diu=p; (3.4)
Aip=—ep+Au—[ (u, N\)—g(x).

The stationary solutions of this system are p = 0, u = z, where z is a solution of the equa-
tion

A, \) ==Bu—f(u, A)—g(x) =0, (3.5)
which has the form (1.1). The linearization of system (3.4) has the form

dw=n, e
Om=—en+Av—[./ (2, A)n. :

As shown in [4], for € > 0 the dimension of the space of unstable solutions of (3.6)
is precisely the instability index of the operator A\ (z, A). Consequently, in this case too

the theorems of Secs. 1, 2 describe the variation of the dimension of the space of unstable
solutions.
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STRUCTURE OF NONDEGENERATE ALTERNATIVE ALGEBRAS

K. I. Beidar and A. V. Mikhalev ; UDC 512.554

The construction of nearly classical localization is presented, on the basis of
which the structure of nondegenerate alternative algebras is described by means

of the theory of orthogonally complete algebraic systems. As a consequence, it

is shown that a nondegenerate alternative algebra either is associative or contains
a Cayley—Dickson subring. Quotient algebras of nondegenerate alternative algebras
by prime ideals are nondegenerate.

INTRODUCTION

An important role in the structure theory of alternative algebras is played by Slater's
theorem on the structure of prime nondegenerate alternative algebras (see [4, Chap. 9, Sec.
3, Theorem 9]), which is a development of a series of papers on the structure of simple al-
tenative algebras (see [4, Chap. 7]) of Cayley, Dickson, Zorn, Schafer, Albert, Skornyakov,
Bruck, Kleinfeld, Zhevlakov, and Shirshov.

The aim of the present paper is to describe the structure of nondegenerate alternative
algebras (Theorem 2.12).% The proof of this result utilizes the methods of the theory of

*These results were announced at the 17th All-Union Algebra Conference at Minsk (see [3]).

Translated from Trudy Seminara imeni I. G. Petrovskogo, No, 12, pp. 59-74, 1987, Origi-
nal article submitted May 31, 1984.
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orthogonally complete algebraic systems (see [1, 2]) and the above-mentioned theorem of
Slater.

As a consequence, it is shown (Theovem 2.16} that a nondegenerate alternative algebra
either is associative or contains a Cayley—Dickson subring. It is also proved (Theorem
2.19) that the quotient algebra of a nondegenerate alternative algebra by any prime ideal
is nondegenerate (the authors proved this fact for minimal prime ideals; the validity of
the general assertion was pointed oull to them by I. P. Shestakov after reader a first draft
of this paper, whom the authors acknowledge and thank for permission to include his Lemma
2.17 in the final version).

The proof of Theorem 2.12 relies on the method of orthogonal completeness and on the
construction and properties ol neatly classical localization presented in Sec. 1. From the
point of view of describing the structure of nondegenerate purely alternative algebras,
nearly classical localization plays a role analogous to that of ordinary localization in
describing the structure of prime nondegenerate purely allernative algebras.

1. NEARLY CLASSICAL LOCALTZATIONS

From now on, R is a semiprime commutalive associative ring (not necessarily with 1), A
is an R-algebra, X = {X,;, X3,.+:4Xps...} is a comtable set, and R<X> is a free nonassocia-
tive R-algebra with generating sel X. I S=A. we put AnngS={&R|Sr=0}. Reca!l that the
ideal of identities Ti(A) of the algebhra A is the intersection of the kernels of all homomor-
phisms of the algebra R<X> into the alpeina A

An_dideal I of the ving R is called doenge if Avnp | = 0. Lel 3 denote the set of all
dense ideals of R. Recall that the alpobra A is called F -torsion-free if a/#0 fur all =5
and 0¥ae=A,. From now on, A is an ¥ -lorsion-fice R-algebra. Eqeede o qudih Sea mo Wl cons R oD

Let H={(/, [)|I=Z", [=Hom (/g Ar)) . We defire on the set M a relation ~ by putting (I,
f) ~ (J, g) if and only if fjIJ = g|1J. 1t is clear that the relation ~ is reflexive and
symmetric. We will show it is transitive. Suppose (1, f) ~ (J, g) and (J, g) ~ (K, h). Then
fl1J = gl1J and glJK = h|JK. Thus f|1JK = h|{lJK. Suppose a=/K. 'Then a/<I/K. Therefore
(f(aY—h(a))b =[(ab) —~h(ab) =0 for all b=/ . Rut A is an & -torsion-free algebra. Coensequently,
[(a)=h(a) for allaeiK and (I, £) ~ (K, h). Thus ~ is an equivalence relation. Let (I, f]
denote the equivalence class of the pair (1, ), and let Az be the set of equivalence classes
of H. We define a mapping F:A—>Au , by putting /F(a) =[R, 4], where @(r)=ar for all r&R, as=A.
We also define on the set A operations of addition, multiplication, and multiplication by
an element of R by pulting

(o) [ A+, gl=1d. I gl
(se) [ AL, gl=1d A, where h(2aib) =2f(a)g(b) for all avsl, bied, 1 <i<m;
{a'r:‘u't) [1' ”rr“. -'” - where [rf}{tl}—.:f{[(an for all a1l

(here [/, [}, V. gl Ay, r&R, the correctness of Lhe operations is verified below).

Proposition 1.1. With the above notation and assumptions:

1) the set A7 1is an R-algebra with respect to the above operations;
2) the mapping F is a monomorphism of R-alpebras.

Proof. We will show that the mapping h in the relation (#%) is correctly defined. Sup-
m

pose th@=0,whueﬂ£ﬂ, biesd for l<i=<m. put arE:fmJgUﬂ,KmH. Suppose ¢, d=K. Then

i=l i=l

acd="Y" ([(@))(gb)d) =Y (@) g bh) =Y (@ a)(g(d) by =Y [(©) g (@ aibi=F(c)g(d) Y. abi=0.

=1 i=1 i=1 i=l

Consequently, al?=0, But K’&#. Therefore a¢=0 and the mapping h is correctly defined.
Obviously h is a homomorphism of right R-modules. 1t can be verified directly that the right
hand sides of relations (%), (#%), and (*%*) do not depend on the choice of representatives
of the equivalence classes of the left-hand sides. Consequently, the operations of addition,
multiplication, and multiplication by an element of R are correctly defined. By a standard
argument we can show that Azis an R-algebra and F is a homomorphism of R-algebras. That F

is monomorphic follows from the fact that the algebra A is # -torsion-free.
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From now on, we will identify the rings A and F(A).

It is easy to see Lhat Ry is a complete right ring of quotients of R with respect to
the filter ¥ (see [5, Secs. 2.3, 2.4)). As is well kuoun, R ¥ is a regular in the sense of
von Neumann) self-injective commutative ring (see [5, Sec. 4.5, Proposition 2, corollary]).
For convenience, we will denote by <I, f> the element of Ry, defined by the dense ideal =&
and the R-module homomnrph1sm it I -+ R. He make the ring A s into an Ry -algebra by putting

[J, gl<I, £> = [1J, h], where. h(}‘ah }“;(a)g(b) for all a€&l, bel, I<i<n.

i=1 f=l

As in the proof of Proposition 1.1, we can show that the mapping h is correctly defined
and the new operation makes Az into an Rg-algebra.

It is clear that A7 is the module of quotients of the R-module A with respect to the
filter @ (see [11]). Thus for any nonzero element a&=Ayry Lhere exists an jdeal IE€F, such
that a/leA . Recall that a subset SczAy is called orthogonally complele if for any set V =
{v/|teT) of pairwise orthogonal idempotents of Rz, such that Vr # 0 for all 04r&Rs, and for
any elements X&S, (ET, there exists an element x such that xvy = xpv, for all [ET (see
[2, Sec. 8]). This elament X is uniquely determined by the equalities xv;=xw, (&T. In what

L
follows, we will denote the element x defined by these equalities by 2, X0y, By the ortho-
ter
gonal completion O(M) on a subset MEAy we mean the intersection of all orthogonally com-
plete subsets of As, containing M (see [2, Sec. 8]). Recall that 0(A) is an O(R)-subalgebra

Az and for all x'—ﬂzl xtﬂf:yzer!llilnEO(A) we have:
t n

(.—’_{ ) Xy = El -‘:.".‘-'fn(t'tm]n):

f.n

(b) x4+ J==§: (% + 4,) (vw,) (see [2, Sec. 8]).

Let B denote the Boolean ring of idempotents of the ring Rgz. Suppose 7 is an ultra-
filter of the Boolean ring B. Let O(A)J denote the localization of the ring O(A) with re-
spect to the ultrafilter 9 (see [2, Sec. B]).

Definition 1.2. We will call the Ry -algebra As the nearly classical localization of
the R-algebra A.

Remark 1.3. In the case where R is a prime ring, the Ry -algebra 4 » is the localiza-
tion of A with respect to the multiplicatively closed set of non-zero-divisors of R. The
ring Ry is the field of fractions of R.

THEOREM 4. Suppose R is a semiprime commutative associative ring, & {is the filter of
dense ideals of R, A is an & -torsion-free R-algebra, and 1 » is the nearly classical local-
ization of A. Then:

1) the ring 12 is the localization of the O(R)-algebra U(A) with respect to the multi-
plicatively closed set of non-zero-divisors of O(R);

2) the ideal of identities TR(A) of the R-algebra A is equal to the ideal of identities
Tx(Az) of the R-algebra A4 5.

Proof. Since R=O(R)=Ry, it follows that Ry is a complete right ring of quotients of
O(R). Consequently, in the ring Rz each non-zero-divisor of O(R) is invertible. We will
show that each dense orthogonally complete ideal of O(R) contains a non-zero-divisor. Suppose
L is a dense orthogonally complete ideal of O(R). We define predicates ¥ and &, by putting

% ()= { if xe L,

0, otherwise;

! if x._O
J‘ X} == » '
( ) {0‘ if x =0,

Consider the formula

A=) (VN Z () A (P (1) v | T (xy)).



/& is clear that & is a Horn formula (see [7]). Since L is a dense orthogonally complete
jdeal of O(R), it follows that LF™ is a =cnse ideal of O(R)9 (see [2, Sec. 8, Theorem 8.9]).
Also, O(R)F is a prime ring (see [2, Sec. 8, Theorem 8.9]). Thus O(R)g is an integral do-

" main. Thevefore, AT 1 for all ultraflilters & of the Boolean ring B. It now follows

from |2, Sec. 5, Theorem 5.21] that A LN Consequently, the ideal L contains a non-zervo-
divisor.

Suppose a€As .  As was shown above, al=A for some dense ideal l=%. Suppose xf=)“1

x¢,=0(1), where 0(I) is the orthogonal completion of the ideal I in the ring O(R), xe=l.
Then ax = Z*{MI)E:EOM} since axy=A for all t. Thus aO([)=0(A). 1t is clear that 0(I)

is a dense orthogonally complete ideal of O(R). By what was proved above, it contains a non-
zero-divisor ¢, which is invertible in Rz . Consequently, ac=be=0(A) and a=bc™'. 1t is now
clear that assertion 1) of our theorem is Crue.

Suppuose F(Xp Xgy .- Xp)=Tr(A4), ;= EI' X e €0(A), where Yiu=A.  Then

e e Tin

f{-"lv Koy vt lxm) 8”' €, . f,,,rm - 'f (x|f| Foewwy xn:t‘m} e, ... mem =0

[see relations (a) and (b)]. Consequently, ({x,, %,,...,%,) = 0 for all x, yo, ..., Xm0 (A)
and Tr(A)=Tr(0(A)) |2, Sec. 8].

Since the ring Az is the subdirect produckt of the rings A 7T, whEI:"{F ranges over the
set of all ultrafilters of the Boolean ring B, it suffices to show that f(X,, X,,...,%,) is
an identity of the ring AzJ for any ultrafilter 7. Also, the ring O(A)7~ is a homomorphic
image of the ring O(A) (see [2, Sec. 8, Sec. 8.8]). Therefore, £(X;,¥,,...,Xm) is an identity
of the ring O(4)F. By what was proved above, Ay =0(A)Rg.. Consequently, Az T =(0(A)7) x
(Rg77). Since R is a regular seif-injective ving, R#7 is a field. It now follows from
[2, Sec. 8, Theorem 8.9] that R % is the field of fractions of the integral domain O(R)J".

Put 4,=0(A)7, Ay=As . K,i=0(R)7, Ky=Rs . Since A, = A,K,, it follows that in the
vector space A, over the field K, we can choose a basis {n|(eT) such that v,ed, for all (=T,

Suppose Xi, Xg, ..., Yu&ds Clearly there exists a finite subset T,=T, such that x;— ): digvy
!ETI
where du=K, for l<i<m, !f:—-i"; Consider the polynomial ring 112{2,,”65[}, l<i<m)]. Clearly
there exists polynomials [ (Z)=luz4|t=T|, | <i<m] and vectors Vtjo j=1, 2,...,n, such that
. ) 4 -
fi 1‘ 28l sy L ?n.f'-'r) =}_‘ i [Z)f-'ar-.
i€/ el f=i -4

where the symbol Z denotes the set of variables {zu|{=T,, l<i<m}. Let H={h,|t=T,, l<i<m)
be any set of elements of the ring K,. Since EhUUIEAI for 1<i<m, it follows that

fer, i
f{}: B, oo Z h,,,,v,) = (.
%7, 1ET,

Thus £j(H) = 0 for j =1, 2,...,n. Now consider the case ulmre K, is an infinite ring. It
follows from [6, Chap. V, Sec. 4, Corollary 2] that fj(2) = 0. Consequently, fj(D) = 0 for

i=1, 2,...,m, where D={du|{=T, 1 <i<m). Then f(xl. x,_,....xm) =0 for all Xx;; Aziew s Xpe
A,. So in this case f(X,,...,Xy) is an identity of the ring A,.

Now assume K, is a finite ring. Since a finite commutative integral domain is a field,
we have K; = K,. Consequently, A, = A,K, = A, and f(X,,...,Xy) is an identity of A,. Thus

COROLLARY 1.5. We keep the notation and assumptions of Theorem 1.4. Then:

1) if A is a nondegenerate alternative R-algebra, then Ay is a nondegenerate alternative
R y-algebra; :




2) if A is a nondegenerate Jordan R-algebra, then As is a nondegenerate Jordan Rs -
algebra.®

Proof. It follows from Theorem 1.4 that A7 is an alternative algebra. Assume that Az
is degenerate. Then xAy x=0 for some x, 0+x&Ay. Clearly x/ISA for some /¥ . Then 0 =
(xax)b?=(xb)a(xb) for all a=A, b=l.. But A is nondegenerate. Consequently, xb = 0 for all
bel. Thus x = 0. Contradiction. This means that 4y is a nondegenerate alternative Ry -
algebra. The second assertion can be proved analogously.

Remark 1.6. Attempts to carry over the elements of the theory of rings of quotients to
the case of nonassociative rings and algebras have been made by other authors. The closest
in spirit to the present paper is the construction of the centroidal closure presented in
[B, 9]. We will show”that nearly classical localizations of algebras do not, in general,
coincide with their centroidal closures.

Suppose F is a field, M,(F) is the ring of 2 x 2 matrices over F, H=[] (My(F)) is the
=1
direct product of a countable number of copies of the ring M,(F), R is the center of H, and
A is the subring of H generated by the subring R and the direct sum of the subrings (M,(¥))qy,
i=1, 2,.... It is obvious that the complete right ring of quotients Q(A) of A is equal to
H. The centroidal closure S(A) of A is equal to the subring of Q(A) generated by A and the

center of Q(A), which is equal to R. Therefore S(A) = A. On the other hand, the ring A is
an R-algebra. It can be verified that Ay =H. So in this example Az #S(A).

Note that if A is a semiprime associative algebra that is finitely generated over its
center R, then Ay =S(A).
2. NONDEGENERATE ALTERNATIVE ALGEBAS

2.1. The map concepts, definitions, and results of the theory of alternative algebras
can be found in [4]. From now on, R is a commutative associative ring with 1 and A is an
alternative R-algebra. Recall that an algebra A is called nondegenerate if adu=0 implies
a=0, where a€4. We put

(x, y, 2)=(xy)z—x(y2) and [x, yl=xy-yx
for all
N(Ay={nsA|(n, A, A)y=(A, n, A)=(A, A, n)=0);
K(A)={ke=A|k, Al=0); Z(A)=K(A)IN(A).

Let <S> denote the ideal of A generated by the subset S&=A, D(A) the ideal <(A, A, A)>,

and U(A) the sum of all ideals of A contained in the subset N(A). Let V(A) = Z(D(A)).

It follows from [4, Chap. 7, Sec. 1, Corollary 1] that N(A), K(A), and Z(A) are sub-
algebras of A. Therefore U(A)=N(A). Recall that N(A) is called the associative center,
K(A) the commutative center, and Z(A) the center, of the algebra A. We will list some facts
about alternative algebras that will be used without further reference (here At is the alge-
bra obtained from A by formally adjoining a unity element (see [4, Chap. 1, Sec. 6])).

An ideal of a nondegenerate alternative algebra is itself a nondegenerate alternative
algebra [4, Chap. 9, Sec. 2, Lemma 7].

Suppose A is a semiprime alternative algebra and I is an ideal of A. Then N{I) = N(A) n
I and Z(I) = Z(A) n I [4, Chap. 9, Sec. 1, Theorems 1, 3].

Suppose A is a nondegenerate alternative algbera. Assume A # N(A). Then Z(A) = 0 (4,
Chap. 9, Sec. 2, Thenrem 7].

Suppose A is a nondegenerate purely alternative algebra [i.e., U(A) = 0]. Then N(A) =
Z(A) (4, Chap. 8, Sec. 3, Theorem 11].

Suppose A is an alternative algebra. Then
D(A)=(A, A, A)A*=A*(A, A, A)andU (A) ={xeA|xA*=N (A)}
[4, Chap. 8, Sec. 3, Propositions 8, 9].
Recall that an ideal T of a ring R is called dense if rI # 0 for all 0=r&R.

“AN1) of the necessary definitions can be found in [4].
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/ Remark 2.2. Suppose A is an alternative algebra. Then
N(A)={neA| (n, A, A)=0)—{nsA]| (A, n, A)=0)={n=A| (4, A, n) =0},

1ndeed, since (x, v, z) is a skew-symnélric function of its arguments, our assertion fol-
lows from the definition of the set NiA) (see |4, Chap. 2, Sec. 3, p. 49]).

Remark 2.3. Suppose A is a semiprime alternative algebra. Then U(4)\D(A)=0. Indeed,
(U(A)ND(A))? =U(A)D(A)=0 (see (4, Chap. 8, Sec. 3, Proposition 10]). Therefore U(A)ND(A)=0.

LEMMA 2.4. Suppose A is a nondegenerate alternative R-algebra and K is a dense ideal of
the ring V(A). Then:

1) U(A)={xeA|xK=0);
2) A/U(A) is a nondegenerate purely alternative algebra.

Proof. Assume xK = 0. Since {xA* A, A)=D(A), it follows that I=((xA% A, A))=D(A).
We will show that I = 0. Clearly IK={((xKA* A, A))=0. Also, N()=N@A)n/ . If I = N(ID),
then I=N(A) and /=U(A). Then ISUA)ND(A)=0 (see Remark 2.3). Now assume I = N(I). Since
an ideal of an nondegenerate alternative algebra is a nondegenerate algebra, Z(1) = 0. There-
fore,

0#Z (1) =Z (A) (N=Z (AYD (AN =Z (D (A))I=V (A)

Since IK = 0, it follows that (V(A)N/)K=0. This contradicts the fact thit K is a dense ideal

of V(A). Thus 1 = N(J), T =0, and (xA* A, A)=0. It vnow follows from Remark 2.2 that xA*<
N(A). Consequently,

Assume the algebra A/U(A) is degenerate. Then there exists an element xeANU(A),such
that xAxsU(A). If a=V(A), then (ra)A(xa)=(xAx)a’=U(A)\D(A)=0. Since A is a nondegenerate
algebra, xa=(0 for all a=V(A). It now follows from what was proved above that xeU(A). This
contradicts the inclusion »&ANU(A). Thus A/U(A) is nondegenerate. Let A = A/U(A) and
suppose f:A » A is the canonical algebra homemorphism., We will show that U(A) = 0. Let
I=fYW(U(A)), J={(IA*, A, A)). Clearly I=D(A) and [(J)=((U(A)A* A, A)>=U(A)ND(A)=0 (see
Remark 2.3). Therefore J=U(A). Thus J=U(A)ND(A)=0. It now follows from Remark 2.2 that

I=N(A). But then /[=U/(A) and £(T) = 0. Thus U(R) and A is a nondegenerate purely alterna-
tive algebra.

COROLLARY 2.5. Suppose A is a nondegenerate alternative algebra and L={asA|U(A)a=0).
Then L is an ideal of A, and A is a subdirect product of the nondegenerate purely alternative
algebra A/U(A) and the semiprime associative algebra A/L.

Proof. It follows from [4, Chap. 8, Sec. 3, Lemma 8] that L is an ideal of A. Since
(LAU(A))*<=U(A)L==0, we have LNU(A)=0. Consequently, A is a subdirect product of the alge-
bras A/L and A/U(A). Also, U(AID(A) = 0. Therefore, D(A)=L and A/L is an associative
algebra (see [4, Chap. 8, Sec. 3, Proposition 10]). Assume A/l is not semiprime. Then there
existe an ideal T of A such that J&Z'L and IP<L. Clearly (U{(A)ND2=UA)N2=U(A) NL=0. Conse-
quently, U(A)NI=0, U(A)[=0 , and J/=L. This contradicts the fact that /¢Z L. Thus A/L is a
semiprime associative algebra. Our assertion now follows from Lemma 2.4.

LEMMA 2.6. Suppose A is a nondegenerate alternative algebra. Assume N(A) is a prime
algebra. Then A is a prime algebra.

Proof. Assume the contrary. Then IJ = 0 for certain nonzero ideals I, J of A. It is
clear that I and J are nondegenerate alternative algebras. Therefore N(I) # 0 and N(J) # 0
(see [4, Chap. 9, Sec. 2, corollary]). Thus N(A)/#0 and N(A)NJ#0. It is clear that
N AN and N{A)[M are {deals of A. But (NA)NHN(A)NW)=0. This contradicts the fact that
N(A) is a prime algebra. Therefore A ls a prime algebra.

2.7. Suppose up, B, y are elements of R such that Aung(4p+1) =Anng (p) =Anng(y) =0,. where
Anng(x)={reR|xr=0}. Let Cgr(u, B, y) denote a Cayley—Dickson algebra over the ring R (see
[4, Chap. 2, Sec. 2]). The algebra CR(u, B, y) is a free R-module with basis

wiR=1, wf=v), W=y, wW=v; wsf=uv,1,,
Wef=0Uy, WR=0y05, wsh=(v\v5)0s,

and is described in [4, Chap. 2, Sec. 4].

Let K=Z[x, y, 2] be the polynomial ring over the ring of integers Z. Clearly there exist
polynomials fiy(x, ¥, 2)=K, 1 <i, ], t<8, such that in the algebra Cg(x, y, z) we have
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The proof of the following result is obvious.

LEMMA 2.8. We keep the notation of Sec. 2.7. Assume the R-algebra A is a free R-
module with generate«>s ay, @s, ..., @ and there exist elements p, fi, y&R, such that Anng(4utl)=
: 8

Anng(f)=Anng(y)=0 and a.—ﬂ;=z fije(n, B, y)a, for l<i, j<8. Then the algebra A is isomorphic
=1

to the Cayley—Dickson algebra Cglp, g, y).

2.9. Suppose A is a nondegenerate purely alternative algebra. Let & denote the set of
all dense ideals of the ring V(A). By Lemma 2.4, the relations 0+as=A, /=% imply al#0.

Suppose [I, lEAs and rel.  Then [1, flr = f(r). Indeed, [, fir=[I, IV(A), AI={IV(4), gl,
where g(? a,-b,—)zij f(a)r(b,) for all aesl, beV(A). But

(=1 i=2l

Y H@)7 =Y, [@) b) =Y,

il foa]

(Fa)nb =Y [ra)b =Y firXab)=F()Y ab.

I i=1 [

Consequently, I}-—f-‘(‘;} and [/, [lr=](r).

Suppose [/, flEA 5 and J is a dense ideal of V(A). Assume [I, f]J = 0. ‘Then [I, f] = 0,
Indeed, from the equality [/, [I(J()1/)=0 and what was proved above it follows that [(/[)J)=0.
Since [1, fl=[/111, FI(IN)], we have [/, []=0.

LEMMA 2.10. We keep the notation and assumptions of Sec. 2.9. Then:
1)A 5 is a nondegenerate purely alternative algebra;
2) Z(As)={ll, leA s [I)=Z(A));

3) Z(A 5) is a regular self-injective commutative ring and is a complete right ring of
quotients of the ring V(A); ;

4) Ay is an orthogonally complete Z(A ) -module (see [2]).

| Proof. It follows from Corollary 1.7 that A is a nondegenerate alternative algebra.
Clearly N (A #)NA=N(A). Therefore U(A s )1A=U(A)=0. Suppose |/, [lelU(Ay), resl . Then
I, fr=f(r)=eU(A7)1A=0. Therefore, f(1) = 0 and [T, f] = 0 for all |/, [l&lU(15). Counse-
quently, U(Ady)=0 and the first assertion of the lemma is proved.

Suppose [/, fl. I/, 2L [K, hl&A 5 and f(I)=Z(A). Put L=INJONK. 1t is clear that L is a

dense ideal of V(A) and that (I, f, |J, g, |K, h))abc =(j(a), g(b), h(c)) for all a, b, c&L. Since
fla)e=Z(A) , it follows that

(I7 . 17, gl [K, hl)abe=0 and ({1, [1. [/, gl. [K, h]) L3=0.

But L? is a dense ideal of V(A). It now follows from what was proved in Sec. 2.9 that ([T,
fi, [J, gl, [K, h]) = 0 for all [, gl [K, hl=A #. Consequently, [/, fl=N(15).

It can be shown analogously that [/, fleK(A7). Therefore [/, nE—Z{Aa’) . Conversely,
suppose [/, fleZ(Az) . Now suppose a&l. Then 0 =([/, [], b, ¢)a=(f(a), b, ¢) for all b, ceA. Thus
f(a)e:N(A) for all a=l (see Remark 2.2). It can be shown analogously that f(/) =K(A). Con-
sequently, [(/)=Z(A) and the second assertion of the lemma is proved.

It is obvious that for alll/, flEA 7 we have [/, fl=[IV(4), [|IV(A)). If [l fleZ{A%), then
fuvA)=f(HV(A)=Z(A)V(A)=V(A), inasmuch as V(A) is an ideal of the ring Z(A). It is now
clear that Z(A ) is a complete right ring of quotients of the ring V(A), which is a regular
self-injective ring (see [5, Sec. 2.3; Sec. 4.5, corollary]).

The orthogonal conmpleteness of the Z(Ay ) -module Ay follows from [2, Sec. 8].

2.11. We will need the definitions, concepts, and results of the theory of orthogonally
complete algebraic systems, which can be found in [1, 2]. Suppose T is an orthogonally com-
plete subset of the Z{dy) -algebra As. Put

I, if  «u- 0O

|
P{ﬂ}"‘ 1 0 otherw i se;

e
o



0 m}__l 1, if aeT;
irid) =1~
/ 1 0 otherwise:

/ THEOREM 2.12. Suppose A is a nondegenerate purely alternative R-algera, D(A) is the
/ ideal of A generated by all associators, V(A) = Z(D(A)) is the center of the algebra D(A),

. & is the family of all dense ideals of the ring V(A), and A # is the nearly classical local-
ization of the V(A)-algebra A. Then:

1) Z(Az)=V(A)g;
2) Z(Ay) is a regular self-injective ring;
1) Ay is a Cayley—Dickson algebra over the ring Z(Agz).

Proof. The first two assertions follow from Lemma 2.10. Let K=Z{(As). Suppose B is
the Boolean ring of idempotents of the ring K, 5 is an ultrafilter of the Boolean ring B,
and H=Az7 and K are Boolean localizations of the K-algebras 4 # and K (see [2, Sec. 8]).

Consider the following formulas:
Sy(x) = (Vy, z, ) P((xy, 2z, 1))
Ho(x)=(Vy, z, u) (P((x, y, 2))AP(lx, u]));
S 3=(Vx) () (P(x)V [P (xyx)).
1t is clear that &(x), 1o (x), &a(x), |(x), 3, |93 are Horn formulas (see [7]).

For any alternative ring D with 1, the equality v, (@)= 1 is equivalent to the inclusion ae
U{D). Therefore, #%,;(x) 1is a stable hereditary formula (see, Definitions 5.16, 6.7]). 1t
now follows from [2, Proposition 6.9] that U(«f sy ) =U( #)T =0. Thus UL4 577 )=0.

For any alternative ring D, the inclusion aeZ(D) is equivalent to the equality i, (a)<=
1. Therefore, ®:(x) is a stable hereditary Horn formula (see [2]). It now follows from
[2, Proposition 6.9] that Z(Ay 9 )=Z({Ay)7=KT. In view of |2, Theorem 8.9], K7 is a field.
Thus Z(A77") is a field.

For any alternative ring D, the equality As 21 s equivalent to D being nondegenerate.
Therefore, &3 is a hereditary formula. It now follows from |2, Theorem 5.14] and the hypo-

Ag T :
thesis of the theorem that wf="= 1. Consequently, 4 #7 is a nondegenerate alternative
algebra.

Thus, A7 7 is a nondegenerate purely alternative algebra whose center A7 is a field.
Since the center of any purely alternative algebra is equal to the associative center, it
follows from Lemma 2.10 that As 9 is a prime algebra. Thus, AyJ is a nondegenerate prime
nonassociative algebra whose center is a field. It now follows from Slater's theorem that
A9 is a Cayley—Dickson algebra over the field K7 (see {4, Chap. 9, Sec. 3, Theorem 9]).

We next consider the following formulas:

Al o 25 )=V iy i 8 {El (A QGNP (Y wixe))~P ()

1=l
R 8
S (@ @y )= (V) [y, 2 o) A Qi (8) AP (3=, )
AR 2

Ay, B, ¥) =(Vx, 4, 2) (1Qx (x) V P(x) VTP (4px + ) A (1Qk (0) V PV
V IP W) A (1R (2) V P2) vV TTP(zv) A Quli) A Qu(P) A Qy):

A (s By v, wy, @, -y we) = r;\ip(wlw,‘ _'X: Foelins B, Y) wy);
1,

{=|

T
0={‘r|lll’ F’t Y, Im]_l W, .-, ws) A‘ 'ﬂt-

oA
It is clear that %% is a Horn formula. The equality u45=g;l is equivalent to the equal-

= Ag g
ity Ag=Cxk(p, B, v) for certain i, B, yY=K. It follows from what was proved above that ./, Ll

for all ultrafilters 9 of the Boolean ring B. It now follows from [2, Theorem 5.22] that

A
943#’1-‘. Consequently, 4 ¥ is a Cayley—Dickson algebra over the ring K.
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Definition 2.13. A nondegenerate purely alternative algebra will be called a general-
ized Cayley—Dickson ring.

Remark 2.14. AS was shown in Theorem 1.6, the operation of taking the nearly classical
localization consists of applying in succession the operations of taking an orthogonal com-
pletion and the classical localization with respect to the multiplicatively closed system of
non-zero-divisors. Thus, Lhe passage from a generalized Cayley—Dickson ring to a Cayley-—

Dickson algebra is "longer" by one operation of orthogunal completion than the passage from a
Cayley —Dickson ring to a Cayley—Dickson algebra (see Sec. 1 and |4, Chap. 9, Sec. 3]}).

From Corollary 2.5 and Theorem 2.12 we obtain

COROLLARY 2.15. Suppose A is a nondegenerate alternative algebra. Then A is a sub-
direct product of a semiprime associative algebra and a generalized Cayley—Dickson ring.

THEOREM 2.16. Suppose A is a nondegenerate alternative algebra over a Noetherian com-
mutative associative ring R with unity. ‘Then either A is an associative algebra or A con-
tains a subalgebra that is a Cayley—Dickson ring.

Proo_fw._ Assume A # U(A). Then K = AJUCA) = 0. By Lemma 2.4, K is a nondegenerate
purely alternative algebra. Since D(A)NU(A)=-0, the algebras D(A) and D{A) are isomorphic.
Thus it suftices to show that the ideal D(A) contains a subalgebra that is a Cayley—Dickson
ring.

Suppose 0#a=K=Z(Az) . Then @ is an invertible element of the ring @ =udz. Indeed,
since K is a regular ring and a=K, it follows that abu=ua for some be=K (see Theorem 2.12).
Put é=ba. Obviously e(ay)=(ay)e=uay for all yeAy. Therefore e is the unity of the ring Q.
Also, besaA y=Q and a(be)=e’=e. Therefore a is an invertible element of (.

It follows from Theorem 2.12 that A =Cx(jt, f, v) for certain p, f§, y<=K, where K=Z(iy).
Let w,, W,,...,Wwy be the basis of the K-algebra Cy(n, B8, y¥) described in Sec. 2.7. For all

x€d7 we put J(x) =fesV(4)|xasa). 1t follows from what was proved in Sec. 2.9 that J(x)
is a dense ideal of the ring V(A). Therefore I(x)==/(x)V(A) is a dense ideal of V(A). Clearly
h

xl(x)=xl(x) V(D) SAV(A)=D(A) . Let I=I@NIE)NI()N () /() . Suppose 0#del. There ob-
=1

viously exist ce=K and a number n such that ded = d and Jw,, duFiye(p, B, yieD(A) for all 1<,
j» {<8. It follows from the Hilbert Basis Theorem that the subalgebra H of the R-algebra
d1y, generated by the elements d, cd, dp, dfi, dy, d"fiu(p, B, v), 1<i, ), <8, is a commutative
Noetherian ring. Obviously H=K=Z(As). Since A5 is a nondegenerate alternative algebra,
H is a semiprime algebra.

Suppose S is a subset of H. Put S*={h&H|Sh=0). Tt is clear that among the ideals
M of I such that M* # 0 there is one that is maximal with respect to set-theoretic inclusion.
Let L be one such maximal ideal. Then L* is an integral domain. Indeed, suppose 0%y, ye=L*,
and xy = 0. Since (LL*)?=0 and H is a semiprime algebra, LNL*=0 . Therefore X, y&L and
Hx+L>L . Also, ve(Hx+L)* | hence (Hx+ty)*#0. This contradicts the choice of the ideal L.
Thus L¥ is an integral domain.

Suppose 0#be=l*  Put
s=bd, p=sp, g=sp, r=sy, cie=sFu(p, B, y), vi=s"w

for 1<i, j, <8 . Obviously s, p, q, r, ciusL*, vie=sD(3)\sds for 1<i, j, <8 Let Q denote the
subalgebra of D(A) generated by the elements s, p, q,r, cijr, Vi , where | <i,j, f<8 Tt is clear
that

viop=s*wiwy =Y s fre (B V@e=Y ("o B V) "w) = ¥ e
=1

-1 teal
for all 1<, j<&. \ Recall that w, = 1. Therefore, each element x of Q can be represented in
the form x=g,+z gitr, where g,, B24,...,85 lie in the subalgebra G of D(A) generated by the
4
elements s, p, q, r, Cu, 1 <10, j, t<B. We will show that Z({Q)<=L* Indeed, suppose X=g, 4-5’: g e
ue

Z{(0). Put y = x —g,. Since G=K=Z(Ay), it follows that ¥EZ(Q). Therefore, [y, vil =0
and (y, vi., vi) = 0 for l<i, j<B.  Consequently, [s"y, wjl = 0 and (s?"y, wj, wj) = 0. It is
now clear that $"yeZ(As). Thus,
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8
sy = sty = E g =Y sMgae;.
2 1=

Since the elements w,, w,,...,ws are linearly independent over K, we have s?Ny = 0. As was
shown above, s is an invertible central element of the ring $Asy. It now follows from the
inclusion yEsA y that y = 0. Therefore x=g,&G. Clearly G=L* Consequently, Z(Q)<L*.
Since L* is an integral domain, so is Z(Q). Analogously, using the linear independence of

Wiy Wase..,Wg over K and the absence of zero-divisors in the ring Z(Q) = G, we can show that
the nonzero elements of Z(Q) are non-zero-divisors in Q.

Let e denote the unity of the ring sds, and Qg the localization of Q with respect to
the multiplicatively closed subset {1, s, s?,...,s™,...}. Since Q=sA s and s is an in-

- vertible element of $4 &+, it follows that the ring Qg can be embedded in the ring sdz.

Let us consider Qs to be a subring of sAy. it is clear that ew,=s v ep=s—"p, ef=s"g, ey=

s Mr, where l<i<8. Obviously ew,, ew,,...,ew, is a basis of the Z(Qg)-module Qg and (ew,) x
]

(ew,)=}: fije(en, B, ey)ew, , where l<i, j<8 It follows from Lemma 2.8 that Qs=Cr(en, ef, ey),

f=l

where F=Z(Qs). it is now clear that Q is a Cayley—Dickson ring.

LEMMA 2.17 (1. P. Shestakov). Suppose A is a Cayley—Dickson ring and P is a prime ideal
of A. Then the quotient ring A = A/P is a nondegenerate alternative algebra.

Proof. 1) Suppese S = Z(A) \ {0} and S™'A is the localization of A with respect to the
multiplicatively closed subset §. It follows from the proof of [4, Chap. 9, Sec. 3, Theorem
9] that 57'A is a Cayley—Dickson algebra over its center. Let t(x) be the trace and n(x)
the normof the element x in the Cayley—Dickson algebra S™'A (see |4, Chaps 2]). Then x? -
t(x)x — n(x) = 0 for all *<=S-'A. Put xey=xytyx for all x, y=A. 1In view of [4, Chap. 2,
Sec. 4, identities (21), (22)], we have for all x, g, 2=/1 the relations

((xy) =xop~1 () y—1 (g) x+ () 1(9); -
(lx. g =I(((x, y. 2))=0. (2)
Let /={a=All(ab)=A for all beA%). Then I is an ideal of the ring A. Indeed, suppose
osl, beA*, and ¢EA. 1t sufficies to show that {((ac)b), t({cu)b)=A. By definition of the
set I, we have f(a(ch)), {(a(bc))=A. Also, (ac)b=(a, ¢, b)-ta(cb). It now follows from relation
(2) that {((ac)b)=t(a(cb))=A. Finally, (ca)b={ca, b] +b(ca)=[ca, b]+(bc)a—(b, ¢, a)=]|ca, bl+lbc, a]+
a(bc)—(b, c, a). Thus, {(((ca)b)=t(a(bc)) . Therefore I is an ideal of the ring A.

It now follows from the equality a’—f{{a)a+n(a)=0 and the inclusion {(a)=A that n(a)=A
for all a=l. Suppose i€A is an element such that t(i) = 0, Then we have the relation
{x‘ y]gl‘ ('t" y' z) gl {i. 't]' (‘.' x’ y) E‘r' ( 3)
for all %, y, z==A. 1Indeed, it follows from (1) that
[(b)i=isb~1(ib) for all  bSA*, (4)
Suppose x, y=A, be=A* Then it follows from (1) and (4) that
(([i, x]b) =i, x]ob—t(b){i, x]=[i, x|ob—[t(b)i, x]=
=i, x]eb—{ieb—1{ib), x]=[i, x]lob—[iob, x]l=A4;
LG %, y)b) = (i, x, w)ob=t(b) (1, x, y)=(l, x, ¥) b= (L(b)1, x, y) =(i, x, y)ob—(iob, x, y) EA.
Therefore [i, 2], (i, x, yy=I. Since t([x, y])=0, it follows that [x, yP—n([x, y])=0. Consequently
[x, yP=n(lx, y) =Z(A)=Z(S'A) and t([x, yPPb) =[x, yPt(b) for all b=A* It follows from [4, Chap.

10, Sec. 5, Lemma 17] that [, yP#(b)=A. Therefore [x, y’=l. Also, since t((x, y, z)) = 0,
we have (x, y, z)? — n((x, y, z)) = 0. Consequently,

_ 1((x, y, 2)*b) =(x, y, 2)’1(b)=(x, y, 2) (x(b), y, 2)=
=(x, y, 2) (xob—L(x)b+L(x){(b)—(xb), y, 2)=(%, y, 2) (xob, y, 2)—(xL(x), y, 2) (b. ¥, 2)=
C=(x, g, 2) (xob, g, 2)— (x2+n(x), g, 2) (b, 9, 2) = (x, y, 2) (xob, y, 2)= (2, y, 2) (b, y, 2) EA.
Thus, (x, y, 2)2<l.

Assume ./=P. Suppose X, y, 24, It follows from (2) and (3) that [x, yI’=(x, y, 2)2=0 and
[x, 4], (x, y, 2)=Z(A). Since A_is a prime ring,|x, yl=(r, ¥, 2)=0. Thus A is a commutative as-
sociative ring. Therefore, A is a nondegenerate prime alternative ring.

2534




Assume /% P. Let 1 = (1 + P)/P. Clearly I # 0. If A is not a nondegenerate alterna-
tive ring, it contains a nonzero locally nilpotent ideal J (see_[&, Chap. 9, Sec. 3, Theorem
11]). Obviously K=I[/#0. Let K be the preimage of the ideal K in the ring A. It is clear
that for each aeK there exists a number m=m/(a), such that a™"=f. Suppose aueKN/, a™=P ,
and a™'&P. Since ael, it follows that f(a), n(a)eA.  Also, a®—t{a)atn(a)=0. Therefore,
amt'—t(a)a™+n(a)am-'=0and n(a)a™'€P. Consequently, (n(a)){@™'eP. Since P is a prime ideal
and a™'é£P, we have n(a)eP. Also, a™—f(a)am'+n(a)a™?=0. Therefore ((4)a"'&P. As above,
it follows that (¢) EP. We now obtain_from the equality a’—t(a)atn(a)=0 that ¢’&P. Conse-
quently, b? =_0 for some beKR. Since A is a prime ring, it follows from Kleinfeld's theorem
that either 3A = 0 or A is a nondegenerate alternative ring (see [4, Chap. 9, Sec. 2, Theorem
5]). It suffices to consider the case where 3A = 0. Then clearly 2a+0 if Ov¥aeA. It now
follows from [4, Chap. 6, Sec. 3, Lemma 8] that K = 0. This contradicts the fact that A is
a prime ring. Thus A is a nondegenerate alternative ring.

LEMMA 2.18. Suppose D is an altenative algebra over a field F, A is a subring of D, and
P is a prime ideal of the ring A. Assume dimpD < 8. ‘Then A/P is a prime associative ring.

Proof., We proceed by induction on dimgD. The case dimgD = 0 is obvious. Assume
dimgD = n < 8 and our lemma is true when then dimension of the algebra over F is less than
n. If D is a semiprime algebra, it follows from Zhevlakov's theorem [4, Chap. 12, Sec. 2,
Theorem 3] that D is an associative algebra. “Then A and A/P are associative rings. T1f, on
the other hand, D is not semiprime, then there exists a nonzero ideal I of D such that 1%2=:0;
Let J=ANl. Since J*<I*=0, we have J=P. Put D = D/I. Let_f denote the canonical ring epi-
morphism D - D. Tt follows from what_has been proved that P = f(P) is a prime ideal of the
ring A = f(A), and the rings A/P_and A/P are isomorphic. Since dimgD < n, it follows from
the inductive assumption that A/P is a prime associative ring. Therefore A/P is a prime as-
sociative ring.

THEOREM 2.19. Suppose A is a nondegenerate alternative algebra and P is a prime ideal
of A. Then A/P is a nondegenerate algebra.*

Proof. Assume P 2U(A). Since U(A)D(A) = 0, we have P=D(A) (see [4, Chap. 8, Sec. 1,
Proposition 10]). Consequently, A/P is a prime associaltive algebra. Therefore A/P is a non-
degenerate algebra. Now assume that P is a minimal prime ideal and P=U(1). It is clear
that P = P/U(A) is a minimal prime ideal of the algebra A = A/U(A). Also, A is a nondegen-
erate purely alternative algebra (see Lemma 2.4). Moreover, the algebra A/P is isomorphic to
the algebra A/P. We may therefore assume, with no loss of generality, that U(A) = 0.

Suppose S = A\ P and P, is an ideal of the ring 17, that is maximal in the set of ideals
of A7, such that PNS=. Then P, is a prime ideal of A& and PiN1=P . [ndeed, suppose M
and N are ideals of Ay, such that M o Py, N o Py, and MN=P,. 1In view of the choice of P,
there ewxist elements ¥, y&S, such that xe&M y&M. . lLet <x>j denote the ideal of A generatecd
by the element x. Then (aM/1a=N | and (O MNEP.. Also, PiASANS: =P . Therefore,
(x)aly)a=P. This contradicts the fact that P is a prime ldeal and ¥. y<S. Thus, P, is a
prime ideal of the ring dy and PNA<P.

Suppose K=Z(Az) and B is the Boolean ring of idempotents of the ring K. Obviously
T =B>~Py is an ultrafilter of the Boolean ring B. Let f denote the canonical ring epimor-
phism of Ay onto Az7 . Then ker[JA=P. Indeed, suppose x&4 7 and f(x) = 0. Then ex = 0
for some e=J. Also, &P, and e(l —e) = 0. Since P, is a prime ideal and e, l—e=K, it
follows that 1—eeP, Therefore (l—e)x=P;,. But (l—e)x=x . Thus, Y&P; for all x<ker/.
Consequently, ker [N1A=PNA=P. 1t is now clear that P = f(P) is a minimal prime ideal of the
ring A = f(A). Put F=[(K), D=f(As). As was shouwn in the proof of Theorem 2.12, D is a
Cayley —Dickson algebra over the field F. Put’

ﬁF={§ ahlas A, be F].

i==1

Clearly AF is a subalgebra of the F-algebra D. If AF = D, then obviously A is a non-
degenerate prime alternative R-algebra and P = 0. 1In this case our assertion is proved.

Now assume AF # D. Then dlmFKF < 8. Tt follows from Remark 2.18 that K}’F is a prime

assoclative ring. Therefore A/P is a prime associative ring. Thus, A/P is a nondegenerate
algebra.

*1f 380 = A, this assertion follows from Kleinfeld's theorem [4, Chap. 9, Sec. 2, Theorem S].



It remains to consider the case where P is an arbitrary prime ideal. Suppose Q is a
minimal ideal of the algebra A contained in P, K = A/Q, and P = P/Q. Clearly P is a prime
ideal of the algebra A. By what has been proved, A is either a prime associative ring or a

Cayley—Dickson ring. In the first case, A/P is obviously a nondegeneracy of the ring A/P
follows from Lemma 2.17.

From Theorem 2.19 and [4, Chap. 9, Sec. 3, Proposition 3, Theorem 9] we obtain

COROLLARY 2.20. Suppose £ is the smallest radical such that A/#(A) is a nondegenerate
alternative algebra for each alternative algebra A.* Then 4 is the special radical defined
by the-class of nondegenerate prime alternative algebras.

COROLLARY 2.21 ([10]). If A is a semiprime alternative ring whose additive group is
6-torsion-free and in which ab+ba=0 implies ab=0, then A is associative.

Proof. By Kleinfeld's theorem [4, Chap. 9, Sec. 2, Theorem 5'], A is a nondegenerate
alternative algebra. Since a Cayley—Dickson algebra (and therefore a Cayley—Dickson ring)

contains anticommuting elements with a nonzero product, the associativity of A follows from
Theorem 2.16.
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