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A GENERAL THEORY OF RADIICALS.4: 

11. Radicals in rings and bicategories. 

I n  the introduction of part I ([1])l we have pointed out the relation 
between some of the well known radicals of rings and properties of rings 
which are invariant under homomorphisms (compare [3], Theorem 2 ) .  The 
object of the present paper is to give an axiomatic foundation of these radicals. 
If T is a property of rings, we generally mean by a a-radical of a ring R a 
unique maximal ideal N of R possessing the property a and such that the 
quotient X/N does not contain non-zero a-ideals. The main properties which 
a radical is generally required to satisfy is :  the existence in every ring; the 
radical of an ideal A should be the intersection of A and the radical of the 
whole ring; the radical should contain also one-sided ideals; the radical of 
a matrix ring over a ring R should be the matrix ring over the radical of R. 
Necessary and sufficient conditions for these results to be satisfied by a property 
T are given, among which the most important is the fact that T should be 
invariant under homomorhpism. If only this condition is imposed on T 

(and another of far less importance) one can obtain generalizations of Baer's 
Lower Radical ( [5] ) . Some methods of constructing properties which yield 
radicals from non-yielding-radicals properties are given in section 7 and 8. 
This method will be applied to prove some new results about some known 
radicals, in particular Baer's Radical. 

The most important tools in studying this homomorphic-type radicals 
are undoubtedly the main two Isomorphism Theorems. This is the reason 
why the whole theory (except some particular ring-structure problem, e. g. 
radicals of matrix rings) can be developed in quite a general class of bicate- 
gories, namely : the lattice ordered bicategories, in the sense of MacLane ( [ Y ]  ), 
which contain a zero element and which satisfy some additional axioms. I n  
particular, the theory will hold for a big class of abstract algebras containing 
rings (associative or non-associative), semi-groups, groups, loops, etc. The 

" Received September 10, 1952; substantially revised March 7, 1953. 
The results of part I ( [l] ) will be quoted by the number I follo~x~edby the nota- 

tion of the result quoted, e. g. definition I. 1 mean definition 1 of the pal,er [I] .  
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greatest part of the present paper deals only with rings (not necessarily asso- 
ciative) since the main applications will be for the theory of rings. Eever-
theless, in section 8 we give a list of conditions to hold in bicategories so that 
the theory developed in  the preceding section will hold for them. 

The last section is devoted to the study of the relation between the 
theory of radicals as developed by B. Brown and N. H. McCoy in [3] and [4] 
and the present theory. The type of radical dealt with by these authors con- 
stitutes an important class of the radicals whose theory is developed here. The 
incorporation of their theory and the present theory yields a slight extension 
of the results of [3] but nevertheless i t  makes use of Zorn's lemma which 
was avoided in [3]. 

1. HI- and RH-properties. I n  the present section we restate some of 
the main resnlts of part I ( [ l ] ) l  in the langnage of ideals and homomorphisins 
of rings. This is obtained by applying the results of that paper to the lattice 
of all ideals of rings. These restated results are needed for further appli- 
cations and for a simplification of the theory developed in the preceding 
paper when applied to rings. 

Let n be a property of ideals in rings. By a &deal we mean an ideal 
which possesses the property T .  

The sequence of ideals UA =Ux(R) is defined as follows: 

8 )  UA= U Y < ~ U ,for limit ordinals h. 

3) For non limit ordinals A, UA is the union of all the ideals A of R 
such that A/UA-, is a a-ideal in R/UA-~. 

The ideal UA is known as the h-th (T-) radical of R The upper T-radical 
U(R, a )  = U (R)  of R is defined to be the limit ideal of this sequence ; 
namely the minimal ideal UA such that UA = Ui+l. The following notions, 
are fundamental : 

T-semi simple : a ring R which does not contain non-zero T-ideals. 

?-ideal: an ideal P in a ring R for which the quotient R/P  is a-semi 
~ i m p l e . ~  

a-radical: an ideal N in a ring R which is both a T- and a ?F-ideal in R. 
That is, N is a T-ideal and the quotient R / N  is T-semi simple. 

a These ideals correspond to radical ideals in the sense of Baer [5]. 



A property 7 of ideals will be called an HI-property if a satisfies the 
following two conditions : 

( I $ )  The zero is u a-ideal. 

(1B)  Every homomorphisnz ?naps 7-ideals onto 7-ideals. 

For a property 7 of ideals, we define a relation T i n  the lattice of all 
ideals of a r ing R as follows: let A and B be two ideals i n  R. Using the 

notation of part  I ( [ l ]), we write A 7 B if A 2B and A/B is a 7-ideal in 
R/B,  Since the lattice of all ideals of a r ing is known to be complete, the 
results of par t  I ( [ l ]) can be applied to this lattice in  view of the following 
fundamental lemma : 

L ~ x ~ r a1. 1. If T is an HI-property then the relation a defined in the 
lattice of the ideals  is an H-relation in tlze sense of definition I .  1.' 

Indeed, conditions I. (A) and I. (B)  of [ I ]  are evidently satisfied. To 
prove I. ( C ) ,  we consider three ideals A, B, C i n  R snch tha t  A T  B and 
C 2B. The homomorphic mapping of R/B  onto R/C maps A/B onto 
A U C/C;  hence by (1B)  i t  follo~vs tha t  A U C/C is a a-ideal i n  R/C. Thus 
( A  U C ) a  C, q. e. d. 

The application of Theorems I. 1. 2 ,  I .  1. 1, I .  1. 3, and Corollary I. 1. 4 
yields 

THEOREM1. 1. If T is an HI-property then the intersection of any set 
of %-idealsof a ~ i n g  R is a ?-ideal; the inte~sectio~z all  %-idealsof R, zulzich of 
.cs ttze nztnwnal 5-ideal, is exactly the upper T-radical U ( R )  of  R. Further-
mo~e,if a T-radical N of R exists, then S = U ( R )  and M i s  uniquely 
determined as the nzaxinzal T-ideal of R. 

I n  the latter case N is called tlze 7-radical of R and will be denoted 
by T ( R ) .  

Properties for which the T-radical al~vilys exists must satisfy: 

( I C )  For ecery ideal A in a ring R zuhiclz i s  not a 7-ideal, there exists 
an ideal B C A such that there are no non zero 7-ideals in R /B  contained 
in A/B.  

Properties which satisfy the three conditions ( I .%) ,  ( 1 B )  and (1C) will 
be called RI-properties, and for these properties we have by Theorem I. 2 .1 :  

THEOREX1. 2. Let T be an HI-prope~ty, then a necessary and sufficient 
condition that the T-radical exists in every ring is that 7 b e  an RI-property. 
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As a consequence of Theorem I. 2. 2 we obtain the following fundamental 
result concerning RI-properties : 

THEOREX 1. 3. T h e  u n i o n  of a n y  s e t  of 7 - i d e a l s  i s  a &deal. 

The conditions of Theorem I. 2. 3 can be simplified in the iresent 
application as follows 

THEOREM1. 4. If T i s  a n  H I - p r o p e l - t y  t h e n  t h e  foZlowing t w o  c o n d i t i o n s  
a r e  e q u i v a l e n t  t o  (1C) 

(lC1) IfA 2B a r e  i d e a l s  in R s u c h  t h a t  B i s  a T- ideal  ilz R a n d  A/B 
i s  a 7 - i d e a l  in R/B, t h e n  A i s  also a T- ideal  in R. 

(lG,) If A, C A, C: . . . i s  u: n o n  d e c ~ e a s i n g  w e l l  ordeved  s e q u e n c e  
of 7 - i d e a l s  t h e n  t h e  u n i o n  U A, i s  also a ideal.^ 

This theorem is a consequence of Theorem I, 2. 3 since (lC1) implies 
I. (Dl) and (lG,) implies I .  (D,). Indeed, if d T B and B T C in the lattice 
of ideals of R then, by (1B), (A/C)a(B/C) in the lattice of ideals of R/G 
since (A/C) / (B/C) rA /B. Applying now (lG,) to the ring R/C we 
obtain A 7 C, which proves I .  (Dl) .  Similarly, if B C A1 C A? C.. . is a 
sequence of ideals in R such that A, n B then applying (1C2) to the ring R/B 
we see that U (A,/B) is a T-ideal. Now, U (A,/B) = ( U A,)/B. It follows, 
therefore, that ( U  8 , ) ~B which proves I. (D,). 

The homomorphism invariance of 7 immediately yields the following 
results : 

THEOREN 1. 5 .  1 )  L e t  8 b e  a n  i s o m o r p h i s m  b e t w e e n  R a n d  R" t h e n  19 
i n d u c e s  a o n e  t o  o n e  correspoizdelzce be tzr~een  t h e  T- ideals  of R a n d  RS. 

Hence, 

2 )  T h e  i s o n z o r p k i c  i m a g e s  of 7 -senz i  s inzp le  r i n g s  a r e  T-senzi  s i m p l e .  

We are now able to prove 

THEOREN 1. 6. A s u b d i r e c t  sunz of T-senzi  s inzp le  r i n g s  i s  7 - s e m i  s i m p l e .  

Indeed, if R is a subdirect sum of T-semi simple rings {R,)  then 
0 =n A, where A, are ideals in R such that R, rR/A,. From the pre- 

In the proof of the equivalence of these conditions the well-ordering theorem is 
used. One can use Zorn's lemma instead by replacing ( IC, )  by the requirement that  
the union of every linear system of *-ideals is a *-ideal. 



ceding theorem it  follows that A, F R in the lattice of ideals of R. Hence, 
by Lemnla I. 1.3 i t  follows that 0 5R which evidently means that R is 
T-semi simple. 

Thus, Theo~emI. 1.5 yields: 

THEORENI. 7 .  If the ke~nel 8 of the homomo~phic nzapping of R onto 
R8 is contained in the upper a-~adical U (R) ,  then U (X3) =U (R)3. 

I n  particular, if 8 is an automorphism we obtain: 

COROI,I,ARY 1. 1. LT(X) is invariant under the g ~ o z ~ p  of c~utomorphisnz~~ 
of X. 

Example. For associative rings, properties like regularity, strong regu- 
larity, and a-regularity "re HI-properties. The property of quasi-regularity 
is an example of an RI-property. 

2. Ring properties. The rest of this paper deals with a less general 
class of properties. We consider henceforth only properties of rings (not of 
ideals in rings !) ; thus nilpotency of associative rings is such a property. 

By a a-ring R we shall mean a ring R which possesses the property T. 

A ring-property T is turned into a property of ideals in rings by defining a 
a-ideal to be an ideal which is also a a-ring. 

I n  contrast with the properties of ideals considered in the preceding 
section, the ring properties a have the characteristic that if A is a a-ideal 
in some ring R then A remains a T-ideal in every ring containing A as an 
ideal. This fact yields some modification of the conditions of the preceding 
section. 

For the convenience of the reader we give here a list of all conditions 
which will be used in the present paper: 

(A)  The zero is a a-ring. 

(B)  Homomorphic images of T-rings are T-rings. 

( C )  Every non a-ring is homomorphic to a non zero a-semi simple ring.0 

The notation ii is used here in the sense of section I. 1. That is: BFA means that  
A 2 B and the quotient A/B does not contain non zero x-ideals of RIB. 

For definition see e. g. I. Kaplansky, "Topological representation of algebras 11," 
Transact ions of t h e  American Mathematical  Society ,  vol. 68 (1950) ,  p. 67. 

"his amounts to the fact that  every ring which is not a T-ring properly contains 
a, ?-ideal. 
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(D)  All ideals of a T-ring are a-ideals. 

(E)  All ideals of a a-semi simple ring are T-semi simple rings. 

For simplification we introduce the following names: properties which 
satisfy (A) ,  (B)  will be called H-properties (homomorphism invariant 
properties). If (A),  (B),  (C) are satisfied, the property will be called an 
R-property (a  radical-property) . H-properties which satisfy (D) ,  (E)  will 
be called XH-properties. If all conditions are valid, the property will be 
called an XR-prope~ty. 

The following two conditions will be seen to be equivalent to (C) : 

(C,)  (Transitivity) If A is an ideal in R such that R/A and A are 
a-rings then R is also a a-ring. 

( C 2 )  If  A1 A?.s . . . is a well-ordered sequence of 7-ideals then 

U A, is a a-ideal. 

For problems relating to one sided ideal and subrings we shall need the 
following conditions (section 3 )  : 

(D,) Every right ideal of a T-ring is a a-ring. 

( F )  a-semi simple rings do not contain non zero right a-ideals. 


(D,) Every subring of a P-ring is a a-ring. 


(F,)  a-semi simple rings do not contain non zero a-subrings. 


For determining the radical of a matrix ring R, over a ring R, we shall 
need the following conditions (section 4) : 

(GI) If R is a x-ring then so is R,. 

(G,) If R is a-semi simple then so is R,,. 

Two more conditions of a less general nature will appear in sections 6 
and 8. 

The classes of H-properties and R-properties defined above are subclasses 
of the HI-properties and RI-properties respectively as will be shown in the 
following lemma : 

LEMMA2. 1. 	 1 )  An H-property is an HI-property. 


2 )  R-properties are also RI-properties. 


Before proving the lemma, we note that (C,) is readily seen to be 
equivalent to condition (IC,) of the preceding section, and ( C z )  is exactly 
the condition (1C2) .  



The proof of (1) is evident. To prove (2)  we shall show that if T is 
an H-property, then a necessary and sufiicient condition for the existence of 
the 7-radical is that a satisfies (C) ; and thus the proof of (2) will follow 
by Theorem 1.2. To this end we observe that if a is an H-property whose 
7-radical always exists then the quotient ring modulo this radical satisfies 
(C) ; and hence T is an R-property. Now suppose that a is an R-property. 
Let A 2 B be two ideals in a ring R such that A/B is a ,a-ring in R/B and 
B is a 7-ring in R. Consider A as a ring; if i t  were not a a-ring then, by (C), 
A would properly contain a +ideal D. Since B is a 7-ideal i t  follows, by 
Lemma I. 1.2, that D 2B. I n  view of the fact that (A/B)/(D/B) rA/D 
it  follows that D/B is also a %-ideal in A/B; but A/B is a 7-ring, hence 
D 2A. This is a contradiction, which proves that 7 satisfies (lC,).  To 
prove that a satisfies (IC,), we consider a well ordered non decreasing sequence 
of a-ideals A, A2 . . . . If A =U AV is not a 7-ideal, then considering 
A as a ring tve would obtain, by (C), the existence of a %-ideal D properly 
contained in A. Since A, is also an ideal in A, it  follows by Lemma I. 1.2 
that D 2A,. Hence D 2 U A, =A which is a contradiction. The rest of 
the proof follows now immediately by Theorem 1.4. 

An immediate consequence of this theorem is that H-properties T yield 
lower 7-radicals and R-properties yield a-radicals, which have the properties 
of the radicals of the preceding section. 

The ring-properties satisfy also the following theorem: 

THEOREM2. 1. If is an H-property, then U(S)  2 U(R) for every 
subring S wlzich contains U (R) .  

The proof will follow by showing inductively that U ( 8 )  2 Ux (R),  where 

Ux(R) is the A-th 7-radical of R. Indeed, since 0 C S,  U(8)  2 U,(R). 
Suppose U ( 8 )  2 U,(R) for every v < A. For a limit ordinal A, i t  is evident 
that this implies that U(S)  2 Ux(R). 

If A is a non limit ordinal and P/Ux-l(R) is a a-ideal in R/Ux-l(R), 
then since S 2 U(R) 2 Ux(R) 2P, P/Ux-,(R) is also a a-ideal in 
S/Ux-, (R) ; hence U ( 8 )  2P. By the definition of Uh(R) it  follows now 
that U ( 8 )  2 UA (R)  . 

I n  particular, if S =U (R)  we have : 

Consider now the set of all subrings of a ring R. This set is turned 
into a complete pseudo-lattice, in the sense of definition I. 4, by defining a 
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relation: A 2B, between subrings, if B is an ideal in the subring A.7 The 

intervals [B, A] of this complete pseudo-lattice can be identified with the 
complete lattice of the ideals of the quotient A/B. Let be an H-property; 
as before, this property determines a relation a in this pseudo-lattice. 
Condition I. (C,) of section I. 3 is readily seen to be a consequence of the 
first isomorphism theorem and Theorem 1.5. Thus a determines an H -
relation in the complete pseudo-lattice. Stating Theorem I. 3. 1 for the 
present case we have 

THEOREX2. 2. L e t  a be a n  R-proper t y .  A necessary and  suff icient 
cond i t i on  t h a t  a ( A )  = A  n a ( R )  for every  ideul  A i s  t k a i  a be a n  SR-
proper ty ,  i. e. a should  sa t i s f y  t h e  five co~zd i t i ons  (A), (B), (C), (D) and  (E). 

The first isomorphism theorem together with ( B )  imply that X R -
properties satisfy the conditions of Theorem I. I.1. Hence, 

COROLLARY T h e  m a p p i n g  A -+ r(A), zukere r(A)/B i s  t h e  T-radical 2. 2. 
of R/A, i s  a n  i d e m p o t e n t  nzeet-lzo~nomo~r,7~isrtt t h s  la t t ice  of ideals  of R.of 

Another result is that H-properties which satisfy (D) ,  satisfy the con-
ditions of Theorem I. 5 .  2. Thus, each of these properties determines a 
d z ~ a l  radical.  

We conclude this section with proving the necessity of the conditions 
(A) - (E)  for the existence of the radical. That is : 

THEOREX2. 3. L e t  T be a n  i s o n ~ o r p h i s m  invar ian t  proper ty  of r ings .  
T h e n  : 

1 )  If eceyy algebra R contains  a m a z i ~ n a l  a- ideal  a ( R )  suck  t h a t  a ( R )  
i s  t h e  n z i ~ z i ~ n a l  ideal  P in R zoitk t h e  proper ty  t h a t  R/P i s  a-senzi sinzple, 
t h e n  i s  a n  R-proper t y .  

2 )  I f  t h e  preceding ideal T ( R )  sat is f ies:  a ( A )  = A n T(R)  for every  
ideal  A in a r i n g  R t h e n  n i s  n n  S R - p r o p e r t y .  

P r o o f .  Since ~ ( 0 )  = 0 for the zero ring, it follows that a satisfies (A) .  
To prove (B),  let R be a a-ring and let R' be a homomorphic image of R. 
Denote by S the origin of r(R') in R. Note that the isomorphism invariance 
of a implies that isomorphic images of a-semi simple rings are also a-semi 
simple. Applying this fact to the case R/N zz Rr/rr(R'), where the latter is 
a-semi simple by the condition of the theorem, we obtain that R/IV is a-semi 

This is the pseudo-lattice given as an example in section I. 3. 



simple. EIence, by the assumption of the theorem, iV 2 ~ ( l 2 ) .Since R is a 
7-ring and a ( R )  is the niasirnal 7-ideal of R, a ( R )  =R = iV, which proves 
that iV' ==(I?') =R'. Thus R' is a a-ring and (B)  is proved. By now a 

has been proved to be an H-property, hence by the proof of Lemma 2. I i t  
follows that T is an 22-property. The rest of the theorem follows now 
immediately from Theorem 2. 2. 

3. Subrings and one-sided ideals. The present section deals with the 
relation between the upper a-radical a ( R )  of a ring R and its one sided 
ideals. We shall deal only with right ideals. 

THEOREM3. 1. If is an H-property of rings, then the upper a-radical 

U(R) of every ring R contains every rigkt =-ideal of R if and only if a 

satisfies : 

(F,) Every a-semi simple ring does not contain non zero right T-ideals. 

Put  6' =G(R) .  Let J be any right 7-ideal of R. J/J n U is a homo- 
morphic image of J, hence it  is a 7-ring. This immediately implies that 
J U U/U is a T-ring, and, therefore, a right a-ideal in R/bT. The a-semi 
simplicity of the latter and (F,) shows that U 2J. 

The necessity part of this theorem js a simple consequence of the appli- 
cation of the result to the case U(R)  =0. 

Another result for these properties is:  

THEOREN3. 2.  If T is an R-property satisfying (F,) then the union of 
any set of right T-ideals is also a right &deal. 

Let {J,) be a set of right a-ideals of R. Put  J =U J,; each J, is also 
a right 7-ideal in J, hence a ( J )  2J,. This implies a ( J )  2 U J, =J which 
evidently means that J is a a-ring. 

Thus, 

COROLLARY then a (R)  is the 3. 1. If 7 is an R-property satisfying (F,) 
unique rnazivaal right a-ideal of R. 

The same methods yield similar results for left ideals under a similar 
Condition (F1) imposed on left ideals. Furthermore, the same methods yield 
similar results for subrings. Namely: 

THEOREM3. 3. 1) If 7 is an H-property which satisfies: 
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(F,) Bvery a-semi simple ring does not contain non, zero a-subrings, 
then U ( R )  contains every V-subring of R. 

2 )  If rr is a% R-property of this type, then the union of every set of 
T-subrings is a a-subring and n ( R )  is the w,aximal T-subring of  R. 

I n  some cases the following is useful in  proving the validity of (I?,). 
Denote by 2 (R) the ring of all linear transformations of R : a$: rc + az, 
a E R. Then: 

LEI,TJ{A3. 1. A property a satisfies (I? , )  if it satisfies the requirement 
that for any right 7-ideal J in R, the iwo sided ideal ,Q(R)J  is a a-ideal. 
This requirement is also necessary if n is assumed to satisfy ( D ) .  

Indeed, if the requirement of this theorem is satisfied and R is a-semi 
simple, 2 ( R )J = 0. This means that J is two sided, and since i t  is a a -  
ideal, i t  follows that J = 0, q. e. d. The necessity part follows immediately 
by (D)  and by the fact that n ( R )  2 J implies a ( R )  2 2 ( R )  J. 

4. The radical of matrix rings. The present section deals with the 
relation of a radical of a ring R and the radical of a matrix ring over R. \lie 
use the notation R, for the ring of all square matrices of order n on R, and 
Rffor the ring of finite-rowed infinite matrices (or finite columns). We prove : 

THEOREM4. 1. Let T b e  an H-property of rings. Then U(R,) = U(R),, 
for every ring R if T satisfies the following conditions: 

( G I )  If R is a T-ring then so is R,. 

(a,) If R is a a-semi simple ring then so is also R,. 

Proof. Consider the sequence Uh = Uh(R) of the A-th T-radicals. P u t  
UXn= (Ux),. Our first step in the proof is to show inductively that 
U ( R ) ,  2U x n  For h = 0, this is evident. If h is a limit ordinal, 
U ( R ) , ,2 Uxnis a simple consequence of the induction and of the fact that 
UXn= ( U v< xuV),= U v <  XUvn. Let A be a non limit ordinal and assume 

If P is an ideal in R such that P/Ux-, is a a-ideal, 
then by (GI) i t  follows that (P/Uh-,), is a a-ring. Since a is an H-property 
this implies that P,/Uh-, ,is a a-ideal in R,/Ux-, ,; hence, by Theorem 1.7 ,  
i t  is readily seen that U(R,) 2P,. This being valid for every such P yields 
that U(R,) 2 U P, = ( U  P ) ,  = Ux,, q. e. d. It follows now by Theorem 
1.1 that U (R,) 2 U (R),. Since R,,/lT(R),r (R/U ( R )  ), and R / U ( R )  

,.Ux_,2U ( R )that 



is V-semi simple i t  follows by (G,) and by Theorem 1. 1 that U ( B ) ,2 U (R),. 
Thus U (R,) = U ( R ),. 

Remark 4. 1. If T is an R-property then (0,)and (G,) are also neces- 
sary conditions for the validity of the preceding theorem, since then ( G I )  
is the assertion of this theorem for a ( R )=R and (0,)is the assertion for 
a ( R )=0. 

As an immediate consequence of (GI )and of the fact that n ( R ) ,=a(R,) 
=R, for T-rings R, we obtain : 

COROLLARY If (0,)4. 1. a is  an R-property which satisfies (0,)and 
then R,, is a a-ring if and only if R is a T-ring. 

The converse of this corollary is generally not true. But suppose T is 
an R-property which satisfies ( D )  and the condition of the preceding corollary; 
then (G,) must hold. If not, there exists a a-semi simple ring R such that 
R, contains a non zero a-ideal A. Consider the ideal in R, generated by the 
matrices p ( a q ) ,  ( p a ) q ,  p, q E R, and a E A. This ideal is contained in d, 
hence by (D)  i t  is a T-ideal. One readily observes that this ideal equals P,,, 
where P is the ideal in R generated by the elements: r (s t ) ,  (rs)t ,  where 
t, r E R and s range over all the elements of R appearing in the matrices of A.. 
Since R is T-semi simple i t  follows by the condition of the corollary that 
P =0. I n  particular this yields : 

TIIEOREX 4. 2 .  If is  an R-property which satisfies ( D )  and the 
condition that a V-semi simple ring R cannot contain a non zero ideal P 
such that R (PR)  = (RP)R= 0, then ( G I )  and (G,) are equivalent to the 
condition that R,, is  a T-ring if and only if R is  such. 

Xote that in tlir whole section no use was made of the relation between 
the two operations of the rings. I-lence the preceding results hold also for non 
associative and non distributive rings. 

5. Dependence of conditions. The conditions listed in section 2 are 
generally independent, but not if one restricts oneself to particular classes of 
rings. The object of the present section is to show that in the case of 
associative rings condition (E)  is superfluous. 

L E ~ I ~ I A5 .  1. Let YT be an R-property of rings (not necessarily asso-
ciative). If Q is a n  ideal in a T-semi simple ring R such that &" 0 then 
& is  also a-semi simple. 
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Proof. Denote by X(R)  the ring of all transformations of the additive 
group of R generated by the identity and by the transformations a,: z 4 xa, 
a l :  x 4 ax, a E R. Suppose that Q contains a T-ideal P i n  Q. For every 
T E X (R)  the totality of the elements p ~ ,  p E P constitutes an additive sub- 
group of &. We note that since Q" 0, the ideals of Q are its additive 
subgroups. Xom the mapping p 4 p~ defines a homomorphism of the additive 
group P onto PTand, evidently, this is also a homomorphism of the ideal P 
onto the ideal PT;hence condition (B)  implies that PTis also a a-ideal in Q. 
By Theorem 1.3 i t  follows that the union P *  of all the ideals PT,T E X ( R ) ,  
is a a-ideal in Q and, therefore, i t  is also a T-ring. The set P *  is readily 
seen to be an ideal in  R. Thus the a-semi simplicity of R implies that P *  =0 
which proves that P =0, q. e. d. 

THEOREM6. 1. If  T is an R-property of associative rings which satisfies 
condition (D) ,  then a satisfies also (E),  i. e. a is an SR-property. 

Proof. Let R be a 7-semi simple ring and let P be an ideal in  R. If Q 
is a T-ideal in P then P Q P  C Q, and i t  is a T-ideal in R by ( D ) .  By the T-semi 
simplicity of R it follows that P Q P  =0. Let P, = {x 1 x E P, P x  =0) ; then 
P, is an ideal in R such that Pr2=0. Since QP C Q n P, C Q, it follows 
by (D)  that Q n P, is a a-ideal in P,. 

Thus the preceding lemma implies that P, n Q =Q P =  0. Let 
P1= {x I x E P, x P  =0) then P1is an ideal in R such that PZ1=0. Since 
& C Pt the preceding argument yields that Q =0 which proves (E) .  

Remark 5 .  1. If one restricts oneself to associative rings possessing 
operators and considers only admissible ideals, then the same proof is valid 
also in this case, with the additional remark that in the proof of the first 
lemma one should note that if P is admissible each of the ideals PTand also 
P *  is admissible. I n  the proof of the preceding theorem, one has to note 
that together with P and Q, also PQP, QP, P, and Pl are admissible ideals. 

Remn~lr5. 2 .  ,It the end of this paper we point out algebraic structures 
to ~vhich the theory of radicals can be extended, except for the parts which 
depend on ring operations. It is worth remarking at this stage that the 
theor? can he developed without any changes for semi-groups (with or ~vithout 
operators) and in particular this section se rill hold for associative semi-gl-oups. 

6 .  2-properties. Nany of the properties of rings which yield radicals 
are properties which satisfy the following condition: 

(Z)  Every zero ring, i. e. a ring R such that R' =0, is a T-ring. 
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A great deal of the theory can be simplified if (Z) is assumed. This is carried 
out in this section. 

H-properties and R-properties which satisfy (Z) will be referred to as 
HZ-properties and RZ-properties respectively. 

Condition (Z) itself can be chosen as a definition of a new ring property 
in the following way: a ring R is a [-ring if R2=0. This property is 
evidently an HZ-property and yields, therefore, an upper (-radical. For 
asociative rings this radical is well known as Baer's Lower Radical defined in 

[ 5 ] .  Additional results on this radical will be given in a subsequent paper. 

THEOREM6. 1. If  7 is an HZ-property, then the upper 7-radical 

U ( R )  2 ( ( R ) .  

This is an immediate consequence of Theorem I. 1.6. 
One readily verifies that the converse of the preceding theorem holds for 

R-properties 7. That is:  if 7 ( R )  2 t ( R )  for every ring R then 7 is an 
RZ-property. The RZ-properties satisfy the following famous property of 
radicals. 

THEOREM6. 2. If 7 is an HZ-property of associative rings, then an 
element r E R belongs to U (R) if a~zd only if RrR C U ( R ) .  

P ~ o o f .  Let Q = {x 1 x E R, RrR C U (R)  ). Then Q is an ideal in R 
such that Q3 CU ( R ) .  The natural hoinomorphism of R onto R/U (R)  maps 
Q on a nilpotent ideal of R/U(R).  By ( Z j  it is readily seen that r-semi 
simple rings do not contain nilpotent ideals, hence Q C U (R)  . 

The property ( Z ) ,  when satisfied together with conditions (D,) and (F,) 
of section 4, yields the existence of the radical of a matrix ring: 

THEOREM6. 3. Let 7 be an RZ-property which satisfies (D,)8 and (P,) ; 
then T(R,) =r (R) , .  

Proof. Let R be a T-ring and let {cik) be a matrix unit base of R,. 
Denote by Rcl) the ring of all one rowed matrices : {r,c,, +. . . + r,c,,). 
This ring contains the two sided ideal P of all the matrices r2c12 + . . . + r,c,,,, 
and P2= 0. The quotient R(l)/P rRe,, and the latter is isomorphic with R. 
Since R is a 7-ring and P is a 7-ideal, by ( Z ) ,  i t  follows by ( G I )  that Rcl) is 
also a T-ring ;hence Rcl) is a right 7-ideal in R,. Similarly each of the right 
ideals R(l) = {rlczl+. . . + r,ci,), i =1, . . . ,n is a right T-ideal in R,. 

By Theorem 5. 1 it follows that ?r is also an  SRZ-property. 
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Since R ,  is the sum of all these ideals, i t  follows by Theorem 3, 2 that R,, is 
a T-ring, which proves ( 6 , )  of section 4. Conversely, let R, be a T-ring. 
13. (D,) i t  follows that the right ideal R(l) is a T-ring. As i t  has already 
been pointed out the latter is hoinoinorphic with R, hence by ( B ) ,  R is also 
a a-ring. The theorein follows now immediately by Theorem 4. 1 in view of 
the facts that RZ-properties satisfy Theorem 4. 2 and that (D,) implies ( D ) .  

One readily observes that the theoreins used above do not require the 
finiteness of n and we inay sinlilarly obtain: 

T H E O ~ Z E ~ I6. 4. I f  i s  a n  R Z - p r o p e ~ Q  w h i c h  satisf ies (D,) and  (E",) 
t h e n  r ( R ) ?  = n ( R f ) ,  w h e l e ,  e. g .  Rr denotes  tlze l i n g  of ctll finite ?~zatl.ices 
over R or tlze ~ i n g  of all finite rowed ma t r i ce s  over 3. 

THEOREM6. 5. L e t  be a n  I2Z-proper ty  of associative l i n g s  w h i c h  
satisfies (D,) a n d  (F,) .  T h e n  t h e  P-radical of a r i g h t  ideal  J i s  t h e  set  
J,= (12: 1 XFJ ,ZJC:T ( R ) ) .  

I'roof. Evidently J, is an ideal in J. Since JJ,J 2 a ( & )  i t  follows by 
(D,) that JJ,J is a right a-ideal; hence JJ,J C T ( J ) .  It follows now, by 
Theorem 6.2, that J, C:a ( J ) . Now P ( J )  is a two sided ideal in J, hence 
by (D) we obtain that P ( J )  J is a a-ring. This means that a ( J )  J is a right 
T-ideal in R, which implies by Theorem 3. 1 that n ( J )J P(R)  ; hence 
a ( J )  C J,, thus a ( J )  =J,. 

I n  particular, if R is T-semi simple we obtain: 

C o l z o ~ ~ a n v6. 1. T h e  7-radicrrl of a l i g h t  iderr1 in a a - s e m i  s imp le  ~ i n g  
i s  i i s  l e f t  a izni l~ i la tor .  

d short cut in the proof of existence of the a-radical can be obtained 

for properties of associative rings which satisfy (D)  with the aid of the 
following theorem : 

THEOREN6. 6. If P i s  a n  H Z - p r o p e r t y  w h i c h  satisf ies ( D )  a n d  t h e  
cond i t i on  t h a t  every  n o n  a - r ing  i s  h o m o m o r p h i c  t o  a n o n  zero r i n g  w h i c h  
does n o t  con ta in  n o n  zero r i g h t  T-ideals,  t h e n  i s  rrn R Z - p r o p e r t y  w h i c h  
satisfies (F,)  . 

Evidently the condition of this theorein implies the validity of ( C )  
which proves that 7 is an RZ-property. To prove (F,), let R be a P-semi 
simple ring and let J be a right a-ideal in R. If J # 0, J, = ( J ,  R J )  is a 
non zero ideal in R which is not a =-ideal. Therefore, J, is homomorphic 
with a non zero ring Jo/Q which does not contain right =-ideals. Thus 



J 2 Q. This yields J" = (J2,  J R J ,  RJ2,  ( B J )  9 )Q, since J0JC:& and 
( R J )  C: ( R J )J CSoJC:&. Hence Jo/&is a a-ring. Contradiction ! 

7. Constructing new properties. Let a be any property of rings. The 
only restriction imposed is that the zero ring should be a 7-ring, namely, 
that a satisfies (A) .  This property gives rise to an H-property by defining: 

DEFINITION7 .  1. A ring R is to be called a ah-ring if every homomorphic 
image of R (including R )  is a a-ring. 

One readily observes that ah is now invariant under hoinomorphism and 
satisfies (A) .  That is rhis an H-property. If one starts from an H-property 

a, the new property a h  is the same as a ;  this implies =ah .  

I n  some cases is even an R-property. Thus, for example: 

LENMA7 .  1. If a is an isomorphism illvariant property satisfying ( A ) ,  
(C,) and (C,), then a h  is an R-property. 

Proof. By Theorem 1.4 and Lemma 2.1, i t  suffices to show that a h  

satisfies also (C,) and (C,) . To prove (C,), we consider an ideal A in a 
ring R such that both A and R/A are T,-rings. Let Ra be a homomorphic 
image of R. 6 induces then a homomorphism of R/A onto R*/A*. Since 
the latter is also a homomorphic image of R and A* is a homomorphic image 
of A, it follows by (C , )  and by the definition of ah that Ra is also a a-ring. 
This proves that a,, satisfies also (C,).  

To prore (C,), let A, C:A, C:. . . be a non decreasing well ordered 
sequence of ah-ideals in R, and let A =U A,. Let 6 be a homomorphism of 
A onto A*. Then 6 induces a well ordered sequence of ideals A,* C A,$ C . . . 
in A*. Each A,* is a a-ideal by the definition of 7,. It follows now b:y 
(C,) that, since U A,a= (U A,)" A*, A* is a T-ring, which proves (C,). 

The following is a method for constructing properties satisfying the 
conditions of this lema. 

To each property a we can define a property of being "a-semi simple " 
which we shall denote by 7.s.s. That is:  a ring R is a ~.s.s-ringif i t  does 
not contain non zero a-ideals. 

L~nfnfa7 .  2.  If a is an H-property satisfying ( D )  then T.S.S. is an 
isomorphism invariant property zuhich satisfies ( A ) ,  (C,) and (C,). 

By definition and by Theorem 1. ti i t  follows that T.S.S. is an isomor-
phism invariant property which satisfies (A) .  A proof similar to the proof 
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of Lemma I. 2 .  3, yields (C,). To prove (C,), let A, C:A, C . . . be a well 
ordered sequence of T-semi simple ideals in a ring R. Let A =U A,. If Q 
is a a-ideal in A, then since Q T )  Q n A, and satisfies (D)  i t  follows that 
Q n A, is a T-ideal. This implies that Q n A, is also a T-ideal A,, and since 
A, is P-semi simple, we have Q n A, =0. Now 

Q = Q n  A = Q n ( u  A,) = u ( Q n  A,) = o ,  
which proves that A is a ,n.S.S. ring, q, e. d. 

It follows now that one can apply Lemma 7 . 1 to the property (T.s.s.)~, 
mllich me denote shortly by ~ . s . h .  The definition of this property is the 
following : 

DEFIXITION7 . 2. A r i n g  R i s  a ~ . s . h . - r i n g  if every  h o m o m o r p h i c  i m a g e  
of R i s  a - s e m i  s imp le .  

Thus by the preceding two lemmas we have: 

THEOREM7. I. I f  a i s  a n  H - p r o p e ~ t y  sa t i s f y ing  (D)  t h e n  T . s . ~ .i s  a n  
R-proper t y .  

If me restrict ourselves to associative rings, we can prove more: 

THEOREM If Z H - p r o p e r t y  of associative r i n g s  and  satisfies 7 . 2 .  T i s  CL 

(D) ,  t h e n  t h e  proper ty  a.8.h. i s  a n  S R - p r o p ~ r t y ,  i. e. a n  R - p ~ o p e r t y  satis-  

f y i n g  ( D )  a n d  ( E ) .  F z ~ r t h e r m o r e ,if a satisf ies t h e  cond i t i on  t h a t  B ,  i s  a 
~ - ~ i n g  satisfies also t h e  cond i t i on  ( G , ) ,if nnd  on ly  if R i s  a 7 - r i n g  t h e n  ~ . s . h .  
( G 1 ) for  tlze radical of t i le m a t r i x  r ing .  

Proo f .  First, we note that under the conditions of the theorem, a-semi 
simple rings cannot contain nilpotent ideals. 

Let R be a ,~.s.h.-ring and let Q be an ideal in R. Suppose Q is not a 
a.s.h.-ring; then i t  contains an ideal Y such that Q/P is not T-semi simple. 
From the condition of the theorem we can readily deduce that Q/QPQ is 
also not T-semi simple. Let T/QPQ be a non zero T-ideal in Q/QPQ. 
It follows by ( D )  that QTQ/QPQ is also a n-ring; but since R is a a.s.h.- 
ring, R/QPQ must be T-semi simple and, therefore QTQ _C QPQ. Conse-
quently, the set { x  I x E Q, QxQ C QPQ) constitutes a non zero ideal in R 
(containing T )  which is nilpotent modulo QPQ. This is impossible since 
in the present case we know that a.s.s.-rings cannot contain non zero nilpotent, 
ideals. iIence we obtain the validity of (D) .  The rest of the first part 
of the theorem follows now from Theorem 5. !. 



Before proceeding with the proof of the second part, we show that if 
R is a T-semi simple ring then so is R,L. Indeed, let Q be a T-ideal in R,; 
then R,QR, C Q is by (D)  a T-ideal. Now R,QR, =T, where T is the 
ideal in R generated by the eleinents: rqs, r, s, E R and where q ranges over 
all the elements of R which appear in the matrices of &. By the condition 
stated in the second part of the theorem i t  follows that T is a T-ideal, 
hence T =0. The set {x I x E R, RxR = 0)  is a nilpotent ideal in R ; i t  
follows, therefore, that this ideal is zero. Consequently, & =0 and our 
assertion is proved. We turn now to the proof of (GI)  : let R be a 7.s.h.-
ring and suppose R,, is not a ~.s.h.-ring. Let & be an ideal in R, such that 
R,,/Q is not a T-semi simple ring. By ( Z )  it follows that R,,/R,QR, is also 
not 7-semi simple. The latter is isomorphic with (R/T),  and R / T  is by 
assumption T-semi simple, hence our assertion implies that (R/T),  is also 
a ~.s .s . - r ing.  Contradiction ! To prove (G,), we note first that if R, is a 
~ . s .h . - r ingthen R must also be a 7.s.h.-ring. Indeed, for every ideal T in R, 
(R/T), ,  rR,/T, and if R /T  were to contain a non zero 7-ideal then, by 
the condition of the theorem, the latter would also contain a non zero T-ideal 
which is impossible. Kom let R be a ~.s.h.-semi simple ring and suppose R, 
is not such a ring. Let Q be an ideal in R, which is a ~.s .h . - r ing.  By (D)  
it follows that R,,QR, =T , ( C  Q) is also a ~.s .h . - r ing.  This implies, by 
the preceding argument, that T is also a ~ . s .h . - r ing ;  hence T =0. But if 
this is the case, Q 3= 0 ;  but then Q cannot be a ~.s .s . - r ing and, evidently, 
not a ~.s.h.-ring. 

The preceding theorem can be applied to many ring properties, and in 
particular; quasi regularity, nillity and semi nilpotency. The respective 
radicals will be dealt with in part 111. 

A b~-resul t  of Lemma 7. 2 is the following: 

TEEOREM7 . 3. I f  T is an  H-property zohich satisfies (D) ,  then every 
ring R contcsins mcixirnal T-semi simple ideals P and ~ a c h  of them is a T-semi 
simple radical in the sense of section 1. 

The proof follows immediately, since the relation between ideals deter- 
mined (as defined in section I )  by the property of "T-semi simplicity " 
satisfies the requirements of Corollary I. 2. 1. 

TVe can prove more: 

THEOREM7 . 4. I f  7 is an R-property which satisges (F,) (or (F,)), 
then every ring R contains maximal T-semi simple subrings (right ideals), 
and ~ ( 1 2 )  n S = 0 for every such maximal subring (right ideal 8). 
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The proof of this theorem is similar to the proof of Lemma 7 . 2 .  By 
proving that if S1C SqC .  . . is a well ordered sequence of T-semi simple 
subrings of R, then U 8,is also 7-semi simple. This implies the existence 
of maximal n.s.s.-subrings S. It follows by (D)  that T (R)  n S C T ( R )  is 
a a-ideal in T(R) and, therefore, in S; we obtain T(R)  n S =0, q. e. d. 

I n  the next section, we turn to another useful method of constructing 
new radical properties, a method which will be seen to yield a generalization 
of Baer's Lower Radical ( [5] ) . 

8. Additive properties. Many H-properties of rings, like nilpotency, 
are not R-properties, get their upper radicals behave very similarly to radicals 
of R-properties. Those are the H-properties which satisfy the condition of 
additivity. Namely : 

(Add) If A, B are Zwo =-ideals in a ring R then their union (A, B)  is 
also a T-ideal. 

Such properties will be called A-properties. Evidently, R-properties 
satisfy this condition. Furthermore, this implies that the union of any 
finite number of T-ideals is a T-ideal. 

With the aid of a property n, we define a property T* as follows: 

DEFINITION8. 1. A ring R is a T'~-ring if every n!on zero homomorpkic 
image of R contains non zero n-ideals. 

An equivalent definition is given by the following lemma: 

LEMMA8. 1. R is a T*-ring if a,nd only if R =U(R) ,  where U(R)  is 
the upper T-radical. 

Indeed if R 3 U (R),  R/U (R)  is a non zero P-semi simple homomorphic 
image of R ;  hence R cannot be a =*-ring. Conversely, if R is not a T*-ring 
then R properly contains an ideal P such that R / P  is T-semi simple. Hence, 
by Theorem I. I. 2, R 3P 2 U (R),  and the proof is completed. 

An associative ring R was called by Levitzki an L-ring if R coincides 
with its Lower Radical (in the sense of Baer [4]). Noting that Baer's 
Lower Radical is an uppper radical (in the sense of the present paper), of 
the property of nilpotency, the preceding lemma shows that the notion of 
T*-rings is a generalization of the notion of L-rings. 

J. Levitzki, "A theorem on polynomial identities," Proceedings of t h e  Amer icar~  
Nathemat ica l  Society ,  vol. 1 (1950),  p. 335. 
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THEOREM8. 1. I f  a is an H-property which satisfies (E), then a" is 
an R-property which satisfies the same condition; and the a*-radical coincides 
with the upper a-radical. 

Proof. Evidently, i t  follows from the definition of a" that i t  is an 
H-property. First we assert that nksemi simplicity is equivalent to a-semi 
simplicity. Indeed, if R is a-semi simple, then i t  follows by (E)  that 
U ( P )  =0 for every ideal P in R. I n  view of Lemma 7. 1, this implies that 
R does not contain non zero 7"-ideals, i. e., R is a*-semi simple. The con- 
verse is evidently true since a-ideals are also a"-ideals. Consequently, the 
validity of ( E )  for a implies that a" also satisfies (E) .  Another result 
obtained by our assertion is that if R is not a 7"-ring, R/U(R)  is a non zero 
P-semi simple image of R. This proves that a" satisfies ( C ) ,  hence a" is an 
R-property. By Theorem 1.1 it  follows readily that U (R)  2 a" ( R ) .  Since, 
by Corollary 2. 1, U ( R )  is a 2-ideal,  i t  follows by Theorem 1. 1 that 
a" (R)  2 U (R)  ; hence a" ( R )  = U (R) ,  q. e, d. 

rl similar theorem about condition (D) is not true in the general case. 
But for properties which satisfy the condition of additivity we can show: 

THEOKXM8. 2. I f  is an A-property which satisfies ( D )  and ( E ) ,  
then nW is an XR-property. Furthermore, if a satisfies also (D,) ov (D,) 
then a*  satisfies also the same condition. 

Proof. From the preceding theorem we see that i t  remains to prove the 
validity of ( D ) .  We shall prove the second part of the theorem for (D,) 
and the proof of ( D )  and (D,) is similar. 

Let R be a a"-ring and let S be any subring of R. The proof will 
follow by showing that U(S) I> S n U(R), since then U(S) =S if U(R) =IZ. 
This is carried out by proving inductively that U ( S )  2 S n Ux(R)  for 
every A. For A = 0 it is evident. If h is a limit ordinal, then 

Let h not be a limit ordinal. Pu t  V = UA-, ( R ) .  By definition, Ux(R)  is 
the union of ail the ideals P such that P / V  is a a-ideal; hence, if 
a E UA(R)n f i , then a E PIU P, U . . . U P,, for a finite number of ideals 
{Pi) such that PJB  are a-ideals. By the condition (Add),  P =U Pi is also 
a a-ideal over V. The quotient (P n S )  U V/V is a subring of P/V, hence 
by (D,) it is a a-ring. Since P 2 V, 

V u ( P n  S ) / V =  P n  S/[P n S n V] = P n  S/V n S. 
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Thus, the latter is also a 7-ring. By Theorem I. 7, and from the fact that 
U(S )  3 S n V ,  i t  follows readily, that since P n S/V n S is a a-ideal, 
li (S)  2 P n S. Thus a e U (S )  for every a E Ux n S. Consequently 
U ( 8 )  2 UAn S, q. e. d. 

The proof of (D)  (similarly of (D,)) follours in the same way by 
replacing S by an ideal (right ideal) B of R and noticing that T7 U (P  (3B )  
is an ideal (right ideal) in P. 

I n  particular we have by Theorern 2 .  3 : 

COROLLARY8. I. If n i s  a n  A-property ,  t h e n  U (-4) =A n li (12) for 
every ideal A in R. 

We conclude this seection with showing that: 

THEOIZEM8.3. If7 i s  at, H-proper ty  wh ich  satisfies (C,) t h e n  T satisfies 
t h e  condi t ion (Add). 

Indeed, let A and B be two T-ideals in B. Since il U B/B zz A/A 17B 
and the latter is homomorphic with the T-ring A, A U B/B is also a T-ring. 
B is a 7-ideal in A U B as well as in R ;  i t  follows, therefore, by (C,) that 
A U B is also a 7-ring, which proves (Add). 

9. Generalization. A close survery of the proofs of the preceding sec- 
tions (except section 6 )  shours that no use whatsoever has been made of the 
operators of the rings and, except for one point (on A-properties), even the 
fact that rings and ideals contain elements. The wholr theory can be developed 
in a far wider class of mathematical objects. The largest field in which this 
can be done is that of the Lattice-ordered Bicategories of S. MacLane defined 
in [Y], which satisfy some additional axioms so that the two main isomor- 
phisms hold and some minor properties of ideals in rings. 

We do not intend to give here the list of axioms such a category has to 
satisfy, but only a list of conditions, some of which may be considered as 
axioms, others as lemmas, to be valid in such a category in order that the 
whole theory can be developed in it. It is worth noting that the whole theory 
of radicals is just a relation between injections and projections of a bicate- 

gory. The proof in the general case can be obtained by a simple change of 
'objects ' and 'normal objects,' ' supermaps ' instead of ' rings,' ' ideals ' and 
'homomorphisms.' 

In giving the list of conditions we s21all make use of notions and 
theorems given in [7], with the only differeuce of using the zero symbol O9 

instead of the multiplicative symbol used in [ 7 ] .  



Let Cr be a lattice-ordered bicategory satisfying the axioms of part I1 
of [ r ]  (pp. 495-507). Such a category contains objects denoted by A, 

B, . . ,R, 8, . . and mappings a, 0,y, . . . . Recall the following facts of 
[7] : The set of all subobjects A C P form a complete lattice B ( R )  with 
the zero OR, and R as zero element. 

If a :R +R', then a, denotes in [6] the mapping of S ( R )  induced 
by a (for details see 171, p. 500). We shall use the notation a instead of a, 
and put aA for the image a,A. 

The kernel K, of a is by definition the 1. u. b.{A / A C R, aA =OR). 
The set of all kernels of R is exactly the set of all subobjects of R normal 
in R (in the sense of [ Y ] ) .  With each normal object A of R, there is 
associated a unique projection i.~: R -+ R/A, with the unique quotient 
object R/A. 

d simple observation shows that the set % ( R )  of all normal subobjects 
of R constitutes a complete lattice. This is not necessarily a sublattice of 

6 ) .  I t  is true that the intersection of normal subobjects in 8 ( R ) is the 
same intersection as in B ( R )  (171, p. 507), but the union U N, in Yt(R) 
is defined as the intersection of all normal subohjects of R containing all AT,. 
This is the general set-up in which one can state the results of the preceding 
theory. The objects R will replace the rings and the kernels (=normal 
subobjects) will replace the ideals. I n  order for the proofs to hold, one has 
to assume that the complete lattice satisfies some additional requirements. 

I )  If a :R +aR is a supermap (we call i t  a homomorphism (onto) to 
make i t  similar to the language used here), then a maps normal subobjects 
of R onto normal subobjects of aR, and a ( U  N6) = U (aATi). 

11) If a :R -+ aR is a homomorphism, and a-lA denotes the inverse 
image of a normal subobject A of aR ([7], p. 507) then a-I lo is a lattice 
isomorphism between the lattice of all normal subobjects of R lying in 
the interval K, c R (K, the kernel of a )  and the lattice %(aR)  ; and 
R/a-lB e aR/B for every B e %(aR) .  

111) If R -+ aR is a homomorphism, A e %(R),  then a induces a homo- 
morphism R/A -+ aR/aA. 

I V )  Q, A, B, E %(R) .  If R 3 A 3 B then B e 91(A),11 and so 

Q f-l A & % ( Q ) .  

lo Denoted by a*, in [71. 

l1 This fact was pointed out in [7], p. 507. 
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V)  If R > B > A, A, B E % (R) ,  then there is a homomorphism : 
l?/A +R/B such that for every C > A, C E R ( R ) ,  C/A exists, and its image 
is (C U B)/B. Furthermore, by (11) we have: (R/A)/(B/A) eR I B  (The 
Second Isomorphism theorem). 

V I )  For A, B E 92(R), there exists an equivalence (isomorphism) 
A U B/A HB/L4 n B (The First Isolnorphism theorem). 

V I I )  If 11, c A, C . . . is a well ordered non decreasing sequence in 
% ( R )  then U Ai in %(R)  is the same U Ai in 91(B)  for every normal object 
B 3 Ai. 

These conditions are fundamental for the theory developed in sections 

1, 2, 7 ,  8 (except Theorem 2 . 1  and its corollary). The second part of 
condition I1 was used only at  Theorem 2. 3. For the sake of Lemma 7 .  2 

we need also : 

V I I I )  If A, C A, C . . . is of the preceding type, then Q n (U A,) 
= U (Q n 8 , )  for any Q E % ( R )  ; and for the sake of Theorem 8. 2, we 
need ( V I I I )  and: 

I X )  I f  {Pa} is a set of R ( R ) ,  B E % (R) ,  A E % (B)  and such that 
A 3 (U Pi)  n B for every finite set P,, . . . ,Pk chosen out of {Pa)  then 
-4 3 P n B, where P is the union of all Pa. 

I n  the proofs of sections 3 and 8, and of Theorem 2. 1and its corollary, 
one notices the resemblance between the problem of one sided ideals and 
subrings. These two cases are particular applications of similar problems 
~~rhich The general situation arise for the bicategories of the preceding type. 
is as follows: we assume that to each object R belongs a complete lattice of 
subobjects $ (R)  (right ideals, subrings). These subobjects should satisfy 
conditions of a similar nature to the conditions satisfied by % ( R ) .  Namely: 

1') If a :  R -+ aR is a homomorphism, then a induces a lattice homo- 
morphism of s ( R )  onto $ (aR) such that a ( U  J i )  = U (aJi) .  Furthermore, 
Ji-+ aJ; is a homomorphism. 

11') The lattice of normal subobjects % ( R )  is a sublattice of $ ( R ) .  

111') I f B & % ( R ) ,  J ~ % ( R ) , t h e n A n  J & % ( J )  a n d 3 ( 8 ) , a n d t h e r e  
is an isomorphism A U J/A eJ /A n J. 

1V') If {A,} is a set of %(R)  ( J ( R )  ) and A,  C J E J ( R ) ,  then 
A, E % ( . J )  and U A, in 92(R) ($ (R)  ) is the same object as U A, in 

R ( J )  ( S ( J ) ) .  
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V') If R > J > A, A E 91(R) ,  J E 3(R) ,  then J/A exists and belongs 
to $(R/A). 

And for the sake of Theorem 8. 2, we need the previous conditions ( V I I I )  
and ( I X )  to hold also for B, Q E 3(R)  and the fact that if Q > J, Q, J E $ (R)  
then J E S ( Q ) .  

Even without going as far as bicategories one readily observes that the 
whole theory can be developed without any additional efforts for groups, 
semi groups, loops, etc., or, more generally, to abstract algebras in the sense 
of Birlihoff (e. g. [2] ), where ideals should be defined as kernels of homo- 
morphisms. These abstract algebras should be of a more restrictive type 
than those studied in [2], Ch. V I  (also, Goldie [6]). Namely: one has to 
assume that the operations of the abstract algebras R = (R, a )  are finitary 
functions fa(zl ,  . . . ,x,), n <co ; fa E and that : 

(A)  These algebras contain a selected one element, denoted by zero. 

(B)  The congruent relations of the algebras are uniquely determined 
by the set of elements which are congruent to zero (i. e, by the kernel = idealj . 

( C )  A11 congruent relations considered must be permutable (in the 
sense of [2], Ch. V I ) .  

By the results of [2], Ch. VI  (see also [6]),  one readily shows that 
these algebras satisfy all conditions imposed on the bicategories. I n  particular 
we remark that if A, A, C . . . is a well ordered sequence of ideals in such 
an algebra R then U A, is just the set-theoretic union, which proves ( V I I ) ,  
(VIIT).  

To these algebras one can extend part of the theory of radicals as 

developed by Brown-McCoy in [3] and [4]. Their whole theory can bc 
extended to algebras of the type mentioned above which are loops with respect 
to one of their binary functions : f,(x, y )  =s + y. I n  the next section we 
develop their theory first, partly, in the general case and then the whole 
theory for loop algebras. 

9. Brown-McCoy's theory of F-radical. Furthermore, we assume, in 
this section, that to every algebra considered there corresponds a complete 
lattice R of subsets containing the zero. By a 9-subset of R we shall mean 
a subset of R which belongs to R. We also assume that for every homomor- 
phism -9. of R the Q-subsets of R@ are the images of the 9-subsets of R and 
the inverse images of the first is a subset of the latter. 
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Let a +F ( a )  be a mapping of elements of algebras R onto R-subsets 
of R. This mapping is assumed to be homomorphic invariant; that is: 
F(a8) = Pa(a). I 2  Following [3], we define : a 9-subset T of R is called 
mazirnal modular if there exists an element a E R such that P ( a )  T and 
T is a maximal R-subset of R which does not contain u. An ideal A in R 
is said to be P-primitive if A is a maximal ideal contained in some maximal 
modular 9-subset of R. An algebra R is P-primitive if the zero is a primitive 
ideal in R. An ideal P is called P-regz~larif a E P ( a )  for every a e A. 

It is readily seen that F-regularity is an HI-property in the sense of 
section 1, hence i t  yields an upper F-radical which we denote by P ( R ) .  

THEOREM9. 1. If the primitijue ideals P u~.c P-ideals,13 then P ( R )  ,is 
the P-radical of R and it is the intersection of all primitive ideals of R. 

Proof. Let A > B be two ideals in R such that AJB is P-regular in 
R/B. We wish to show the existence of a primitive ideal P2B such that 
A > A n P. Without loss of generality me assume that B = 0. Since A 
is not 3'-regular, a { F ( a )  for some a e -4. By Zorn's Maximum Principle 
we deduce the existence of a maximal modular Q-subset S of R containing 
P ( a )  and excluding a.14 Let P be a primitive ideal contained in 8,then 
since a$ S n A, A > A n P, q. e. d. Our theorem follows immediately as a 
consequence of Theorem I. 2.4.  

Generally, i t  cannot be shown that F-primitive ideals are P-ideals. 
Furthermore, i t  is not certain that if A is F-primitive in R then R/A is an 
8'-primitive algebra. The following are some special cases for which this 
is true. 

THEOREM9. 2. I f  the sets P ( a )  (the set R) are the set of all ideals, 
then if A is an F-primitive ideal in R, R/B is P-primitive and every primitive 
algebra is F-semi simple. 

P~oof.  I n  the present case F-primitivity coincides with maximal modu- 
larity, hence if A is F-primitive P ( a )  C A for some a# A. I n  the quotient 
R/A, the image d of the element is a non zero element such that P ( d )  =0. 
By the maximality of A with respect to A, one readily observes that every non 

l2 Here F 8 ( a )  = {m / m e  R, m = y8 for some y e F ( a ) ) .  
l3Meaning that RIP does not contain non zero F-regular ideals. 
l4 Here we have to assume that  the union of a linearly ordered set of R-subsets is a 

a-subset which is their set-theoretic union. This holds for example if the R-subsets are 
all subalgebras. 



zero ideal in the quotient R / A  must contain (7 and thus cannot be F-regular. 
This proves that R / A  is primitive as well as F-semi simple. 

The preceding two theorems present a generalization of the F-radicals 
as developed in [4] and in example 3 of [3], section 6. The incorporation 
of the theory developed in [3] is achieved by restricting ourselves to abstract 
algebras which are loops with regard to one of their functions f (a ,  b )  =a + b 
and assuming that the Q-subsets are subloops. We refer to such algebras as 
loop-algebras. 

Now let a +P ( a )  be a homomorphic invariant mapping of the elements 
of loop-algebras onto R-subsets which satisfies the following conditions of [3] : 

P. F ( a  + 6 )  C F ( a )  U ( b ) , .  

where F ( a )  U ( b ) ,  denotes the minimal loop-subalgebra of R which contains 
both F ( a )  and the element 6. 

I n  a similar way to the proof of the lemma of [3, section 81, one verifies 
that if -4 is F-primitive in R then R / A  is an F-primitive ring. Hence the 
theory dereloped in [3] section 8 is now a consecluence of Theorem 9 . 1  and 
the following lemma: 

LEIVIIVIA9. 1. If R is urz P-p~irnitive loop-algebra tlzen R is F-.semi simple. 

Indeed, let R be primitive with respect to a and the maximal modular 
R-subloop X. Let P be a non zero ideal in R. The natural homomorphism 
of R onto R / P  maps S onto the $2-subloop P ( S ) / P  of R / P .  Since P 4 8, 
P ( 8 )3 X .  Hence a E P ( 8 ) .  Thus a =s (mod P )  for some s E X and, there- 
fore, a -s =p E P. It follows now by condition ( P )  that 

F ( p )  G F ( a )  U ( s ) ,  C P ( a )  U S = S .  

Assuming that P is F-regular, me obtain a -s =p E P ( p )  S which implies 
a =p + s E S. Contradiction. 

Next we assume that the mapping a+ F ( a )  is homomorphic invariant 
and satisfies the second condition of [3] : 

( P , )  If b E F ( a )  then F ( a  + b )  C P ( a )  

This condition does not imply Theorem 9. 1, yet me are able to show that 
in this case : 

THEOREN9. 3. I f  n +F ( a )  is a homomorphic inval-iant and satisfies 
( P , )  then the properiy F-regulu~ity is an RI-p~operty .  
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I n  view of Theorem 2 of [3] and of the results of section 1, this theorem 
yields the results of sections 1-3 of [ 3 ] .  

Proof. We show the validity of ( G I )  and (C2), and the proof of the 
theorem will follow by Theorem 1.4. The validity of (C,) is evident. To 
prove ( G I )  we consider the ideals A 2B of R such that A/B and B are 
P-regular. The natural homomorphism of B onto R/B maps F ( a )  onto 
B U F(a) /B.  Hence for every a ~ A , d =  ( a +  B/B) ~ F ( c i )  = F ( a )  U B/B, 
i. e., a =x + b for some x E F(a ) .  Thus, a -x = b E B. It follows now by 
(P2 )  that P ( b )  C P ( a ) ,  Since B is F-regular, b = a - x ~ F ( b )  _CF(a)  
and, therefore, a E P ( a ) .  This proves that A is P-regular,, q, e. d. 
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