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PRIME IDEALS IN NONASSOCIATIVE RINGS 
BY 


BAILEY BROWN AND NEAL H. McCOY 

1. Introduction. Throughout this paper we shall find i t  convenient to  
use the word ring in the sense of not-necessarily-associative ring. A ring in 
the usual sense, that  is, a ring in which multiplication is assumed to  be 
as-sociative, may be referred to  as an associative ring. 

An ideal P in the arbitrary ring R is said to  be a prime ideal if A B C P ,  
where A and B are ideals in R,  implies that  A E P  or B E P .  In this definition 
it does not matter whether AB is defined to  be the set of all finite sums 
x a i b i  ( a i E A ,  b iEB) ,  or the least ideal of R which contains all products 
aibi, or merely the set of all these products. Behrens [4] has used the second 
of these definitions and Amitsur [I]  the third. Throughout the present paper, 
if A and B are ideals or, more generally, any sets of elements of a ring R,  by 
AB we shall mean the set of all elements of R of the form ab, where a E A  and 
b E B .  

The  purpose of this paper is to introduce and study certain classes of 
prime ideals in an arbitrary ring. Before summarizing our results, it will be 
necessary to  introduce an appropriate notation. 

Let xl =x ,  xz, . . be a denumerable set of indeterminates which we may 
use to  form nonassociative products in a formal way. Henceforth we let 3 
denote the set of all these indeterminates together with all finite formal 
products of these indeterminates in any association. If ~ € 3and u does not 
contain x,+~, xs+z, . . , we may write u(xl, xz, . . , x,). If u(x1, xz, . , x,) 
€3, then u(x, x, . . ,x) is a well-defined element of 3which we may denote 
by u*(x) . For example, if u(xl, xz, x3) = ((x2x1)x3)x1,then u*(x) = ((xx)x)x. We 
henceforth denote by 8 the set of all elements of 3 which do not contain 
xz, xa, . . . ; that  is, an element of 8 is either x or some product of x with 
itself. I t  follows that  if u(x1, x2, . . . , x , ) € % ,  the mapping u(x1, xz, . . , ~ n )  
-+u(x, X,  . . . , x) =u*(x) is a mapping of 3 onto 8. 

Now let u(x1, xz, . . . , x,) be a fixed element of %. An ideal P in R may 
be said to be u-prime if u(A1, Az, . . , A,)GP implies that  some A i E P ,  
where the Ai are ideals in R. In the special case in which u =xlxz, a u-prime 
ideal is just a prime ideal and a u*-prime ideal is a semi-prime ideal. In 
any ring and for any ~ € 3  indetermi-which contains a t  least two diferent 
nates, a u-prime ideal is necessarily prime, and a u*-prime ideal is semi-prime. 
However, the converses need not be true, as examples given in the next sec- 
tion will show. In an associative ring the concepts of prime and u-prime coin- 
cide for any such u,  as do also the concepts of semi-prime and u*-prime. 

In analogy with the m-systems introduced in [ 7 ] ,  we shall call a subset 
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Ad of R a u-system if whenever Ai ( i =  1, 2 ,  . . . , n) are ideals of R ,  each of 
which meets M ,  then u(A1, Az, . . . , A,) meets M. If A is an ideal in R,  the 
u-radical A" of A is the set of all elements r of R with the property that every 
u-system which contains r meets A. We shall prove that Au  is the intersection 
of all u-prime ideals which contain A. This, of course, generalizes the cor- 
responding theorem for the associative case which was established in [7]. 
The special case for prime ideals (u =xlxz) in a general ring has also been 
proved by Amitsur [ I ]  and by Behrens [4]. 

In $3 we shall show that  always A u =  Au*. In case u=xlxz, this reduces 
to a result of Amitsur [I].  Of course, in an associative ring this specializes 
to the well-known theorem of Levitzki [6] and Nagata [8] which states 
that  the lower radical of Baer [2] coincides with the prime radical. Our 
method of proof is an adaptation of that  of Nagata. 

The u-radical of the zero ideal may naturally be called the u-radical of 
the ring R. This concept is discussed in $4 where it is indicated that  several of 
the expected properties of a radical hold for the u-radical. 

Corresponding to each element v of 23, there is an appropriate coilcept of 
v-nilpotence, and the sum of all v-nil ideals is a greatest v-nil ideal. These 
concepts will be presented in 5.5. 

The radical defined by Jacobson for an associative ring has been general- 
ized by Brown [s] to the nonassociative case. If J is this radical of the ring 
R, we show in $6that  J is v-prime for each vE% and, more precisely, that  a 
primitive ideal is itself u-prime for each u E % .  In the final section we briefly 
indicate the relation of the results of this paper to a radical studied by 
Smiley [9]. 

2. The u-prime ideals and the u-radical of a n  ideal. In this section we let 
u = u ( x ~ ,  x2, . . , x,) be a fixed but arbitrary element of %. We define the 
degree of u in the obvious way, and we shall assume that  the degree of u is 
greater than one, that  is, that u is not just one of the indeterminates x,. The 
integer rz may be any positive integer. If P is an ideal in R,  we shall use 
C(P) to denote the complement of P in R. If a E R ,  the ideal in R generated 
by a will be denoted by (a). 

DEFINITION1. An ideal P in R is said to be u-prime if i t  satisfies any one 
(and hence all three) of the following equivalent conditions: 

(i) If Ai ( i=  1, 2, . . . , n) are ideals in R such that  u(A1, Az, . . . , A,) 
GP, then some A i E P .  

(ii) If Ai  ( i = l ,  2, . . . , n) are ideals in R,  each of which meets C(P), 
then u(Al, AS, . . . , A,) meets C(P). 

(iii) If a i€C(P) (i=1, 2, . . . , n), then u((al), (az), . . . , (a,)) meets 
C(P). 

DEFINITION2. A subset M of R is a u-system if it has one (and hence both) 
of the following equivalent properties: 

(i) If A, ( i  = 1, 2, . . . , n) are ideals of R ,  each of which meets M,  then 
u(A1, Az, . . , A,) meets M. 
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(ii) If aiEll,l ( i=  1, 2, . . . , n),  then u((al), (az), . . , (a,)) meets M. 
Clearly an ideal is u-prime if and only if its complement is a u-system. 
DEFINITION3. If A is an ideal in R,  the u-radical A" of A is the set of all 

elements r of R such that  every u-system which contains r meets A. 
We may now prove the following theorem. 

THEOREM1. If A is a n  ideal i n  R,  A U  is the intersection of all u-prime ideals 
which contain A. 

Let us denote by X the intersection of all u-prime ideals which contain 
A,  and show that  A u = X .  

First, we verify that  A u C X .  If P is a u-prime ideal such that  A S P  
and bEAu ,  then C(P) is a u-system which does not meet A,  and hence 
b@C(P). Tha t  is, b E P ,  and hence A u E P .  I t  follows that  A u E X ,  as  we 
wished to show. 

Next we show tha t  X s A u .  Suppose that  c e A u .  Then there exists a u- 
system M which contains c and does not meet A. By Zorn's Lemma, there 
exists an ideal P maximal in the class of ideals which contain A and do not 
meet M. We prove as follows that  P is u-prime. Suppose that  Ai 
( i=  1, 2, . . . , n) are ideals, each of which meets C(P). The  maximal prop- 
erty of P implies that  each of the ideals P + A i  meets M. By Definition 2(i) 
it follows that  u(P+A1, P+A2, . . , P+A,) meets M. But clearly 

u ( P  + Al, P + Az, . . . 1 P + An) E P + ~ ( A I ,  . . . 9 An). 

SinceP does not meet M,  u(A1, Az, . . , A,) 9 P and hence u(A1, Az, . . . ,A,) 
meets C(P). By Definition l(ii), we see that  P is a u-prime ideal. Now since 
c e P ,  c@X, and it follows that  X C A U ,  completing the proof. 

REMARK.Let us write ul<uz if ul and uz are distinct elements of such 
that  ul is contained as  a factor in uz. That  is, uz is a product of ul and certain 
of the indeterminates x i  in some association. For example, ul<uz if ul 
= (x1xz)x3 and u ~ = x ~ ( ( ( x ~ x ~ ) x ~ ) x ~ ) .  If u1<u2, then an ideal which is uz-prime 
is also ul-prime; hence A u l C A U ~ .  Under what conditions this inclusion will 
be proper is an unsolved problem. The  examples which we now give will shed 
a little light on this, and also illustrate the concept of u-prime ideal. 

EXAMPLE 1. Let R be the algebra over an arbitrary field F, with basis 
elements zo, zl, 22,  z;, having the following multiplication table. 

o 21 2 2  23 

20 zo 21 2 2  23 
ppppp 

z1 21 0 0 2 2  
~~~~~ 

2 2  22 0 23 23 
ppppp 

23 23  2 2  0 0 
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Clearly zo is the unit element of R. If a i E R  ( i = l ,  2, . . , n), we denote by 
[al, a2, . . . , a,] the set of all linear combinations x a i a i ,  a & F ;  hence we 
may write R =  [zo, zl, z2,z3]. I t  is easy to verify that  the only proper ideals of 
R are M =  [zl, 22, z3] and N =  [22, 231. Now N 2 =  [z3], N N 2 =  [a ] ,  and N2N=0.  
If we set ul= (~1x2)~s  and us =xl(x2x3), by using the fact that  N is contained 
in every nonzero ideal of R ,  i t  follows that  the zero ideal is prime and 
also u2-prime, but is not ul-prime. 

EXAMPLE2.  Let R be the algebra over a field F, with basis elements 
zo, zl, . , zn (n>3) whose multiplication is defined as follows. The multi- 
plication is assumed to be commutative, 20 is the unit element of R,  

and all other products are zero. I t  is easy to verify that  the linear sets M 
= [ZI,22, - - , ~ n ]and N =  [z2, 23, . - - , zn] are ideals in R. We proceed to 
verify that  these are the only proper ideals. 

If r =aozo+alzl+ . . . +anzn is an element of R with ao#O,we show that  
the ideal (r) generated by r is R itself. We have (rz2)z1=aoz3 and, since R has 
zo as unit element, it follows that  z3E (r). Then from the multiplication table, 
we see in turn that  24, . , z,, zz are in (r). Since r E ( r ) ,  i t  follows that 
aozo+alzlE (r) and hence zl(aozo+a1zl) =acozlE (r) and z l E  (7). Finally, then, 
zoE (r) and (r) =R. 

Now let s = Plzl + . . . + Pnzn be an element of R with Pl#O. Then 
SZZ=PIZ~ . . . , zn, za are in (s), and finally zlE(s). and ZB€(S). In turn, 24 ,  

Hence (s) =M. 
We now let t =y2z2+ . . . +~nzn,  where some one of the yi#O, and show 

that (t) =N. If y,#O, tzn=ynz2 implies that  z2E(t), and i t  follows easily that  
(t) =N. Suppose then that y, =0,  y2#O. Then tz1=y2z3 and again (t) =N. If 
y2=yn=0  but yi#O for some i (2 < i<n) ,  the same conclusion is easily ob- 
tained. This shows that  M and N are the only proper ideals in R. 

If we define N(') =N, and generally Nck) =N(k-l)N, we find that  N(2) 
= [ZZ,2 4 ,  25, ' ' ' , ~ n ] ,  N(3)= [ZZ, 25, ' ' ' ,~ n ] ,' ' ' , N(,-l)= [zz], N(")=O. 

We now define elements of 2 as  follows. Let ul=xl, u2=ulx2, . . . , uk+l 
= u k ~ k + ~ ,  . . Since N is contained in every nonzero ideal of R ,  it follows -
that in R the zero ideal is ui-prime for i < n ,  but is not un-prime. 

3. Equivalence of u-radical and u*-radical. If u=u(xl,  x2, . . . , xn) is an 
element of 2, we shall use the notation given in the introduction and set 
u*=u*(x)=u(x,  X, . , X )  with %=XI .  Thus u * E % C 2 ,  and hence the 
general definitions and results of the preceding section can be applied with u 
replaced by u*. Moreover, the examples given above show that in the non- 
associative case, the concepts of prime and u-prime need not coincide, and 
neither do the concepts of semi-prime and u*-prime. 

We next establish the following theorem. 

THEOREM2 .  If A is an  ideal in R and u E % ,  then Au =Au': 
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I t  is obvious that  an ideal which is u-prime is also u*-prime, and hence 
that  AU'EAU. Inclusion the other way will follow easily from the following 
lemma. 

LEMMA.If a is an  element of a u*-system S, there exists a u-system M such 
that a €  M C S .  

Let M= {al, a2, . . 1, where a l = a  and the other elements of M are 
defined inductively as follows. Since a l E S ,  by Definition 2(ii), u((al), (al), 

. , (a,)) meets S. Let a2Eu((al), (a,), . , (a1))AS. Then let, in general, 
akEu((ak-1, (ah-I), . , ( U ~ - ~ ) ) A S .Thus M is defined, and i t  remains to 
show that  M is a u-system. Since, for each k,  akE(ak-I), i t  follows that  if 
ail, ai,, . . . , a i , E M  with il$i2S. . Si,, then a i , + ~ E ~ ( ( a i , ) ,  (a:,), . , 
(aim)) Eu((ac) ,  (ain), , (ain)). This establishes the lemma. 

Now to show that  AuCAu', let a E A u  and let S be a u*-system which 
contains a. By the lemma, there exists a u-system M such that  a E M S S .  
By the definition of AU, it follows that  M meets A and therefore S meets A. 
Hence we have aEAu*, and therefore AuEAu', completing the proof of the 
theorem. 

For the special case in which u=xlx2, this theorem states that  the prime 
radical of an  ideal coincides with its lower radical. This has been established 
by Amitsur [I] ;  and if R is an  associative ring, it is a well-known result of 
Levitzki [6] and Nagata [8]. 

I t  is clear that  u*-prime ideals are closed under arbitrary intersection and 
hence that  AU* is the smallest u*-prime ideal which contains A. We therefore 
have the following immediate corollary of Theorems 1 and 2. 

COROLLARY.IfA is an  ideal in  R, then A =Au' if and only if A is an  inter- 
section of u-prime ideals. 

4. The u-radical of a ring. We now make the following definition. 
DEFINITION4. The u-radical of the zero ideal in a ring R may be called 

the u-radical of the ring R. 
We shall find i t  convenient to denote the u-radical of R by Ru. 
DEFINITION5 . A ring R is said to be a u-prime ring if in R the zero ideal is 

u-prime. 
I t  is now clear that  if P is an  ideal in a ring R, then R I P  is a u-prime ring 

if and only if P is a u-prime ideal. 
Inasmuch as the proofs follow easily by the methods of [7], we state the 

following two theorems without proof. 

THEOREM3. A necessary and suficient condition that a ring R be isomorphic 
to a subdirect sum of u-prime rings is that Ru =0. 

THEOREM4. The ring R/Ru has zero u-radical. 

We next prove the following result. 
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THEOREM be the respective u-radicals of the rings R and S.5. Let RU and SU 
If R is contained in S in  such a way that each ideal in  R is also an  ideal i n  S, 
then RU = SuAR.  

We show first that  if P is a u-prime ideal in S, then P A R  is a u-prime 
ideal in R. Suppose that  u(Al, Az, . . , A,) S P A R ,  where the Ai  are ideals 
in R. Since P is a u-prime ideal in S a n d  the A i  are also ideals in S, it follows 
that  some A i c P n R .  This shows that  P n R  is a u-prime ideal in R. Theorem 
1 then implies tha t  R U E S u A R .  

To  prove inclusion the other way, let a E S u n R .  Then every u-system in 
S which contains a contains 0. Since a u-system in R is also a u-system in S, 
it follows that  every u-system in R which contains a contains 0; hence that  
n E R u .  This completes the proof. 

In  the associative case the conclusion of Theorem 5 is true without the 
requirement that  any ideal in R be an ideal in S. However, if associativity is 
not assumed, there is a t  least one case of some interest in which this require- 
ment is met. In any of the usual methods of imbedding a ring R in a ring S 
with unit element, the construction yields a ring S such that  the hypotheses 
of Theorem 5 are satisfied. We may therefore state the following corollary. 

COROLLARY.The ring R may be imbedded in a ring S with unit element in  
such a way that for every uE2l  we have R U = S u n R .  

If R is an arbitrary ring, we shall denote by R, the ring of all square 
matrices of order m with elements in R. We next prove the following result. 

LEMMA.The ring Swith unit element is  a u-prime ring if and only if Smis a 
u-prime ring. 

First we assume tha t  S is not u-prime. Suppose tha t  u((al), (a2), . . 
(a,)) = O  where each ai is a nonzero element of S. If eij is the element of Sm 
with 1 in the (i, j) position and zeros elsewhere, i t  follows, for example, that  
u((alell), (azell), . , (anell)) =O since each element of the left member is a 
matrix having in each position a sum of elements of u((al), (az), , (a,)). 
Now each aiell#O and we see t h t  S, is not u-prime. 

Conversely, suppose that S, is not u-prime and that  u(A1, A2, . , A,)  
= 0 where each Ai is a nonzero ideal of S,. Let Ti be a nonzero matrix in Ai, 
and suppose that  Ti  is the matrix having tci in the (p, q) position, with 
th:Qi#~. Then el , ,Tie, , l=t~q~ell~A;.Moreover, if a i  is any element of the 
ideal in S generated by t;ii, we have a;ellEAi. I t  follows that 

u(alel1, azell, . . , anell) = u(a1, a2, . , a,)el~= 0. 

Hence u(al, az, . , a,) = O .  This shows that  S is not u-prime since a; is an 
arbitrary element of the nonzero ideal in S generated by t!,!qi. The lemma is 
therefore established. 

The following theorem follows easily from this lemma by the method of 
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proof of the corresponding theorem in the associative case. In the proof, our 
Theorem 5 above is used in place of the stronger result available in tha t  
case [7, Theorem 41. 

THEOREM6. If R is any ring and u E 8 ,  then (R,)" = (Xu),. 

5. Nil ideals and v-nil ideals. There are available various coilcepts of 
nilpotence when multiplication is not associative. The  weakest of these is 
the following. 

DEFINITION6. An element a of the ring R is nilfiotent if there exists an 
element v(x) of 23 such that  v(a) =O. An ideal is a nil ideal if each of its ele- 
ments is nilpotent. 

This is equivalent to the definition used by Behrens [3], who proved tha t  
the sum of all nil ideals is a nil ideal and hence that  there exists a unique 
greatest nil ideal. This ideal we may denote by N(R). I t  is easy to  see that  
N(R) is v-prime for each 7~E23.For let A be an ideal in R such that  v(A) 
EN(R). If a €A, then in particular we have v(a) EN(R). Hence there exists 
WE%such tha t  w(v(a)) =O. This shows that  a is nilpotent, and i t  follows 
that  A C N(R), completing the proof. 

We now introduce a different concept of nilpotence which bears the same 
relation to  an arbitrary fixed element v(x) of 93 tha t  solvability does to  the 
element xx of 93. Let us introduce a sequence of elements of 23 as follows: 

We now make the following definition. 
DEFINITION7. An element a of R is said to be v-nilpotent if dm)(a)  = 0 for 

some nonnegative integer m. An ideal is a v-nil ideal if each of its elements is 
v-nilpotent. 

The next theorem will show how v-nilpotence is related to other concepts 
of this paper. 

THEOREM7. The sum of all v-nil ideals of the ring R is a greatest v-nil ideal 
lV,(R), and if u(xl, x2, . . , x,) is any element of 8 such that u*(x) =v(x), 
then RUC_N,(R) S N ( R ) .  Moreover, N,(R) is a v-firirne ideal. 

As a first step in the proof, we show that  for nonnegative integers r and s,  

If r = 0, 1, and s is arbitrary, this is true by definition. Assume (1) for arbitrary 
s and for the nonnegative integer r -1. Then, by use of this induction hypoth- 
esis and by definition, we have 

This establishes (1). 
T o  show the existence of N,(R), we shall limit ourselves to proving that  
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if (a) and (b) are v-nil ideals, then (a-b) is a v-nil ideal. Any element of 
(a-b) is of the form c+d, where c E  (a) and d E  (b). Since c E  (a), there exists 
a nonnegative integer s such that  V(~)(C) But then v(")(c+d) =v("(c) +e = O .  
=e, where e E  (d) 2 (b). Since (b) is a v-nil ideal, there exists a nonnegative 
integer r such that  vcr)(e) =0. Using ( I ) ,  we now have 

V('+~)(C = V( ' ) (V(~)(C = v(')(e) = 0,+ d) + d)) 

and c+d is v-nil. This proves the existence of the greatest v-nil ideal Nv(R). 
I t  is obvious that  Nv(R) 2N(R), so we now prove that  R u S  Nv(R). Since 

Ru=Rum=Rv by Theorem 2, we shall show tha t  RvCNv(R) .  We show first 
that  if a E R ,  the set M =  {vck)(a); k=O, 1, 2, . . . ) is a v-system. Let b 
=vck)(a) E M .  Then v(b) = E M  and v(b) Ev((b)). Since v((b)) meets V(~+')(U) 
M ,  Definition 2(ii) shows that M is a v-system. Suppose now that  a E R V .  
Then the v-system M contains a and therefore contains the element 0. I t  
follows that  a is v-nilpotent and hence that  Rv is a v-nil ideal. Thus R U E  Nv(R) 
and the proof is complete. 

There remains only to prove that  Nv(R) is v-prime. If A is an  ideal in R 
such that  v(A) CNv(R) and a E A ,  then v(a) ENv(R) .  Hence v(a) is v-nil- 
potent, that  is, for some nonnegative integer r ,  v(')(v(a)) = O .  But by (I) ,  this 
implies that  v('+l)(a) = 0  and hence that  a is v-nilpotent. This proves that  
A CNv(R), which shows that  Nv(R) is a v-prime ideal. 

6. The Jacobson radical. The definition of the Jacobson radical of an 
associative ring has been extended by Brown [5] to the nonassociative case. 
The present treatment is in terms of the right radical, which for nonassocia- 
tive rings need not coincide with the left radical. If a E R ,  we shall let Q(a) 
be the right ideal of R generated by the set of all elements at -t, with t E R .  
The element a is quasi-regular if aEQ(a) ,  and an ideal is quasi-regular if each 
of its elements is quasi-regular. The Jacobson radical of R is the greatest 
quasi-regular ideal of R. We denote this radical by J or by J (R) .  

We proceed to give an elementary proof of the following result. 

THEOREM8. For any ring R ,  J (R)  is v-prime for each ~ € 2 3 .  Moreover, 
N(R) GJ(R) . 

We begin by proving two lemmas. 

LEMMA1. For each v(x) €23 and each a E R ,  v(a) = a  -c for some cEQ(a).  

This is obvious if v(x) = x  and also follows easily for v(x) =x2 by use of the 
equation a 2  =a - [a(-a) - (-a) 1. We use induction on the degree of v(x) 
and let v(x) be an element of $3 of degree n >  2. We assume the truth of the 
lemma for all elements of $3 of degree less than n. Now i t  is always possible 
to express v(x) as a product of two elements of $3, say v(x) =vl(x)v2(x), where 
v1(x) and vz(x) have degrees less than n. By the induction hypothesis, we may 
write vl(a) = a  -d and vz(a) =a-e, with d, eEQ(a). Hence 
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v(a) = vl(a)vz(a) = (a - d)(a - e )  = a2  - ae - da + de. 

Since dEQ(a ) ,  we have daEQ(a)  and deEQ(a). Moreover, aeEQ(a)  since 
ae = (ae -e) +e. Also, as  pointed out above as a special case of the lemma, 
a 2  =a-f, fEQ(a ) .  Combining all of these, we see tha t  v(a) =a-c, cEQ(a) ,  
and the lemma is established. 

LEMMA2. If v(a) is quasi-regular, then a is  quasi-regular. 

By the preceding lemma, we have v(a) = a  -c where cEQ(a) .  Under the 
assumption that  v(a) is quasi-regular, we thus have a-cEQ(a-c).  A lemma 
of Brown [ S ] shows that  Q(a-c)GQ(a) +(c),, where (c), is the right ideal 
in R generated by c. Since cEQ(a), we have (c),cQ(a), so finally aEQ(a ) .  
This establishes the lemma. 

I t  is now easy to  show that  J is v-prime for each vE8. If A is an ideal in 
R such that  v(A) GJ and a EA,  then v(a) EJ and hence v(a) is quasi-regular. 
By Lemma 2, a is then quasi-regular. Hence A C J ,  which shows that  J is 
v-prime. The  first statement of the theorem is therefore proved. 

If b E N ( R )  and a E ( b ) ,  there exists vE23 such tha t  v(a) = O .  Lemma 2 
then shows that  a is quasi-regular. Hence (b) is a quasi-regular ideal and 
(b)EJ. I t  follows tha t  N(R) CJ, completing the proof. 

This theorem shows tha t  J= Ju* for each u E B  and, by the Corollary to  
'Theorem 2, i t  follows tha t  J is an intersection of u-prime ideals for each ~€71 .  
In what follows we shall sharpen this result, but  first we introduce the nec- 
essary terminology. 

Following Brown [S], we say tha t  a right ideal I in R is modular if there 
exists an element e of R such tha t  er -r EI for all r ER. A ring R is primitive 
if it contains a modular maximal right ideal M which contains no nonzero 
ideal of R.  We say tha t  an ideal A of R is primitive if the ring RIA is primi- 
tive. Brown [5, Theorem 11has shown tha t  J (R)  is an intersec.t-ion of primi- 
tive ideals, and we shall show below, as  a corollary t o  the next theorem, t ha t  
a primitive ideal is actually u-prime for each u E B .  

THEOREM9. Let M be a modular maximal right ideal i n  the ring R ,  and 
U(XI, x2, . - ,x,) an  arbitrary element of B. If A;  ( i=  1, 2, , n) are ideals 
i n  R such that u(Al, Az, . . , A,)GM, then some AiGM.  

The proof is by induction on the degree of u ,  and we begin by considering 
the special case in which u=xlx2. Suppose then tha t  All A2 are ideals such 
tha t  AlA2GM with A l q M .  ~ in 'ce  M is a maximal right ideal, we have 
R = M + A l .  Let e be an element of R such tha t  e r - r E M  for r E R .  Then 
we may write e = m + a ,  where m E M  and aEA1. If a zEAa ,  we have therefore 
eaz=maz+aaz. But m a z E M  since m E M ,  and a a z E M  in view of our assump- 
tion tha t  A1A2G M.  Hence eazE  M and the modularity of M implies that  
a2E M. Thus AZC_ M,  as required. 

We now return to the general case. There is no loss of generality in hence- 
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forth assuming tha t  in u(x1, XZ, . . , ~ n )each of xl, xz, . . , x,, appears 
exactly once. We therefore let u(xl, xz, . . . , x,) be such a product of degree 
n > 2  and, for convenience of notation, suppose that  XI appears on the left, 
no matter what the association. Let us define ur(x2, , x,) to  be the element 
of Z obtained from u(x1, xz, . . . , x,) by erasing xl and any superfluous 
parentheses. For example, if u = (xlxZ) (~3x4)~  then u' =xZ(x3x4).We now as- 
sume the desired result for all elements of !% of degree less than n. Suppose 
that  u(A1, A2, , A,) GM with A l g M .  As above, we have R =  M+Al  and + + 

e = m + a ,  m E M ,  aEA1. Let aiEA4 ( i=2 ,  . . , n). Then 

u(e, az, . , an) = u(m, az, . . , a,) + ~ ( a ,az, . . . , an) .  

But u(m, az, . , . , an)E;ZI since m appears on the left. Moreover, 
u(a, az, . , a,) EM in view of our assumption that  u(A1, Az, ,A,) Gdd. 
Hence u(e, az, . , a n ) E M .  But since e r - r E M  for r E R ,  this implies tha t  
u'(a2, , a n ) E M .  This shows tha t  ur(A2, . , A,)CM,  and since u' 
has degree n - 1,  our induction hypothesis shows that  some A i  G M 
( i=  2 ,  . . . , n), and the proof is completed. 

If R is a primitive ring, there exists in R a modular maximal right ideal 
Al which contains no nonzero ideal of R.  Hence, in this case, we can be sure 
that  u(A1, Az, . , A,)=O implies that  some Ai=O. This shows tha t  a 
primitive ring is u-prime for each u E Z .  Moreover, since an ideal B is a u- 
prime ideal if and only if RIB is a u-prime ring, we have the following result. 

COROLLARY.A primitive ideal is u-prime for eaclz u E Z .  

Of course, i t  follows a t  once from this result that  J is v-prime for each 
~ € 9 3 ,  and this is another proof of the first statement of Theorem 8. 

Added in  proof. San Soucie [ lo ]  has proved that  a primitive ring is a 
prime ring. In particular, the special case of the preceding corollary in which 
u =xlxz folloi~s immediately from this result. 

7. Relation to a radical of Smiley. Let us say that  an ideal I is modular if 
the ring R / I  has a unit element. I t  is then easy to  verify tha t  the proof of 
Theorem 9 carries through i f  M is a modular maximal ideal. Hence a modular 
maximal ideal is u-prime for every ~ € 8 .  Now Smiley [9] has studied a radical 
S(R) of a ring R ,  which coincides with the intersection of all modular maximal 
ideals. I t  follows tha t  S(R) is an intersection of u-prime ideals, and hence is 
v-prime for every ~ € 2 3 .  By the definition of S(R) given in [9], i t  is clear tha t  
J ( R ) Z S ( R ) .  Combining this with other results in this paper, we have, for 
each ring R and for each ~ € 2 1 ,  

Furthermore, Ru and NU8(R) are u*-prime; while N(R), J (R)  and S(R) are 
v-prime for every ~ € 2 3 .  
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