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A GENERAL THEORY OF RADICALS.*
I. Radicals in Complete Lattices.

By S. A. AMITSUR.

The various radicals which have been hitherto defined by various authors
(Artin, Levitzki, Jacobson, Brown-McCoy, ete.) constitute an important tool
in the study of the structure of rings. The theory of radicals was recently
extended to non associative and non distributive rings as well as to more
general structures. The similarities which exist between some of these radicals
(in the underlying definitions and reasoning) have been already observed by
B. Brown and N. H. McCoy, and they developed in [4] a theory for radicals
in groups which, in particular cases, yields-some of the known radicals in
the theory of rings, but bears no relations to others. The purpose of the
present paper is to give an axiomatic study of radicals. In order to achieve
the greatest possible generality it was found suitable to develop the theory
of radicals for complete lattices.! The axiomatic approach and the general
results obtained here will be applied in a subsequent paper where also the
the results of [4] will be incorporated in our general theory.

One readily observes that each of the radicals which have been hitherto
defined in rings is connected with some ring-property which is invariant under
ring-homomorphism.> Thus the Jacobson-Perlis radical ([3]) grows up out
of the property of quasi-regularity. Generally, by a =-radical NV of a ring S is
meant a maximal ideal N of S possessing a given property = of this type, and
such that the quotient S/N is free of non zero ideals with the same property.
It turns out that the theory of radicals is based on the following simple con-
sequence of the homomorphism-invariance of the property «: If 4, B, C, are
any three ideals in a ring S such that the quotient ring A/B has the property
w then (4,0)/(B,C) has the same property.®? This fact, and the method

* Received March 9, 1950; revised September 15, 1951.

11 am indebted to Prof. R. Baer for a remark which led to the present general
treatment of the theory of radicals.

2 Compare with [4], Theorem 2.

3This follows immediately since A/B is homomorphic with A4/A N (B,0)
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which has been applied by Baer for defining his Lower Radical in [1] are
the starting points of the theory of radicals developed in this paper.

It is found convenient to formulate our conditions and results not in
terms of properties but rather in terms of binary relations p between elements
of a complete lattice. Thus in the case of ideals in a ring S and a ring-
property = we write 4 pB if A D B and the quotient ring A/B has the
desired property =. In particular, a p-radical r of a lattice L is an element
7€ L such that 7 p 0 and z p r implies © = 7. In this notation the above men-
tioned condition may be formulated as follows: if a p b then (a U ¢)p(d U c).

In Section 1 the definition of Baer’s lower radical is extended to complete
lattices with binary relations of the preceding type. The discussion of the
existence of the radical is carried out in Section 2. In order to cover the
problem of the connection between the radical of a ring and the radical of
its ideals in the theory of radicals of associative rings the whole theory is
extended in Section 4 to more general structures to be called complete pseudo-
lattices. Some related questions and the dual development of the present
theory is dealt with in Sections 5 and 6. The last section deals with an
application to lattices in which multiplication is defined. We obtain an
extension of Baer’s lower radical of [1] to such lattices. The dual definition
of this radical yields the maximal idempotent element of such lattices. The
latter is an extension of the idempotent kernel of rings and semi-groups
defined by J. Levitzki in [2].

1. The upper radical.

Notations. Let M be a complete lattice. We denote by Iy and by Ox
the unit and the zero of M. “When no confusions are expected, the subscript
M will be omitted. Lattices and sublattices will always mean complete
lattices and complete sublattices. By an M-interval [a, b] is meant the set
{z;veM,a =<2 =<">0}. The notation Sup[z;- - -] and Inf[z;- - -] will be
used to denote the greatest lower bound and respectively the least upper
bound of the elements x subjected to a condition which will replace the dots
in the brackets. We refer to the relation = of M as to an inclusion relation,
and we say that ¢ includes b if o = b.

We consider a set of sublattices {L} of M such that if a,be L, where
L e {L}, the L-interval [a, b] belongs also to the set {L}.

Definition 1. A binary relation p defined in M is called an H-relatton
in M if p satisfies:
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76 S. A. AMITSUR.

(A) Ifapb;a belM, then o =b.
(B) apa for every ae M.
(C) Ifapband ¢c=0D then (aUc)pec.

Remark. TLet apb. Since dbUc=b, it follows by (C) that
(aU c)p((bUc) for every ce M.

When a p b and a, b € L we write a p b in L, and a is said to be a p-element
over b in L. An element a e L is said to be a p-element in L if a p Oy,

A sublattice L of M is said to be p-semi simple in M if L does not
possess non zero p-elements, i. e. z p 0z in L holds only for ¢ = 0z. Let a =
be two elements of L. If the L-interval [a, b] is p-semi simple in M, we
write apb in L. The element b is said to be a p-element over a in L. If
ap I, a is said to be a g-element in L.

Definition 2. An element r¢ L is called a p-radical in L if r is both
a p-element in L and a p-element in L.

Example. Let M be the lattice of the ideals of an associative ring S.
The relation v in M defined to be: avb if a» = b = a for some integer n is
readily seen to be an H-relation in M. In this example, the y-elements are
the radical-ideals defined by Baer in [1] and the v-radical in M is the nil-
potent radical of the ring S (in case it exists!).

Unless otherwise stated, binary relations to be considered hereafter will
be H-relations and the sublattices of M will be restricted to the set {L}
considered above.

Define inductively the following chain of elements in L: w,(L, p) = Oz,
uy (L, p) = Sup[p; pp Oz in L], un(L, p) = Sup[uy(L, p) 5 v < Al for limit
ordinal A, and uy(L, p) = Sup[p; p p ur-1(L, p) in L] for non limit ordinal A.
Thus the chain {u)} * is a well-defined non-decreasing chain of elements of L.

LemMA 1.1. There is an ordinal + such that u,(L,p) =us(L, p) for
every ordinal o = and u,(L, p) < uu(L,p) forv<p=r (if 7 >1).

Since the chain {u,} is a subset of L it is readily verified that there
exists a minimal = such that %, = %;,,. The rest of the lemma follows now
immediately by the definition of the chain {u)} and by the minimality of r.

The element uy(L,p) is called the A-th p-radical of L, and wu,, the
element of the preceding lemma, is called the upper p-radical of L (in M).
This element will be denoted by u(L, p).*

+When no confusion is expected w,, will replace u, (L,p). Similarly » and r
will replace (L, p) and r(L,p).
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The object of the present section is to determine the relation between
the upper p-radical of L and the p-elements of L.

The following fact will be often used: if apb in L, then apb in every
sublattice of L which contains both @ and b.

The following lemma is fundamental:

LemMma 1.2. Let p, q be two elements of the L-interval [a, b] such that
gpband ppa; then g = p.

Proof. It follows by (C) that (pUq)pgqg in L. Since ¢gpbd and
b=pUqg=gq, pUg=¢q. That is ¢=p.

In particular if ¢ = Iy, and b = 0z, we have

CoroLLARY 1.1. FEach p-element in L includes every p-element of L.

A simple consequence of the preceding corollary is:

TueoREM 1.1. Every sublattice L possesses at most one p-radical.

Indeed, if 7, and 7, are two p-radicals of L, then since r,p I and 7,p 0,
7y = 75 Similarly 7, = r;. Thus 7, = ..

It L possesses a p-radical, in the light of the preceding theorem we refer
to this radical as the p-radical of L and denote it by (L, p).

Since r(L, p) is a p-element it follows by Corollary 1.1 that

CororLrarY 1.2. If r(L,p) exists in L, then r(L,p) is the mazimal
p-element of L.

Lemma 1.3. Let Q@ =1{q} be a set of p-elements in L, then
t =1Inf[q; ge Q] is also a p-element in L.

Let p e L be such that pp ¢t. Since ¢ = ¢, g € Q, it follows by Lemma 1. 2
that ¢ = p. This holds for every ge @ ; hence { = p. This proves that ¢ is
a p-element.

The set of all p-elements of L is non vacuous, since evidently I is a
p-element in L. We obtain, therefore, by the preceding lemma,

CoroLLARY 1.3. The meet of all pelements of L is the minimal
p-element in L.

The following is the main theorem of the present section.

TueorEM 1.2. The upper p-radical w(L,p) is the minimal p-element
of L.
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Proof. Since by Lemma 1.1 w(L,p) = %, = U, it follows by defi-
nition of %, that u(L, p) is a p-element in L. Hence, if m = Inf[q;q is a
p-element in L], m < u(L,p). To prove that u(L,p) = m, it is sufficient
to show in the light of Lemma 1.1 that m = u, (L, p) for every ordinal v.
By the preceding corollary m is a p-element in L, hence by Corollary 1.1
m = p for every p-element p in L. This yields m = wu,(L,p). Let
m = u,(L, p) for every ordinal v < A. For limit ordinal A it is evident that
m = ux. If A is not a limit ordinal, since m = uy_, it follows by Lemma 1. 2
that m = p for every p which is a p-element over uy—;. This implies m = uy,
and the proof is completed.

THEOREM 1.3. A necessary and sufficient condition that r(L, p) exist
1s that w(L, p) s a p-element, and in this case r(L, p) = u(L, p).

Proof. In view of the preceding theorem, u (L, p) is a p-element. Hence,
if u(L, p) is a p-element, u (L, p) is the p-radical of L. Conversely, let (L, p)
exist in L. Since r(L, p)p I it follows by Theorem 1. 2 that v (L, p) = u (L, p).
On the other hand, since 7(L, p) is a p-element, w(L, p) = u, (L, p) = r (L, p).
Thus r(L, p) =4 (L, p), and the latter is therefore a p-element in L.

Since (L, p) = u,(L, p) we have
CorOLLARY 1.4. If r(L,p) exists, it is the mawimal p-element of L.

A relation between the upper p-radicals of two lattices is given in the
following theorem:

TaeorEM 1.4. If L D L such that 0 =07 then w(L,p) = u(L/, p).

The proof is achieved by showing inductively that w(L, p)= urn(L/, p).
If pp 0 in L/, the same relation holds in L; hence u(L, p)= u,(L’, p). For
a limit ordinal A it is evident that w (L, p)= ur(L/, p) if u(L, p)= u,(L/, p)
holds for every v < A. Let A be not a limit ordinal. If p pus (L, p), since
p and uy (L, p) belong to L, this relation holds also in L. Hence, from
u (L, p) = ur+ (I, p) it follows by Lemma 1. 2 that u(L, p)= p. This yields
that w(L, p)= un (L', p). q.e.d.

TueoREM 1.5. Denote by L, the L-interval [a,I]. If u(L,p)=a,
then w(L, p) = u(Lg, p).

Since % (L, p)p I in L, the same holds in the interval L, since u (L, p) = a.

50 and 0’ denote vespectively the zeros of L and L'.
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Hence, Theorem 1.2 yields u(L, p)= u(Lg, p). The same reasoning implies
that ©(Lg, p)p I in L, since this holds in Lg; hence u(Lg, p)= u(L, p) and
the theorem is proved.

A relation between the upper radicals of two different relations p, and
pe is discussed in

THEOREM 1.6. If either 1) ap, b implies a p2 b, or 2) bp, I in L tmplies
bp.I in L, holds then u(L,p;) = u(L, ps).

We first show that (1) implies (2). Indeed, if zp, I holds and I is not
a pi-element over z, then there is a p e L such that p > = and p p, . Hence
(1) implies p p.z which is a contradiction. Now assume that (2) holds.
Since u(L,p2)p> ! it follows that w(L,p.)p. I; hence by Theorem 1.2
w(L, p1) = u(L, p2).

Hence,

CorOLLARY 1.5. If ap, b vmplies ap. b, and bp, I implies b p. I, then
u(L, pr) = u(L, p2).

2. The p-radical. This section deals with the existence of the p-radical
r(L, p). For ae L, we denote by @, the L-interval [0,a]. If u(Qq p) < a,
then [u(Qq, p), @] is a non zero p-semi simple L-interval. If [=,«a] is a non-
zero p-semi simple L-interval in L, then u(Qq, p) =2 < a. Hence

LevmMa 2.1, u(Qq, p) = a if and only if none of the non zero L-intervals
[z, a], z < a, is p-semi simple.

Since L 2 @, and both have the same zero, it follows by Theorem 1. 4:

LemMa 2.2, u(L, p)=u(Qq,p).

LemMa 2.3. If apbin L, and bgc in L, then apc in L.

Indeed, if ¢ = p = a such that ppa, (pUb)pb. Since c=pUb=D
and ¢p b, it follows that p U b=1>0, i.e, b = p=a. But then a5b implies
p =a. This proves that agc in L.

The main theorem of the present section is

THEOREM R.1. The p-radical ewists in every lattice I of M if and only
if p satisfies

(D) For every a,beL such that a <b and such that b is not a
p-element over a, there is an element ce L, such that cgb in L.
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Proof. Let p be an H-relation which satisfies (D). If w(L,p) were
not a p-element, then there is w(L,p)> ¢=10 such that cpu(L,p). By
Theorem 1.2 u(L,p)pI in L. Hence the preceding lemma yields cp 1.
Thus u(L, p) > ¢ contradicts Theorem 1.2. This proves that u(L,p) is a
p-element, and therefore we obtain by Theorem 1.8 that w(L, p) =1r(L, p)
and the latter exists.

Conversely, let p be an H-relation for which the p-radical exists in every
lattice L (of the set {L}). Let b > a and b be not a p-element over a in L.
The L-interval [a,b] belongs to the set {L}, hence its p-radical r exists.
Evidently, r is the required element, i.e., b >7=10a and rp b in L.

Remark 2.1. TFrom the first part of the preceding proof it follows
that if (D) holds in some lattice L only for the element & = 0, then. the
p-radical r(L, p) of this lattice L exists.

Definition 3. An H-relation which satisfies (D) is called an R-relation.

THEOREM R.2. Let p be an R-relation. Let {as} be a set of elements
in L which are p-elements over b, b € L; then Sup a, 1s also a p-element over b.

Proof. Let r be the p-radical of the L-interval [b, ], where a = Sup a,.
Since 7 p a, it follows by Lemma 1. 2 that r = aq. Hence r = a. Thus r=a,
and therefore ap b.

One may replace (D) by the conditions of the following theorem.

THEOREM R2.3. The relation p is an R-relation if and only if p satisfies
the following two conditions:

(D)) Ifapband bpc then apc (Transitivity).

(D;) If e =a,=-- - is an ascending well ordered sequence of p-
elements over b, then Sup a; is also a p-element over b.

Proof. Let p satisfy the conditions of the theorem. Applying (D,) to
the p-elements of the lattice L (in the case b =0.), one obtains readily by
(D;) the existence of a maximal p-element r. This element » is also a
p-element in L, for if 2 € L, > r such that = p r then since 7 0, it follows
by (D,) that = p 0 which contradicts the maximality of . This proves that
r=r(L,p). Hence by Theorem 2.1 it follows that p satisfies (D) and,
p is an R-relation.

Now let p be an R-relation. Condition (D,) is a simple consequence of
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Theorem 2.2. To prove the validity of (D), let (C) be the p-radical of the
M-interval [c,a] = C, where apb and bpc. Since bpec, r(C)=10, and we
obtain, therefore, by Theorem 1.5 that r(C) is also the p-radical of the
M-interval [b,a]. Since apb,r(C)=a. Thus r(C) = a, which proves that
apc. This completes the proof of the theorem.

The reasoning of the first part of the preceding proof yield also the
following corollaries.

COROLLARY 2. 1. If p is any relation in M (not necessarily an H-relation)
which satisfies (A), (B), (D), and condition (D.) only in the special case
b = Oy, then M possesses maximal p-elements, and each mazimal p-element
s a p-radical in M.

In particular, it follows by the preceding proof that if p is an H-relation
which satisfies (D,), then every sublattice L either possesses the p-radical or
does not contain maximal p-elements. Hence

CoroLLARY R.2. If p is an H-relation which satisfies (D,), then every
lattice L which satisfies the ascending chain condition for p-elements possesses
a p-radical.

Ezample. Let M be the lattice of the ideals of an associative ring S.
Consider the following relation between the iedals of S: @ p b if the quotient
ring a/b is quasi regular in the sense of Jacobson ([3]). One readily proves
that p is an H-relation which satisfles (D,) and (D). Thus the theorems
of the present section yield the existence of the Jacobson-Perlis radical.

It is readily seen that the H-relation v defined in the preceding section
satisfles (D;) and need not satisfy (D).

Let L be a fixed sublattice of M. Suppose we distinguish among the
elements of L a class 3, which contains the unity 7, of special elements of L.
We prove that:

THEOREM R.4. If for every p-element a in L which is not a p-element,
there exists a special j-element g of 3 such that a > a N q then the p-radical
of L exists and it is the meet of all the special p-elements of 3.

Proof. Let m =1Inf[q;ge3, q is a p-element in L]. Since I &3, m is
well defined. It follows by Lemma 1. 3 that m is a g-element in L. If m is
not a p-element, then m > m N ¢ for some p-clement ¢ of 3. But this con-
tradicts the definition of m. Hence m is the p-radical of L. q.e.d.
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3. Complete pseudo-lattices. There are still some general aspects in
the theory of radicals of rings whose generalization is not covered by the
theory developed in the preceding sections. This section deals with one of
these problems, the relation between the radical of a ring and the radicals
of its ideals. To this end the notion of complete pseudo-lattices is introduced.

Definition 4. A set M is called a complete pseudo lattice if a binary
relation = (inclusion) is defined in M which satisfies

1) 0eM such that z = 0 for every z & M.

?) Every M-interval [a,b] = {z;zeM,a=2=1">)} is a complete
lattice with regard to the inclusion relation.

Note that the relation = defined in 9% must be reflexive and anti-
symmetric but need not be transitive, as can be seen by the following example:
Let M be the set of all subrings of a ring S. For a, b e M, we write a = b
if b is an ideal in the subring a of §. The interval [b,a] of M can be
identified with the complete lattice of the ideals of the quotient ring a/b.

By an H-relation p in M we mean a relation p defined in 9% which is an
H-velation in every M-interval and satisfles the condition

(C) IfaUb,an bare defined in M, then ap(a U b) implies (a N b) 5 b
in M.

Tor complete lattices M, condition (C,) is a consequence of (C). Indeed
if (aNb)pbd does not hold in M, then pp(an b) for some b =p >a N b.
Hence by (C) (pUa)pa, which implies pUa=a, i.e, a=p. This
together with = p contradicts p > a N b. This proof does not work in
the general case, since p U ¢ may not exist in .

We denote by 7(nm, m) the p-radical (if it exists) of the Ii-interval
[n, m]. The aim of the present section is to prove

TuroreM 3.1. If r(n, m) exists, then r(q, m) exists for every q e [m, n],
and r(g, m) = q N r(n, m) if and only if p satisfies

(By) If apb then cpb for every ce [b,a].’
(E.) If apb then apc for every ce [a,b].

Proof. Suppose p satisfies the requirements of this theorem. Let
r=r(n,m) exist. Since r=¢Nr=n and rpn, (B,) yields (gNr)pn.

¢ Note that if ce [b, al, the IN-interval [b, c] is not necessarily a subinterval of
[b,al.
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Now m =qU r=r and rpm; hence (E;) yields »p(qU r), which implies
by (C,) that (¢ N 7) 5¢. This proves that g N r(n, m) is the p-radical (g, n).

The necessity of (E;) and (E.) follows immediately since both conditions
are the particular cases 7(b,a) =a and r(a,b) = a of the statement of the
theorem.

4. The mapping a— r(a). Let L be a sublattice of M, and let p be
an R-relation in M. For every ae L we denote by »(a) the p-radical of the
L-interval [a,I]. The correspondence @ —r(a) is encountered in many
problems in the theory of rings, e.g. the correspondence between primary
ideals and their prime ideals. A general property of this correspondence is
treated in this section.

THEOREM 4.1. Let p be an R-relation satisfying (E,) and the condition
(F) (¢ Ub)pb implies ap(a N'b). Then the correspondence a —> r(a) is an
idempotent meet homomorphism of L onto itself.

Proof. The mapping a — r(a) is isotone. For let a = b. Since r(a)p !
in the L-interval [a,I], the same holds in the L-interval [b,I]. Thus
Theorem 1.2 yields r(a)= r(d).

Now let ay, @z e L. Put ry =r(a,) and 7. =17(a;). Since a; = a, N a,,
ri = r(a; N az), and therefore 7, N r: = r(a; N a2). Since r, =(r, N 1)U ay
= a,, and since r, pa, it follows by (E,) that ((r, N7:)U ai)pa,. The
condition of the theorem implies (11 N 72)p( (1 N 72)N @) =72 N ;. Simi-
larly, since 7, = (as N 1)U as=a, and 7:pas, (. N 7)U a:)pas,, and
hence (a, N 7r2)p((@ N 7)) N az) = a; Nas. We obtain (v, N 72)p(a: N as)
and (a; N 72)p(as N a,). Hence it follows by (D,) that (r, N r)p(a N as).
This yields r(a; N a,)=r, N r.. Hence r(a,)N r(a;) =7r(a, N ax). Since
r(a)p I, we have r(r(a)) =r(a), which proves the idempotency of this
mapping.

5. Dual relations. On account of the duality of lattices, we develop in
this section a theory of dual relations and dual radicals.

Definition 5. A relation o defined in a lattice M is called a dual
H-relation if o satisfies:

(A If acbd, a,beM then a =0b.
(B’Yy = (B) aoca for every ae M.
(¢") Ifacb and ¢ =05 then (aNc)oc.
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Dually to the non decreasing chain of elements {u,} we define a non
increasing chain of radicals {I\} as follows: I,(L, o) = Inf[¢;qe I in L].
IN(L, o) = Inf[l,; v < A] for limit ordinal A, and I\(L, o) = Inf[q; ¢ ol
in L] for non limit ordinal A. The element I\(L, o) is called the A-th
o-radical of L. This non increasing chain of radicals terminates at some
I;(L,o), that is, there is a minimal r such that I, =1, for every p=r.
The element I, (L, o) = L(L,s) will be called the lower o-radical of L.

One readily develops a theory for the lower radical dually to the theory
of the upper radical developed in the preceding sections. In particular we
refer to a dual H-relation as a dual R-relation if it satisfies

(D) If aob does not hold, then ¢ b does not hold, then ¢ b for
some ce L, a = ¢ < b.

Let p be an H-relation defined in M. The relation p defined in M can be
considered as a dual relation in M. We have

THEOREM b.1. If p is an H-relation in M, then 5 is a dual H-relation
which satisfies (D’y)." Furthermore, if the set L of the sublattices of M 1is
the set of the M-intervals, then p is a dual R-relation, and w(L, p) = (L, 5)
for every M-interval L.

Proof. Evidently p satisfies (A”) and (B”). We proceed in proving (C’).
Let apb and b=c. If cp(anNc) is not true, then pp(a N ¢) for some
¢=p > cNa Since p satisfies (C), (aU p)pa. Butinviewof b =pUae=a
and ap b, it follows that p Ua=ua, i.e.,, a = p. This together with ¢ = p
contradicts p > ¢ N a, and thus (C") is proved. Condition (D’;) was proved
in Lemma 2. 3.

Before proceeding with the proof we remark that if {L} is the totality
of the M-intervals of M, then apb in an M-interval L is the same require-
ment as @ p b in the whole lattice M.

We prove now that the upper p-radical u(L, p) of an M-interval L is
the p-radical of L. By Theorem 1.2 it follows that w(L,p)s I, in L, and
hence u(L,p)5 I in M. The interval [Op, u(L,p)] is p-semi simple, for
otherwise ¢ p u(L, p) for some 0p =< ¢q < u(L,p), ge L. Hence Lemma 2.3
implies ¢ g Ir. This contradicts the minimality of u (L, p) proved in Theorem
1.2. This shows that (L, p) = r(L, p), which, by the dual of Theorem 2. 1,
proves that g is a dual R-relation.

7 (D%) denotes the dual condition of (D).
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In the light of the preceding theorem, Theorem 1.2 is the dual of
Corollary 1. 4.

Some of the known relations are at the same time both H-relations and
dual H-relations. The following theorem deals with a class of such relations.

THEOREM 5.R2. If p is any relation defined in M which satisfies (A),
(B), (E,) and the requirement that (a U b)pa implies bp(a N b), then the
relation p’ defined by ap’b if bpa, is a dual H-relation.

Evidently p’ satisfies (A’) and (B’). Let ap’b and b=c¢. Since
b=cUa=a and bpa, it follows by (E;) that (cU a)pa and, therefore,
c¢p(enc). This proves that (a N ¢)p’ ¢, hence the validity of (C’).

6. Multiplicative lattices. We conclude this paper with an example
which generalizes two known radicals, the lower radical defined by Baer in
[1], and the idempotent kernel of rings defined by Levitzki in [R].

By a multiplicative lattice M we mean a complete lattice in which
multiplication is defined satisfying

1) For every a,beM, abe M is uniquely defined,
2) abTanb,
3) a(bUc)=uabVUac; (bU ¢)a="0baU ca.

If a=<b, aU b="; hence by (3), it follows that ca U cb = cb, which
implies that ca = cb. In particular a®> = ab = b2

Consider the two relations ¢ and its dual ¢ defined in M as follows:
atband b¢aif a> =0 =a. Evidently ¢ and ¢’ satisfy (A), (B) and (A'),
(B’) respectively. Now let ¢ ¢ b and ¢ = b, then (e U ¢)? = (a® U ac U ca U ¢?)
=bUc¢=c=cUa. This proves that ¢ is an H-relation. The relation ¢
satisfies (C"), for if b ¢ a and ¢ = a then ¢> =< 4a®>=5b. Hence, since ¢ = ¢,
2=bNc=c,ie, (bNc)lc. Thus ¢ is a dual H-property (One readily
verifies that ¢’ satisfies also E;). Hence the upper ¢-radical and the lower
¢-radical are defined in M.

In case M is the multiplicative lattice of the ideals of an associative
ring S, the upper ¢{-radical is known as the Baer’s lower radical of S ([1]).
It is readily seen that the theory of this radical is valid also in non-associative
rings. Further properties of this radical will be discussed in Part ITI of this
paper.

The lower ¢-radical can be approached from a different point of view,
due to the fact that the notion of Z-elements coincides with the idea of the
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idempotent elements of M. Indeed, if a? = @ it is evident that a is a T'-element
in M and conversely, since a?{’ a, the fact that a is a T-element must yield
a* =a. Thus we obtain by the dual of Theorem 1.2 that the lower ¢’-radical
of M is the maximal idempotent element of M, and that the interval
[I(M, &), I] does not contain idempotent elements. This result has been
obtained for ideals in rings and in semi-groups by J. Levitzki in [2].
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