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Abstract

In the structure theory of right alternative and Jordan algebras, it is important
to know that nondegenerate algebras are subdirect products of nondegenerate
prime algebras (whose structure is known). This involves representing the
nondegenerate radical as the intersection of nondegenerate prime avoidance
ideals, where (as in the associative theory) the things to avoid are m-sequences.
This in turn involves identifying the nondegenerate radical as the set of m-finite
elements and characterizing nondegeneracy as the absence of elements strictly
nilpotent of bounded index. This program was carried out by Zelmanov for
linear Jordan triples, and by Thedy for quadratic Jordan algebras. In this work
we extend the results to arbitrary quadratic Jordan triple systems.
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We work throughout with Jordan triple systems T =
(X,P) in the sense of Meyberg [4] over an arbitrary ring of
scalars ¥: we have a product P(x)y quadratic in x and

linear in y, such that the identities

(JT1) L(P(x)y,y) = L(x,P(y)x)
(JT2) P(x)L(y,x) = L(x,y)P(x) = P(P(x)y,x)
(JT3) P(P(x)y) = P(X)P(y)P(x)

hold strictly (in all scalar extensions TQ = T o Q), where
Lix,y)z = {x vy 2z} = P(x,z)y Iin terms of the polarization
P(x,z) = P(x+z)-P(x)~-P(z). By [9), Lemma 1.3, an identity
holds strictly as soon as 1t holds on the polynomial
extension T(t] (R = ¥[t]). Jordan pairs V = (v, .v_),
(Q+,Q_)) in the sense of Loos [2] may be viewed as

polarized triples X = v+ ® V_ where P(Vt)vb - (vcvzv_ }

€
= 0, A Jordan algebra J = (X,U,sq) is a Jordan triple
{X,U) with a suitable squaring operation. Jordan triples
and pairs are intimately connected with Lie algebras and

symmetric spaces and domains.
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¥1. A bounded-index characterization

We begin with some general facts about powers of an
element in homotopes. A geometric series expansion leads to
a surprising expression for the homotope-power in a Jordan
algebra In terms of linearizations of ordinary powefs. We
use this to express homotope-powers of P(x)z iIn a triple
system in terms of higher homotope-powers of x. A formula
for the P-operator of a homotope-power leads quickly to a
characterization of nondegeneracy as absence of elements of
bounded index, just as in associative algebras.

A Jordan triple T gives rise to a family of Jordan
algebras T(Y), where the y-homotope 'T(Y) = (X,U(Y),sq(Y))

determined by an element y of T is given by
(1.1) vz = eop(yrz,  sa'M(x) = Bix)y.

(JT3) shows that homotopy is transitive,
(1.2) (rt®¥), (¥) o p(PUX)y)

ntl P(x)nx, but the

A triple has only odd powers x
Jordan algebra T(Y’ has powers of all orders, so T has

homotope-powers of all orders:
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(1.3) 1Y) oy, LS 2 P(x)v("'x)
(so x2'Y) = p(x)y = sa'¥) ().
Since P(x): T(P(x)Y) - T(Y) is easily verifled to be a

homomorphism of Jordan algebras by (JT3), 1t preserves
powers:

(1.4) p(x) (z ™ EIY) ) o (p(x)z) (V)

1.5 HOMOTOPE-POWER THEOREM. If J is a Jordan algebra, then
for any elements x,y in J the nth homotope-power of x can

be expressed In terms of ordinary powers of degree ) m,

(1.6) x(m'Y) = the coefflicient of g™ 1¢m

2

2m-1 Kk
tn % kem "
for w = By + tx -~ tzx + ...t ™™ In the

polynomial extension J[(e,t].

If T is a Jordan triple system, then for any elements X,y,z
in T the mth homotope-power of P(z)x can be expreased In

terms of homotope-powers of degree ) m+l,

(1.7)  (P(z)x) ™Y

= the coefficlent of 8™ 3™ in T 2m (3% for

J=m+1 z
W= gy + tx - tzx‘z'z) + ... tmx(m,z) in T(s,t},

(2m,x)

and the P-operator of z can be expressed (n terms of

higher homotope-powers




— 149 —

(1.8)  pz™F))y 5 I Glx) o p(2mok,x)

(2m, x+ty)

= the coefficlient of t In 2 €T[t].

PROOF. (1.6) follows as in [6], Lemma 7, p. 2547 from
a geometric series argument. (1.7) is an immediate

consequence of (1.6): J = T(z) is a Jordan algebra by (1.1)

with J(Y) = {T(z))(Y) = T(P(z)y) by (1.2), so we can apply

(1.6) to see x(m,P(z)y) 2 x(m'J'Y) = the coefficient of

gM-1em o 5 §$;1 Wk J) (1,7) _ (2,(2,7)

tmx(m,J)

for w = 8y + tx +

(1,2) _ ,2,(2,2)

R (powers in J) = sy + tx

. % tmx(m,z) (powers in T(z)), thus (P(z)x)(m'Y) =

p(z) (x™ P2y (py (1.4)) = P(z)(the coefficlent of

v 2m-1  (k,J)
< k=m " )

= the coefficient of ™ *t™ in
2m-~1 2m-1 (k"‘I W)
z k=m k=m z
_ 2m (3,w)
(by (1.3)) the coefficient in 2 Jum+1 Z .
(2m,w)

g™ 1™ in

P(z)w(k’z) = the coefficient in 2

==

For (1.8), the t-coefficlent of =

(2m-1,2)

Pl(z)w = P(z)U(x+ty)m“1(x+ty) {in the Jordan algebra

7= 1%y 4g przyux)™y 4 2?;3

where P(z)U(x)™ 7 = p(z)u(x™ 1) = p(z)p(x"™ 12 )p(z) (by

000)™ 2 0, y) 0 ) Tx)

(m.X))

(1.1)) = P(=z {(by (JT3), (1.3)), and

23+1

P(z)u(0)™ 2y, o dx = p2)u™ 2 ok, y)x
P(z)U(x™ 27y (x2*26y) = B(z)u(x™ T 5™ 2 )y -
Pz)p(x(™MIr2) o (m=2-3:2)yp(z)y (by (1.1)) =
p(z{™HI+IX) S (m-1-3X) )0 (py (s73),(1.9)) =
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This establishes a close relation between nondegeneracy
and b.1. elements. A triple is nondegenerate if it has no
nonzero trivial elements z (P(2) = 0). The nondegenerate
radical N(T) is the smallest ideal whose factor T/N(T) is
nondegenerate. An element z of T is {properly nilpotent of)
bounded index (b.i.) if there is a fixed n such that all

homotope-powers of order n in any scalar extension vanish,
(1.9) z b.i. iff z'™X) 2 0 for all x e T[t]. |

This forces z to vanish in all scalar extensions (cf. [9],

z (k%)

Lemma 1.3). If 1/2 « &, (1.9) implies # 0 for all

k > n, but in general this holds only for k 2 2n. The least

z(k,x)

integer n such that 2 0 for all k » n is called the

bounded index of =z.

Zelmanov is teaching Jordan algebraists the importance
of a thorough understanding of the associative (and
alternative) theory. An associative algebra 1is semiprime
iff it has no elements z properly nilpotent of bounded
tndex n ((zx)™ = 0 for all x) (cf. [10] ¥1.6). The Jordan

z(n,X)

analogue of (zx)n is , and the analogous

semiprimeness characterization is

1.10 B.I, CHARACTERIZATION. A Jordan triple system |Is
nondegenerate iff it has no nonzero elements of bounded

index, All] elements of bounded Index lie in N(T).
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PROOF. The trivial elements are precisely those z with
bounded index 2, z'2'¥) = p(z)x = 0 (if P(z) vanishes on J
then by linearity it vaniéhes on all scalar extensions).
Thus if T has no b.i. elements it certainly has no trivial
elements. We complete the proof by showing conversely that
the existence of a b.i. element leads to the existence of a
trivial element. Suppose z # O has bounded index n = m+l,

S0 z(k'x) 5 0 for all k > m+l but z(m,x) # 0, hence

z(m,x) # 0 for some particular x € T[t]. By (1.8) z(m.x)
is trivial in T[t] (since z(zm.x) = 2(k,x) = 0 for
Kk > m+l); 1f we write z(m,x) = Z, + tz1 + ... * trzr for

z, € T, z,* 0, then z(m,x) trivial in T(t] implies the

top-degree term z is trivial in T, so we have a nonzero
trivial element.

A b.i. element z remains b.i. in the nondegenerate
triple T/N(T), hence by the foregoing is zero there, 80

z € N(T). a

1.11 REMARK. As examples of (1.6), x(z'Y) = U(x)y 1s

the coefficient (U(x)y + xzoy) + (»xzoy) of st2 in

(sy+tx-t2x2)3 + (sy+tx-t?x%)? , ana 3 o uxyuly)x

is the coefficient (U(x)U(y)x + xon(y)x + xoU(y)x2 +

U(y)x3 + Y20x3 + (x.vz.xz}) + (“2U(Y)x3 - xoU(y)x2 -

3 2.3
xon(y)x - 2x30y2 - (xz,yz,x}) + (U(y)x3 + yzox ) of st

4
in (sy+tx-—t2x2+t3x3)5 + (ay+tx~t2x2+t3x3) +

(sy+tx~t2x2+t3x3)3 .
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We can explicitly describe the coefficients in {1.6)
in general, using the linearizatlons of the kth—power maps
k
p(k)(x) = X .

If the linearizations are defined as the coefficlents

(1.12) p ) (e x4t x)
e e
= by tll..trrpék) o (%q0ei%.)
e.+..+e_=k 1'"'"r
1 r
for independent indeterminates tj in J[tl,..,tr], then
wk = p(k)(sy+tx—t2x2+..ttmxm)
e e e e
m
=T e Oty L=t Pet™ MR yaxx® ™)
eo+..+em=k 0" """ '"m

has sm—ltm—coefficient composed of those terms for which

eo = m—1 and e1+2e2+...+mem = m, hence the sign (—1)d for

m
d =% (i+1)ei = m+k—-(m-1) = k+1. Thus

j=1
(1.13) x'™Y)
= Zﬁf;l 2 ("1)k+lpék) e (Y.x.xz,.,xm).
e1+..+e =k~(m-1) 0'"'"m

e1+2e2+..+mem=m
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2. An m-sequence characterization

Just as in assoclative algebras, an m-sequence
KoXqreoe in a Jordan triple system T is defined as a
sequence of elements such that X1 = P(xn)yn lies in
P(xn)T; such a seqguence begins with Ry and vanishes 1if
some xnao (whence all succeeding xn+k=0 too). An element X
is m-finite if all m-sequences beginning with x vanish, and
m-bounded if there exists a bound n such that all
m-sequences beginning with x vanish after n terms (xn=0).
An element is m-infinite if it is not m-finite, i.e. 1if
there is a non-vanishing m-sequence beginning with x.

The key indicator which goes down at each successive

step in an m-sequence is the bounded index.

2.1 B.I. REDUCTION PROPOSITION ([7] Lemma 2 p. 191, (6]
Lemma 9 p. 2550) If an element z of a Jordan triple system
has bounded index n, then any P(z)x has bounded index

¢ n-1.

PROOF. This follows easily from the homotope-power
formula (1.7): (P(z)x)(m'y) ¢ 0 for m» n-1 since all
terms of Z§zm+1 z(d'w) vanish for w in the scalar
extension T[s,t] by j 2 m+l 2 n and the definition of z

having bounded index n. o
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2.2 B.I. BOUNDEDNESS PROPOSITION ([7] Corollary 1 p. 191)
If z has bounded index n, then z is m-bounded with bound

n-1.

PROOF. By the B.I. Reduction Proposition 2.1, in any
m-sequence (zk) beginning with zo = z of index n, each zk
has index { n-k (the index goes down one at each step), so
' - (1Y) a
Z,-1 has bounded index ¢ 1, i.e. zZ 4 Z01 0.

Note that z has bound 1 (all z, € P(zo)T vanish) i1ff it is
trivial. More generally, any sum of n trivial elements has

bound n.

2.3 Z-BOUNDEDNESS PROPOSITION., If z = zl+...+zn 1s the sum
of n trivial elements 21' then z has bounded iIndex n+l and

hence is m-bounded with bound n,.

PROOF. To prove
z(m'Y) = 0 for m ) n+l

and all v in all extensions TQ, it suffices to prove this
for yeT since the zy remain trivial in any TQ. Since the z,
also remain trivial in J = T(Y) (U(Y)(zi) = P(zi)P(y) = 0
and ziz'Y) = P(zi)y = 0), it suffices to prove z" = 0 in
the Jordan algebra J:
ym

(z +...+zn trivial in J.

1 i
But this follows as in [6] Lemma 8 p. 2549. a

= 0 form ) n+l, 2
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The nondegenerate radical may be recursively

constructed as N(T) = NA (T) for suitably large ordinal AO'
0

where the NA(T) are constructed by
(1) NO(T) =
(2.4) (11) NA(T) has NA(T)/NA—l(T) = Z(T/NA—1(T))
(successor ordinal A)

(ii1) NA(T) = U”<A NF(T) (1imit ordinal A)
where

(2.5) Z(T) = {all finite sums z = zl+ . +zn

of trivial elements zi).

If T is a Jordan algebra, the NA(T) are algebra ideals, and
we get the same nondegenerate radical N(T) whether we

regard T as an algebra or as a triple.

Just as the prime or Baer radical in the associative
case consists precisely of the m-finite elements, we have
the following m-sequence characterization of the

nondegenerate radical 1n the Jordan case,

2.6 m~CHARACTERIZATION THEOREM ([(7] Thm 1 p.190, [6] Thm 2
p. 2553). The nondegenerate radical N(T) of a Jordan
triple system T consists precisely of all m~finite
elements, the elements which cannot be imbedded In a

non-vanishing m-sequence M = (xn}:

N(T) = T \UM.
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PROOF. Straight from the definition of N(T) we have

(2.7) if x ¢ N(T) then x is m-infinite: there
exists an m-sequence (xk} beginning with x
and staying outside N(T) (in particular,

never vanishing).

Indeed, we can construct this by induction once we note
that 1f xn G'N(T) then by nondegeneracy of T/N(T) we have
P(xn)T é N{(T), and we can find X = P(xn)yn ¢ N(T). Thus
if x ¢ N(T) then x is not m-finite.

Conversely, 1f x € N(T) we claim that x is m-finite.
Consider any m-sequence (xk} beginning with x, and let A be
the least ordinal such that NA(T) hits (xk), say xr € NA(T)

(note x

o = X € N(T) = NAO(T) for some AO' 80 A ¢ Ao). This

A is not a limit ordinal, else xr € UH<A NP(T) by (2.4111)
would imply xr lies in some NP(T)' contrary to minimality
of A. Moreover, this A 1is not a successor ordinal either,

else by (2.4i1) x e Ny (T)/Ny _,(T) = Z(T/N, . (T)) = Z(T),

But (cf. [7] Corollary 2 p. 191)

no infinite m-sequence hits Z, since once an
(2.8) m-sequence hits Z it must vanish:

X, € Z(T) =» some Xx = Q,

r+n
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because the r-tail xi = X of an m-sequence is again an

r+k

m-sequence, beginning with x| = xr. so by (2.3) x! = x_ €

0 0 r

' m pod T v, I=—
Z(T) =» some x5 0 = Xoen = 0. Then X, € 2(T) = Xrin 0

(applying (2.8) to T) = x « N, ,(T), again contrary to

r+n
minimality of A. Thus A can only be 0, soO € NO(T) = 0 by

(2.41), and the m-sequence vanishes. o

An important consequence of this elemental character-
ization of the nondegenerate radical is that subsystems
inherit degeneracy and tight covers inherit nondegeneracy.
A tight cover of T is a triple system T' D T such that all

ideals of T' hit T (0 # I' T' =2 0# I'N T).

2.9 COROLLARY ([7] Theorem 2 p. 190) (1) For any subsysten
TO C T we have
N('ro) o] Toﬂ N(T);
(ii) Any subsystem inherits N-radicality,
N(T) =T = N(To) = To;
(iii) Any tight cover T' D T inherits nondegeneracy,

N(T) = 0 =» N(T') = O. o

Recall that an ideal Q 4 T is prime or nondegenerate

in T if the quotient T/Q is prime or nondegenerate as
triple system (if K,L d T have P(L)K C Q then either K C Q

or L C Q, respectively if P(z)T C Q then z € Q).
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2.10 INTERSECTION THEOREM ({7] Theorem 3 p. 190) The
nondegenerate radical of a Jordan triple system T i3
expressible as

N(T) = N {(Q|Q 4 T is prime and nondegenerate} = [l I,
where for each non-vanlshing m-sequence (xk) we choose an
ideal I, maximal with respect to avoiding (x,} (Ixﬂ(xk} =

$); the ideals I, are all prime and nondegenerate in T.

PROOF (cf. [6] pp. 2555,25652). Clearly N(T) C n¢{aj Q
is nondegenerate) since N(T) 1is the smallest nondegenerate
ideal.

To see 1 QqC N Ix , 1t suffices to prove each Ix is
nondegenerate. (Note such lideals Ix exist for each (xk):

I = 0 avoids (xk) by definition of non-vanishing, and we
can apply Zorn's Lemma). But {ik) remains non-vanishing in
T = T/I, (%, ¢ I, since I, avoids (x,.)), so by (2.8) Z(T)
= 2/I misses (ik), yet by maximality of I if Z > I then
Z would hit (x, )} and Z(T) would hit (%), therefore Z = I
and Z(T) = 0, T is nondegenerate, and Ix is nondegenerate
in T.

Further, these Ix are always prime since 1if K,L > Ix
then K,L hit {xk} by maximality of Ix' 80 X, 4 K, xj € L,

x € KNL for m = max{1,J}, and =x = P(x

m+2 m+1! Ym+1 =

»
P(xm)P(ym)P(xm)ym+1 C P(K)L. shows P(K)L ¢ Ix since no X2

falls in I_.
x
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Finally, N I C N(T) since if x ¢ N(T) then x ¢ I
for any maximal Ix avoiding the infinite m-sequence (xk)

beginning with x constructed in (2.7). o

2.11 THEOREM ([6] Corollary 4 p. 2555) A Jordan triple
system is nondegenerate Iff it Is a subdirect product of

prime nondegenerate Jordan triples. a

1f we define strongly prime to mean prime plus non-
degenerate, and strongly semiprime to mean semiprime and
nondegenerate (in other words, nondegenerate!), then we can
rephrase 2.11 by saying that a triple lis strongly semiprime

iff it is a subdirect product of strongly prime triples.

%3. Proper nilness

We can also derive the B.I. Reduction Proposition 2.1
as in [7] and [6] from results about algebras strictly nil

of bounded index, results which have independent interest.

A Jordan algebra is strictly nil of bounded index n if

x™ = 0 for all m » n and all x in all scalar extensions,
and an algebra or triple system is strictly properly nil of
bounded index n if this holds for all homotopes, x(m,y) = 0
for all m > n and all x,y in all scalar extensions (i.e.,
all elements uniformly have b.i. ¢ n). The Homotope-Power
Formula (1.6) and the B.I. Characterization (1.10)

immediately yield
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3.1 BOUNDED INDEX THEOREM ([7] Lemma 1 p. 190) A4 Jordan

algebra which is strictly nil of bounded index n is also
strictly properly nil of bounded index n, and hence Is

degenerate: J = N(J). o

We can use this to prove (2.1) as in [7] and [6] p. 2551:

(m,x)

if for a fixed z we have z = 0 for all m > n and all

%, then by (1.3) x™1'2) 1jes in the ideal

K= (keT| P(z)k = P(z)P(k)z = 0) 4 J = 1'%

of the Jordan algebra T(z) [K is not in general an ideal in

(z)

T; the fact that K 4 T uses (0.1)(JT2) as well as

"(m"'ln‘—j:)

(JT3)1, so x 2 0 in the Jordan algebra J = (%) %

—(m"l':j:;')

2 0 in the homotope

(m'lip(z)Y) e K and

T(P(Z)Y)/K by (3.1) and (1.2), hence x
therefore 0 = P(z)x ™ 1 P(ZIY) o (piz)y) (M 1Y) py the

definition of XK and (1.4). D

3.2 REMARK. A less computational proof of (3.1) can be
given when 1/2 € ® (cf. [7] pp. 190-191). We start with
x(m’l) # 0, and want to obtain x(m'Y) E 0. It suffices to

establish a "homotopy" between these, a l-parameter family

(mrl"'tY) m

with =x = 0 (the coefficient of t then gives the
desired result). Now BECAUSE 1/2 € ¥ we can extract
J1+ty =y = 1+ty1+t2y2+... recursively as a formal power

series in J = J[[t]] (J the unital hull of J). Since v is
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(m,1+ty) _

invertible, we will have LMIFYY) oo 3f U(v)x

S ~ 2 -~

0. Here U(v) 1s an isomorphism J(1+tY) = J(V ) - J, 80
2

U(v)x(m'1+ty) = U(v)x(m'v ) = (U(v)x)m, and 1t suffices

2

vanishes. Now J" = J{[t]] is not gquite a scalar extension

if the mth power of U(v)x = x+tx1+t2x +... in J[[t]]

of J (it is strictly bigger than J 8g B[[t]] unless every
countably spanned subspace of J is finitely spanned over
%), nevertheless J" inherits strict nilness x® = 0 from J
since the true scalar extension J' = J[t] is "dense" in

e in J" has x"" = X tkzk where the
coefficient Zy € J of tk ig the same as that of x'ﬂ for x'k
k

= xo+tx1+...+t xk

therefore z, = 0 for each k and x"® = 0, o

J": any x" = x0+tx

in J', where x’i = 0 by strictness,

Hogben ([3], Thm 2 p. 190) gave a homotope-

characterization
(3.3) Nty = (z € 7 | NerEy = 1l
valid for fairly general radicals N of Jordan algebras. We

can give a quick proof of this for the nondegenerate

radical in Jordan triple systems via the useful

3.4 STRUCTURAL TRANSFER LEMMA ([8] Lemma 15) If a linear
map f: T1 -+ T2 is locally structural, in the sense that
there is a set-theoretic map £*: T2 - Tl such that
*
f(Pl(xl)f (xz)) = Pz(f(xl))x2 for all Xy € Ti'

then
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f(Nh(Tl)) c NA(TZ)
for all ordinals A, so in particular f maps radicals to

radicals:

f(N(Tl)) c N(Tz)-

PROOF. We of course prove this by induction on A, the
case » = 0 or A a limit ordinal being trivial in view of
(0.5)(i) and (iil). For a successor ordinal ), NA(Tl) is
spanned by elements z with Pl(z)T1 C NA—l(Tl) by
(0.5)(ii) and {(0.6), hence by local structurality

Pz(f(z))T2 = f(Pl(z)f*(Tz)) C f(Pl(z)Tl) C f(NAwl(T1))
C NA—l(Tz) by the induction hypothesis, hence f(z) €
NA(TZ) by (0.5)(411), so by LINEARITY OF f we have

f(NA(T1)’ C NA(T2). This completes the induction. 0

Note that a structural f need not be onto, but the image
f(Tl) is at least an inner ideal in T2.

To deduce (3.3) from (3.4), first note that taking
r,o=1, 1, =Y, £ =14, £+ = P(y) yilelds N (T) C
NA(T(Y)) for all y and A, hence z € N(T) = U(z)(x)T(z)
c mm ¢ NT®) 5 a1l x 1te 1n NT'F)) o N(rl®)) =
(%) conversely, i1f N(T'%)) = 7(%) then taking T, = 1'%,
T2 =T, f=P(z), £* = 1d yields P(z)T € N(T), hence
z € N(T).
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