establish that the
˜Ž .condition QAnn K / 0 implies that the socle of R is not zero, and ) isH̃
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orthogonal. Thus, our definition agrees with the usual definition of the
symplectic involution in the finite-dimensional case and its generalization
for simple rings with non-zero socle.

The following lemma gives an important example of a non-special
grading. This is an example of the minimal dimension. We use it to prove
nonspeciality of other gradings.

Ž .LEMMA 6.4. Let R s M F be the full matrix algebra o¨er an alge-7
braically closed field F; let R s [4 R be the grading induced by theisy4 i

�system of idempotents e s E , e s E q E , e s E , e s E q E ,0 11 1 22 33 2 44 3 55 66
4 Ž .e s E , where E are the matrix units of M F . Then4 77 i j 7

Ž .i the co-transpose in¨olution ): E ª E preser̈ es this grad-i j 8yj, 8yi
Ž .ing, and R l K s 0 for K s K R, ) ;" 4

Ž . 3 Ž .ii the induced grading K s [ K of the Lie algebra K s K R, )isy3 i
is not special.

Ž . UProof. The assertion i is immediate since e s e for 0 F i F 4,i 4yi
Ž .and R q R s e Re q e Re s FE q FE : H R, ) .y4 4 0 4 4 0 17 71

Ž . Ž .To prove ii consider the pair of spaces K , K . It is a Jordan pairy3 3
with respect to the trilinear compositions

w x� 4x , y , z s x , y , z ," 3 . 3 " 3 " 3 . 3 " 3

where x , z g K , y g K . Moreover, letting f : K = K ª F" 3 " 3 " 3 . 3 . 3 y3 3
Ž .be the form defined by the equation f y , x e s e y x e , one cany3 3 0 0 y3 3 0

see that

� 4x , y , x s 2 f y , x x ,Ž ." 3 . 3 " 3 . 3 " 3 " 3

Ž . Ž . Ž .where x g K , y g K , and f y , x s f x , y . So K , K" 3 " 3 . 3 . 3 3 y3 y3 3 y3 3
is the Jordan pair of the bilinear form f. Therefore, this pair is simple, its

Ž .centroid is F, and dim K s 2.F 3
Assume now that the graded Lie algebra K s [3 K is special.isy3 i

w xThen according to 25, Sect. 2 there is a simple associative algebra with
] 3Ž .involution U, and with invariant grading U s [ U such that theisy3 i

3 3] ]Ž . Ž .Lie algebra K s [ K is isomorphic to K 9 U, s [ K 9 U,isy3 i isy3 i
with the induced grading. It follows in particular that U is finite dimen-
sional.

If U were not simple then K would be of type A . However, K is ofm
type B . So, U is a simple finite-dimensional algebra over the algebraically3

]Ž . Ž .closed field F. Thus, U, is isomorphic to R, ) , and K 9
] ] ]Ž . Ž . Ž .U, s K 9 U, s K U, , K. Since the grading of an associative enve-

lope algebra is determined uniquely by the induced grading of K, the



OLEG N. SMIRNOV272

isomorphism above preserves the grading. This contradicts the fact that
U s 0 and R / 0.4 4

Ž .THEOREM 6.5. Suppose R, ) is a simple algebra with the algebraically
Ž .closed )-centroid F, K s K R, ) , and dim K ) 1.C#

Ž .i The induced grading of the Lie algebra K is special if and only if the
Ž .corresponding gradings of K 9 and K 9 R, ) are special.

Ž . Ž .ii If dim R F 36, then any grading of the Lie algebra K 9 R, ) isC#

special.
Ž .iii If ) is of the second kind, then any grading of the Lie algebra

Ž .K 9 R, ) is special.
Ž .iv If ) is of the first kind and dim R ) 36, then any grading of theC#

Ž .Lie algebra K 9 R, ) is special if and only if ) is symplectic.

Ž .Proof. Assertion i follows immediately from Theorem 5.7, Lemma 4.7,
Ž .and the fact that Z K : K for any induced grading of K.0

Ž .Since any grading of Lie algebras A , C is special, statement iin n
follows from well-known isomorphisms D , A [ A , B , C , D , A .2 1 1 2 2 3 3

Ž .Also, Corollary 4.5 and Lemmas 5.3 and 3.2 imply part iii .
Ž .To prove iv assume that ) is symplectic and consider a grading of

mnK 9s Ý K 9 . Then by Corollary 4.5 there is a grading of R s [ Risyn isym ii
which induces the given grading of K 9. According to Lemma 5.3 and our

Ž . Ž .assumption on ) for any integer s f Supp K one has R : QAnn Ks H
Ž . Ž . Ž .s 0. Therefore, Supp K 9 s Supp K s Supp R , and hence the grading

of K 9 is special.
Conversely, suppose that dim R ) 36 and ) is an involution of theC#

Ž .first kind which is not symplectic. It follows that R is simple, QAnn KH
/ 0, and K s K 9 s K 9 by Lemma 3.3. We shall construct a non-special
grading of K.

Ž .First, we want to show that there is a non-zero element a g QAnn KH
2 Ž . w xsuch that a s 0. Consider 0 / b g QAnn K . Theorem 1 of 14 impliesH

Ž . Ž . Ž .that for any x g R one has bxb s a x b for some a x g F. If a b s 0,
2 Ž .then the element a s b or a s b is as required. Suppose a b / 0.

Ž . Ž 2 .2 2Changing b if necessary one can assume that a b s 1. Then b s b
and b2Kb2 s 0. So we can assume that b is an idempotent to begin with.

If for any k g K bk2 b s 0, then bHb s 0 and b s 0. Hence, there is an
2 Ž 2 .element k g K with bk b / 0, i.e., a k / 0. One can assume that

Ž 2 . 2a k s y1. Put x s bk; then xx* s ybk b s b, bx s b, xb s 0, x*b s
Ž .2 2x*, and bx* s 0. Also, x*x s x*bx s x*x / 0; otherwise b s b s

Ž .2xx* s 0. Thus, the element c s x*x is a non-zero symmetric idempo-
tent orthogonal to b. Now, it is easy to check that for i g F, i2 q 1 s 0,
the element a s b q ix q ix* y c has the property a2 s 0. Moreover, the
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idempotent e9 s b q c is the unit of the algebra B s e9Re9, a g B, and
Ž .aKa s ae9Ke9a s aK B, ) a s 0.

w xHaving obtained such an element a, we can apply Lemma 5 of 18 ,
which states that whenever a prime algebra R with an involution of the
first kind ) has a non-zero symmetric element a such that a2 s aKa s 0
then R is GPI and ) is orthogonal. Besides, according to Theorem 2.4
there is a symmetric idempotent e g R such that the subalgebra A s eRe

Ž .is isomorphic to M F and a g A. It follows that ) is an orthogonal7
involution of A, and choosing an appropriate basis of A one can assume
that ) is the co-transpose involution of A with respect to the basis
� 4E : 1 F i, j F 7 .i j

Ž .We identify A with M F and consider the grading of A defined by the7
� 4complete orthogonal system of idempotents e , e , e , e , e as in Lemma0 1 2 3 4

6.4. Next we consider a grading of the unital extension Ra s F1 [ R of R
induced by the complete system of orthogonal idempotents
� 4f , f , f , f , f , where f s 1 y e q e and f s e for i / 2. It is easy to0 1 2 3 4 2 2 i i
see that f U s f for any i, so this grading Ra s [4 Ra is invarianti 4yi isy4 i
under ). Obviously, R is a graded ideal of Ra, i.e., R s [4 R . Weisy4 i
claim that the grading of K induced by this grading of R is not special.

Ž .First, we note that R s e Re s e eRee s e Ae s FE : H A, ) ,4 4 0 4 0 4 0 71
Ž .so K R , ) s 0. Analogously, R s e Re q e Re s e eRee q" 4 3 3 0 4 1 3 0

Ž . Ž .e eRee s A . Thus, K R , ) s K A , ) / 0. If the grading of K4 1 3 " 3 " 3
Ž .were special, so would be the grading of K A, ) , which is not special by

Lemma 6.4. The proof is complete.

We conclude our paper with the graded version of Zelmanov’s classifica-
tion theorem. It follows from Zelmanov’s theorem, Corollaries 4.5 and 5.8,
and Theorems 5.4 and 6.5.

THEOREM 6.6. Let L s [n L be a simple graded Lie algebra o¨er aisyn i
field of characteristic 0 or at least 4n q 1, L / L , and L / 0. Then one of0 n
the following is true.

Ž . mThere is a simple associatï e algebra R, ) with a grading R s [ Risym i
Ž .in¨ariant under ) such that L is graded isomorphic to the algebra K 9 R, )

ns [ K 9 with the induced grading. The algebra L hasisyn i

I. Special grading: m s n;

II. Non-special grading: R / 0 and m ) n; in this case K sm
K 9 s K 9;

Ž .a m F 2n;
Ž .b R is simple algebra with non-zero socle;
Ž .c ) is orthogonal;
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Ž . < <d R s 0 for any i such that n - i - m, i.e.,i

K [ ??? [ K [ ??? [ Kyn 0 n

R [ R [ ??? [ R [ ??? [ R [ R ;ym yn 0 n m

Ž . Ž .e dim R s 1;# " m

III. Finite-dimensional exceptional grading: L is an algebra of one of
the types G , F , E , E , E , D .2 4 6 7 8 4
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