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PRIME IDEALS IN GENERAL RINGS." 

By NEALH. McCoy. 

1. Introduction. The concept of prime ideal has played an important 
role in the theory of commutative rings, but has not been used so extensively 
in the study of noncommutative rings. Some properties of prime ideals in 
general rings have been discussed by Krull [9] and by Fitting [3]. However, 
except in these papers, prime ideals seem to have been used only incidentally 
and not made the subject of special study. It is the purpose of the present 
paper to extend to general, that is, not necessarily commutative, rings several 
results which are well known in the commutative case. 

Unless otherwise stated, the word ideal shall mean two-sided ideal. I n  
a commutative ring I2 an ideal @ is a prime-ideal if and only if ab E O(@) 
implies that a== O(Q) or b 30 (Q). Naturally, this definition could also be 
used in noncommutative rings, as has been pointed out by Fitting [3], who 
says that a prime ideal according to this definition is completely prime. 
However, it turns out that this concept is not particularly useful, since a 
noncommutative ring seldom contains very many completely prime ideals. 
I n  other words, the defining condition is too strong to be of much interest. 

I n  an arbitrary ring R, it is customary to call an ideal Q a prime ideal 
if and only if a6 =0 (8)  implies that a =0 (Q) or 6 E0 (Q), it being under- 
stood that a and 6 are ideals in R. An ideal which is completely prime is 
prime, but the converse is not generally true. However, these concepts 
coincide in the case of commutative rings. 

Our first theorem gives a number of properties of an ideal, each of which 
is equivalent to that just used to define a prime ideal. I n  particular, i t  
follows that an ideal @ in the arbitrary ring R is a prime ideal in R if and 
only if aRb --0 (Q) implies that a =0 (8)  or b =0 (8) .  This suggests the 
desirability of defining an m-system (generalizing the familiar concept of 
multiplicative system) M of elements of R as a system with the property 
that c E d l ,  d E M imply the existence of an element x of R such that cxd e M.  
Thus an ideal Q in R is a prime ideal if and only if the complement of @ 

in R is an m-system. This characterization of the prime ideals plays an 
important role in the sequel. 

*Received July  20, 1948; presented to  the American Mathematical Society. April 
17,  1068. 
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824 NEAL H. YCCOY. 

I f  a is an ideal in R, the radical of the ideal a is defined to be the set 
of all elements r of R with the property that every m-system which contains Y 
contains an element of a.l I t  is shown in 3 that the radical of a is the inter- 
section of all the prime ideals which contain a. The methods are based on 
those of Krull [ lo] ,  and the results reduce to those of Krull if R happens to be 
a commutative ring. The material of 3 is a simple adaptati~n of the expositio;~ 
of Krull's results to be found in Chapter V of [14]. 

B considerable number of different definitions of the radical of a general 
ring have been proposed. We shall add to this list by giving still another 
definition as follows. The radical N of the ring R is the radical of the zero 
ideal in R. We shall show that N is a nil ideal which contains every nil- 
potent ideal of R, and that N is a radical ideal in the sense of Baer [I]. The 
relation of N to the radicals of Kothe [8] and Levitzki [ll] and [12] is still 
an unsolved problem. In  common with all the other definitions of the 
radical of a general ring, N becomes the classical radical in the presence of 
the descending chain condition for right ideals. Furthermore, N has all 
the usual properties expected of a radical. 

d primitive ideal as defined by Jacobson [7] is a prime ideal, and hence 
N is contained in the Jacobson radical of R. We may also point out that 

the method used by Jacobson [7] to introduce a topology in the set of 
primitive ideals in a ring can be used without modification to introduce a 
topology in the set of prime ideals in a ring. I n  fact, several of the results 
of [7] can be easily carried over to results about the space of prime ideals 
in a ring. 

The radical recently defined by Brown and McCoy [2] is also the 
intersection of a certain class of prime ideals, namely, those maximal ideals 
m such that R/m has a unit element. 

A ring in which (0)  is a prime ideal may be called a phme ring. Thus 

the primitive rings of Jacobson [6] are prime rings. I n  5 we shall prove 

that a prime ring which contains minimal right ideals is a primitive ring. 
However, these concepts do not coincide in general, for any integral domain 
is a prime ring and an integral domain is primitive if and only if it is a 

field. 
We shall point out in Theorem 6 that a ring is isomorphic to a sub-

direct sum of prime rings if and only if it has zero radical. This is an 

Fitting [3 ]  defined the radical of a to be the set of elements which generate nil 
ideals modulo a. The racli-a1 of a as rlrfined above is contained in Fitting's radical, 
hut the exact relation between these concepts is an unsolved problem. 
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analogue of one of the Wedderburn-Artin structure theorems. I n  view of 
this result it would seem desirable to make a further study of the prime rings. 

2. Definition and fundamental properties. We begin by proving the 
following result : 

THEOREM1. If @ is an ideal in  the arbitrary ring R, the following 
conditions are equivalent : 

( i )  If a, 6 are ideals in  R such that a6 =0(@) ,  then a =O(@) or 
6 c O ( @ ) .  

(i i)  I f  ( a ) ,  (b) are principal ideals in  R such that ( a )  (b) =0 (@), 
then a=O(@) or b=O(@).  

(iii) I f  aRb =0 (Q), then a =0 (Q)  or b E 0 (@). 

(iv) I f  I,, I, are right ideals i n  R such that I ,I ,=O(p),  then 
I,=O(Q) or I ,=O(@).  

(v) I f  J1, J, are left ideals in  R such that JlJ2=O(@), then J, =0 (@) 
or .J ,=O(p) .  

Before giving the proof we make one observation which will be useful. 
Clearly ( i ) ,  although stated for the product of two ideals, implies that if a 
product of any finite number of ideals is in 8, at  least one of the ideals is 
in @. A similar result holds for (i i) ,  but is not quite so obvious. However, 
suppose that ( i i )  holds and that ( a )  (b)  (c) E0 (Q) with a +0 (@). Then 
for every b, in (b),  c, in (c),  we have (a )  (blcl) =O(@), which then implies 
that blcl I0 (@). This shows that (b) (c)  =0 (@),and hence b =0 ($I) or 
c =  O(Q). I n  like manner, the result can be established for the product 
of any finite number of principal ideals. 

We are now ready to prove the theorem. Clearly ( i )  implies ( i i ) .  
We now assume (ii)  and prove (iii) . Suppose that aRb =0 (q) ,  from which 
i t  follows that RaRbR EO(p), and thus ( a ) 2 ( b ) 3_C RaRbR =0 (8).  By 
the observation made above, (i i)  implies that a =0 (8) or b =0 (@),and 
this establishes (i i i) .  

Now let us assume (iii) and suppose that I,, I, are right ideals such 
that I,I,-- 0 (Q)  with I,+0 (@). Let a, be an element of I, not in p. Then 
for every element a, of I, we have alRa2 _C I,I,=O(@). Hence, by (iii), 

mailto:I,=O(@)
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we have a, -0 (p) .  Thus I,-0 (p) ,  and we have therefore shown that 
(iii) implies (iv).  A similar argument will show that also (iii) implies (v).  

The proof is completed by observing that ( i )  is implied by either (iv) 
or (v).  

Definition 1. An ideal @ with any one (and therefore all) of the 
properties stated in Theorem 1 is a prime ideal. 

LEMMA1. If  @ is a prime ideal i n  R, and a an element of R such that 
RaR =0 (p) ,  then a =0 (8) .  

To prove this, we observe. that RaR =0 (@)implies that aRaR E 0 (p) ,  
and (iv) shows that aR =0 (@). It then follows that aRa =0 (@),and we 
must have a s  O(@) by (iii). 

We next prove the following result: 

LEMMA2. If 6 is an  ideal i n  R, and a prime ideal in  R, then 6 n # 
is a prime ideal i n  the ring 6. 

Let b,, b, be elements of 6 such that b16b2 =0 ($I n 6) .  Then blRb2Rb2 

-C b16bZ =O(@), and hence b,Rb,Rb,R EO(p). From this, (iv) implies that 
blR =0 (@)or b2R=0 ($I). If blR =0 (p) ,  then blRbl E 0 (p) and (iii) 
implies that bl =0 (p)  . Similarly, if b,R =0 (p) ,  we have b, E 0 (8).  
Thus either bl =0 (p  n 6)  or b, =0 ($I n 6),  and p 0 6 is a prime ideal in 
the ring 6 by (iii). 

Definition 2. A set M of elements of R is an rn-system if and only if 
c EM,  d c M imply that there exists an element x of R that c x d ~  M. The 
void set is to be considered as an m-system. 

The importance of this concept lies in the fact that, by (iii), an ideal @ 

in R is a prime ideal if and only if its complement C ( p )  in R is an m-system. 
The agreement to consider the void set as an m-system is to take care of the 
special case in which @ =R, for clearly R is a prime ideal in R. 

It will be observed that the concept of an m-system is a generalization 
of that of multiplicative system. For if M is a multiplicative system with 
c EM,  d E M, then there is an element x (either c or d may be used) such 
that cxd E M, and hence M is an rn-system according to the definition given 
above. 
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3. The radical of an  ideal. This section is based on certain material 
of Chapter V of [14] which, in turn, is largely an  exposition of results due 
to Krull [lo]. 

Definition 3.  The radical r of an ideal a in R consists of those elements 
r of R with the property that every m-system which contains r contains an 
element of a. 

It will presently appear that r is an ideal in R. However, we first 
observe that a z  r. Furthermore, a and r are contained in precisely the 
same prime ideals. For suppose that a C p, where $I is a prime ideal, and 
that r E C. If r were not in 4, that is, if r E C(p) ,  then C(p)  would have to 
contain an element of a since C(p)  is an m-system. But clearly C(p)  
contains no element of a, and therefore r is not in C(p) .  Thus r E p, and 
hence r C p as required. 

Definition 4. A prime ideal $.I is a minimal prime ideal belonging to 

the ideal a if and only if a 5p and there exists no prime ideal p' such that 
a C p' C p.2 

We are now ready to state the principal theorem of this section as 
follows : 

THEOREM The radical r of an ideal a i s  the intersection of all the 2. 
minimal prime ideals belonging to a. 

We shall establish several lemmas and then show how they lead to an 
immeiliate proof of the theorem. 

If two sets of elements of R have no elements in common, we may say 
that either of these sets does not meet the other. 

LEMMA3. Let a be an ideal i n  R,and M an m-system which does not 

meet a. Then M i s  contained i n  an m-system MJ which i s  maximal i n  the 

class of m-systems which do not meet a. 

This is, of course, an immediate consequence of Zorn's Maximum 
Principle and is merely stated in the form of a lemma for convenience of 
reference. 

LEMMA4. Let M be an m-system i n  R, and a an ideal which does not 

By P' C P we mean tha t  P' is properly contained in P. 
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meet 1M. Then a is contained i n  an  ideal p* which is maximal in, the class 
of ideals which do rtot meet Jf. The ideal @* is necessarily a prime ideal. 

The existence of $I* follows a t  once from the Maxin~um Principle. We 
now show that  $I* is a prime ideal. Suppose that  a +0 (p*) and b +0 (p*).  
Then the maxinial property of p* implies that  (p*, a )  contains an  element 
m, of Jf, and likewise (@*,b) contains an element nz, of M. Thus there 
exist elements a, of ( a ) ,  b, of (b)  such that  m, -a,(@*), m, -b,(p*). 
Since ill is an m-system, there is an  element x of R such that  nz,xm, E ill, and 
hence mlxm, +0(@*) since @*does not meet dl. But alzbl -m,xm,(p*) 
and therefore a,zb, +O(p*). However, ( a )  ( b )  contains the element a,xb,, 
and thus ( a )  (b)  +0 ( @ " )  By property ( i i )  of Theorem 1, this shows that  
8%is a prime ideal. 

We nov  prove 

L E ~ I A5. A set p of elements of tile ~ i n g  R is a nzinimal prinze ideal 
belonging to a if and only if C(p )  is maximal i n  the class of na-systems 
which do not meet a. 

First, let 1, be a set of elements of R with the property that ill =C ( @ )  
is a maximal m-system wliich does not meet a. If @*is the prinie ideal 
whose existence is asserted in Lemma 4, then C(@':) is an  nz-system which 
contains Jl and does not meet a. The niaximal property of 31 inlplies that 
C(p*)  =Jl= C ( @ ) ,  and hence $I =p:%. Thus @ is a prime ideal containing 
a. Clearly, there can exist no prime ideal @, such that  a C p, C @, since 
this would imply that  C(@,) is an m-system which does not meet a and 
properly contains Jl. This is impossible because of the i~laximal property 
of J f ;  hence @ is a minimal prime ideal belonging to a. 

Conversely, if @ is a minimal prinie ideal belonging to a, M =C(@)  
is an  nz-system which does not meet a, and Lemma 3 shows the existence of a 
maxinial m-systeni 11f' which contains Jf and does not meet a. By the part 
of the theorem just proved, C(J f r )  =0' is a minimal prime ideal belonging 
to a. Since Jf' 2 Jf, i t  follows that @' C @. Thus a C @' C 8, from tvhicll 
it follows that  @ =@',and thus IZ =M'. This shows that  C(@)  =3f is a 
maxinial m-system which does not meet a, and completes the proof of the 
li.rrima. 

We are now ready to prove the theorem. If  r is the radical of a, we 
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have pointed out above that r is contained in the same prime ideals as a. 
This shows that r is contained in the intersection of all the minimal prime 
ideals belonging to a. Now let a be an element of R not in r. I-Ience, by 
the definition of r, there exists an nz-system Jf which contains a but does 
not meet a. By Lemma 3, M is contained in a maximal m-system Jf' which 
does not meet a. By Lemma 5, C(Jf') is a minimal prime ideal belonging 
to a, and clearly Cf(M')  does not contain a. Hence a can not be in the inter- 
section of all the minimal prime ideals belonging to a, and the theorem is 
therefore established. 

The following result is an immediate consequence of the theorem just 
proved : 

The radical of an ideal is an ideal. COROLLARY. 

If @ is any prime ideal containing a, then M =C(@) is an m-system 
which does not meet a. If Jf' is the m-system defined in Lemma 3, Lemma 5 
shows that C ( W )  is a minimal prime ideal belonging to a. Since C ( @ )C JI', 
it follows that a C C(Jf') C@. This proves that any prime ideal which 
contains a contains a nzinimal prime ideal belonging to a. 

4. The radical of a ring. We now make the following definition 

Definition 5. The radical of the ring R is the radical of the zero ideal 
in R. 

We shall henceforth denote the radical of the ring R by N. I t  is clear 
that N is a nil ideal, for if a &  N, the m-system {a, a?, a3,. . .) must contain 
0, and a is therefore nilpotent. Furthermore, every element b which generates 
a nilpotent ideal (right, left, or two-sided) is in N .  For if I is an ideal 
such that I n=0, then In= O(8) for every prime ideal @ in R, and this 
implies that IE 0 (8).  Hence I EO(N), since N is the intersection of all 
the prime ideals in R. 

If a E N, then clearly aR CN .  Conversely, if aR N ,  RaR C N, and 
Lemma 1shows that a E N. We see therefore that aR CN if and only if a E N .  

THEOREM3. I n  the presence of the descending chain condition for right 
ideals, N coincides with the classical radical of R. 

If a E N, (a )  is a nil ideal, and it is known that the descending chain 
condition implies that (a )  is then a nilpotent ideal. On the other hand, 
it was pointed out above that N contains all elements which generate nil- 
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potent ideals. Hence N consists precisely of the elements which generate 
nilpotent ideals. This, however, is one of the familiar characterizations of 
the classical radical, and the proof is completed. 

We shall now prove 

THEOREM4. If 6 is an  ideal i n  R, the radical of the ring 6 is 6 n N. 

If N' denotes the radical of the ring b, Lemma 2 shows that N' C 6 nN. 
Conversely, if b E 6 n N, then every m-system in R which contains b contains 
0. Thus, in particular, every m-system in 6 which contains b contains 0. 
This means that b EN', and thus 6 n N N', completing the proof. 

THEOREM5 .  I f  N is the radical of R, then R/N has zero radical. 

To prove this, let & be an element of the radical of R/N, and thus 6 is 
contained in all prime ideals in R/N. If d # 0, a+O(N) ,  and hence 
a is not contained in some prime ideal $.I in R. Since $I 2 N, we have 
R/$I = (R/N)/(@/N),  from which it follows that p/N is a prime ideal in 
R/N. Furthermore, 8JN does not contain since a +0 (8) .  This contra- 
diction shows that we must have & =0, which completes the proof of the 
theorem. 

I t  follows from this theorem that RJN contains no nonzero nilpotent 
ideals (right, left, or two-sided), for every nilpotent ideal in R/N must be 
in the radical of R/N. I n  particular, this shows that N is a radical ideal 
in the sense of Baer [I]. 

5. Prime rings. We shall now make the following 

Definition 6. A ring R is a prinze ring if and only if ( 0 )  is a prime 
ideal in R. 

Theorem 1 yields a number of equivalent characterizations of the prime 
rings, one of the most interesting being that a ring R is a prime ring if and 
only if aRb =0 implies that a =0 or b =0. 

I t  is easy to see that a commutative prime ring is just an integral domain. 
Any simple ring S (with S2# 0) is a prime ring, and a primitive ring is 
also prime, as was shown by Jacobson [6]. From Lemma 2 we also observe 
that an  ideal i n  a prime ring is a prime ring. 

Now a prime ring has zero radical and hence in the presence of the 
descending chain condition for right ideals is isomorphic to a direct sum of 
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a finite number of simple rings. However, the direct sum of two or more 
simple rings is certainly not prime, and hence if the dewending chain con-
dition holds for right ideals, the concepts of prime ring and simple ring 
(with nonzero square) coincide. 

If is a prime ideal in the arbitrary ring R, R/p is a prime ring, and 
conversely. Since N is the intersection of all the prime ideals in R, a familiar 
argument yields the following analogue of one of the Wedderburn-Artin 
theorems : 

THEOREM6. A necessary and sufficient condition that a ring be iso-
morphic to a subdirect sum of prime rings is that it have zero radical. 

This theorem indicates the importance of prime rings in the general 
structure theory. We shall now prove a few other results about prime rings. 

THEOREM7. A prime ring that contains minimal right ideals is a 
primitive ring. 

The following simple proof is due to Bailey Brown. If I is a minimal 
right ideal of the prime ring R, then I is a simple R-module whose annihilator 
I*in R is a right (in fact, two-sided) ideal such that 11* =0. Since R 
is prime this implies that I* =0 and thus I is a simple R-module with zero 
annihilator, that is, R is isomorphic to an irreducible ring of endomorphisms. 
This implies that R is primitive, and the proof is completed. 

Now let 2' be a ring with unit element, and denote by T, the ring of 
all matrices of order n with elements in T. We shall prove 

THEOREM8. If T is a ring with unit element, then T, is a prime ring 
if and only if T is a prime ring. 

As usual, let eij denote the matrix with the unit element in the i-th row 
and j-th column, and zeros elsewhere. If T is not prime, then T, is not 
prime. For if T is not a prime ring, there exist nonzero elements a, b of T 
such that a m  =0. This clearly implies that (ae,,)T,(be,,) =0 with ae,, 
and be,, nonzero elements of T,, and this shows that T, is not a prime ring. 

Conversely, suppose that T, is not a prime ring, and hence that there 
exist nonzero matrices (ad!), (b6j) in T, such that (aU)T,(b4!) =0. Let US 
assume that a,, # 0, b,, ,#0. Now, for every z in T we must have 

See $ 3 of [I31 for  references. 

Jacobson [Bl, p. 312. 
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I n  particular, the coefficient of e,, must be zero, that is, aPqxb,, =0. Since 
this is true for every x in T, this means that aPqTb,, =0, and T is not a 
prime ring. The proof is therefore completed. 

By use of this result we shall prove the following theorem about the 
radical of a ring: 

THEOREM9. If N is the radical of the arbitrary ring R, the radical 
of the complete matrix ring R, is N,. 

We first give the proof under the assumption that R has a unit element, 
and then remove this restriction. Since R is assumed to have a unit element, 
there is a one-to-one correspondence M eiM, between ideals in R and ideals 
in R,. Furthermore, it is easily verified that (RJM),=R,/M, and thus, 
by Theorem 8, M ,  is a prime ideal in R, if and only if M is a prime ideal 
in R. Thus if N is the radical of R, and are the prime ideals in R, we 
see that 

radical of R,= n(@i).=(n@i) ,=Nn.  

If R does not have a unit element, i t  is well known that we can imbed 
R in a ring S with unit element in such a way that R is an ideal in S. I f  
the radical of R is N, and the radical of S is N', then Theorem 4 shows that 
N =R nN'. By the result just proved, the radical of 8, is N', and, since 
R, is an ideal in S,, Theorem 4 shows that 

radical of R, =N', n R, = (N' nR ) ,  =N,, 

thus completing the proof. 
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