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1. INTRODUCTION 

An inner ideal of an associative ring R is an additive subgroup V of R such 
that [V[ VR]] C I/. This paper examines the inner ideal structure of semi- 
prime associative rings and of the skew elements of prime rings with involu- 
tion. The results are analogous to those obtained by Herstein, Baxter, and 
Erickson for the Lie ideals of these rings. In the special case when R is a 
simple Artinian ring with center 2 of characteristic not 2 or 3, and of dimen- 
sion greater than 16 over 2, then [RR]/2 n [RR] is a simple Lie algebra over 
Z satisfying both the ascending and descending chain conditions on inner 
ideals. Every inner ideal has the form eRf for e, f  idempotents of R such that 
fe = 0. Moreover, if * is an involution on R and if K denotes the skew 
elements relative to *, then [AX]/2 n [KK] also satisfies both chain condi- 
tions on inner ideals. Every inner ideal of this algebra can be written as eKe* 
for some idempotent e of R such that e*e = 0. 

The motivation to study inner ideals in Lie algebras can be found in a 
recent paper [3] by the author. The inner ideals of a Lie algebra are closely 
related to the ad-nilpotent elements, and certain restrictions on the ad- 
nilpotent elements yield an elementary criterion for distinguishing the non- 
classical from classical simple Lie algebras over algebraically closed fields of 
characteristic p > 5. 

In what follows R is a noncommutative, associative ring. Say R is n-torsion 
free where n is a positive integer if, in R, nx = 0 implies x = 0. Let 2 denote 
the center of R, and given elements a, b in R, let [ab] = ab ~ ba. Then 
2 - {a E R 1 [ab] = 0 for all b in Ii}. Alternatively, given any a in R if 
D,,(r) = [ar], then 2 = {a E R / D, = O}. For subsets A, B of R use [AB] 
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to denote the additive subgroup of R generated by all the elements [&I 
where a E A, b E B. Then an additive subgroup U of R is a Lie ideal of R if 
[ UR] _C U, and an additive subgroup V of R is an inner ideal of R provided 
[ V[ VR]] C V. An element t in R is an absolute zero divisor of R if [t[tR]] = 0, 
or equivalently if Dt2 = 0. It is apparent that the additive subgroup generated 
by an absolute zero divisor is an inner ideal of R. As we will see in the next 
section the only absolute zero divisors in most well-behaved rings are elements 
of the center. 

2. ABSOLUTE ZERO DIVISORS 

A ring R is said to be semiprime if its only nilpotent ideal is (0). A well- 
known result of Herstein states: Let R be a semiprime 2-torsion free ring. 
If  [t[tr]] = 0 for every r in R, then t belongs to 2, [7, p. 51. As we will see 
below this result extends easily to [RR]. The proof uses the following identity 
derived in [3]. 

Whenever R is a 3-torsion free ring and there is an element t in R so that 
Dt3 = 0, then for any Y in R: 

(Do~(# = D,2D,2D,2. (2.1) 

LEMMA 2.2. Let R be a semiprime, 2- and 3-torsion free ring and let t be an 
element of R. If  [t[tr]] = 0 for every r E [RR], then t E 2. 

Proof. Let r E R. Since Dt3(r) E D,2([RR]) = 0, and since R is 3-torsion 
free, then for every s in 17, 

(DDt2~#(s) = Dt2D,2D,2(s) E Dt2([RR]) = 0. 

Hence for each r in R, Df2(r) is an absolute zero divisor, and by Herstein’s 
result Dt2(r) E 2. From 0 = Dt2([rs]) = [Dt2(r), s] + 2[D,(r), Dt(s)] + 
[r, Dt2(s)] obtain [DDt(r), D,(s)] = 0 f  or r and s arbitrary elements in R. Now 
let r = tDt(s) in this equation. Then 0 = [D,(tD,(s)), D,(s)] = [tD,2(s), D,(s)] = 
Dt2(s)[t, D,(s)] = (D,2(s))2. Because R is semiprime the only nilpotent 
element in 2 is 0. Thus Dt2(s) = 0 for all s E R, and Herstein’s result says 
t E 2. 

Remark. Herstein [9] has proved a more general version of the last lemma: 

THEOREM 2.3. Let R be a semiprime, 2-torsion free ring and let U be a Lie 
ideal of R. If  [t[t, u]] = 0 for all u E U, then [tu] = 0. 
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He obtains Lemma 2.2 as an easy consequence. The alternative proof is 
given here because of its elementary nature and because it will be imitated 

in the study of absolute zero divisors in skew elements of rings with involution. 
A ring R is said to be prime if aRb = (0), a, b E R implies a = 0 or b = 0. 

The following are equivalent formulations of primeness (see [8, p. 441). 

LEMMA 2.4. R is a prime ring if and only I$ 

(1) the right annihilator of every nonzero right ideal of R is (0). 

(2) the left annihilator of every nonzero left ideal of R is (0). 

(3) if A, B are ideals of R and AB = (0), then either A = (0) or B = (0). 

LEMMA 2.5. Let R be a prime, 2-torsion free ring and let U be an ideal of R. 
If [t[tu]] = 0 for all u E U, then t E 2. 

Proof. Invoke Theorem 2.3 to obtain [tu] = 0 for all u E U. For r E R, 
0 = [t, ur] = u[tr]. Thus, [tr] is in the right annihilator of U, and so [tr] = 0 
for all Y  E R, implying that t E 2. 

This lemma also has a more elementary, direct proof. Suppose [t[tu]] = 0 
for all u E U, and let D(r) = IIt for r E R. Then D2(u) = 0 for all u E U. 
Replacing u with UY for r E R gives 

0 = D2(ur) = 2D(u)D(r) + uD2(r). 

I f  D(U) is substituted for U, then this equation becomes 0 = D(u)D2(r). 

Finally, replacing u with D(r)u we get D2(r)uD2(r) = 0 for every u E U. 
Since D2(r) is in the left annihilator of UD”( Y  , and since the right annihilator ) 
of U is (0), D2(r) = 0 for all r E R. Consequently, t E Z. 

Assume now that R is a prime ring. Let S = (cp: I -+ R} where I is any 
nonzero two-sided ideal of R and p is any R-homomorphism of I into R 
regarded as right R-modules. Let Q be the set of equivalence classes deter- 

mined by the following equivalence relation on S. If  v  is defined on 1; , # on 
I2 , then v  N 4 if v  = II, on some nonzero two-sided ideal I3 C II n I,. In 

addition Q is a prime ring with addition defined on the intersection of ideals 
and composition defined on the product of ideals. The ring R is imbedded in 
Q as left multiplications and the center C of Q is a field called the extended 
centroid of R. For more details see Martindale’s paper [I 11. 

If  R has an involution, *, the involution can be extended to CR, the 
central closure of R, by defining a map c ---f F on the extended centroid: 
cx = (cx*)* for x ~1, a *-ideal of R such that cI C R, and extending by 
linearity to CR. An involution is of the first kind if the induced involution on 
the extended centroid is the identity map. Otherwise it is said to be of the 
second kind. 
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Let R be a 2-torsion free ring with involution * and let K be the skew- 
symmetric elements relative to *. Our goal will be to study absolute zero 
divisors of K when R is prime. For this purpose three results will be particu- 
larly helpful. 

LEVITZKI'S LEMMA 2.6. (see [7, p. 11) Let R be a ping and (0) # I be a 
right ideal of R. Suppose that given any a E I, an = 0 for somejxed integer n. 
Then R has a nonzero nilpotent ideal. 

LEMMA 2.7. ([7, p. 431) Let R be a semiprime ring with involution * such 
that 2R = R. Let K denote the skew-symmetric elements in R. If aKa = 0 for 
some a E K, then a = 0. 

The proof follows from Levitzki’s lemma since every element in aR has 
cube 0. 

THEOREM 3.8.([4]) If R is a prime, 2-torsion free ring with involution * of 
the Jirst kind, then E, the subring of R generated by the skew elements K, 
contains a nonzero *-ideal of R unless R is an order in a simple ring which is at 
most 9-dimensional over its center. 

Let us assume then that R is a prime ring with involution * of the first kind, 
2R = R, and R is 2-torsion free. Moreover suppose that R is not an order in 
a simple ring of dimension less than 9 over its center. Let K be the skew- 
symmetric elements and S be the symmetric elements relative to *. 

LEMMA 2.9. If t E K and [tK] = 0, then t = 0. 

Proof. Because [tK] = 0, [tR] = 0 for R as in Theorem 2.8. Therefore, 
by Erickson’s Theorem 3.8, t commutes with an ideal of R. In view of 
Lemma 2.5 t E 2 n K = (0). 

THEOREM 2.10. If [t[tK]] = O~OY t E K, then t = 0. 

Proof. For every s E S, st + ts E K. Therefore, 0 = [t[t, ts + st]] = 
[t, t2s - st2]. Furthermore, for every k E K, [t, t2k - ktz] = [t, t(tk - kt) + 
(tk - kt)t] = 0. Thus, for every Y E R, [t, t2r - rt2] = 0, and t2 is an absolute 
zero divisor of R. By Herstein’s result, t2 E 2. If t2 = 0, then 0 = [t[tk]] = 
-2tkt implies tkt = 0 for all k E K. From Lemma 2.7, t = 0. We may assume 
then t2 # 0. However, [t[tk]] = 0 gives 0 = (kt - tk)t, and thus, (kt - tk)t2 = 0. 
For each r E R, 0 = (kt - tk)t2r = (kt - tk)rt2, which says kt - tk = 0 
for all k E K. We conclude from Lemma 2.9 that t = 0. 

This theorem can be extended to give a result about the derived algebra of 
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K, but this will be a direct consequence of the next lemma which will be 
proved in its most abstract setting. 

LEMMA 2.11. Let L be a Lie algebra over a commutative ring k such that L 
is 3-torsion free. Suppose Dz2(L) = 0 implies x = 0. If Dy2([LL]) = 0, then 
y  = 0. 

Proof. Take y  EL such that D,2([LL]) = 0 and observe that D:(L) C 
D,2([LL]) = 0. Identity (2.1) implies that for every v  EL, (Do,z(U))2(v) = 
D,2D,2D,2(v) C DU2([LL]) = 0. By hypothesis then DU2(u) = 0 for every 
u EL. One more application of this assumption gives y  = 0. 

COROLLARY 2.12. If  [t[t[KK]]] = Ofor t E K, then t = 0. 

With the same notation as before, assume now that the involution * is of 
the second kind, so the involution extended to the centroid is not the identity. 
Let C, = {c E C 1 E = -c} and let C, = {c E C / F = c}. Since C, # (0), 
we may take (Y E C, , 01 # 0 with C, = aC,. Let I be the nonzero *-ideal 
of R such that OJ C R. Define S’ = S n I, and K’ = K n I. 

THEOREM 2.13. Let t E K, the skew elements of a prime, 2-torsion 
free ring R with involution * of the second kind. If [t[tK]] = 0 then 
t E z. 

Proof. The fact that [t[tK]] = 0 implies [t[tC,S’]] = [t[taC,S] = 
CJt[t, as]] c C,[t[tK]] = 0; [t[tCKK]] = C,[t[tK]] = 0; [t[tC,K]] = 
Cs[t[tK]] = 0; and [t[tC,S’]] = clCs[t[t, &‘]I C &C,[t[tK]] = 0. From 
these calculations we see that D,2(CK + CS’) = 0, and in particular that 
D,2(CK’ + CS’) = 0. Since CK’ + CS’ is an ideal in the prime ring CR, 
Lemma 2.5 says t E C n R = Z. 

THEOREM 2.14. With notation as in Theorem 2.13 suppose there is a t E K 
such that Di2([KK]) = 0. Then t E Z. 

Proof. Let D(x) = Dt(x) for all x E R. Since Dt2([KK]) = 0, then 
03(K) = 0. This implies that for k, k’ E K, (D,q,,)2(k’) = D2D,2D2(k’) C 
D2([KK]) = 0. By the previous theorem, D2(k) E Z for all k E K. It follows 
that D2(CK + C’S’) C C and that every u, o E CK + C‘S’, [D(u), D(v)] = 0. 
Let u = tD(v) for v  E CK’ + CS’. Then tD(v) E CK’ + CS’ since CK’+ CS 
is an ideal of CR. Therefore, 0 = [D(tD(v)), D(v)] = [tD2(v), D(v)] = 
(P(v))~. Because D2(v) E C and is nilpotent, D2(v) = 0 for all v  E CK’ + CS’. 
By Lemma 2.5 t E C, and hence, t E Z. 
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3. INNER IDEALS IN SEMIPRIME RINGS 

Assume for the moment that R is an arbitrary associative ring. For any 
additive subgroup V of R define: T(V) = {t E R 1 [V[tR]] C V}. It is easy 
to show that T(V) has the following properties: (1) T( 5’) is an inner ideal of R. 
(2) T(V) is a Lie subalgebra of R. (3) If  V is an inner ideal of R, V C T(V). 
Moreover, (4) T(V) is a subring of R. 

Property (4) can be verified in this way: Let t, , t, E T(V), z, E V and Y E R. 

Then [v[t,t, , 111 = [v[h , VII + [v[& , 41 E v. 
In our investigations of the inner ideal structure of a semiprime ring the 

inner ideals T(V) will enable us to reduce our considerations to inner ideals 

which are also subrings, a much easier case to handle. 
The next two theorems due to Jacobson are included for future reference. 

They will be quite useful in our work and are of independent interest. 

THEOREM 3.1. Let R be a central simple associative algebra over Z. If 
t E R, and D = D, is algebraic of degree n, then t is algebraic of degree < n. 

Proof. Use the symbol t, to denote left multiplication by tin R, tL(r) = tr. 
Likewise let t, be right multiplication of R by t. Therefore D = t, - tR . 
I f  f  (A) = A” + c++l + ” + a, , 01~ E 2 is the minimum polynomial of D, 

then 

(tT - t# + al(tL - Q-l + ... + an = 0. 

This gives 

k” + &d tL”-l + *.. + an(tR) = 0 (1) 

where a@) is a polynomial of degree < i. It is well known that R az R”P g 
R,R, where R”P is the opposite ring of R, R, = {aL 1 a E R} and R, = 
{aR ) a E R}. I f  t, ... t, are linearly independent over 2, then tlL ,..., t,, are 
linearly independent over R,. From (1) it follows that 1, t,..., tn are linearly 
dependent over 2. So t is algebraic of degree < n. 

THEOREM 3.2. Let R be as in Theorem 3.1 and assume D, is nilpotent of 
index n for some t E R. Then t is algebraic and its minimum polynomial has 
precisely one root in the algebraic closure of Z. Moreover, n is odd, and the degree 
of t is r = (n + 1)/2. If the characteristic of Z is 0 or > Y then t = 01. 1 + s 
where a! E Z and s is nilpotent of index Y. 

Proof. By Theorem 3.1, t is algebraic. Let Z denote the algebraic closure 
of Z, and let f  (;\) be the minimum polynomial of t. Consider iT = R & z. 
Now i? = @R, where 01 runs over the roots of f(x) in Z and R, = 
{xa E R / (tR - C+C~ = 0 for some integer e}. Also # = 0, R where 01 is a 
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root of f(x) in Z and ,R = {&x E R 1 (tr. - cJ)@~x = 0 for some integer e>. 

Since t, and t, commute, fT = 0, R. where .Re = .R n R, . Suppose 01 # /3 
and x~&Ro. Then (tL - t, - (a - /3))% = 0 for some e. But since D = 
t, - t, is nilpotent, this implies x = 0. Hence, oiRp = 0 unless 01 = /3. 
Thus, ER = lYROl = R, . Now R, is a left ideal of fi and ,R is a right ideal of i7. 
As a result of this R, = .R, = .R is an ideal of R, and so R = ,R = R, for 
some 01 E Z. Therefore f(h) = (h - CX)’ where r < n. Let Tr = t, - oJ and 
Tz = T, - cJ. Because I, T1 ,..., T;-’ are linearly independent over Ra 
we have (T1 - T.J2r--2 # 0. But (T1 - T.$-l = 0 since T1 and T, are 
nilpotent of index r. Therefore, the index of nilpotency of D = T1 - Tz is 
2r - 1. So 12 = 2r - 1 and r = &(n + 1). Moreover f(x) = (h - CX)’ = 
AT - r&Y-l + ... + -(I) T~T E Z[h]. It r is not divisible by the characteristic 
of Z, ~a: E Z implies 01 E Z. 

Herstein [9] has studied the Lie ideal structure of semiprime associative 
rings. His investigations show: 

THEOREM 3.3. Let R be a semiprime, 2-torsion free ring, and let U be a Lie 
ideal and a subring of R. Then either U C Z or U contains a nonzero ideal of R. 

THEOREM 3.4. If U is any Lie ideal of R, then U C Z or U > [IR] for some 
nonzero ideal I of R. 

THEOREM 3.5. If  V is any additive subgroup of R such that [VU] C Vfor 
some Lie ideal U of V, then either [VU] = 0 or there is an ideal I of R such that 
0 # [IR] C V. 

Our study of inner ideals will yield results resembling these theorems. 

LEMMA 3.6. Let R be a semiprime, 2- and 3-torsion free ring and let V 
be a Lie subalgebra of R such that [V[V[RR]]] C V. If  V” = 0, then [VV] = 
V” = 0, zuhere Vn is de$ned inductively by V1 = V, Vn = [V, V+‘]. 

Proof. I f  n = 2, there is nothing to prove. So assume n > 2. For each 
x E Vnpl [x[x[RR]]] C [XV/“-~] C Vn = 0. Hence, by Lemma 2.2 Vn-l C Z. 
If  we knew that V-l C Z implies I/“-l = 0, the proof could be completed by 
an inductive argument. Thus, it suffices to show V” C Z implies v/m = 0 
for m 3 2. Assume x E Vm-l and y  E V, and let (Y = [my] E Z. Let D(r) = 
[xr]. For every r E R D4(r) E D3([RR]) C [ Vm--l[ Vm-l[ V”‘-l[RR]]]] C Vm C Z. 
Letting r = sy for s arbitrary in R we have D4(sy) = D4(s)y + 4D3(s)D( y) C Z. 
This says py + 4D3(s)ol E Z for /3 = D4(s) E Z. Therefore [/3y + 4D3(s)q y] = 
0 and hence, or[D3(s), y] = 0 for every s E R. In particular, if s = xy3, then 
D3(s) = x(D( y))“, and 01[D3(s), y] = 0 implies 0 = cr[x(D( Y))~, y] = OL~[X, y] = 
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c?. Since 01 is a nilpotent element of the center of R, 01 = 0. In this way 
[x, y] = 0 for each x E P-l and y  E V, that is, Vm = 0. 

THEOREM 3.7. Let R be a semiprime, 2- and 3-torsionfree ring, and let T be 
an inner ideal and a subring of R. Then T contains a nonzero ideal of R or 
[TT] = 0. 

Proof. Suppose x E [ TT], y  E T, r E R. Then x( yr) - ( yr)x = (xy - yx)r + 
y(xr - rx). The term on the left is in T because [xR] _C T, and the last term 
on the right is in T since T is also a subring. Consequently, (xy - yx)R C T. 
Therefore, [[r,, , (xy - yx)rl](xy - yx)rd E T for r,, , r, , r2 E R. Expanding 
this product one sees that every term is in T with the possible exception of 

r&y - yx)rdxy - NY2 1 so it must be in T too. Thus, for every r E R, 
R(xy - yx)r(xy - yx)R C T. Either there is an r E R, x E [TT], y E T for 
which (xy - yx)r(xy - yx) # 0 (in which case T contains an ideal of R) or 
for every x E [TT], y  E R, r E R, (xy - yx)r(xy - ye) = 0. This implies 
xy - ye = 0, and hence, [[TTIT] = 0. By Lemma 3.6, [TT] = 0. 

THEOREM 3.8. Let R be as in Theorem 3.7 and suppose V is an inner ideal 
of R. Then either 

(1) [VV] = 0; OY 

(2) there is a nonzero ideal J of R such that V 1 [JR]; or 

(3) V centralizes a nonzero ideal of R. 

Proof. Define T(V) as above and apply Theorem 3.7 to T(V). Then 
either [ VV] C [ T( V)T( V)] = 0 or T(V) > I for some nonzero ideal I of R. 
From the definition of T(V) we see that the second possibility gives [ V[IR]] C 
V. Observe that [IR] is a Lie ideal of R. Hence, by Theorem 3.5, either there 
is a nonzero ideal J of R such that V 1 [JR] or [ V[IR]] = 0. I f  [ V[IR]] = 0, 
then [ V[IV]] = 0 and, by Theorem 2.3, [V, I] = 0. 

COROLLARY 3.9. Let R be a simple ring of characteristic not 2 or 3. If V 
is an inner ideal of R, then V > [RR] or [ VV] = 0. 

One can say more about the case [VV] = 0 when R is simple. 

LEMMA 3.10. If V is an inner ideal in a simple ring of characteristic not 2 
such that [VV] = 0, thenfor each u E V there is an 01 E Zsuch that (v - a)” = 0. 

Proof. For each v  E V, Y E R, Dv3(r) _C D,(V) = 0. By Jacobson’s 
Theorem there is an 01 E 2 with (V - a)” = 0. 
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COROLLARY 3.11. Let R be a division ring of characteristic not 2 or 3 and 
suppose V is an inner ideal of R. Then V 1 [RR] or V C Z. 

Proof. By the previous lemma the case [VV] = 0 implies V C 2. 

THEOREM 3.12. Let V be an inner ideal of [RR] where R is a semiprime, 
2- and 3-torsion free ring. Then either: 

(1) [VV] = 0; or 

(2) V 3_ [JR] for some nonzmo ideal J or R; or 

(3) V centralizes a nonzero ideal of R. 

Proof. Since V is an additive subgroup of R, we define T(V) = 
(t E R j [ V[tR]] C V}. T(V) is an inner ideal and a subring of R, so either 
T(V) 2 I for some nonzero ideal I of R or [T( V)T( V)] = 0. If the first case 
occurs, then [V[IR]] C V, and one can argue as before that this implies 
V >_ [JR] for J a nonzero ideal of R or that V centralizes a nonzero ideal of R. 
If [T(V)T(V)] = 0, we have more work to do. Let U(V) = (u E [RR] 1 
[ V[u[RR]]] C I’}. Then U(V) is an inner ideal and Lie subalgebra of [RR], 
and one verifies readily that [U(V), U(V)] C T(V). To simplify matters let 
T = T(V) and U = U(V). Recall we are assuming [TT] = 0. Hence 
[[VU], [Vu]] C [TT] = 0. Now for x E U3, r E [RR] [x[xr]] E [U3, Uz] C 
[UzUz] = 0. So, by Lemma 2.2, U3 C Z. However, because U4 = 0, 
Lemma 3.6 implies U2 = 0. Thus, [VV] C [VU] = 0, and this concludes 
the proof. 

COROLLARY 3.13. Let R be a simple ring of characteristic not 2 or 3. For any 
ideal V of [RR], [VV] = 0 or V = [RR]. 

The case [ VV] = 0, V $ Z for an inner ideal can actually occur even when 
R is simple. For example, let R = M,(D), the ring of n x n matrices with 
entries in a division ring D. If eij denotes the canonical matrix unit then for 
i # j Deii is an inner ideal of R and also of [RR]. 

LEMMA 3.14. Let R be a simple ring of characteristic not 2 or 3 and let V 
be an inner ideal of [RR] such that [ VV] = 0. Then for each v  E V, (v - a)” = 0 
for some 01 E Z. 

Proof. For each v  E V, Dv4(r) E Du3([RR]) C [VV] = 0. By Jacobson’s 
Theorem the index of nilpotency of D, must be odd. Hence 0,3(R) = 0, 
which implies (V - CX)” = 0 for some OL E Z. 

COROLLARY 3.15. Let R be a division ring of characteristic not 2 or 3 and 
suppose V is an inner ideal of [RR]. Then V = [RR] or V C [RR] n Z, and 
thus, [RR]/Z n [RR] has no nontrivial inner ideals. 
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4. THE INNER IDEAL STRUCTURE OF A PRIME RING WITH INVOLUTION 

Herstein [6] has investigated the Lie ideal structure of the skew elements 
of a simple ring of characteristic not 2. His main result states: 

THEOREM 4.1. If R is a simple ring of characteristic not 2 with involution 
and if U is a Lie ideal of K, the skew elements, then either U C Z n K or 
U 2 [KK] provided the dimension of R over Z is greater than 16. 

Baxter [2] has shown that a similar result is valid for Lie ideals of [KK]. 

THEOREM 4.2. I f  R is a simple ring of characteristic not 2 with involution 
such that the dimension of R over Z is greater than 16, then any proper Lie ideal 
of [KK] is contained in Z n [KK]. 

In a recent paper [4] Erickson has extended both these results to prime rings 
with involution. 

THEOREM 4.3. Let R be a prime, 2-torsion free ring with involution * such 
that R is not an order in a simple ring of dimension less than 16 over its center. 
I f  U is a Lie ideal of the skew-elements K, then U C Z n K or U 2 [I n K, K] 

f  or some nonzero *-ideal I of R. Similarly, if U is a Lie ideal of [KK] then 
U C Z n [KK] or U > [In K, K] for some nonzero *-ideal I of R. 

In this section we study inner ideals of prime rings with involution. The 
lemmas and theorems follow the general outline used by Herstein and 
Baxter. A beautiful treatment of their results can be found in [7]. We adopt 
the same notation that was used in Section 2. Thus, we always assume R is a 
noncommutative prime, 2-torsion free ring such that 2R = R and such that R 
is not an order in a simple ring of dimension less than 16 over its center. Let * 
be an involution of the first kind on R and let K be the skew-symmetric 
elements of R relative to * and S the symmetric elements. Under these 
hypotheses we have shown that the only absolute zero divisor of K is 0. The 
next lemma concerns arbitrary Lie algebras with this property. 

LEMMA 4.4. Let L be a Lie algebra such that the only absolute zero divisor 
of L is 0. I f  V is an inner ideal and a Lie subalgebra of L with Vn = (0), then 
v2 = (0). 

Proof. I f  n = 2, there is nothing to prove, so assume n > 2. Because 
[v-y V@LJ] _c vn = (O), every element of Z’fl-1 is an absolute zero 
divisor. Therefore P-l = (0), and an inductive argument concludes the 
proof. 

Let us return now to prime rings with involution. 
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LEMMA 4.5. Let T be an inner ideal of K and assume u E T3 = [[TTIT]. 
Then u2s - su2 E T2 for every s E S. 

Proof. Since us + su E K, u% - su2 = [u, us + su] E T’. 
Now let V be a$xed additive subgroup of K, and let T = T(V) = (t E K 1 

[V[tK]] C V}. Then T is an inner ideal and a Lie subalgebra of K. 

LEMMA 4.6. For t, u, v  E T, tut E T and hence, tuv + vut E T. 

Proof. Suppose w E V, and k E K. Then [w[tut, It]] = [w[u, tkt]] + 
[w[t, utk + ktu]] and both these terms are in V. From the definition of T(V), 
tut E T. Replacing t with t + e? we obtain tuv + vut E T. 

THEOREM 4.7. Let u E T3 and v  E T2. Then for every r E R (u2v - VU”)Y - 
r*(u2v - vu”) E T. 

Proof. Consider two different cases: r = s E S and r = k E K 

(1) (u% - VU2)S - s(u% - VUZ) = (23s - su2)v - v(u% - su”) 

+ uyvs - sv) - (vs - sv)u2. 

The first line on the right is in T3 by Lemma 4.5 and the second is in T2, so 
the sum is in T2 C T. In case (2), Y = k E K, 

(u2v - vu2)k + k(u2v - vu”) 

= u2(vk + kv) - (vk + kv)u2 + v(ku2 - u2k) + (Ku2 - u2k)v 

= v(ku2 - u2k) + (Ku2 - u2k)v mod T2 

E v{(ku - uk)u + u(ku - uk)} + {(ku - uk)u + u(ku - uk)}v mod Ta 

= [v[[ku]u]] + 2{vu[ku] + [kuluv} mod T2 

= 2{vu[ku] + [ku]uv} mod T2 

However, by Lemma 4.6, vu[ku] + [ku]uv E T so the proof is finished. 
Throughout the course of this proof we have been extremely careful to 

note that certain elements are contained in T2. This information will be used 
in the proof of the next lemma. We will show that if u2v - vu2 # 0 for some 
u E T3, v  E T2, then T > In K for some nonzero *-ideal I of R. Let a = 
Z&J - vu2 for u E T3, ~1 E T2. By the preceding theorem ar - r*a E T for al1 
r E R. 

LEMMA 4.8. For every k E K, r E R, kar + r*ak E T. 

Proof. By the proof of Theorem 4.7 for s E S as - sa E T2, so [k, as - su] E T 
for each k E K. This says km - km - ask + sak E T. But the element 
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a(&) - (&)*a is already in T, so kus + suk E T. Now let k’ E K. As we saw 
in the proof of Theorem 4.7, UK + k’a = 2{vu[K’u] + [K’u]uo> mod T3; thus, 
[k, uk’ + k’a] = 2[k, vu[k’u] + [k’ u uv mod T. However, if y, x E T2, then ] ] 
[h, xyx] = [Kxy + yxK, x] + [xkx, y] E T. By linearization, if x, y, z E T2, 
then [K, xyz + zyx] E T. This implies [k, ak’ + k’u] = kuk’ + kk’u - 
ak’k - k’ak belongs to T. But k&a - ak’k is in T by the previous theorem. 
Consequently, kuk’ - k’uk E T for every k, k’ E K. 

THEOREM 4.9. If  there exist elements u E T3, v  E T2 with u2v - vu2 # 0, 
then T 1 I n K for I a nonxero *-ideal of R unless R is an order in a simple ring 
which is at most 9-dimensional over its center. 

Proof. Suppose there are elements u E T3, v E T2 with a = u2v - vu2 # 0. 
WehaveshownT>(ur-rr*a~r~R}andT1{kur+r*uk~r~R,k~K}. 
The product [UY - ~*a, aq - q*a] = -r*u2q + q*u2r mod T for every r, 
q E R. Because T is a subalgebra this implies r*u2q - q*a2r E T for every r, 
q E R. Now either a 2 = 0 or T I I n K where I = Ra2R which is a *-ideal 
of R since a E S. So assume u2 = 0. For every t E T, k E K, Y E R, [t, kar + 
r*ak] = tkar + (tr*)uk - ku(rt) - r*ukt is in T, and thus, tkur - r*akt E T. 
As a result of letting t = &zq + q*u8, q*u/kur - r*ukt%q E T. Either 
a(ek + kb)u = 0 for every k, 8~ K or for some k, do K I = Ru(ek + kQz 
R is a *-ideal such that I n K C T. Similarly, either u(6’k - ke)u = 0 for 
every k, !G K or T 3 I n K for some nonzero *-ideal I of R. Thus, we may 
suppose a(k/ + /k)u = 0 and a(k/ - /k)a = 0 for all k, tP E K. This implies 
akCu = 0 for all K, 8~ K. Now Herstein [7, p. 281 has shown that the additive 
subgroup K.K generated by all the products k/ for k, do K is a Lie ideal 
of R. So by Theorem 3.4 K*K is contained in 2 or it contains [JR] for some 
nonzero ideal J of R. In the first case Erickson [4] has shown R must be an 
order in a simple ring which is at most 9-dimensional over its center; in the 
second case u[JRJu = (0). For any y  E J, r E R 0 = u[y, ur]u = uyuru since 
aa = 0. Hence, a JaRa = (0). Because the left (right) annihilator of any left 
(right) ideal is (0), this gives a = 0, contrary to assumption. Therefore a # 0 
implies T > I n K for some nonzero *-ideal I of R. 

COROLLARY 4.10. Let V be any additive subgroup of K and let T = T(V). 
Then either T 3 I n K for some nonzero *-ideal I of R OY u2v = vu2 for each 
UET~, veT2. 

We would like to say more about the second possibility. Thus, let us assume 
T is an arbitrary inner ideal and Lie subalgebra of K such that u2v = vu2 for 
every u E T3, v E T2. We will show that for such an inner ideal T2 = 0 unless R 
is an order in a simple ring which is at most 16-dimensional over its center. 
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LEMMA 4.11. Whenever u2v = vu2 for all u E T3, v  E T2, ua E Z for each 
u E T3. 

Proof. Since u% = VJU~ for all v  E T2, u2 commutes with T2 the subring 
of R generated by p. For s E S, u2s - sua = [u, us + su] E T2, so [u2[u2s]] = 0. 
If  k E K, then [u%] = u(uk - ku) + (uk - ku)u E p. Thus, for all r E R 
[u”[u’r]] = 0. As a consequence, u2 is an absolute zero divisor of R; and in light 
of Herstein’s result u2 E Z. 

LEMMA 4.12. If u2 = 0 for all u E T4, then T2 = 0. 

Proof. By linearizing the expression ua = 0 we obtain uv + vu = 0 for 
every u, z, E T4. Therefore, uvu = -vu2 = 0. However, for every w E T4, 
2wkw = [w[kw]] E T4 since wa = 0, and this implies uwkwu = 0 for all 
II, w E T4, k E K. But (uw)* = w*u* = wu = -uw so uw E K. By Lemma 
2.7, uw = 0. In particular, [T4T4] = 0 and for x e T5 [[kjc]x] E [T4T5] E 
[T4T4] = 0. Since every x E T5 is an absolute zero divisor of K, it must be 
that T5 = 0. From Lemma 4.4, we deduce T2 = 0. 

LEMMA 4.13. If  u E T4 and u2 # 0 then there is a k E K for which 
(uk - ku)2 # 0. 

Proof. Suppose u E T4 with u* # 0, and let D(k) = [uk]. Assume 
(D(k))2 = 0 for each k E K. By linearizing we obtain 0 = D(k)D(d) + 
D(G)D(k) and hence, 0 = D(k)D(/)D(k). Th us, the product ([D(k)D(l)])2 = 0 
for all /, k E K. Now D(k) E T3 for every k E K, and thus, h = [D(k)D(L)] 
is also in T3. Because every element in T3 squared is in the center we have 
hu + uh E Z. But u commutes with h since u anticommutes with each D(k). 
Hence, uh - hu = 0 and uh E Z. Now h is not invertible since h2 = 0; 
therefore, uh is not invertible in C the extended centroid of R. So uh = 0, and 
since u is invertible in CR it must be that h = 0. This gives [D(k)D(d)] = 0 
for every k, /E K. We have already observed that D(k)D(A’) -1. D(G)D(k) = 0. 
So the product D(k)D(d) = 0 for every k, 8~ K. If  t = [D(k)k], then 
ut + tu = -2(D(k))2 = 0. Moreover, w -7 D(e) anticommutes with u. 
Thus 4utuw = (ut - tu)(uw - wu) = D(t)D(w) = 0. This leads us to 
conclude 4&w = 0. Since u2 E Z, it follows that tw = 0, and by the definition 
of t and w this implies D(k)kD(L) = 0. Because D(k)D([kEj) - 0, we have 
D(k)(D(k)/ - J’D(k) f  kD(L) - D(k)k) = 0. Therefore, D(k)?D(k) = 0 for 
every !, k E K. Lemma 2.7 shows D(k) = 0 for all k under these circumstances; 
and then by Lemma 2.9 u = 0. This contradicts u2 f  0. So there must be a 
k E K such that (uk - ku)2 # 0. Q.E.D. 

What we have shown in these last two lemmas is that unless T2 = 0, there 
is a a E T4 with u2 E Z and Us # 0. Furthermore. for such an element u there 
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is a k E K with (uk - k~)s = 0. Suppose then u E T* and 0 # (y. = u2 E 2. 
Let 2, = uk - ku be such that u2 # 0. Since n E T3, /!I = n2 E 2. The product 
(uv - ZJ~)” = -4$ # 0 and uz, j- au = u(uk - ku) + (uk - Ku)u. We 
claim that u, 21, uv - ZJU are linearly independent over the extended centroid 

of R. For, let 0 = x = you + yin + ys(uz~ - VU). Then 0 = ux + xu = 2 
yOOlu implies y0 = 0. Likewise 0 = zxc + rz~ = 2 y& gives yr = 0; and 
finally then y2 = 0. 

Suppose x E T3 is linearly independent of u, v, w =: uz - vu. By a suitable 
choice of h, p E C there is a y  independent of u, v, w with y  = x + hu + pv 
such that yu + uy = 0 and yz~ + z.y = 0 because yu + u-y = xu + ux + 
2Xu2 E C and yv  + vy  = xv + r.3.~ + 2pv2 E C. But then yw = y(uv - vu) = 
(uv - vu)y = wy. However, since w, y  E CT3 wy + yw E C, which together 
with yw = wy forces yw == 6 E C. Multiplying both sides by w we see 
y  = yw for y  E C, a contradiction. Therefore, CT3 is a 3-dimensional 
C-vector space. Moreover, a calculation using the basis {u, v, w] shows that 
[CTS, CT31 = CT3. Since CT3 is an inner ideal of CK, the set of skew 
elements relative to the extended involution on CR, it must be that CT3 is a 
Lie ideal of CK. Under these circumstances Erickson has proved the following 
related result: 

THEOREM 4.14. [4] Let R be a prime, 2-torsion free ring with involution of 
the first kind. If U is a Lie ideal of K, the set of skew elements of R, such that 
u2 E Z for all u E U, then R is an order in a simple ring which is at most 16- 
dimensional over its center. 

As a consequence of Erickson’s theorem applied to CT3, if CT3 # 0, CR 
is an order in a simple ring which is at most 16-dimensional over its center. 
Therefore, the standard polynomial identity 9s is an identity of CR, and also 
of R. Thus, the ring of central quotients of R is simple and also satisfies 9s 

(see [12, p. 891). By a well-known result of Kaplansky [8, p. 1571 the ring of 
central quotients of R is at most 16-dimensional over its center. Hence, R 

is an order in a simple ring which is at most 16-dimensional over its center. 
To summarize: let T be an inner ideal and a Lie subalgebra of K in which 

u2v = vu2 for all u E T3, v  E T2. If  for some u E T4, u2 # 0, then R is an order 
in a simple ring which is at most 16-dimensional over its center. I f  u2 = 0 
for all u E T*, then T2 = 0. Consequently, we have: 

LEMMA 4.15. If  T is an inner ideal and a Lie subalgebra of K such that 
u2v = vu2 for all u E T3, v  E T2, then T2 = 0, unless R is an order in a simple 
ring which is at most 16-dimensional over its center. 

In light of Corollary 4.10, we apply these results to T(V) and obtain the next 
two theorems. 



LIE INNER IDEAL STRUCTURE OF RINGS 575 

THEOREM 4.16. Assume R is a prime, 2- and 3- torsion free ring with 
involution * of thejrst kind. Suppose 2R = R and R is not an order in a simple 
ring which is at most 16-dimensional over its center. Let V be any additive sub- 
group of K-. Then either there is a nonzero *-ideal I of R such that T(V) 2 I n k’ 

or [T(V), T(V)] = 0. 

THEOREM 4.17. With hypotheses as in Theorem 4.16, assume VS is an inner 
ideal of k’. Then either [V[I n K, K]] C V for I a nonxero *-ideal of k’ or 
[VV] = 0. 

THEOREM 4.18. Let V be an inner ideal of [KK]. Then either [VII n K, K]] C 
Vfor a nonzero *-ideal I of R or [VV] = 0. 

Proof. Since V is an additive subgroup, from Theorem 4.16, we obtain 
T(V) > I n K for I a nonzero *-ideal of R or [T(V), T(V)] = 0. If  T(V) 2 
I n K, then [V[I n K, K]] C I’. On the other hand, if [T(V), T(V)] := 0, 
then we define U(V) = (u E [KK] / [V[u[KK]] C V). Now U(V) is a Lie 
subalgebra and an inner ideal of [KK] such that [ U( V)U( V)] C T(V). 
Therefore, [[U(V), U( V)][ U( V) U( V)]] = 0 which implies that every element 

of U( V)3 is an absolute zero divisor of [UC]. Therefore U( V)3 = 0, and by 
Lemma 4.4, [U(V), U(V)] = 0. But then [ VV] 2 [U(V), U(V)] = 0. 

We would like to interpret these results when R* is simple but this will 
require the following theorem due to Baxter [7, p. 401. 

THEOREM 4.19. Let R be a simple ring with involution of the3rst kind. Then 
the subring of R generated by [KK] equals R p rovided the dimension of R over Z 
is greater than 4 and R is not of characteristic 2. 

LEMMA 4.20. If V # (0) is an additive subgroup of K such that [V[KK]] C 
I,‘, then [KK] i_c V. 

Proof. Observe that [V[KK]] is a nonzero Lie ideal of [KK]. For other- 
wise V centralizes [KK], hence, the subring generated by it, which is all of R, 
and FT C Z n K = (0). Since [V[KK]] is a nonzero Lie ideal of [KK] by 
Theorem 4.2, it must equal [KK]. Thus, V 1 [V[KK]] = [KK]. 

THEOREM 4.21. Let R be a simple ring of characteristic not 2 or 3 with 
involution of the$rst kind. Assume the dimension of R over Z is greater than 16. 
If V is an inner ideal of K or of [KK] then V I [KK] or [VV] : 0. 

Proof. This is just a consequence of Theorems 4.17 and 4.18 and the 
previous lemma. 
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LEMMA 4.22. With assumptions as in the previous theorem, let V be an inner 
ideal of K such that [ VV] = 0. Then for every v  E V, v3 = 0. 

Proof. Let v  E V, and k E K. Then DV3(K) E D,(V) 2 [VP’] = 0. Now by 

[7, p. 29]), the symmetric elements S are contained in K . K, that is, the 
additive subgroup of R generated by all the elements k,k, for K, , k, E K. 
Hence, DV5(s) = 0 for all s E S, and thus, Dv5(R) = 0. By Jacobson’s 
theorem there is an 01 E 2 such that (v - CY)” = 0. Equating the skew and the 
symmetric parts of this equation gives 0 = v3 + 3cr2v E K. Now if 01 # 0, 
then v  is invertible, so vz = -3a2 E 2. Therefore 0 = DV3(K) = v3K - 
3v2Kv + 3vkv2 - kv3 = 4v2(vk - kv) which forces vk - kv to be 0. But 
then v  = 0. So it must be a! = 0 and v3 = 0 for all v  E V. 

LEMMA 4.23. If  V is an inner ideal of [KK] and [VV] = 0, then for each 
v  E v, v3 = 0. 

Proof. Let v  # 0 be an element of V and write D(r) = D,(r) for all 
r E R. From [VV] = 0 comes the fact that Ds([KK]) = 0 and hence, 
D*(K) = 0. Because S C K . K, we have D(S) = 0, and thus, D’(R) = 0. 
By Jacobson’s theorem (v - a)” = 0 for some CY E 2, and we may argue just 
as we did above to show 01 = 0. Hence, v4 = 0 for all v  E V. 

Now let k E [KK]. ,Since 0 = D3(k) = v3k - 3v2kv + 3vkv2 - kv3, it 
follows that v3[KK] C Rv. Therefore v3[KK]v3 C Rv4 = 0. Because n3 E K, 
[e[/v3]] E [KK] for every LE K. This implies v3[Q8v3]]v3 = v3~v3ci~3 = 0 for 
each /E K. Letting t = sv3s we see that v3(sv3s)v3(sv3s)v3 = 0 for all s E S. 
Thus, v3R is a nilpotent right ideal in which every element raised to the fifth 
power is zero. By Levitzki’s lemma, v3 = 0. 

Now let R be the ring of n x n matrices with entries in a division ring A of 
characteristic not 2 or 3 such that the dimension of R over Z is greater than 
16. The ring R is the ring of endomorphisms on the n-dimensional vector space 
which we will call Q. Suppose * is an involution on R given by r* = u-l tr% 
where u is a unit of R, - is an involution on A, V is the “conjugate transpose” 
of r, and % = -& Let ( , ) be the form associated with the matrix u. Then K 
is the set of all transformations k such that (k(x), y) = -(x, k(y)) for all 
x,y+zL? 

COROLLARY 4.24. If  ( , ) is anisotropic, then [KK] has no nontrivial inner 
ideals. 

Proof. Let V be a proper inner ideal of [KK]. Since R is simple [ C’V] = 0 
and v3 = 0 for all v  E V. But it is easily seen that K cannot contain nonzero 
nilpotent elements. For, if kn = 0 and kn-l + 0, then there is an x E Sz such 
that k+l(x) # 0. But then, 0 = (k”(x), k”“(x)) = -(km-l(x), k+l(x)) and 
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by the anisotropy of the form &-i(x) = 0, contrary to assumption. Because 
the only nilpotent element of K is 0, V = (0). 

COROLLARY 4.25. Let R be a division ring of characteristic not 2 OY 3 such 
that the dimension of R over Z is bigger than 16. Suppose R has an involution of 
the$rst kind. If V # (0) is an inner ideal of K, then V > [KK], and if V # (0) 
is an inner ideal of [KK] then V = [KK]. 

Proof. This follows immediately from Lemma 4.23 since the case [ VV] = 
(0) cannot happen. 

Having studied involutions of the first kind we now turn to the study of 
involutions of the second kind. Let us suppose R is a simple ring with 
involution of the second kind. Let 2, = 2 n S; then it follows readily that 
the dimension of 2 over 2, is 2 and 2 = Z,(a) for LY E K n 2. We may write 
R = K + aK and [RR] = [KK] + ol[KK]. In general, for arbitrary simple 
rings of characteristic not 2, [[RR][RR]] = [RR] provided the dimension of R 
over 2 is greater than 4 (see, for example, [7, p. 121). Therefore, [[KK][KK]] = 
[KK] also. 

THEOREM 4.26. If  R is a simple ring of characteristic not 2 OY 3 with 
involution of the second kind such that the dimension of R over Z isgreater than 16, 

then for any inner ideal V of K, V I [KK] or [ VV] = 0. If  V is an inner ideal 
of [KK] then V = [KK] or [VV] = 0. F OY any v  in an inner ideal V of K OY 

[KK] such that [VV] = 0, there is an oi E 2 such that (v - a)” = 0. 

Proof. Let V be an inner ideal of K and observe that ZV is an inner ideal 
of R. Thus, ZV > [RR] or [ZV, ZV] = 0. The first possibility implies that 

ZsV 1 [KK], and therefore, [V, ZsV] = [ZsV, ZsV] I [[KK][KK]] = 
[KK]. Hence, V2 [V[V, ZsV]] I [V[KK]] = [Z,V, [KK]] > [[KK], [KK]] = 
[KK] and V > [KK]. Clearly the second case gives [VV] = 0. If  V is an 
inner ideal of [KK], then ZV is an inner ideal of [RR] so ZV := [RR] or 
[ZV, ZV] = 0. The first case gives ZsV = [KK], and this implies V 2 [KK]. 
But then V = [KK]. The second possibility says [VV] = 0. For any inner 
ideal of K ([KK]) such that [VV] = 0, ZV is an inner ideal of R ([RR]) 
such that [ZV, ZV] = 0. In view of Lemma 3.14, for every v  E ZV 
there is an 01 E Z such that (v - a)” = 0. Since V C ZV, we are 
finished. 

COROLLARY 4.27. Let R be a division ring of characteristic not 2 or 3 with 
involution of the second kind such that the dimension of R over Z is greater than 16. 
If  V is an inner ideal of K, then V I [KK] or V _C Z, and if V is an inner ideal 
of [KK], V = [KK] OY V C Z n [KK]. 
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5. THE LIE STRUCTURE OF A SIMPLE ARTINIAN RING 

Let R be an associative ring such that -A- E R, and a o b = -k-(ab + ba) for 
a, b E R. Then R together with the circle composition is a Jordan algebra 
which is commonly denoted by Rf. An additive subgroup B of R is a Jordan 
inner ideal of 

t&,,(r) = b, 0 (b2 0 Y) + b, 0 (b, 0 Y) - r 0 (b, 0 b,) = ;(b,rb, + b,rb,) E B 

for all b, , b, E B, Y E R. It is equivalent to say B is a Jordan inner ideal if 
U,,,(Y) =z brb E B for all b E B, Y E R. If  R has an involution, then the set of 
symmetric elements of R is a Jordan algebra with respect to the circle com- 
position. McCrimmon [12] has shown that if R is a simple Artinian ring 
then every Jordan inner ideal of R+ which is also a Z-subspace is of the form 
eRf = eR n Rf for idempotents e, f  E R. If  R = A, for n > 2 and A a 
division ring, and if * is a hermitian involution on R, then every Jordan inner 
ideal of the set of symmetric elements S is equal to eSe* for some idempotent 
e E A,. In this section we consider the analogous problem of determining the 
Lie inner ideals of [RR]/2 n [RR] for R a simple Artinian ring and of 
{AX]/2 n [KK] where K is the set of skew elements of a simple Artinian 
ring with involution. 

For simple rings Herstein’s theorems (3.3-3.5) can be interpreted to say: 

if R is a simple ring of characteristic not 2, then every Lie ideal of R contains 
[RR] or is contained in Z. Moreover, any Lie ideal of [RR] equals [RR] or is 
contained in Z. Thus, L = [RR]/Z n [RR] is a simple Lie algebra whenever 
R is simple and of characteristic not 2. I f  in addition we assume R is a simple 
Artinian ring, then we can regard R as the ring A, of n by n matrices with 
entries in a division ring A. Here we obtain a proof of the fact that for such 
an R the Lie algebra L satisfies both the ascending and descending chain 
conditions on inner ideals, as well as an explicit form for the inner ideals. 

THEOREM 5.1. Let R be a simple Artiniun ring of characteristic not 2 or 3. 
Every inner ideal of [RR]/Z n [RR] is of the form eRf where f. e = 0 and e, 
fare idempotents in R. 

Proof. First suppose e, f  are idempotents in R such that f.  e = 0. Then 
eRf = [eR, f]  2 [RR]. Furthermore, if x = erf E eRf n Z, then 0 = 
[e, erf] = erf. Thus, under the canonical homomorphism [RR] L [RR]/Z n 
[RR] eRf is mapped isomorphically into [RR]/Z n [RR] = L, and so we may 
think of it as being contained in L. For every r E R, [[r, er,,flerlf] = 
-er,frer,f - ev,frer,,f E eRf. So eRf is an inner ideal of R, hence of [RR], 
and of L. 
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We may assume R = A, for A a division ring, and thus, we may regard R 
as the ring of endomorphisms of a A-vector space 52. Let V be a proper inner 
ideal of L, and let V’ be the inverse image of V under v. Then V’ is an inner 
ideal of [RR] which is unequal to [RR] and which is not contained in 2. 
By Corollary 3.13, [ V’V’] = 0, and for every a’ E I” there is an 01 E 2 such 
that (a’ - a)” = 0. Let a = a’ - 01. The set of all such a consists of com- 
muting nilpotent transformations on Q. Hence, there is a basis of G in which 
all these transformations are strictly upper triangular. Thus, a E [RR], and 
this implies 01 E 2 n [RR]. Since 2 n [RR] C V’ and a’ = a + 01, then 
a E V’. Consider the set N of nilpotent elements of V’. It is nonzero because 
V’ is not contained in 2. The elements of N commute since [V’ I”] = 0. 

Therefore, whenever a, b E N, a + b is in N also. Consequently, by Lemma 
3.14, (u f  b)2 = 0. This implies ab + 6a = 0. But since a6 - ba = 0, it 
must be that the product of any two elements in N is 0. For any Y’ E [RR], 
a E N, [a[-$r’u]] = ur’a E V’, and indeed ur’a E N. Letting r’ = [vu, r,] we see 
that UYUY~U = a[ra, ri]u EN for Y, ri E R. Either RuR = 0 in which case 
a = 0, or RuR = R. Thus, for every a # 0 in N URU c N, and N is a 
Jordan inner ideal of R+. Since R is von Neumann regular, N is a Z-subspace, 
so by McCrimmon’s result, N = eRf = eR n Rf for idempotents e, f  6 R. 
Since the product of any two elements in N is 0, erf . erlf = 0 for all r, 
y1 E R. Therefore f. e = 0, because otherwise Rf . eR = R and eRf = (0). 
Finally, to conclude the proof we need only observe that N is mapped isomor- 

phically onto V under v. 

COROLLARY 5.2. If  R is a simple Artiniun ring of characteristic not 2 or 3, 
then [RR]/Z n [RR] sutisjes both the descending and ascending chain conditions 
on inner ideals. 

Suppose now that R is a simple ring of characteristic not 2. Let * be an 

involution on R, and let K be the skew symmetric elements with respect to *, 
and S the symmetric elements. By Baxter’s result (Theorem 4.2), [KK]/Z n 
[KK] is a simple Lie algebra provided the dimension of R over Z is greater 
than 16. In the course of proving this theorem Baxter obtained a very useful 
result: 

LEMMA 5.3 [2]. I f  R is a simple ring with Z = 0 or of dimension greater 
than 16 over Z with an involution defined on it, then [KK] = [SS] and [RR] = 

[KS] + [KKI. 

Assume that R is a simple Artinian ring. In our investigations of inner ideals 
of [RR]/Zn [RR] nilpotent elements played a central role. They will con- 
stitute a vital part of our study of inner ideals of [KK]/Z n [KK] also. We 
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recall a result of Seligman concerning nilpotent skew transformations (for the 
symmetric case see [5, pp. 768-772; 10, pp. 378-3811). 

THEOREM 5.4 [14]. Let A be a division ring with involution 01 + oi. Let Q 
be a jnite dimensional left vector space over A, carrying a nondegenerate 
Hermitian or skew-Hermitian form (x, y), and let T be a nilpotent linear 
transformation of Q, skew with respect to this form. Then Q is the direct sum of 
pairwise orthogonal subspaces sZi . For those Q of odd dimension, say 2r + 1, 
a basis can be chosen relative to which the matrix of the form is 

where I,. is the r by r identity matrix; E = 1 if the form is hermitian and E = - 1 
if it is skew-hermitian; and 0 # y  E A, 7 = EY. Relative to this basis the matrix 
of T has the form 

where 

0 *N,(--l) 

0 ... 0 lo ... -E] 

10 d o\ 

0 

i 
- 

0 

0 
- 

0 

(3) 

N,(d) = isr X Y. 

For those Jzi of even dimension 2r, if either (Y -+ Or is not the identity OY if 
(--I)’ # E, a basis can be chosen relative to which the matrix of the form is 

(4) 
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and relative to which T has the matrix 

r 0 
0 : 

N,(l) 0 
___- 

I i 

0 . ..o Y 
___- 

0 tN,(--l) 

(5) 

where 0 f  y  E A satisfies 7 = -my. If  G = 01 for all 01 there may also be certain 
Q of even dimension 2r, where (-1)’ = E and in which the matrices of the 
form and of T relative to a suitably chosen basis are as above, except that y  = 0. 

Let us assume now that R is a simple Artinian ring with involution *. 

In addition suppose R = A, , n by n matrices with entries in a division ring A. 
Then there is an involution a!--+ E on A and a unit u in R with %i = fu, 
where Qi is the “conjugate transpose” of u, such that r* = z&u-l (see [l, 
Chap. Xl). The ring R is the complete ring of linear transformations on a 

d-vector space which we will call Sz. Let xi ,..., x, be a A-basis for 9, and 
define a sesquilinear form (x, y) on Q to have matrix u relative to this basis. 
Thus if 9i = u = (Q), then (xj , xi) = uji = G = (xi, xj), and the form 
is hermitian, and if % = -u, the form is skew-hermitian. The set of skew- 
elements K consists of all transformations K such that ((x)K, y) = -(x, (y)K)) 
for all x, y  E Q. 

Let I” be an inner ideal of [KK] such that [V’V’] = 0, and assume a is a 
nilpotent element of I”. As a result of Lemma 4.23, a3 = 0. Moreover, since 
[ V’V’] = 0, Da3([KK]) = 0 and DG4(K) = 0. This implies a%a2 = 0 for 
all R E K. By Theorem 5.4, Sz is the direct sum of pairwise orthogonal 
subspaces Q and there is a basis of Q such that on each sZi the matrix of a is 
as in (3) or (5). Relative to this basis the matrix of a2 on sZi is either 0 or has 
the form 

00 

” N,-,(l) ’ t, ; 

6.. . 00 ... 0 0 -cy 
- 

o...oo 
0 tN,-,(l) ; : 

00 
- 

o...cyoo 
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if Qi has dimension 2r + 1, or the following form if sZi has dimension 2~. 

(0 

0 
- 

Q- 

NT-,( 1) 
. . . 

0 

I 0. 

0 i 

oo...-y 0’ - 
o...o 
tN,-,(l) i 

0 

If a” f 0 on some Qn,, say Q2, , then the dimension of 52, over Z, dim L?, > 2. 
If dim Qn, > 5 there is an eij - ej+r i+r E K so that a2(eij - ej+,. i+,.) a2 # 0, a 
contradiction. If dim J2, = 4, 5, eaa - Ee4, E K and aa(ea, - Ee4i) u2 # 0. 
If dim Q, = 3 and there is another sZi , say Q, , with dim 52, > 1, then 
since e24 - Eesr E K we again contradict a2Ka2 = 0. So we can suppose 
dimSZ,=3anddimLi2,=1fori>1.1f~=-lorE=land-iisnot 
the identity, he,, E K for some 0 # h E A and a2Ka2 # 0. Thus we can 
assume E = 1, A = 2. Then there exist nonzero y1 ,..., Y,+~ E 2 so that 
[KK] has as basis e,, - e22 , eij - yj-$j, , e2j - yi-2en , Qj - ej, , j, i > 3. 
Now a = ela - yle,, and a E V implies eij - yj_2ej2 E V for j 3 3. The 
Z-span of elj - ej2 , j > 3, is an inner ideal which is maximal since it is 
self-centralizing. So we have shown that if V is an inner ideal with a2 # 0 
for some a E V, then R = 2, and there is a basis so that I’ is the Z-span 
Off?ij-ej2,j>3. 

THEOREM 5.5. Let R be a simple Artinian ring of characteristic 52, 3 

with involution * such that dim R > 16. Let K be the skew elements relative to *, 

and V be an inner ideal of [KK]/Z n [KK]. Then V = eKe*, where e is an 

idempotent such that e*e = 0, or R = Z, and there is a basis so that V is the 

Z-span Of Qj - e,, , j > 3. 

Proof. Suppose e is an idempotent of R such that e*e = 0. Then eRe* = 

[eR, e*] C [RR]. Since [RR] = [KS] + [KK] by Baxter’s lemma, eKe* _C 

[KK]. Furthermore, if z E eKe* n Z, then x = 0. Thus, under the canonical 
homomorphism [KK] -% [KK]/Z n [KK] = L, eKe* is mapped isomor- 
phically into L. For every k E K, [[k, ek,e*] ek,e*] = -ek,e*kek,e* - 

ek,e*kek,e* E eKe*. Therefore, eKe* is an inner ideal of K and of [KK]. 

We may also regard it as an inner ideal of L. 

Assume now that * is an involution of the first kind and let V be any 
proper ideal of L = [KK]. By Theorem 4.21, [VV] = 0, and for every 
a E V, u3 = 0. By the above we can assume a2 = 0 for each a E V. This fact 
together with the commutativity of V implies that the product of any two 
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elements of I’ must be 0. Consider the space B = V + V[RR]V. It is an 
inner ideal of [RR] in which every element is nilpotent of index 2. Thus, 
B is mapped isomorphically into [RR]/2 n [RR] by the canonical homo- 
morphism. Therefore, by the last theorem, B = eRf where f. e = 0. Since 
B=V + V[KS]V + V[KK] V, B is *-stable. This implies f  = e* and 
B = eRe* = eKe* + eSe*. Hence, V + V[KK]V = eKe*. But V[KK]V = 
[V[V[KK]]] C V. So V = eKe*, the desired conclusion. 

Ilow let * be an involution of the second kind and let 1’ be a proper inner 
ideal of [KK]/Z n [KK]. The inverse image of V under 4, call it V’, is an 
inner ideal of [KK] which is unequal to [KK] and is not contained in Z. 
Therefore, [V’V’] = 0 and ZV’ is an inner ideal of [RR] with the property 
that [Zk”, Zr’] = 0. For every u’ E ZV’ (u’ - 5)” = 0 for some ?,’ E Z. Let 
u = u’ - 5. By the same argument as was used in the proof of Theorem 5.1 
u E [RR] and [E [RR] n Z. But since Z n [KK] C V’, Z n [RR] C ZV’. 
Thus, u E ZV’. Consider the set N’ of nilpotent elements of ZV’. It is nonzero, 

and it is an inner ideal of [RR] since the product of any two elements is 0. 
(Compare the proof of Theorem 5.1.) Moreover, N’ may be regarded as an 
inner ideal of [RR]/Z n [RR]. This implies N’ = e’Rf’ for idempotents e’, 
f’ERsuchthatf’. e’ = 0. Since ZV’ is *-stable, the same is true for N’, so 
N’ = e’R(e’)*. Hence, ZV’ = Z n [RR] @ e’R(e’)* which gives I” C Z n 
[KK] @ e’K(e’)*. Thus, for each a’ E V’ there is an 01 E Z n [KK] such that 
(a’ - a)” = 0 and a’ - 01 = a E e’K(e’)* C [KK]. Because Z n [KK] C V’, 
it follows that a E V’. Let N be the set of all nilpotent elements of V’. The 
product of any two elements in N is 0, so N + N[RR]N is a *-stable inner 
ideal of [RR] such that (N + N[RR]N) n Z = 0. Consequently, 
N + N[RR]N = eRe*, and N = eKe* for some idempotent e E R with 
e*e = 0. Thus, V’ = Z n [KK] @ eKe* and eKe* is isomorphic to V 
under $. 

COROLLARY 5.6. Let R be a simple Artiniun ring of characteristic not 2 or 3 
with involution * such that the dimension of R over Z is greater than 16. Then 
[KK]/Z n [KK] satisfies both the ascending and descending chain conditions on 
inner ideals. 
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