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The Jacobson radical of a Jordan algebra has been defined [5] as the 
maximal ideal consisting entirely of quasi-invertible elements. In this paper 
we shall obtain a characterization of the radical as the set of properly quasi- 
invertible elements, in analogy with the case of associative algebras. An 

element is properly quasi-invertible if it is quasi-invertible in all homotopes. 
(We show this characterization also works in the associative case). We apply 
our characterization of the radical of J to describe the radical of U,J, e an 
idempotent in J, and the radical of an ideal R C J. 

Throughout we use the notations and terminology of [4] for quadratic 
Jordan algebras over an arbitrary ring of scalars @. We recall the basic 

axioms for the composition U,y in the case of unital algebras: 

Algebras without unit can be defined [7]; an y  such algebra J can be imbedded 
as an ideal in a unital algebra J’ = dsl + J. I f  % is an associative algebra we 

obtain a Jordan algebra 2X+ from 9l by taking 7YZ y  = X~X. 

1. THE ASSOCIATIVE MOTIVATION 

It is well known that the Jacobson radical of an associative algebra % 
consists precisely of the properly quasi-immtibZe (p.q.i.) elements, those z 
for which all ax (equivalently all xa) are quasi-invertible (q-i.) in the sense 
that 1 - ax is invertible in the algebra 2l’ obtained by adjoining a unit to 2l. 
It is also known [6] that the Jacobson radical of the Jordan algebra Zlf 
coincides with that of the associative algebra PI. Now the condition that a~ 
be q.i. cannot be formulated in Jordan terms since az is not a Jordan product. 
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We seek a different characterization of p.q.i. elements. The condition that 
uz be q.i. with quasi-inverse (necessarily of the form) aw is nz + aw = 
(CLZ)(UW) = (aw)(az). For this it is certainly sufficient if x + zu = xuzu = was. 

This is just the condition that z and w be quasi-inverses in the a-hozzzotope 
?P, where multiplication in VP) . IS given by x .a y  = xuy. But this condition 
is also necessary. If  ax is q.i. in ‘3 so is zu, hence 1 - uz and 1 - zu are 
invertible in ‘$I’, and the multiplication operators L1-,, , Rr-,, are invertible on 
‘C. Since ‘% is an ideal in %’ it is invariant under these operators and their 
inverses (which are also multiplications), so the restrictions LIPZa = 

I - L,L, = I - L r’ and Rrenz = I - R,R, = I - Rr) are invertible on \zI. 
(WARNING: Lk”’ = L,L, h 0 Id s only on 9I, not on r9P)’ = @I(“) + ?P). 
But these are the restrictions of L$l,l, and R$$mZ in 2P to ‘3, so x is q.i. 
in 9P. We have established 

PROPOSITION 1. The element uz is q.i. in the associative algebra % if und 
only if x is q.i. in the hozzzotope J o @). Tlzus x is p.q.i. ifund only zjcit is q.i. in all 
homotopes %(a). 

2. QUASI-INVERSES IN THE JORDAN CASE 

Two elements U, v  in a unital Jordan algebra are invertible if 

(i) uov =2; 

(ii) 77,~ = u; 

(iii) lJ,v2 = 1. 

The element zl is invertible if and only if the operator U, is, and this will be 

the case as soon as 1 is in the range of lJ, . Two elements in a (not necessarily 
unital) Jordan algebra J are quasi-inverses if 1 - x, 1 - y  are inverses in J’. 
The above conditions for u = 1 - XI, v  = 1 - y  reduce to 

(i) x oy = 2(x fy); 

‘(ii) U,y=x+y+x”; (1) 

(iii) V, y2 = 2(x + y) + 3s + y2. 

In this case y  is uniquely determined as 

y  = U&(x” - x). 

The invertibility of 1 - x is equivalent to the invertibility of 

u;-, = I - v, + u, . 

on J. 

(2) 

(3) 
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We have a notion of homotopy for Jordan algebras too. The u-homotope 
3c”) has the same linear structure as J but new multiplication 

If ZL is invertible then J(u) has unit l(u) = up1 and we call Jtu) the ~-isotope, 
If  u is not invertible then 3tU) will not have a unit (even if J had one to begin 

with), but of course we can always adjoin one to obtain a unitial Jruj’. (Again, 
the formulas (4) hold only on 3tU), not all of dil(“) + J(“)). On 3cU) the 
operator U:$-, reduces to I - Vz,,, -t U,U, in virtue of (3) and (4). This 

leads us to introduce the operators 

in any Jordan algebra 3. These operators have been utilized by Professors 

Koecher [3, p. 1421 and Faulkner [l]. The basic properties we will use are 
contained in the following 

LEMMA 1. The transformations T,,, OB J sati%fy 

6) T,,, = To,, = 4 Tax,, = Txzbu (a E @>, 

(ii) T,,,T-,,, = T,,,T,,-, = T,,uM~ = Tuw,~, 

(iii) T,,,U2T,., = UT(z,y)a , 

(iv) T,Jy,, = I - VI0 + U,, for w = x 0 y  - LTxya. 

The first is clear by inspection (it actually holds for all 01 in the centroid). 
The rest have been proven in [9]. 

The relation of the Ts,is to quasi-invertibility is given by 

LEMMA 2. For elements x, y  of a Jordan algebra 3 the folEowkg conditiolzs 
are equivalent : 

(i) x is q.i. in 3’“‘; 

(ii) T,,, is invertible on J; 

(iii) T,,, is surjective on J; 

(iv) 2x - U,y is in the range of T,,, ; 

(v) w = x oy - U,yz is in the range of T,>, ; 

(vi) w = x oy - UzyB is q.i. in J. 

(4) 

In this case the inverse of T,-,, is TzS, where x and x are quasi-inverses in J(v)= 
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Proof. I f  x is q.i. in 3(Y) then l(u) - x is invertible in 3(y)‘; the ideal J(p) is 
invariant under the multiplication lJ$‘-, and its inverse U::‘,‘L, (x the quasi- 
inverse of x), hence the restrictions T,,, and T,,, are inverses on J = 3(y). 
Thus (i) * (ii) (and the final statement of the Lemma holds). Clearly 

(ii) => (iii) and (iii) * (iv), (v). Now 

I 
U$L,l (Y) = (1 (d _ 42(l) = l(Y) _ 2% + &Y) = 1(r) _ 2% + uzy 

is always in the range of U:y$+, , so if 2x - lJ, y  is in T,,,(s) = U:$-,(3) 
we will have l(u) in the range too, and 1 w - x will be invertible. Thus 
(iv) + (i). Similarly 1 - w = TX,,1 is always in the range of T,,, on 3’ (not 

s(v)‘), so if eo = Tz,p is also in the range then 1 = T,,,(l + z) will be too. 
Applying (5.iii) in 3’ gives T,,,U,+,T.v,, = I on J’. Then T,,, is surjective 
on J’, hence invertible by (ii) (applied to 3’), so U,+,T,,, = T$ is again 
invertible on 3’. But then U,,, is at least surjective, which is enough to 
guarantee it is invertible, so T2/,z = U&T;,\ is too. From (3) and (5.iv) we 
see U,-, is invertible and w is q.i. Thus (v) 3 (vi). Clearly (vi) * (iii) in 
view of (5.iv). 

From these we derive several useful results. By Proposition 1 the associative 
symmetry result that xy is q.i. if and only if yx is q.i. becomes x q.i. in W’) if 

and only if y  q.i. in W). In this form the result carries over to Jordan 
algebras. 

PROPOSITION 2. (Symmetry Principle). An element x is q.i. in the Jordan 
homotope J(y) if and only zjc y is q.i. in 3(“). 

Proof. We saw in the course of proving Lemma 2 that T,,, invertible 
implies T,,, invertible, and we apply (6). 

Another form of symmetry in the associative case is that xxzy is q.i. if and 

only if xxyx is. This too carries over to Jordan algebras in the result that we 
can “shift” the operator U, . 

PROPOSITION 3. (Shifting Principle). U,x is q.i. in 3’“) ;f and only if x is 
q.i. in 3(“zv). 

Proof. Suppose x is q.i. in J(“zy) with quasi-inverse w. In the homotope 

3(Uz~) the conditions (1) become (via (4)) 

(x u, y  w} = 2(x + w), U,UU(&p = x + w + Uzc(UZY)> 

UcJJUhh ZC’ u (Uzy) = 2(x + 4 + UCCVJZY) + UuwzY)* 
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Applying .?Y, to these relations and employing UQJII (and its linearized 
form) we obtain 

(Uzx y  iY,w} = 2( Up + lJ,w), u,(,),u,( Uzw) = u,x + u,w + U(J&Y, 

u iJ(z)zUyU51(a).l” y = 2(U,r + UP) + U,(,,,Y + CJub)iL.Y 

so U,x and U,w are quasi-inverses in 3(Y). 
Conversely, if U,x is q.i. in a(u) then y  is q.i. in JcUza) by the Symmetry 

Principle. From the previous case (with x and y  interchanged) we conclude 

Uz y  is q.i. in Jta), so by Symmetry again .x is q.i. in J(Uz~). 

Remark. As a corollary, UZyZ is q.i. if and only if lJ,.x” is. For U,yz is 
q.i. in J if and only if it is in J’ = J’(r) (using (2)), and this if and only if yz 
is q.i. in 7”u=l) = J’te”) (by Shifting), hence in J’““((2) again), which is 2 
symmetric in 3~ and y. We do not have U:cy q.i. if and only if Li,x is even in 

associative algebras. 

3. PROPER QUASI-INVERTIBILITY 

Following the lead of the associative theory, we define an element x in a 
Jordan algebra 3 to be properly quasi-insertible (p.q.i.) if it is q-i. in all 
homotopes 3(E). We let PQI(J) denote the set of p.q.i. elements of 3, 

PQ1(3) = {Z / x p.q.i.} = (x j ,a q.i. in all 3(“)) 

= {.a j all T,,, are invertible]. 

By Symmetry this means all x are q.i. in 3f3), i.e. 3(Z) is q.i., 

PQI(3) = {.z / rad J@) = J@)>, 

We should first justify our terminology. 

PROPOSITION 4. Any p.q.i. element is q.i. 

Proof. This is trivial if 3 is unital, as a p.q.i. element x would then be 
q.i. in 3”) = J. In general we have xa q.i. since 

is invertible by our assumption that x is q.i. in 3fZ) ((3) and (6)) But if x3 is 
q.i. so is x. 

We’ve just seen that our labors can often be considerably simplified if we 
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are working in a unital algebra. The following result allows us to pass from 
J to the unital J’. 

PROPOSITION. 5. PQI(S) = PQI((J') n 3. 

Proof. If x E PQI(J’) belongs to the ideal J so does its quasi-inverse in 
any homotope 3’(x’) (J is still an ideal in 3’(2’), and we apply (2)), so x is q.i. 
in all J($) and thus belongs to PQI(J). 

Conversely, if z belongs to PQI(J) and x’ is in 3’ then the range of T,,,s 

contains 2x - U& E J (and hence by (6.iv) T,,,, is invertible and x q.i. in 
3”“‘)) since Tz,z~T-,~,~ = Tz,u(z,)z = T,,, for w = lJ,,x E J and T,,,, is 
surjective on 3 (see (5.ii)). 

In unital algebras the p.q.i. elements have u - x invertible for all invertible 
u, not just u = 1. 

PROPOSITION 6. If  J is unital and x E PQI(3) then u - x is invertible for all 

invertible u. 

Proof. u - x has the form ltV) - z in the v-isotope Jta), v = 21-l. Since 
z is q.i. in Jtv) we have ltv) - x invertible in 3(“), but this implies invertibility 
in 3; too. 

COROLLARY. For arbitrary 3, if 2 is p.q.i. the?2 u - x is invertible in any 

Jt2)’ if u is invmtible in Jfz)‘. 

Proof. We apply the above to Jt2)’ in place of J-note that x will be in 
PQI(s(“)‘) if it belongs to PQI@“)), using Proposition 5, and that it belongs to 
PQI(3tz)) is the conclusion of 

PROPOSITION 7. PQI(J) C PQI(z(“)) for any homotope J(s). 

Proof. Any homotope of a homotope is a homotope, I = ~(UXV). 

The basic source of p.q.i. elements is 

PROPOSITION 8. The radical consists of p.q.i. elements, 

rad(3) C PQI(J). 

Proof. If 2: belongs to the q.i. ideal rad(3) so does w = z 0 x - Uzxz for 
any x in 3, hence z is q.i. in J@) by (6). 

We next want to show that if z is p.q.i. so is any U,x, i.e. ally are q.i. in 
J(U*z). It is difficult to prove this directly, for the quasi-inverse of y in Z”zz) 
has the form 

Y’ = Tz,ud’~~,~(~~ - Y> 
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where .u’ is the quasi-inverse of .ZO = (x .z y} - U,UzUzz in Jcz). However, 

there is an alternate approach which works: saying all y  are q.i. in J(Uza) is the 
same as saying 3(Uzz) is a radical algebra in the sense that it is its own radical. 

PROPOSITION 9. If 3 is a radical algebm, rad 3 = 3, then so is any 
homotope, rad 3(Z) = Jt2). 

J’roof. We must show that all elements y  in 3 are q.i. in 3(“), and by 

(6.iii) it suffices if the operator T,,, is surjective. But by (Kiv), T,,,T,,,# = 

I;;-,. for .ZE = x 0 y  - I/+x2, where zu is q.i. and hence 1 - w invertible 
(in 3’) because any element of J is q.i. by hypothesis. Consequently U,-, is 
invertible, which implies T,!, is surjective. 

PROPOSITION 10. If  an element x E 3 is p.q.i. then so is any element Uzxfor 
x E 3. 

Proofs We must show that J(uzx)is a radical algebra, Rad ~(UZZ) = s(uzz) ; 

but by the general transitivity relation 3(“zzi = (J(s~)!c) for homotopes 
([4, 21) we have 3(Usz) = 3(Z) where 5 = Jtz) is a radical algebra by our 
assumption that x is p.q.i., so by the previous proposition 3(z) is also radical. 

Now we come to the main result of this paper. 

THEOREM 1. For any Jordan algebra J the radical rad 3 consists precisely 

of the properl’r quasi-invertible elements, 

rad J = &)1((J). 

Proof. We have seen that PQI(3) is q.i. and contains the radical in 
Propositions 4 and 8. It remains to show it is an ideal. 

That PQI(3) is closed under scalar multiplications is an immediate 
consequence of (6) and (5.i). That it is closed under addition follows from the 
Corollary to Proposition 6: if x and zu belong to PQI(J) then in any 3(“)’ we 
have 1’ - (U + zz) == (1’ - zu) - z = zc - z where u = 1’ - w is invertible 
in Jtr)’ since s’li is q.i. in J(I), so ZL - w is invertible in Jcx)’ and z + w is q.i. 
in s(2). 

That PQI(3) is closed under outer multiplication, U,z E PQI(J) for ally E J 
and z E PQI(z), follows from the Shifting Principle: z q.i. in all z(Cigr) implies 
17,x q.i. in all Jcx). I f  J is not unital we must also consider outer multiplica- 
tions F+. The easiest way to do this is to pass to 3’: We have x in PQI(3’) 
by Proposition 5, hence V,x = U,+,z - U,.z - U,a E PQI(r) by the 
invariance under addition and U-multiplication established above, and 
applying Proposition 5 again gives V,z E 3 n PQI(y) = PQI(3). 

That PQI(3) is closed under inner multiplication, Uzy E PQI(3) for all 
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y  E 3 and x E E’QI(s), follows from Proposition 10. In the non-unital case we 
must also prove UJ = z2 belongs to PQI(J), and again this follows from 
passage to 3’ : x E PQl((J) * x E PQ1(J’) * x2 E PQ1(3’) (by the above)* 
x2 E PQ1(3). 

Thus PQ1(3) is a q.i. ideal which contains the maximal q.i. ideal rad J, so 
we must have PQI(3) = rad 3. This completes the proof. 

Actually, Proposition 9 can be generalized to the case where rad 3 is not 

necessarily all of J. The following result is due to D. Lawver. 

PROPOSITION 3. The radical of a homotope 3@) is 

rad Jtx) = {Z / U,Z E rad 31. 

Proof. x E rad 3(x) -+ z is p.q.i. in 3 ~~1 (by the Theorem) e rad s(z)(z) = 
s(z)(z) o rad J(uzz) = 3(uG) + U,z E rad J. 

4. APPLICATIONS 

We conclude this paper by applying our characterization of the radical to 

answer questions raised in [5, p. 67.51. 

THEOREM 2. For ally idempotent e in a Jordan algebra 3, the mdical of the 
Peirce subalgebra sl(e) = U,J is 

rad( U&J) = U,J A rad J = U,(rad J). 

Proof. The latter equality is easy. To prove the former, for z = U,z E U,s 
we have x E rad lJ,J o x is q.i. in all ( U,3)(“ee) (by the Theorem) o .Z is q.i. 
in all Jur@) (a quasi-inverse of x in stcTsZ) must actually lie in U,J) 0 U,z 
is q.i. in all 3(“) (by Shifting) o x is q.i. in all 3(“) + x E rad 3. 

THEOREM 3. For arzy ideal 52 in a Jordan algebra J we have 

rad 53 = 53 n rad J. 

Proof. Here 53 n rad 3 C rad 52 is easy, and we verify only that x in 
rad R is p.q.i. in J. 

One way is to note that F(z) = Usx C 33 since 52 is an ideal, and 
52 = si@) = rad 5VZ) is q.i. since z lies in rad $3, so B2cZ) is contained in the 
q.i. ideal 5Ve) and .YZ) itself is q.i. 

Another way is to note by (S.ii) that T,,, will be subjective on J if 

TzJ-z,, = Toa,, = Tw is, where zu = Ug E 52. Thus it is enough to 
consider only x = w in 53. By (6.iv) ‘t 1 is also enough if 2w - U,z is in the 
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range T&3). But this holds because 2~ - C;,x E A = T,,,(B) since 
w E W = rad W). 

Finally, we close with an example to show that rad J need not contain all 
q.i. outer ideals. It is based on two remarks: 

(i) If 3 is a Jordan division algebra then rad 3 = PQI(Sj = 0; 

(ii) If J is a Jordan division algebra, 53 an outer ideal not containing 1, 
then 5% is q.i. 

To see (i), just recall that rad 3 contains no regular elements, hence certainly 
no invertible elements. (Or: if 2-l exists then z is not q.i. in z@-l) since 
T,,,-l = I - Vz,z:,,-I + U,U-, = I - 21 + I = 0 is not invertible). For (ii)? 
1 - K f 0 if k E 53 by hypothesis, so 1 - K is invertible in J. 

To construct the example, let 3 = Q be a nonperfect field of characteristic 
2 and R = fPk for k $ L?. Then J is a division algebra, so rad 3 = 0, but 
!A is an outer ideal (U=$ = Psi C Ji) with 1 6 R (k 4 Qz), so -9 f  0 is q.i. 
by (ii). Thus $3 is a q.i. outer ideal not contained in rad J. (One can show 
that if a q.i. outer ideal is closed under squares, R2 C S3, then R C rad J). 
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