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A GENERAL THEORY OF RADICALS." 

I. Radicals in Complete Lattices. 

The various radicals which have been hitherto defined by various authors 
(Artin, Levitzki, Jacobson, Brown-McCoy, etc.) constitute an ii~lportant tool 
in the study of the structure of rings. The theory of radicals was recently 
extended to non associative and non distributive rings as well as to more 
general structures. The similarities which exist between some of these radicals 
(in the underlying definitions and reasoning) have been already observed by 
B. Brown and N. H. McCoy, and they developed in [4] a theory for radicals 
in groups which, in particular cases, yields-some of the known radicals in 
the theory of rings, but bears no relations to others. The purpose of the 
present paper is to give an axiomatic study of radicals. I n  order to achieve 
the greatest possible generality it was found suitable to develop the theory 
of radicals for complete 1attices.l The axiomatic approach and the general 
results obtained here will be applied in a subsequent paper where also the 
the results of [4] will be incorporated in our general theory. 

One readily observes that each of the radicals which have been hitherto 
defined in rings is connected with some ring-property which is invariant ~ulder 
ring-hornomorphi~m.~ Thus the Jacobson-Perlis radical ( [ 3 ]) grows up out 
of the property of quasi-regularity. Generally, by a a-radical N of a ring S is 
meant a maximal ideal 3 of S possessing a given property a of this type, and 
such that the quotient #/AT is free of non zero ideals with the same property. 
It turns out that the theory of radicals is based on the following einlple con- 
sequence of the homomorphism-invariance of the property a :  If A, B, C, are 
any three ideals in a ring S such that the quotient ring A/B has the property 
a then ( A ,C)/(B,C) has the same p r ~ p e r t y . ~  This fact, and the method 

* Received March 9, 1950; revised September 15, 1951. 
I am indebted to  Prof. R. Baer for a remark which led to the present general 

treatment of the theory of radicals. 
Compare with [4], Theorem 2. 

3This follows immecliately since A/B is homomorphic with A / A  n ( B ,0) 
E ( A . B , C ) / ( B , C )E ( A , C ) / ( B , Q ) .  
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which has been applied by Baer for defining his Lower Radical in [I] are 
the starting points of the theory of radicals developed in this paper. 

I t  is found collvenient to formulate our conditions and results not in 
terms of properties but rather in terms of binary relations p between elements 
of a complete lattice. Thus in the case of ideals in a ring S and a ying- 
property a we write A p  B if A 2 B and the quotient ring A/B has the 
desired property a. I n  particular, a p-radical r of a lattice L is an element 
T E L such that r p 0 and x p r implies x =r. In  this notation the above men- 
tioned condition may be formulated as follows : if a p b then (a U c)p(b U c ) . 

I n  Section 1the definition of Baer's lower radical is extended to complete 
lattices with binary relations of the preceding type. The discussion of the 
existence of the radical is carried out in Section 2. I n  order to cover the 
problem of the connection between the radical of a ring and the radical of 
its ideals in the theory of radicals of associative rings the whole theory is 
extended in Section 4 to more general structures to be called complete pseudo- 
lattices. Some related questions and the dual development of the present 
theory is dealt with in Sections 5 and 6. The last section deals with an 
application to lattices in which multiplication is defined. We obtain an 
extension of Baer's lower radical of [I] to such lattices. The dual definition 
of this radical yields the maximal idempotent element of such lattices. The 
latter is an extension of the idempotent kernel of rings and semi-groups 
defined by J. Levitzki in [2]. 

1. The upper radical. 

Notations. Let ill be a complete lattice. We denote by IM and by OM 
the unit and the zero of M. ,When no confusions are expected, the subscript 
M will be omitted. Lattices and sublattices will always mean conlplete 
lattices and complete sublattices. By an M-interval [a, b] is meant the set 
{ x ; x e A l , a l x . S  b}. The notation Sup[x;. . .] and Inf[x;.  . .] will be 
used to denote the greatest lower bound and respectively the least upper 
bound of the elements x subjected to a condition which will replace the dots 
in the brackets. We refer to the relation 2 of &I as to an inclusion relation, 
and we say that a includes b if a 2 b. 

We consider a set of sublattices {L) of M such that if a, b e L, where 
L E {L), the L-interval [a, b] belongs also to the set {L). 

Definition 1. A binary relation p defined in M is called an H-relation 
in M if p satisfies: 
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The object of the present section is to determine the relation between 
the upper p-radical of L and the ?-elements of L. 

The following fact will be often used: if a? b in L, then a p b in every 
sublattice of L which contains both a and b. 

The following lemma is fundamental: 

L ~ n r l r a1.2 .  Let p, q be two elements of the L-interval [a, b] such that 
q p b and p p a ;  them q 2 p. 

Proof. It follows by (C) that (p U q)p q in  L. Since q p b and 

b 2 p U  q 2 q ,  p U q = q .  That is q 2 p .  

I n  particular if a = IL and b = OL, we have 

COROLLARY Each 7-element in  L includes every p-element of L. 1.1. 

,I simple coilsequence of the preceding corollary is : 

THEOREM1.1. Every sublattice L possesses at most one p-radical. 

Indeed, if r, and r2 are two p-radicals of L, then since r, 7 I and r2  p 0, 
r,  2 I*,. Similarly .I.,2 r,. Thus r, = r,. 

If L possesses a p-radical, in the light of the preceding theorem me refer 
to this radical as the p-radical of L and denote i t  by r (L ,  p). 

Since r (L ,  p) is a 7-element i t  follows by Corollary 1.1 that 

1.2. 
p-element of L. 

COROLLARY If r (L ,  p) exists in L, then r (L ,  p) is the nzazimal 

LEMMA1.3. Let Q = {q) be n set o j  p-elements in L, then 
t = Inf [ q ;  q  E Q] is also a p-element i n  L. 

Let p E L be such that p p t. Si~lce q 2 t, q E Q, i t  follows by Lemma 1.2 
that q 2 p. This holds for every q E Q ; hence t 2 p. This proves that t is 
a F-element. 

The set of all :-elements of L is non vacuous, since evidently I L  is a 
F-element in L. We obtain, therefore, by the preceding lemma, 

COROLLARY The meet of (111 7 elements of L is the minimal1.3. 
p-elenzent in  L. 

The following is the main theorem of the present sectioa. 

THEOREM1.2. The upper p-radical u(L,  p) is the minimal p-element 
of L. 
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Proof. Since by Lemma 1 . 1  u (L ,  p )  = u, = u,,,, it follows by defi- 
nition of u,,, that u(L,  p) is a ;-element in L. Hence, if m = Inf [q ;  q is a 
lo-element in  L], m 5 u(L,  p). To prove that u(L,  p) Im, i t  is sufficient 
to show in the light of Lemma 1.1 that m 2 u,(L, p) for every ordinal v. 

By the preceding corollary m is a p-element in L, hence by Corollary 1. 1 
m 2 p for every p-element p in L. This yields m 2 u,(L, p). Let 
m 2 u,(L, p) for every ordinal v < A. For limit ordinal ,i i t  is evident that 
m 2 uh. If h is not a limit ordinal, since rn 2 uh-, it follows by Lemma 1. 2 
that m 2 p for every p which is a p-element over uh-,. This implies rn 2 uh, 
and the proof is completed. 

THEOREM1.3. A necessary and sufficient condition that r (L ,  p) exist 
is that u(L, p) is a p-element, and i n  this case r ( L ,  p) = u(L,  p). 

Proof. I n  view of the preceding theorem, u(L,  p) is a ?-element. Hence, 
if u(L,  p) is a p-element, u (L ,  p) is the p-radical of L. Conversely, let T(L, p) 
exist in L. Since r (L ,  p)? I i t  follows by Theorem 1 . 2  that T(L, p) 2 u(L,  p). 
On the other hand, since r (L, p) is a p-element, u (L, p) 2 u, (L, p) 2 r (L, p) . 
Thus r(L,  p) = u(L,  p), and the latter is therefore a p-element in L. 

Since r (L ,  p) = u, (L, p) we have 

COROLLARY If r (L ,  p) exists, i t  is the maximal p-element of L. 1. 4. 

A relation between the upper p-radicals of two lattices is given in the 
following theorem : 

THEOREM1.4.  If L 2L' suclb tllat 0 = O',j then u (L ,  P )  2 u(L', p ) .  

The proof is achieved .by showing inductively that u (L, p) 2 ux (L', p) . 
If p p 0 in L', the same relation holds in L ; hence u (L, p) 2 u, (L', p) . For 

a limit ordinal h i t  is evident that u (L, p) 2 uh (L', p) if u (L, p) 2 u, (L',p) 
holds for every v < h. Let ,i be not a limit ordinal. If p p uh-, (L', p), since 
p and uh-,(L', p) belong to L, this relation holds also in L. Hence, from 
u (L, p) 2 uh-, (L', p) it follows by Lemma 1.2 that u (L, p) 2 p. This yields 
that u (L, p) 2 ux (L', p) . q. e. d. 

THEOREM1.5 .  Denote by La the L-interval [a, I]. If u(L,  p ) 2  a, 

then u(L,  p) = u(L,, p). 

Since u(L,  p); I in L, the same holds in the interval L, since u(L,  p) 2 a. 

0 and 0' clennte r~s~ect ive1;y  the 7,eros of L and L'. 
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Hence, Theorem 1.2 yields u(L,  p) 2 u(L,, p). The same reasoning implies 
that u(L,, p)j; I in L, since this holds in La;  hence u(L,, p ) 2  u(L,  p) and 
the theorem is proved. 

relation between the upper radicals of two different relations p, and 
p ,  is discussed in 

THEOREM 1. 6. If either 1 )  a p, b implies a p2 b, o r  2) b 7,I in L implies 
b pl I in L, holds then u(L ,  pl) i u(L,  p2). 

M7e first show that (1) implies ( 2 ) .  Indeed, if x p, I holds and I is not 
a F1-element over x, then there is a p E L such that 11 > x and p pl x. Hence 
(1)  implies p p2 x which is a contradiction. Now assume that (2)  holds. 
Since u (I,, p2)&I i t  follows that u (L, p2)pl I; hence by Theorem 1.2 
u(L,  p1) 2 u (L, p 2 ) .  

Hence, 

COROLLARY If  and b pl I implies b p2I, then1.5 .  a pl b implies a p2 b, 

u(L,  p1) ="(L, p?). 

2. Th'ep-radical. This section deals with the existence of the p-radical 

r (L, p). For a E L, we denote by Q, the L-interval [0, a]. If u(Q,, p) < a, 
then [u (Q,, p), a] is a non zero p-semi simple L-interval. If [x, a] is a non- 
zero p-semi simple L-interval in L, then u(Q,, p) Ix < a. Hence 

LENMA 2.1. u(Q,, p) =a if and only if none of the non zero L-intervals 
[x, a], x < a, is psemi simple. 

Since L 2 Q, and both have the same zero, it follows by Theorem 1 .4  : 

LEMMA 2. 3. I f  a; b i n  L, and b p c L, then a F c in  L. 

Indeed, if c L p 2 . a  such that p p a ,  ( p U  b)pb. Since c 2 p U  b 2 b  
and c p  b, i t  follows that p U b = b, i. e., b 2 p 2 a. But then a j~ b implies 
p =a. This proves that a c in L. 

The main theorem of the present section is 

THEOREM The p-radical ezists in  every lattice L of M if and only 2. 1. 
if p satisfies 

(D) For  euevy a, b e  L such that a < b and such that b is not a 
p-element over a, there is an  element c E L ,  S I L C ~ ~  c j~ bthat in  L. 
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Proof. Let p be an H-relation which satisfies ( D ) .  If u(L,  p) were 
not a p-element, then there is u (L ,  p) > c 2 0 such that c F u ( L ,  p).  By 
Theorem 1.2 u(L,  p)p I in L. Hence the preceding lemma yields cp  I. 
Thus u(L,  p) > c contradicts Theorem 1.2. This proves that u(L,  p) is a 
p-element, and therefore we obtain by Theorem 1.3 that u(L,  p) =r (L ,  p )  
and the latter exists. 

Conversely, let p be an H-relation for which the p-radical exists in every 
lattice L (of the set { L ) ) .  Let b > a and b be not a p-element over a in L. 
The L-interval [a, b] belongs to the set {L),  hence its p-radical r exists. 
Evidently, r is the required element, i. e., b > r 2 a and ri;  b in L. 

Remark 2. 1. From the first part of the preceding proof it follows 
that if ( D )  holds i a  some lattice L only for the element a =0, then the 
p-radical r (L, p) of this lattice L exists. 

Definition 3. An H-relation which satisfies (D)  is called an R-relation. 

THEOREM2. 2 .  Let p be an R-relation. Let {a,) be a set of elements 
in L wlzich are p-elements over b, b E L ;  then Sup a, is also a p-element over b. 

Proof. Let r be the p-radical of the L-interval [b, a], where u = Sup a,. 
Since r 7 a, it follows by Lemma 1.2 that r 2 a,. Hence r 2 a. Thus r =a, 
and therefore a p b. 

One may replace ( D )  by the conditions of the followillg theorem. 

THEOREM2. 3. The relation p is an I?-relation if and only if p satisfies 
the following tzvo conditions : 

(Dl) I f  a p b and b p c then a p c (Transitivity). 

(D?)  I f  a, 5 a, I. . . is an uscer~ding well ordered sequerlce of p-

elements ovel- b, then Sup ui is also a pelement over b. 

Proof. Let p satisfy the conditions of the theorem. Applying (D,) to 
the p-elements of the lattice L (in the case b =Oh), one obtains readily by 

(D,) the existence of a maximal pelement 1 , .  This element 7- is also a 
p-element in L, for if x E L, x > r such that x p r then since r p  0, it follows 
by (Dl) that x p 0 which contradicts the maxinlality of r. This proves that 
T = ~ ( L , ~ ) .Hence by Theorem 2.  1 it follows that p satisfies ( D )  and, 
p is an R-relation. 

Now let p be an R-relation. Conditioil (D2)  is a simple consequence of 
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Theorem 2. 2. To prove the ~ ~ a l i d i t y  (Dl) ,  let r ( C )  be the p-radical of the of 
M-interval [c, a] =C, where a p b and b p c. Since b p c, r ( C ) 2  b, and we 
obtain, therefore, by Theorem 1.5 tha t  r ( C )  is also the p-radical of the 
M-interval [b, a]. Since a p b, r (C)  2 a. Thus r ( C )  =a, which proves that  
n p  c. This completes the proof of the theorem. 

The reasoning of the first part  of the preceding pjoof yield also the 
following corollaries. 

COROLLARY (not necessarily an  H-relation) 2. 1. I f  p is  any relation i n  
which satisfies (A),  (B) ,  (Dl) ,  and condition (D,) only i n  the special case 
b =O M ,  then ill possesses maximal p-elements, and eack maximal p-element 
is a p-radical i n  $1. 

I n  particular, i t  follows by the preceding proof tha t  if p is an  H-relation 
which satisfies (Dl) ,  then every sublattice L either possesses the p-radical or 
does not contain maximal p-elements. Hence 

COROLLARY2. 2. I f  p is  a n  H-relation which satisfies (Dl) ,  then every 
lattice L which satisfies the ascending chain condition for p-elements possesses 
a p-radical. 

Example. Let ilf be the lattice of the ideals of a n  associative r ing S. 
Consider the following relation between the iedals of S:  a p b if the quotient 
ring a/b is quasi regular in the sense of Jacobson ([3]). One readily proves 
tha t  p is an  H-relation which satisfies (Dl)  and (D,) .  Thus the theorems 
of the present section yield the existence of the Jacobson-Perlis radical. 

It is readily seen that  the 15-relation v defined in  the preceding section 
satisfies (Dl )  and need not satisfy (D,). 

Let L be a fixed sublattice of M. Suppose we distiilguish among the 
elements of L a class 2, which contains the unity I, of special elements of L. 
We prove t h a t :  

THEOREX2. 4. I f  for every p-element a i n  L which is not a p-element, 
there exists a special p-element q of 8 such that a > a n q then the p-radical 
of L exists and i t  is  the meet of all the special p-elements of 8. 

Proof. Let m = Inf [q; q E 8, q is a p-element i n  L]. Since I E 8, m is 
well defined. It follows by Lemma 1.3 that  m is a p-element i n  L. If  m is 
not a p-element, then m > m n q for some p-element q of 8. But  this con- 
tradicts the definition of m. Hence m is the p-radical of L ,  q. e, d. 



3. Complete pseudo-lattices. There are still some general aspects in 
the theory of radicals of rings whose generalization is not covered by the 
theory developed in the preceding sections. This section deals with one of 
these problems, the relation between the radical of a ring and the radicals 
of its ideals. To this end the notion of complete pseudo-lattices is introduced. 

Definition 4. ;1 set %! is called a complete pseudo lattice if a binary 
relation 2 (inclusion) is defined in '$2which satisfies 

1) 0 E 91 such that x 2 0 for every x E %. 

2) Every 9.R-interval [a, b] = {x; x E %, a 5 x 4 b) ) is a complete 
lattice with regard to the inclusion relation. 

Sote that the relation 2 defined in 9'2 must be reflexive and anti- 
syminetric but need not be transitive, as can be seen by the following example : 
Let 93 be the set of all subrings of a ring 8. For a, b ED,we write n 2 b 
if b is an ideal in the subring a of S. The interval [b, a] of % can be 
identified with the complete lattice of the ideals of the quotient ring a/b. 

By an H-relation p i n  91 we mean a relation p defined in % which is an 
I-l-relation in every %!-interval and satisfies the condition 

(C,) If a U b, n n b are defined in W, then nF(a U b) implies (a  n b) P b 
in 912. 

For complete lattices 912, condition (C,)  is a collsequence of ( C ) .  Illdeed 
if ( a  n b), b does not hold in 92, then p p (a  n b) for some b 2 p > cc. n b. 
Hence by ( C )  (p  U a, which implies p U n =a ,  i. e., a 2 p. This 
together ~vi thb 2 p contradicts p > cc. n b. This proof does not a~orl< in 
the general case, since p U a may not exist in %. 

TVe denote by r(n,  m)  the p-radical (if it exists) of the %-interval 

[n, m]. The aim of the present section is to prove 

THEOREM3.1. I f  r(n, m) exists, then r(q, m) ezists for every q E [m, n], 
and r(q, m) =q n r(n, 77%) if and only if p satisfies 

(El) I f  a p b then c p b for every c E [b, 

(E?) If  a p b the% a jj c for every c E [a, b]. 

Proof. Suppose p satisfies the requirements of this theorem. Let 
r =r (n, m) exist. Since r 2 q n r L n and r p n, (El) yields (q n r ) plz. 

Wote  that if o e [b, a ] ,  the m-interval [b, o] is not necessarily a subinterval of 
Ib,  a ] .  
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h-ow m 2 q U r 2 r and r i j  m ;  hence (E,) yields 7.p(q U r ) ,  which implies 

by (C,) that  (q r l  r )  p q. This proves that  q n r(n, 1 7 ~ )is the pradical r(q, n). 

The necessity of (El) and (E,) follomrs immediately since both conditions 
are the particular cases r(b,  a )  =a and r(a,  b) =a of the statement of the 
theorem. 

4. The mapping a 4 r ( a ) .  Let L be a sublattice of 31, and let p be 
an  R-relation in 111. For every a E L mTe denote by r ( a )  the p-radical of the 
L- in te r~a l  [a, I]. The correspondence cc.+ ? ( a )  is encountered in many 
problems in  the theory of rings, e. g. the correspondence between primary 
ideals and their prime ideals. A general property of this correspondence is 
treated in this section. 

TIIEORE~I and the condition 4. 1. Let p be a n  R-relation satisfying (El) 
(P)  (a  U b)p  b implies a p ( a  n b). Then the correspoizdence a +  r ( a )  is a n  
idenzpotent nzeet homomorphism of L onto itself. 

Proof. The mapping a * r (a)  is isotone. For let a 2 b. Since r ( a ) ~  I 
in  the L-interval [a, I], the same holds in  the L-interval [b, I]. Thus 
Theorenl 1.2 yields r ( a )  2 r ( b ) .  

XOW let a,, a, E L. P u t  r, =).(al)and r, =7.(a,). Since a, 2 a, n a,, 
r, 2 r(a ,  n C L ~ ) ,and therefore Y,n r, 2 r (a ,  n (I,).  Since r, L ( r ,  n r,)U a, 
2 a,, and since r, p a, i t  follows by (El)  that  ( ( r ,  n r,) U a,. The 
condition of the theorem implies (r ,  n r z ) P (( T ,  n r,) n (6,) =r, n a,. Simi-
larly, since r , 2 ( a l n r , ) U a , 2 ~ ~ ,  and r ,pa, ,  ( a , n ~ , ) U a , ) , a , ,  and 

hencc (a ,  n r , )p((a ,  n r,) n a,) = a, n a,. TVe obtain (r, n r,)p(al n a,) 
and (a, 17~ , ) ~ ( a ,n a,). Hence i t  follows by (Dl) that (r ,  n r ,)p(al  n a,). 
This yields r (a, n a,) 2 r, n r,. Hence r (a,) n r (a,) = r (a, n a,). Since 
?.(a), 1, me have r ( r ( a )  ) = r ( a ) ,  which proves the idempotency of this 
mapl>ing. 

5. Dual relations. On account of the duality of lattices, we develop in 
this section a theory of dual relations and dual radicals. 

Definition 5 .  A relation a defined in a lattice ill is called a dual 
H-).elation if u satisfies: 

(A') If a u b, a, b E M then a lb. 

(B')= (B) a a a for every a E Jl. 

(C') I f  a a b and c 5 b then ( a  n C)UC. 



Dually to the non decreasing chain of elements {uh) we define a 11011 

iilcreasiilg chain of radicals {lx) as follows : 1, (L, U) = Inf [q ;q a I in L]. 
lx(L,a) =Inf [l,; v < A] for limit ordiilal A, and lh(L, U) = Iilf [q;  q u lh-l 
in L]  for non limit ordinal A. The element lx(L, U) is called the A-th 
U-radical of L .  This ilon increasing chain of radicals terminates at  some 
1,(L, a ) ,  that  is, there is a minimal T such that I ,  =1, for every p. 2 T. 

The element l,(L, a )  =L ( L ,  U)  will be called the lower a-radical of L.  

One readily develops a theory for the lower radical dually to the theory 
of the upper radical developed in the preceding sections. I n  particular we 
refer to a dual H-relation as a dual R-relation if i t  satisfies 

(D') I f  a a  b does not hold, t l l ~ n  c o  b does not hold, t17e11 c o b  for 

sonbe c F L, a. i c < b. 

Let p he an  H-relation defined in 112. The relation j; defined in  M can be 
considered as a dual relation in Ji. We have 

THEOREM5. I. If  p is an  I$-relation i n  Jf, then j; is a dual 11-7~rlntion 
which satisfies (D',).' Furthermore, if the set L of the sublattices of rlL is 
the set of the Jl- inte~cals,  then p is a dual R-relation, and u(L,  p) = r ( L .  F )  
for every M-interval L.  

Proof. Evidently p satisfies (A') and (B'). We proceed in  proviilg (C'). 
Let u p  b and b 2 c. If c ;(a n c) is not true, then p p(n n c) for some 
c 2 p > c n a. Since p satisfies (C), (a U p) p a. But in view of b 2 p U n2 cc 
and a j; b, i t  follo\~~s that  p U a = a, i. e., a 2 p. This together with c 2p 
contradicts p > c n (1, and thus (C') is proved. Condition (D',) was proved 
in Lemma 2. 3. 

Before proceeding with the proof mr remark that  if {L)  is the totality 
of the Jf-intervals of 111, then a j; b in an JI-interval L is the same reqnire- 
ment as a p b in the whole lattice 31. 

We prove now that  the upper p-radical u(L,  p) of an X - i n t e r ~ a lL is 
the ;-radical of L. ILin L, a i d  By Theorem 1. 2 it follows that  u (L ,  p ) ~  
hence u (L ,  p)p ILin 1V. The interval [OL, u (L,  p)] is p-semi simple, for 
otherwise q p u (L, p) for sorne OL 5 q < u(L,  p) ,  q F L.  Hence Lemma 2 .  3 
implies q p IL. This contradicts the nlinimality of u ( L ,  p) proved in  Theorem 
1.2. This shows that  u ( L ,  p )  = r ( L ,  p), which, by the dual of Tlieorem 2. 1, 
proves that  p is a dual R-rclatlon. 

(D',) deilotes the  clual conditioil of (D,).  
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I n  the light of the precediilg theorem, Theorem 1.2 is the dual of 
Corollary 1.4. 

Some of the known relations are a t  the same time both H-relations and 
dual N-relations. The following theorem deals with a class of such relations. 

THEOREM If p is any relation defined in  1V which satisfies (A) ,5 .  2. 
(B),  (El)and the requirement that ( a  U b)p a implies b p(a  n b), then the 
relation p' defined by a p' b if b p a, is a dual H-relation. 

Evidently p' satisfies (A') and (B'). Let  a p' b and b 2 c. Since 
b 2 c U a 2 a and b p a, i t  follows by (E l )  that  (c U a )p  a and, therefore, 
c p ( a  n c ) .  This proves that  ( a  n c)p' c, hence the T-alidity of (C'). 

6. Multiplicative lattices. TTe conclude this paper with an example 
which generalizes two kilown radicals, the lower radical defined by Baer in  
[I], and the idempotent kernel of rings defined by Levitzki in [2]. 

By a multiplicative lattice J1 we mean a complete lattice in  which 
multiplication is defined satisfying 

1) For every a, b E M, ab E iV is uiliquely defined, 

2) ab C a n  b, 

3)  a ( b  U c) = a b  U ac;  (b U c )a  = ba U ca. 

If  a f b, a U b = b; hence by (3),  i t  follows that  ca U cb =cb, which 
implies that  ca 5 cb. I n  particular a2 5 ab 5 b2. 

Consider the two relations ( and its dual (' defined i11 JI as follows: 
a [ b aiid b ('a if a2  5 b 5 a. Evidently ( and (' satisfy (A),  (B)  aiid (A'),  
(B') respectively. Now let a [ b and c 2 b, then (a U c)" (a2 U ac U ca U c2) 
5 b U c = c 5 c U a. This proves that  ( is an H-relation. The relation [' 
satisfies (C'), for if b (' a aiid c 5 a then c2 5 a25 b. Hence, since c2 f c, 
c' Ib n c f c, i. e., (b n c)[' c. Thus (' is a dual H-property (One readily 
verifies that  (' satisfies also E l ) .  Hence the upper (-radical and the lower 
('-radical are defined i11 31. 

I n  case M is the multiplicative lattice of the ideals of an associative 
rlng 8, the upper (-radical is known as the Baer's lower radical of S ([I]).  
It is readily seen that  the theory of this radical is valid also in non-associative 
rings. Further properties of this radical will be discussed in Pa r t  I11 of this 
paper. 

The lower ('-radical can be approached from a different point of view, 
due to the fact that  the notion of r-elements coincides with the idea of the 
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idempotent elements of M. Indeed, if a2=a i t  is evident that a is a r-element 
in M and conversely, since a2['a, the fact that a is a r-element must yield 
a2 =a. Thus we obtain by the dual of Theorein 1.2 that the lower ['-radical 
of M is the maximal idempotent element of M, and that the interval 
[l(J1,['), I] does not contain idempotent elements. This result has been 
obtained for ideals in rings and in semi-groups by J. Levitzki in [ 2 ] .  
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