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A GENERAL THEORY OF RADICALS." 

111. Applications. 

The present paper contains applications of the theory developed in the 
first two parts ([I], [a]) to theory of rings, in particular to associative rings. 
The results of the preceding parts [I], and [2] will be quoted by the numbers 
I, or 11, followed by the number of the result quoted. 

I n  section 1we outline an extension of the theory of nilpotent ideals in 
associative rings to non associative (and non distributive) systems, obtaining 
a generalization of Baer's Lowe Radical ([3]) and proving that this generalized 
radical is also the intersection of all prime ideals, a result which was 
proved by Levitzki ([8]). Continuing the study of nilpotent ideals, we 
restrict ourselves in section 2 to associative rings. I n  this section, some new 
results on the Lower Radical are obtained as well as some short cuts in the 
proofs and new results for the semi-nilpotent radical ( [7] ) . I n  view of the 
results obtained in section 2, i t  seems that Baer's Lower Radical is the best 
'minimal ' extension of the nilpotent radical of rings satisfying the minimum 
condition for right or left ideals. I n  section 3 we approach some of the 
known radicals from the point of view of the present theory. Thus we obtain 
alternative proofs for : Jacobson's radical ( [6] ), the locally finite kernel 
( [ lo ] )  and McCoy's radical ( [ I l l ) .  I n  the last section we utilize the 
theory for obtaining new radicals, among which is an PI-radical. A ring R 
is an PI-ring if every homomorphic image R' of R is an I-ring ([lo], i. e. 
every non nil right ideal in R' contains an idempotent). It is shown that this 
property FI yields a radical which satisfies all the ordinary requirements a 
radical is supposed to satisfy. 

1. Nilpotency and solvability. I n  the present section we consider rings 
(semi groups) R not necessarily associative (or distributive) and we outline 
an extension of the theory of nilpotent ideals to the non-associative case. 
The whole development here will hold also, without any changes in the proof, 
in general abstract algebras of the type considered in the last section of 11, 
which are semi groups with respect to a binary operation f (a, b ) .  

* Received September 10, 1952; substantially revised March 7, 1963. 
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Let Q,, &, be two subsets of such a ring R. We denote by Q,QL the set 

of all element q,q,, q, E Q,, q, E Q,. I n  particular we put Q' =QQ and 
inductively Q(") = (Q(n-,I)'. Note that (&("))("I =Q(""). An ideal P in R 
is called a prime ideal (in R )  i f :  PIP,CP, where Pi CP are ideals in R, 
implies that either P, CP or P, _C P .  

Defining a ring R to be a [-algebra if R' =0,l we obtain an H-property 
5 of rings. The upper [-radical, which we denote by [(R),  will be called 
in this paper the Baer's radical. It is known (Levitzki [ 8 ] )  that in the 
case of an associative ring R, Baer's radical is the intersection of all the 
prime ideals in R (AlcCoy's radical [ I l l ) .  It will be shown here that this 
result is true for non associative ring, semi groups and more generally this is 
true for the abstract algebras of the type mentioned above. That is:  

THEOREM1. 1. [ (R)  is the intersection of all the prime ideals of R. 

Proof. Observing that prime ideals are 9-ideals, me deduce from Theorem 
I .  1. 2 that the intersection X of all the prime ideals of R contains [ (R) .  
The theorem will be proved if we show that for every a +  [ (R)  there is a 
prime ideal Q in R which does not contain the element a, since then X _C [ (R) .  
Indeed, put a, =a ;  let A, be the minimal ideal in R containing a, and [ (R) .  

Since a, y! [ (R) ,  A, 3[(R) .  Hence A', 4 [(R) . Let a, be any element of 
A', which does not belong to [(R).  I n  a similar may we can inductively 
obtain a sequence of elements a,, a,, . . . such that ai $ [ (R)  and ad+, E Afb 
where di is the minimal ideal in R containing [ (R)  and ai. By Zorn's lemma 
there exists a maximal ideal P in B containing [ (R)  and excluding the 
sequence {ai). The ideal P is the required ideal. For if PIP, C_P and 
Pi3P then the maximality of P implies that aj  E P, and ak E P,, for some j 
and 16 ;  hence P, n P, contains an element al of the sequence {ai). But this 
implies that at+,E A'I C PIP, P which is a contradiction." 

The preceding proof provides an alternative characterization of [ (R) .  We 
call a sequence {qi) of elements of R an m-sequence if qi+, E Q'i, i =1,2, . . . , 
where Qidenotes the minimal ideal in R containing qd. An m-sequence is 
said to be a 172111 sequence if i t  contains only a finite number of non zero 
elements. 

Define a property p of ideals in R as follows: an ideal in A in R is a 
p i d e n 1  in R if every '~n-sequence of elements of A is a null sequence. 

TITe prove : 

' Recall that P is said to be a r-ideal in R if the quotient RIP is [-semi simple. 
For associative rings, the notion of y-ideals coincide with the notion of radical-ideals 
of 131. 

This proof resembles that of the lemma of [ Q ] .  
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THEOREX1.2. The property p is cbn RI-pl.opel.ty (in the sense of I I -
section 2 )  and p (R)  =[( R ) . 

Let -9 be a homomorphism of R onto R8 and & be an ideal in R. Let 
P be any ideal in R, such P =Q8. First we show that for any rtz-sequence {bi) 
in P, there exists an m-sequence {ai) in Q such that bi =a&', i =1,2 ,  . . . . 
Choose a,, any element of Q such that a,8 = b,. Suppose that a,, . . . ,(I,& 
have been so chosen that ui E Q, atP= bi, i =1, . . . ,n and a;,,E Ari where 
Ai denotes the minimal ideal in R containing ai. We deterniine a,,, as 
follows: since a,," b,, it is evident that An@ =E,,, where E, is the mininial 
ideal in R which contains b,. Since (A',,)8 =B',, and b,,, E B', we can find 
a,,,, E A',, such that CL, , ,~  = b,,, and evidently (I,,,, e Q .  This proceducc deter- 
mines inductively the required sequence. 

Consequently, if every m-sequence of the ideal & is a null sequence then 
the ideal P =Q8 has the same property. This proves that p is an HI-property. 
That p is an RI-property will be shown by proving the validity of 11. ( C ) .  
Let A be not a p-ideal in R, then A contains a non null sequence {ai). Con-
sider the maximal ideal B contained in A and which does not contain the 
sequence {cL~). Evidently A 3B. If A 2P 3B then the maximality of B 
implies that ai e P for some i. 1'EHence a j  for every j 2 i. Thus P / B  
contains the non null sequence tii, tii+,, . . . which proves that P/B  cannot be 
a p-ideal, and 11. (C) is proved. 

To prove p ( R )  = [ (R) ,  we note first that a [-ideal in R is a pideal. 
By Corollary I. 1.5 i t  remains, therefore, to show that [-semi simplicity 
implies psemi simplicity. Indeed, let IZ be a [-semi simple ring and let 
A # 0 be an ideal in R. Choose a, any non zero element of A ;  since A', # 0 
take a? f 0 ally element of A',. Inductively we obtain a non null m-sequence 
{ai) in A, which shows that R is also psemi simple. 

Remar76 1. 1. The preceding proof, with the exception of the last part, 
is readily seen to hold, with some slight changes, for the following similar 
properties of rings (semi groups, etc.). A sequence {pi) in R is a mo-sequence 
if pi,, E Pi where Pi is the minimal sub ring of R containing pi (alternative 
definitions: Pi =piR, Pi =Rpi, etc.) ; and R is a po-algeba if every mo-
sequence is a null sequence. 

The second aim of the present section is to outline an extension of the 
theory of nilpotent ideals of associative rings to non associative rings (semi 
groups, or general multiplicative algebras). It seems that in the general 
case the property of solvability should replace the property of nilpotency. 

We call a subset & of R a soluable subset if = 0 for some integer 71.; 
a,nd a ring R is said to be a cr-ring if R is solvable. We call a ring R a 
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SU-ring (senii ~ o l v a b l e ) ~  Furthermore,if every finite subset of R is solvable. 
an element a e R is said to be a nil element if the set ( a )  containing the 
element a is solvable, and a ring R is a ?zil-vi?bg (v-ring) if all its elements 
are nil elements. 

THEOREM1.3. 1 )  is an H-property which satisfies ( C )  and (D,)4NJ 

of 11. 2)  su and v are R-properties which satisfy I1(D,) (and hence I1(D) ) ; 
and v(R) 2 s u ( R )  2 u(R) =) [ ( R ) .  

P ~ o o f .  Evidently, each of the properties are H-properties and satisfy 
11. (F,). cr satisfies 11. (C,) ,  for if A/B is solvable and B is solvable then 
Acn)C B for some n and Hrn)=0, and hence A(nm) =0. h similar proof 
holds for so and V. Since these last two properties evidently satisfy 11.( C 3 ) ,  
i t  follows by Theorem 11.1.4 that they are R-properties. The relation 
between the various radicals follows by Theorem I. 1.6 as a consequence of 
the fact that a [-ring is solvable, solvability implies semi solvability and, 
finitely, a semi solvable ring is a nil ring. 

There are many other aspects of extending the theory of nilpotent ideals 
of associative rings to the non associative case. Thus, for instance, nilpotency 
may be defined as follows: a subset Q of R is nilpotent if there exists an 
integer n such that all the possible multiples of n elements of Q are zero. 
Similarly we can define semi nilpotency and nillity. Each of these properties 
is readily seen to be an H-property. But the main disadvantage of the 
nilpotency defined in this manner is that it does not satisfy 11. (C, )  and, 
therefore. its allied properties: semi nilpotency and riillity are not, generally, 
R-properties and do not yield a radical. The validity of 11. ( G I )  seems the 
main reason for preferring solvability in the theory of non associative rings 
over the other generalisations of nilpotency. 

Remark 1.2. Radicals of a similar type can be defined in abstract 
algebras of the type considered in section 11, but which need not be ring or 
semi groups. We assume that these algebras possess a function f (x,, . . . ,s,), 

n < a,(e. g. Lie triple systems) about which we assume that f(x,, . . . ,x,) =0 

if one of the x, =0. As in section I1 ideals mill be the kernels of homo-
morphisms. An ideal will be said to be prime if 

f(f'1,. . ' 3 , )  = PI,. . . , p n ) , p , ~ f ' , )  CP, 
where P, are ideals, implies that at  least one P, _C P. Denoting 

R ' = f ( R , .  . . , R )  ={f ( r , , .  . . , r , ) , r , ~ R ) ,  

we define a ring to be a [-ring if R' =0. 

This is a generalisation of the notion of semi-nilpotency defined in [7]. 

By Theorem 11.8. 3 i t  follows that  u satisfies also tlie additivity condition 


11. (Add) of section 8. 



2. Nilpotency and semi-nilpotency of associative rings and semi- 
groups. We note that when associativity is assumed the two main properties 
solvability and nilpotency and, therefore, their issues are equivalent. Another 
point to notice is the difference between t,he present definition of semi-
solvability and the definition of semi nilpotency given in [7]. Our definition 
seems to be more restrictive by requiring the solvability of every finite subset, 
but evidently the two definitions are equivalent if associativity is assumed. 
I n  the present section we deal with further properties of the radicals defined 
in the preceding one. We shall consider only associative rings but we remark 
that the following proofs and results hold also (with slight modifications) 
for associative semi-groups. 

Since in the present case solvability and semi-solvability are equivalent 
to nilpotency and semi-nilpotency we shall also refer to the latter by the 
respective notation u and SU. 

I n  addition to the properties of su given in Theorem 1.3 we prove: 

THEOREM 2. 1. SO is an RZ-property which satisfies 11. (F,). 

I n  view of Theorem 1.3 and the validity of (2 ) ,  it remains to show the 
validity of 11. (F,). This will follow by proving Lemma 11.3. 1by a method 
due to J. Levitzki (compare with [ lo]  Lemma '7. 3) .  Let J be a right semi- 
nilpotent ideal in R. Consider the ideal R J .  Let t,, . . . , t, be any finite 
set of elements of R J ;  then ti =2 rilcsil,, rik E R, sik E J. Denote by [t], [r] 

k 

and [s] the module generated by the elements {ti), {rik), and {sak) respec- 
tively, then [t] C [r] [s]. Hence [t] m+l C [r] ( [s] [r] )'lL[s]. The module 
[s] [r] C [ST] and the latter is generated hy a finite number of elements of J. 
Hence ( [s] [r] )" =0 for some m. This proves that [tIm+l=0. Thus R J  
is semi nilpotent. 

The known properties of the semi nilpotent radical ( [ ? I )  follow now 
immediately by the results of part 11. Additional results follow by Theorem 
11.2. 2 and 11.6. 3 namely : 

COROLLARY2.1. 1 )  s u ( A )  = srr(R) n A for every ideal A i n  the 
ring R. 2) su(R,) =su(R),. 

Next we turn to a further study of the Baer's radical [ (R)  of associative 
rings. 

For associative rings, [-semi simplicity implies a-semi simplicity and 
hence by Corollary 11.1.6 and by Theorem 1.3 i t  follows that v ( R )  = [ ( R ) .  
We have already seen that u is an HZ-property which satisfies 11. (C,) and 

For definition see section 11.6. 
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11. (D,) (and evidently 11. (D,) and 11. ( D )  ). Furthermore u satisfies 
11. (E)  : this follows from the fact that if P is a nilpotent ideal (a  U-ideal !) 
in an ideal Q of a a-semi simple ring R, then since (RPR)21w1C RP1%, 
RPR is a nilpotent ideal in R, which implies RPR =0 and consequently 
P = 0. It follows now by Theorem 11.8. 2 that U* is an RZ-property which 
satisfies 11. (D,) and 11. (D,). A ring R was called an L-ring an L-ring 
if R = [ (R)  =u ( R ) .  

I n  our notation this is equivalent to the definition of a &:-ring. Using 
the notation of L-rings we obtain, in view of the definition of a" and of 
Lemma 11.8. 1: 

COROLLARY2. 2. A ring R is an L-ring if and only if every non zero 
homomorphic image of R contain non zero nilpotent ideals. 

The validity of (D,) implies : 

COROLLARY Every subring of an L-ring is an L-ring. 2. 3. 

We wish now to show that the property L (=u*)  satisfies 11. (F,). 
Let R be an L-semi simple ring and let J be a right ideal in R such that 
L ( J )  =J. The annihilator of J in J is the maximal nilpotent ideal in J. 
For, if Q is a nilpotent ideal in J, then QJ is a right nilpotent ideal in R. 
The L-semi simplicity of R readily implies that R does not contain non zero 
right nilpotent ideals and hence Q J  = 0. Thus Q C N, where N is the left 
annihilator of J in J. By Theorem 11. 1 . 1  and by the definition of the upper 
radical, i t  is readily seen that L ( J )  =N. Hence J2=0. By the L-semi 
simplicity it follows now that 	J = 0. 

Thus, we obtain by Theorem 11. 2. 2 and by Theorem 11. 6. 3 :  

COROLLARY2.4. 1 )  L ( A )  =L ( R )  n A for every ideal il in a ring R. 
2) L(Rn) =L(R)n .  

We conclude with a remark that the preceding results with the exception 
of the second parts of the Corollaries 2. 1 and 2. 4 hold also for associative 
semi groups. 

3. Various applications. We bring now some alternative proofs of some 
of the known radicals, in particular those which do not enter in the class of 
F-radicals, discussed in [4]. 

A. Jacobson's radical. This radical and its generalizations were dealt 
with from the point of view of P-radicals by several authors. We shall 

This is the notation used by J. Levitzki in:  "A theorem on polynomial identities," 
Proceedings of t h e  American Mathematical  Society ,  vol. 1 (1950) ,  pp. 334-341. 
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deal here only with the associative case. Recall that a ring R was called a 

quasi-regular ring (QR-ring) if for every r E R there exists an s e R such 
that r + s + rs =0.7 This property is readily seen to be an HZ-property 
and satisfies 11. (D)  and 11. (D,). Furthermore, QR satisfies the condition 
of Theorem 11.6. 6. Indeed, if R is not a QR-ring, let a E R be not a quasi 
regular element. Consider the maximal right ideal J containing the ideal 
{x + a x )  and excluding a. By the proof of Theorem lY of [6] it follows 
that R/ ( J :  R )  does not contain right QR-ideals and this proves Theorem 
11.6. 6. Hence QR is an RZ-property and satisfies also 11. (F,).  The 
validity of 11. (E)  follows by Theorem 11.5. 1. Thus most of the properties 
of the QR-radical obtained in [6] are deduced from the results obtained here. 

B. T h e  locnlly finite k e ~ n e l .  An associative algebra R over a field P is 
said to be locally finite (LF-ring) of every finitely generated subalgebra of IZ 
is finite over F. Levitzki has recently shown in [ lo ]  the existence of the 
LF-radical, which was called the locally finite kernel. The present theory 
provides a short cut in Levitzki's proofs and yields further properties of this 
radical. 

The property LF  is readily seen to be an HZ-property which satisfies 
11. (CL) and 11. (D,) and evidently 11. (D) .  The validity of 11. (C,) follows 
by [ lo]  Lemma 1.4,  and 11. (F,) follows by [ lo]  Lemma 7. 3. Since L P  is 
also antiisomorphism invariant, a similar condition holds also for left ideals 
(Remark 1.1 ) .  The validity of all these conditions yields the results on the 
locally finite kernel obtained in [ lo ] .  Additional results now obtained are : 
LP(A) =LF(R) fl A for every ideal in an algebra R ;  and LP(R), =LP(R,). 

C .  McCoy's radical. This radical, which was defined in [Ill, was 
proved to be equal to Bear's radical. It can be also approached from the 
present point of view of HI-properties. Calling an ideal A in a ring an 
M-ideal if every m-system of A contains the zero, we obtain an HI-property 
in the sense of section 11.1. The prime ideals are readily seen to be 
8-ideals, and if A 3B are ideals in R such that A / B  is not an M-ideal, 
one can find a prime ideal Q in R such that A 3 A n Q 2B. It follows 
now by Theorem I, 2 .4  that N is an RI-property and that the M-radical is 
the intersection of all the prime ideals. 

Usually, quasi-regularity is defined in a ring but i t  is known that an ideal .4 
(right, left or two sided) in a ring R is quasi regular in R if and only if A is a quasi- 
regular ring. 

The ideal Q can be chosen as a maximal ideal Q > B such that  Q/B excludes a 
certain m-system of A / B .  
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4. New radicals. ,4. PI-~adical.  For the present radical we consider 
only associative algebras over a field F.  An algebra R is said to be a PI-ring 
if i t  satisfies a polynomial identity f (x,, . . . ,x,) =0 where the coefficients 
of f belong to P. This property is readily seen to be an HZ-property which 
satisfies 11. (D,) and hence also 11. (D) .  Furthermore, PI satisfies 11. (C,)  
and I I . (E ) .  Indeed, if R possesses an ideal A such that R/A satisfies 
the identity g(x,, .  . . ,x,) =0 and such that A satisfies the identity 
f (z,, . . . ,x,) =0, then R satisfies the identity 

in the lam indeterminates xtk. This proves 11. (C,) .  To prove 11. (E) ,  let 
E be a PI-semi simple ring and let A be an ideal in R. If Q is an ideal in 
A which satisfies an identity, then AQA4C Q is a PI-ideal in l?, hence 
AQA = 0. But the totality of the elements x E A such that AzA = 0 con-
stitute a nilpotent ideal in R, hence, by 11. ( Z ) ,  i t  must be zero; and thus 
11. ( E )  is proved. 

It follows now by Theorem 11.8.3 that PI is an additive-property and, 
therefore, P I *  is an RZ-property and satisfies 11. (E)  and (I),). We recall 
that a ring R is a PI*-ring if every non zero homomorphic image of R contains 
non zero ideals which satisfy a polynomial identity. 

The property P I *  is an example of an R-property which does not satisfy 
11. (F,). For, the ring R of all finite matrices is a simple ring and it  is 
known that this ring does not satisfy a polynomial identity, yet the right 
ideal c,,R, i. e., the ring of all one rowed matrices satisfies the identity 
( ~ ~ 2 2-Z2z1)x3 =0. 

B. n.s.h.-radicals. The methods of section 11. 7 can be applied to yield 
a class of new radicals. With each property T of associative rings which 
satisfies the conditions of Theorem 11.7.  1 or 11. 7. 2 we can associate a 
7.s.h.-radical. We recall that a ring R is a a.s.h.-ring if every homomorphic 
image of R does not contain a non zero n-ideal (i. e. is T-semi simple). I n  
particular, Theorem 11. 7.  2 can be applied to the following properties: quasi- 
regularity, nillity, semi-nilpotency and nilpotency. 

I n  particular, a ring R is nilpotent-s.h. if every hoinomorphic image 
does not contain nilpotent ideals. Now a regular ring is evidently a ring 
of this type so that nilpotent-s.h. radical contains the maximal regular ideal 
defined in [5]. 

C. The FI-radicals. The notions of I-rings and FI-rings were intro- 
duced in [ lo]  and the structure of such rings mas determined there. An 
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associative ring R was, called an I-ring if every non nil right ideal contains 
an idempotent, and R was called an PI-ring if every homomorphic image of 
R is an I-ring. Similarly we shall call a ring R an Is-ring (an IL-ring) 
if every right ideal which is not semi-nilpotent (which is not an L-ring) 
contains an idempotent. I n  the same way we define FIB-rings and FIL-rings. 

We wish to show that the three properties: PI, FIBand FILare SRZ- 
properties and satisfy the conditions 11. (D,). Furthermore, the last two 
properties satisfy also 11. (F,).  The proof will be carried out only for the 
property BI, since the proof for the other two properties is similar. 

The property Is satisfies I I . (A)  and a similar proof to that of [ lo] 
Lemma 5 .4  yields that I s  satisfies 11. (GI)and 11. (C,), hence by Lemma 
11.7. 1 it follows that PI8 is an R-property. Evidently this property satisfies 
1 ( Z ) .  To prove the validity of 11. (D,) we consider a right ideal J in an 
PIs-ring R. Let J/Q be a homomorphic image of J and let P/Q be a right 
ideal in J /Q.  Now, PJ is a right ideal in R and RQJ is a two sided ideal. 
Since R is an FIB-ring, R/RQJ is an Is-ring, so that (PJ ,  RQJ)/RQJ either 
contains an idempotent or i t  is semi-nilpotent. Pu t  M =PJ n RQJ, then the 
last quotient is isomorphic with P J / N .  PJJ f  is a two sided ideal in PJ, 
hence one readily verifies that P J / P J M  is also either semi-nilpotent or con- 
tains an idempotent. Since JRQJ  C_ J Q J  zQ it follows that 

PJM zPJ n PJRQJ zPJ n Q. 

Furthermore, 

( P J  n Q ) 4zP J ( R Q J  n P J )  =PJM. 

Hence PJ/PJ n Q will also be semi-nilpotent or contain an idempotent 
respectively what P J / P J M  does. Consequently, ( P J ,  Q)/Q, and hence 
also P/Q, will have the same property: which proves (D,). Evidently this 
implies 11. (D),  and by Theorem 11.5. 1 it  follows that FIBsatisfies also 
11. ( E ) .  Consequently, PI8 is an XRZ-property. 

We now prove the validity of (F,).  Let R be an PIg-semi simple ring 
and let J be a right FIB-ideal in R. Consider the ideal J *  = ( J ,  R J ) .  Let 
J*/Q be a homomorphic image of J *  and let P/Q be a right ideal in J*/Q. 
We shall prove that either P/Q contains an idempotent or i t  is semi-nilpotent. 
Evidently, the same will hold if we replace Q by J"QJ*; or, equivalently, 
we may assume that Q is an ideal in R. I n  this case one readily verifies that 
the semi-nilpotent radical N"/Q of J"/Q is an ideal in R/Q (by Corollary 
2. 1 ) .  For every j e J, (jP, Q)/Q is a homomorphic image of jP. The latter 
is a right ideal in J, hence either it is semi-nilpotent or contains an idem- 
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potent. If the first case holds for every j r J, then ( J P ,  Q)/Q must be semi 
nilpotent h n d  hence JP _C AT*. Thus 

P" ( J ,  R J )  P C ( J P ,  R J P )  2 (N*, RN*) ,CN*. 

This proves that (P2, Q)/Q and hence also P/Q are semi-nilpotent. If this 

is not the case, ( jP,  Q)/Q contains an idempotent e for some j E J, i. e. 
e =  jp(Q),  j E J and p r  P. By replacing p by pe we may assume that 

pe =p (Q). Since e2 +0 (Q),  p j  +0(Q) and the latter belongs to P and 
satisfies ( ~ j ) ~  =p ( jp)  j =pej =pj (Q) .  This proves that P/Q contains an 
idempotent. Thus J *  is an PIs-ideal in R ;  hence the FIR-semi simplicity of 
R yields J'" 0 and therefore J =0. 

,I radical similar to those discussed above is the following: call a ring 
R an 1, -~ing if every non zero right ideal in R contains an idempotent, and 
call R an FI , -~ ing  if every homomorphic images of R are I,-rings. As in the 
preceding case PI, can he shown to be an R-property, but this property does 
not satisfg the conditions 11. (D,) and 11. (F,). Yet we can prove that FIo 
satisfies 11. (D) and the two conditions 11. (G,)  and 11. (G,). Thus FI, and 
the preceding properties PI, FIRand P I L  satisfy the main results on the 
radical, in particular Theorem 11.2. 2. Furthermore, FI, satisfies Theorem 
11.4. 1 and the last two properties satisfy Theorem 11.6. 3. 

To prove that FI, satisfies 11. (D)  we consider an PI,-ring R and an 
ideal A in R. If A is not an FIo-ring then A contains an ideal Q such that 
A/Q is not an I,-ring and, evidently, A/AQA cannot be an I,-ring. Hence 
we may assume that Q is an ideal in R. If J/Q is a right ideal in A/Q 
which does not contain an idempotent, then since R/Q is an I,-ring, J A  C Q. 
The set {x / x r A, XA C Q) is an ideal T in R. If T +0mod Q then i t  
contains an idempotent e mod Q but then e2 E eA _C Q which is impossible. 
This proves that J E0mod Q ; that is, the validity of 11. (D).  Before 
proceeding with the proof of the conditions 11. (G,) and II . (G2)  we show 
that the ring R, is an I,-ring if and only if R is such. Indeed if R, is an 
I,-ring, one readily verifies that R is also an I,-ring. Let R be an I,-ring 
and let J be a right ideal in R,,. Since R cannot have a left annihilator me 
have JR, # 0. Hence, J ( c & )  # 0 for some i. We can also see that the 
coefficients of c,i of the matrices of J ( c i J ? )  constitute a non zero right ideal 
in R. This ideal contains an idempotent e and one readily observes that 
the matrix of JciiR which is of the form ec,i +. . . is an idempotent of the 
ideal J, q. e. d. We turn now to the proof of 11. (G,). Let R be an FI,-ring. 

This proof holds only for the properties FZs  and FZ, and i t  is not known whether 
it  is valid for FI. 
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Let Q be an ideal in R,,. Since R,&R, = T,, where T is an ideal in R we 

have R,l/R,,QR, G (R/T), .  The latter is an I,-ring since R/T is such, 
hence R,/X,,QR, and therefore, also R,,/Q is an I,-ring which proves that R,, 
is an FI,-ring. To prove 11. (G,) let i? he an FI,-semi simple ring. If R, 
is not FI,-semi simple then it  contains an ideal Q which is an %I,-ring. Now 
Q/R.&QR,can be an 1,-ring only if Q =R,,QR,,. Let T be an ideal in R such 
that R,QR, = T,; then for every ideal P in T we have Q/P, sz (T/P),. 
Since Q is an FI,-ring, T / P  must be an I,-ring. This proves that T is an 
E7I,-ideal in R hence T =0. Therefore Q =0 which proves 11. (G,) .  

The properties FI (FIE, F I L  and %Io) are symmetric, in the sense that 
if a ring R is I-ring then also every no11 nil left ideal in R contains idem- 
potency ( [lo] ), and conversely. 

TVe conclude with the remark that the followiilg relation exists between 
these radicals : PI ( R )2FIE( R )2 FIL ( R )2FI, ( R ) for every ring R, and. 
all these radicals contain the maximal regular ideal of the ring R which was 
defined in [ 5 ] .  The last follows from the fact that a regular ring is also 
an  FI,-ring. 
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