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Introduction

The fact that a simple Jordan system is necessarily nondegenerate is a basic
property widely used. This result is based on Kostrikin-Zelmanov’s theorem on the
local nilpotency of Lie algebras generated by sandwiches [5]. Different proofs of this
deep result on Lie algebras can be found in the literature [2, 5, 11, 12, 13], some of
them even containing its application to Jordan systems [11, 12, 13]. Unfortunately,
most of this references deal with algebraic systems over rings of scalars with certain
restrictions on the characteristic, and those dealing with Lie algebras over arbitrary
rings of scalars do not contain the result for Jordan systems in its whole generality.

This paper gives a full account on the results mentioned above, with complete
proofs in the most general setting. However, the reader should NOT expect either
NEW RESULTS OR PROOFS here. The sources for the materials in this paper
are [13] and the notes of seminars given by Efim Zelmanov at the Department of
Mathematics of the University of Virginia in 1989. Indeed, [13] contains a full proof
of the fact that Lie algebras generated by sandwiches are locally nilpotent, following
[2]. That is based on a result on associative words due to Backelin. The reader is
referred to [13] for a complete bibliography on the subject.

The paper is divided into 3 sections apart from a preliminary one. In the first
section, we deal with associative words on a finite alphabet and obtain the main
theorem as a consequence of Furstenberg’s results [3] on compact dynamical systems
(indeed, on symbolic systems). This is used in the second section to obtain Zelmanov-
Kostrikin’s theorem on Lie algebras, which is applied in the last section to prove
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that Jordan systems generated by sandwiches are locally nilpotent. From that, the
McCrimmon radical of a Jordan system is shown to be locally nilpotent too, which
implies that any simple system has zero radical.

0. Preliminaries

0.1 We will deal with Jordan systems (algebras, pairs and triple systems), and
associative and Lie algebras over an arbitrary ring of scalars Φ. We warn the reader
that even when dealing with Lie algebras, we will not make any additional assumption
on the ring of scalars. In particular, we will not assume 1/2 ∈ Φ.

The reader is referred to [4, 6, 8, 9] for basic results, notation, and terminology,
though we will stress some notions. The identities JPx listed in [6] will be quoted
with their original numbering without explicit reference to [6].

—When dealing with an associative algebra, the (associative) products will be
denoted by juxtaposition.

—The product in a Lie algebra L will be denoted by square brackets [x, y] =
adx(y), for any x, y ∈ L.

—Given a Jordan algebra J , its products will be denoted by x2, Uxy, for x, y ∈ J .
They are quadratic in x and linear in y and have linearizations denoted x ◦ y = Vxy,
Ux,zy = {x, y, z} = Vx,yz, respectively.

—For a Jordan pair V = (V +, V −), we have products Qxy ∈ V σ, for any x ∈ V σ,
y ∈ V −σ, σ = ±, with linearizations Qx,zy = {x, y, z} = Dx,yz.

—A Jordan triple system J is given by its products Pxy, for any x, y ∈ J , with
linearizations denoted by Px,zy = {x, y, z} = Lx,yz.

0.2 (i) A Jordan algebra gives rise to a Jordan triple system by simply forgetting
the squaring and letting P = U . By doubling any Jordan triple system T one obtains
the double Jordan pair V (T ) = (T, T ) with products Qxy = Pxy, for any x, y ∈ T .
From a Jordan pair V = (V +, V −) one can get a (polarized) Jordan triple system
T (V ) = V + ⊕ V − by defining Px+⊕x−(y+ ⊕ y−) = Qx+y− ⊕Qx−y+ [6, 1.13, 1.14].

(ii) An associative algebra A gives rise to a Lie algebra A(−), called the antisym-
metrization of A, over the same Φ-module structure as A, with Lie products given
by the commutators [x, y] = xy − yx, for x, y ∈ A.

0.3 Given a Jordan pair V , a derivation of V is any pair of Φ-linear maps
(∆+,∆−) ∈ EndΦ V + × EndΦ V − such that

∆σ(Qxy) = {∆σ(x), y, x}+ Qx∆−σ(y),

for any x ∈ V σ, y ∈ V −σ, σ = ±. The set Der V of all derivations of V is a (Lie)
subalgebra of (EndΦ V + × EndΦ V −)(−) (see [6, 1.4]). For any x ∈ V +, y ∈ V −, we
define δ(x, y) := (Dx,y,−Dy,x) which turns out to be a derivation of V by (JP12)
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called an inner derivation of V . The Φ-submodule of Der V spanned by all inner
derivations of V will be denoted IDer V and is an ideal of the Lie algebra Der V since

[∆, δ(x, y)] = δ(∆+(x), y) + δ(x, ∆−(y)),

for any ∆ ∈ Der V , and any x ∈ V +, y ∈ V −.

0.4 Given a Jordan pair V and any subalgebra D of Der V containing IDer V ,
the Φ-module

TKK(V,D) := V + ⊕D ⊕ V −

can be equipped with a product [ , ] given by

[x+ ⊕ c⊕ x−, y+ ⊕ d⊕ y−] :=(
c+(y+)− d+(x+)

)⊕ (
[c, d] + δ(x+, y−)− δ(y+, x−)

)⊕ (
c−(y−)− d−(x−)

) (1)

yielding a Lie algebra over Φ called the Tits-Kantor-Koecher algebra of V and D
[10, XI]. When D = IDer V , we obtain the so called Tits-Kantor-Koecher algebra
of V , denoted TKK(V ). One can find references like [7] where the definition of the
product in TKK(V,D) differs of (1) in some minus signs. The Lie algebras so built
are isomorphic to ours and, (1) is more convenient, in terms of notation, for our
purposes.

0.5 An absolute zero divisor of a Jordan algebra (resp., triple system) J is an
element x ∈ J such that UxJ = 0 (resp., PxJ = 0). An absolute zero divisor in
a Jordan pair (V +, V −) is any element x ∈ V σ such that QxV −σ = 0. A Jordan
system is said to be nondegenerate if it does not have nonzero absolute zero divisors.

0.6 An element a in a Lie algebra L is called a sandwich if

(i)
[
[L, a], a

]
= 0 and (ii)

[[
[L, a], L

]
, a

]
= 0

If L does not have 2-torsion, then (ii) follows from (i). Indeed, for any a, x, y ∈ L,
[
x,

[
[y, a], a

]]
=

[[
[x, y], a

]
, a

]
+

[[
y, [x, a]

]
, y

]
+

[
[y, a], [x, a]

]

(since adx is a derivation)

=
[[

[x, y], a
]
, a

]
−

[[
[x, a], y

]
, a

]
+

[[
y, [x, a]

]
, a

]
+

[
y,

[
a, [x, a]

]]

(using that [ , ] is antisymmetric, and ad[x,a] is a derivation)

=
[[

[x, y], a
]
, a

]
− 2

[[
[x, a], y

]
, a

]
+

[[
[x, a], a

]
, y

]

(using again that [ , ] is antisymmetric),

hence,
[
[L, a], a

]
= 0 implies 2

[[
[x, a], y

]
, a

]
= 0, for arbitrary x, y ∈ L, thus

2
[[

[L, a], L
]
, a

]
= 0.
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0.7 Given a set X, the free associative algebra over X will be denoted by Φ[X].
It is a free Φ-module with a basis W [X] consisting of the associative monomials
or words xi1 · · ·xin

, for arbitrary xi1 , . . . , xin
∈ X. When dealing with associative

words, X will be called the alphabet, and its elements will be called letters. The
algebra Φ[X] is Z-graded by the degree or length of words, and also ZX -graded by
the composition of words.

0.8 Given a set X, a commutator in X is any element of Φ[X] built out of the
elements of X by commutation, i.e., products in Φ[X](−). More precisely, the set
C[X] of commutators in X is defined inductively by setting X ⊆ C[X], and, for any
a, b ∈ C[X], [a, b] ∈ C[X]. Notice that C[X] spans (as a Φ-module) the subalgebra
of Φ[X](−) generated by X. One can readily see that the commutators in X are
homogenous in the ZX -grading of Φ[X], in particular, homogenous with respect to
the length.

0.9 (i) An associative algebra A is said to be nilpotent if there exists a natural
number n such that An = 0, i.e., any associative product of length at least n vanishes,
i.e., any associative monomial of degree at least n vanishes when evaluated on A.

(ii) A Lie algebra L is said to be nilpotent if there exists a natural number N
such that Ln = 0, where the Lie powers are defined inductively by L1 = L,Li =
[Li−1, L]. This is clearly equivalent to saying that ad(a1) · · · ad(an−1) = 0, for any
a1, . . . , an−1 ∈ L, i.e., the (associative) subalgebra of EndΦ L generated by the ele-
ments ad(a), for a ∈ L, called the multiplication algebra of L, is nilpotent.

One can define Lie monomials in the free Lie algebra over a set of variables X by
imposing that the variables are Lie monomials of length one, and that, if a, b are
Lie monomials of lengths n, m, respectively, then [a, b] is also a Lie monomial of
length n+m. This can be used to give an alternative definition of nilpotency for Lie
algebras, as in the associative setting (i):

(ii)’ A Lie algebra L is nilpotent if an only if there exists a natural number n such
that any Lie product of length a least n vanishes, i.e., any Lie monomial of
length at least N vanishes when evaluated on L.

Indeed, if Lk denotes the span of the evaluations on L of the Lie monomials of length
at least k, it can be easily proved by induction that L2n−1 ⊆ Ln ⊆ Ln, for all n,
which readily implies (ii)’.

(iii) A Jordan algebra (resp., triple system) J will be said nilpotent if there exists
a natural number n such that any Jordan algebra (resp., triple system) monomial of
degree n (in the sense of [1, 1.1]) vanishes when evaluated on J . A Jordan pair V
will be said nilpotent if T (V ) is a nilpotent Jordan triple system.

1. Some Combinatorial Results Dealing with Associative Words

1.1 In this section we will deal with several ordered sets. An order relation ≤ is
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determined by its associated strict order relation < ≡ ≤ and 6=.

1.2 A total order ≤ in a set X induces the so-called lexicographic order in the
set of words W [X] defined by: xi1 , . . . , xin

< yi1 , . . . , yim
if

(i) there exists 0 ≤ r ≤ m,n such that xi1 = yi1 , . . . , xir−1 = yir−1 , and
xir

< yir
.

Notice that the lexicographic order in W [X] is not total, since we cannot compare two
words such that one is a proper beginning of the other. The extended lexicographic
order in W [X] induced by (X,≤) is given by extending the lexicographic order to a
total order by imposing that any word is smaller than any of its proper beginnings,
i.e., for a, b ∈ W [X],

(ii) a = bc (for some c ∈ W [X]) =⇒ a < b.

1.3 In this section, we will consider X = {x1, . . . , xn} with the natural order
given by the subindexes (xi ≤ xj if and only if i ≤ j), which induces the lexicographic
order in W [X], also denoted by “≤”.

1.4 An element 0 6= a ∈ Φ[X], homogeneous with respect to the length, can be
uniquely represented as a (finite) linear combination of words in W [X], a =

∑
i αiwi,

where the wi’s are pairwise distinct words, all of them of the same length, and αi 6= 0
for all i. Thus, all the wi’s are comparable, and there is a greatest one among them
which will be called the leading term of a. This happens, in particular, with nonzero
commutators in X (0.8), which then have a leading term.

1.5 (i) A word v ∈ W [X] is said to be regular if it is greater than any proper
end:

v = ab, (a, b ∈ W [X]) =⇒ b < v.

(ii) A word v ∈ W [X] is said to be semiregular if it is not smaller than any proper
end:

v = ab, (a, b ∈ W [X]) =⇒ v 6< b (i.e., either b < v or b is a beginning of v).

Notice that any beginning of a semiregular word is also semiregular.

1.6 Let T be the set of words in X of the form xq
nv, where q ≥ 1 and v is a non-

empty word in X not containing xn. Let ≤T be the restriction to T of the extended
lexicographic order in W [X], which induces a lexicographic order, also denoted ≤T

in the set of words W [T ] ⊆ Φ[T ] over T . It is not hard to see that the subalgebra
< T > of Φ[X] generated by T is isomorphic to the free associative algebra Φ[T ]
over T (the set B of products t1 · · · tm spanning < T > is contained in the basis
W [X] of Φ[X], hence B is a basis of < T > bijective with W [T ] in the obvious way,
which induces the mentioned isomorphism), so that we will identify both and assume
W [T ] ⊆ W [X]. Thus, in W [T ], we have two order relations: the restriction of the
order ≤ given in (1.3), and ≤T .
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The following assertions hold for words a, b ∈ W [T ]:

(i) a, b have the same composition as words in T ⇐⇒ a, b have the same com-
position as words in X.

(ii) a <T b =⇒ either a < b or b is the beginning of a.

(iii) a < b =⇒ a <T b.

(iv) a is regular as a word in X =⇒ a is regular as a word in T .

Indeed, (i) is straightforward. If a <T b, then a = t1 · · · tk, b = s1 · · · sl (ti, sj ∈ T )
so that t1 = s1, . . . , tr−1 = sr−1, and tr <T sr, since <T in T is the extended
lexicographic order in W [X], either tr < sr or sr is the beginning of tr. In the first
case, a < b and, in the second case, either r = l and b is a beginning of a, or tr =
xq

nuv, sr = xq
nu, where u, v are words not containing xn, and a = t1 · · · trxq

nuv · · · <
t1 · · · trxq

nuxn · · · = b. We have proved (ii), and now (iii) follows from it. Indeed, if
a 6<T b, then we have three cases: b <T a, or the two words are equal, or one is the
beginning of the other (a fact which does not depend on the alphabet T or X). In
the first case (ii) yields a contradiction, and the remaining cases are clearly against
a < b. Finally, (iv) follows directly from (iii).

1.7 Lemma. For every regular word v ∈ W [X], there exists a commutator
ρ ∈ C[X] having v as its leading term.

Proof: We will prove the result by induction on the length of v. If that length
is 1, then the result is clear since X ⊆ C[X]. Assume that the assertion of the Lemma
holds for regular words (in any alphabet X) of lengths smaller than the length of v,
which is at least 2.

We will prove that our assertion holds on v by induction on the cardinality m of
X. If m = 1, then everything is clear since, in that case, the only regular word is x1,
of length 1. Assume that the assertion of the lemma holds for alphabets of less than
n elements, with n ≥ 2 (for words of length less than or equal to the length of v).

If v does not contain xn, then it is a word in the alphabet {x1, . . . , xn−1}, hence
it is the leading term of a commutator by the induction assumption. So we can
assume that v contains the letter xn. We claim that v begins with xn and ends with
some other letter xi with i < n. Otherwise, either v = uxnw, where u does not
contain xn, or v = xnaxn. In the first case v < xnw and, in the second case, xn and
v are not comparable, and both situations are against the regularity of v.

Thus, v can be written as a product v = t1 · · · tr, where each factor has the form
ti = xqi

n ui, where qi ≥ 1, and ui is a non-empty word non containing the letter xn,
i.e., v ∈ W [T ] as in (1.6) (the ti’s are not necessarily pairwise distinct). Notice that
r is strictly smaller than the length of v, and v is regular as a word in T by (1.6)(iv).
Hence, the induction assumption applies to show that v is the leading term, as a
word in T , of a commutator µ ∈ C[T ] which, by homogeneity (0.8) is built out of the
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elements t1, . . . , tr, i.e.,

µ =
∑

τ∈Λ

ετ tτ(1) · · · tτ(r),

for certain subset Λ of the group Σr of permutations of r elements containing the
identity Id, and 0 6= ετ ∈ Φ. Moreover, we can group equal monomials so that, for
τ, µ ∈ Λ, tτ(1) · · · tτ(r) = tµ(1) · · · tµ(r) only if τ = µ

On the other hand, any t ∈ T is the leading term, as a word in X, of a com-
mutator t̃ ∈ C[X]. Indeed, if t = xq

nxi1 · · ·xik
, where i1, . . . , ik < n, t is the leading

term of t̃ = adxik
· · · adxi2

(adxn)q(xi1).

We claim that v is the leading term, as a word in X, of the commutator ρ ∈ C[X]
obtained by replacing the elements ti in µ by the commutators t̃i. Indeed, the
words of W [X] appearing in ρ are exactly those of the form uτ(1) · · ·uτ(r), for all
τ ∈ Λ, and all the words ui appearing in the commutators t̃i, i ∈ {1, . . . , r}. Since
ui ≤ ti, any uτ(1) · · ·uτ(r) ≤ tτ(1) · · · tτ(r), but tτ(1) · · · tτ(r) ≤T t1 · · · tr, which implies
tτ(1) · · · tτ(r) ≤ t1 · · · tr by (1.6)(ii). On the other hand, if uτ(1) · · ·uτ(r) = t1 · · · tr,
then t1 · · · tr ≤ tτ(1) · · · tτ(r), which implies t1 · · · tr ≤T tτ(1) · · · tτ(r) by (1.6)(iii),
hence τ = Id, and u1 = t1, . . . , ur = tr.

1.8 An infinite sequence U = U(1)U(2) · · · = xi1xi2 · · · is any map k −→ xik
from

the set of natural numbers to X. A subword of an infinite sequence will be meant
a finite word of the form U(k)U(k + 1) · · ·U(k + r) = xik

xik+1 · · ·xik+r
for some

natural numbers k and r. A tail of U is the infinite sequence Uk = Uk(1)Uk(2) · · · :=
U(k + 1)U(k + 2) · · · = xik+1xik+2 · · ·.

1.9 Lemma. For any infinite set of words S ⊆ W [X] there exists an infinite
sequence every subword of which is a subword of one of the words in S.

Proof: S is the disjoint union of of the sets Si := {w ∈ S | w = xi · · ·}, for
i = 1, . . . n. Since S is infinite, at least one of the Si’s is infinite. Let S1 be one of
those infinite Si’s. Assume that we have found i1, . . . ik such that Sk = {w ∈ S | w =
xi1xi2 · · ·xik

· · ·} is infinite. Now Sk is the disjoint union of the sets

Si
k := {w ∈ Sk | w = xi1xi2 · · ·xik

xi · · ·} = {w ∈ S | w = xi1xi2 · · ·xik
xi · · ·},

for i = 1, . . . n, and we can find ik+1 such that Sk+1 := S
ik+1
k is infinite. This allows

as to define the infinite sequence U = xi1xi2 · · · such that every finite beginning of U
is the beginning of a word of S (indeed the beginning of an infinite amount of words
of S). This U clearly satisfies the assertion of the lemma (every subword of U is a
subword of a sufficiently long beginning of U).

1.10 Lemma. If Q ⊆ W [X] and for each k there exists a word of length k
not having any subword in Q, then there exists an infinite sequence not having any
subword in Q.



8 anquela

Proof: Just take the subset S ⊆ W [X] consisting of the words not having any
subword in Q. By the hypothesis, S is infinite, and (1.9) applies to find an infinite
sequence U every subword of which is a subword of one of the words in S, hence
every subword of U lies in W [X] \Q.

1.11 An infinite sequence U is said to be uniformly recurrent if for any subword
u of U , there exists a natural number k = k(u) such that u is a subword of any
subword of U of length k. In particular, every subword of a uniformly recurrent
infinite sequence U occurs in U infinitely many times.

1.12 Theorem (H. Furstenberg, 1981). For any infinite sequence W , there
exists a uniformly recurrent infinite sequence U , such that every subword of U is a
subword of W .

Proof: Let Y = {x0} ] X be the set obtained by adding a new letter to X.
By [3, Definition 2.1], Ω := Y Z can be given the structure of a compact metric
space, which gives rise to a compact dynamical system (Ω, f), where f is the shift
homeomorphism given by f(V )(n) = V (n + 1), for any V ∈ Ω.

Let W̃ be the element of Ω given by W̃ (k) = x0, for all k ≤ 0, and W̃ (r) = W (r),
for any r > 0. By [3, 4.1], there exists a uniformly recurrent V ∈ Ω which is proximal
to W̃ . Here, V being uniformly recurrent means (see [3, 4.2]) that

(1) every subword of V is a subword of every sufficiently large subword of V ,

in a similar fashion to uniform recurrence for infinite sequences (1.11).

Let S be the set of subwords of V not containing the letter x0. Since V and
W̃ are proximal, we can use [3, 4.3] to show that S is infinite, and (1.9) applies to
find an infinite sequence U every subword of which is a subword of a word of S. In
particular,

(2) every subword of U is a subword of V ,

which readily implies that U is a uniformly recurrent infinite sequence in the sense
of (1.11).

Given any subword w of U , (2) and uniform recurrence of V imply that there
exists a natural number k such that w is a subword of each subword of V of length
k. Using proximality of V and W̃ and [3, 4.3], there exists n ∈ N such that

v = V (n)V (n + 1) · · ·V (n + k − 1) = W̃ (n)W̃ (n + 1) · · · W̃ (n + k − 1).

Thus w is a subword of v, hence a subword of W̃ . Since w does not contain the letter
x0, w is a subword of W .

1.13 Proposition. There exists an integer N (depending on the cardinality n
of X) such that every word in W [X] of length N contains either a subword u2 or a
subword uvu, where v is a regular word and u is a semiregular word.
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Proof: If the assertion of the proposition is false, then we can use (1.10) to find
an infinite sequence U not having subwords of type u2 or uvu, where v is a regular
word and u is a semiregular word. By (1.12), U can be assumed to be uniformly
recurrent.

For each k ≥ 1 consider all subwords of U of length k (a finite amount since X
is finite), and let an be the greatest of them (all of them are comparable since they
have the same length). It is easy to see that, for all k, the word ak is semiregular and
that ak is the beginning of ak+1. Thus we may define a new infinite sequence V such
that V = ak · · · for all k. Every subword of V is a subword of ak for a sufficiently big
k, hence it is a subword of U , which implies that

(1) V is also uniformly recurrent,

(2) V does not contain subwords of the form u2 or uvu, where v is a regular
word and u is a semiregular word.

We claim that V does not coincide with any of its tails Vk for any k ≥ 1.
Otherwise, since always V = akVk, we would have that V begins with the word a2

k,
which contradicts (2) since ak is semiregular.

For each k ≥ 1, let nk be an integer such that ank
is the longest common

beginning of V and Vk (nk = 0 when the first letters of V and Vk do not coincide).

(3) We can find arbitrarily big nk.

Indeed, given m ≥ 0, (1) yields that the word am appears infinitely many times in
V , thus am is the beginning of some tail Vk, which implies nk ≥ m.

Therefore, the set S = {k ∈ N | n1, n2, . . . , nk−1 < nk} is infinite. Otherwise,
let r be the maximum of S, and n be the maximum of {n1, n2, . . . , nr}; now r + 1 6∈
S implies nr+1 ≤ n, hence n is also the maximum of {n1, n2, . . . , nr, nr+1}; this
argument can be repeated to prove that n ≥ nk for all k, which contradicts (3).
Since the alphabet X is finite,

(4) there exists 1 ≤ i ≤ n such that the set Si = {k ∈ S | V (k) = xi} is infinite.

Given k ∈ Si, V = ak−1xi · · · and, in particular, ak = ak−1xi. We claim
that ak−1 is not regular. Indeed, by (3) there exists r such that nr > k, and (4)
implies that there exists l ∈ Si such that l > r, but, in particular, l ∈ S, hence
nl > nl−1, . . . , nr, . . . and nl > k. Thus, V (l) = xi and V = al−1xiVl contains the
subword xiak = xiak−1xi, which contradicts (2) if ak−1 is regular.

Hence, some end of the word ak−1 is, at the same time, a beginning of it,

ak−1 = arat, with r + t = k − 1, 1 ≤ r, t,

which implies t ≤ nr. But also nr ≤ nk because k ∈ S, and this implies t ≤ nk, i.e.,
Vk = at · · ·, which yields

V = akVk = ak−1xiVk = aratxiVk = aratxiat · · ·
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and V contains the subword atxiat, which contradicts (2).

1.14 Theorem. There exists an integer N (depending on the cardinality n of
X) such that every word in W [X] of length N contains either a subword u2 or a
subword uvu, where u and v are regular words.

Proof: By (1.13), there exists N such that each word w ∈ W [X] of length N
contains a subword of the form u2 or uvu, where v is regular and u is semiregular.
We claim that w also contains a subword u2 or uvu, where both u, v are regular.
Otherwise, let u be a semiregular word of minimum length such that u2 or uvu (for
some regular v) is a subword of w. Since u is not regular, then some end of u is at the
same time a beginning of u, i.e., u = u1u2 = u2u3 for some words u1, u2, u3, where
u2 is strictly shorter than u. Moreover, u2 is also semiregular since it is a beginning
of u (see (1.5)). Since u2 = u1u

2
2u3, uvu = u1u2vu2u3, w contains the subword u2

2 or
u2vu2, which contradicts the minimality of the length of u.

2. From Associative Words to Lie Algebras

2.1 Lemma. Let A be an associative algebra, and L be a (Lie) subalgebra of
A(−). If a, b ∈ L satisfy a2 = b2 = 0 and aLa = bLb = 0, then [a, b]2 = 0 and
[a, b]L[a, b] = 0.

Proof: We have

[a, b]2 = (ab− ba)2 = abab− ab2a− ba2b + baba = 0

since aba ∈ aLa = 0 and a2 = b2 = 0, and, for any x ∈ L,

[a, b]x[a, b] =abxab− abxba− baxab + baxba

=abxab + baxba (since bxb ∈ bLb = 0 and axa ∈ aLa = 0)
=ab[x, a]b + abaxb + b[a, x]ba + bxaba = 0

since b[x, a]b, b[a, x]b ∈ bLb = 0 and aba ∈ aLa = 0.

2.2 Proposition. Let A be an associative algebra, and L be a (Lie) subalgebra
of A(−) generated by elements a1, . . . , an ∈ A such that a2

i = 0, aiLai = 0, for all
1 ≤ i ≤ n. Then the associative subalgebra B of A generated by L is nilpotent.

Proof: Let X = {x1, . . . , xn}. We will say that w ∈ W [X] is irreducible if the
evaluation w(a1, . . . , an) of w (x1 7→ a1, . . . xn 7→ an) cannot be written as a finite
sum

w(a1, . . . , an) =
∑

i

αiwi(a1, . . . , an)

where αi ∈ Φ, wi ∈ W [X] has the same composition as w, and wi < w, for all i. It
is clear that
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(1) a subword of an irreducible word is also irreducible.

We claim that

(2) words of the form u2 or uvu, where u, v are regular words, are not irre-
ducible.

Indeed, by (1.7), there are commutators ρu, ρv ∈ C[X] such that u, v are their re-
spective leading terms. Then, it is easy to see that uvu is the leading term of ρuρvρu,
i.e.,

ρuρvρu = uvu +
∑

i

αiwi

for αi ∈ Φ, where wi is a word of the same composition as uvu, and wi < uvu, for
all i. By (2.1) (applied inductively on the length of commutators),

ρu(a1, . . . , an)ρv(a1, . . . , an)ρu(a1, . . . , an) = 0,

which implies uvu(a1, . . . , an) = −∑
i αiwi(a1, . . . , an). This shows that uvu is not

irreducible, and the same argument, removing v and ρv, proves that u2 is not irre-
ducible either.

It is clear that B is generated as an associative algebra by a1, . . . , an. Let N be
as in (1.14) for the alphabet X. We will show that

(3) any associative word w ∈ W [X] of length N evaluated in a1, . . . , an is zero,

which implies that B is nilpotent. Indeed, (1.14) implies that any word of length N
contains a subword of the form u2 or uvu, where u, v are regular words, hence

(4) all words of length N are not irreducible

by (1) and (2). If (3) is false, since all words of length N are comparable in the
lexicographic order (1.2), we can find the smallest w ∈ W [X] of length N such that
w(a1, . . . an) 6= 0. By (4), w(a1, . . . , an) =

∑
i αiwi(a1, . . . , an), where all the wi’s

have length N and are smaller than w, but this implies that wi(a1, . . . , an) = 0 for
all i, which is a contradiction.

2.3 Theorem. A Lie algebra L generated by a finite collection of sandwiches
a1, . . . , an is nilpotent.

Proof: Let A = EndΦ L be the (associative) algebra of endomorphisms of L as
a Φ-module, and let ad(L) be the set of operators ad(a) for all a ∈ L. It is well known
that ad(L) is a (Lie) subalgebra of A(−), indeed, the image in A(−) of L under the Lie
algebra homomorphism a 7→ ad(a). Hence ad(L) is generated by ad(a1), . . . , ad(an),
which satisfy ad(ai)2 = 0 and ad(ai)ad(L)ad(ai) = 0 for all i since the ai’s are
sandwiches (see (0.6)(i)(ii)). By (2.2), the subalgebra B of A generated by ad(L) is
nilpotent, but B is the multiplication algebra of L, hence L is nilpotent (0.9)(ii).

2.4 Corollary. A Lie algebra generated by a set of sandwiches is locally
nilpotent.
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3. From Lie algebras to Jordan Systems

We start with a kind of Jordan algebra generalization of (2.1).

3.1 Lemma. If a, b be absolute zero divisors of a Jordan algebra J , then a2 and
a ◦ b are also absolute zero divisors.

Proof: Indeed, by [4, QJ1, QJ2], Ua2 = UaUa = 0 when a is an absolute zero
divisor.

Also, [4, QJ16] yields Ua◦b = UaUb + UbUa + VbUaVb − Ua,Uba = 0 if both a and
b are absolute zero divisors.

3.2 We will stress some connections between the products of a Jordan pair V
and the products in the Lie algebra TKK(V ), i.e., particular cases of (0.4)(1):

(i) [x, y] = −[y, x] = δ(x, y), for any x ∈ V +, y ∈ V −,

(ii) [[x, y], z] = {x, y, z}, for any x, z ∈ V σ, y ∈ V −σ, σ = ±.

3.3 Lemma. Let V be a Jordan pair, and a ∈ V + be an absolute zero divisor of
V . Then, for any d ∈ Der V , and any y, y′ ∈ V −,

(i) Da,yd+(a) = 0,

(ii) [δ(a, y), δ(a, y′)] = 0.

Proof: (i) Using that d is a derivation,

Da,yd+(a) = {a, y, d+(a)} = d+(Qay)−Qad−(y) = 0

since Qa = 0.

(ii) Also [δ(a, y), δ(a, y′)] = ([Da,y, Da,y′ ], [Dy,a, Dy′,a]) = 0 since, for any b, b′ ∈
V −, using JP13 and JP9, respectively,

Da,bDa,b′ = DQab,b′ + QaQb,b′ = 0, Db,aDb′,a = Qb,b′Qa + Db,Qab′ = 0.

3.4 Lemma. Let V be a Jordan pair, and a ∈ V σ, σ ∈ {+,−}, be an absolute
zero divisor of V . Then a is a sandwich of TKK(V ).

Proof: We will prove the result for a ∈ V + since the case σ = − follows by
passing to the opposite pair V op = (V −, V +) (see [6, 1.5]).

For any x, x′ ∈ V +, d, d′ ∈ IDerV , y, y′ ∈ V −, we can use (0.4)(1) to obtain

[
[x⊕ d⊕ y, a], a

]
=[d+(a)⊕−δ(a, y)⊕ 0, a]

=− δ(a, y)+(a) = −Da,ya = −{a, y, a} = −2Qay = 0
(1)
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since Qa = 0, and

[[
[x⊕d⊕ y, a], x′ ⊕ d′ ⊕ y′

]
, a

]

=
[[

[x⊕ d⊕ y, a], a
]
, x′ ⊕ d′ ⊕ y′

]
+

[
[x⊕ d⊕ y, a], [x′ ⊕ d′ ⊕ y′, a]

]

(since ad(a) is a derivation in TKK(V ))

=
[
[x⊕ d⊕ y, a], [x′ ⊕ d′ ⊕ y′, a]

]
(by (1))

=[d+(a)⊕−δ(a, y)⊕ 0, d′+(a)⊕−δ(a, y′)⊕ 0] (by (0.4)(1))

=
(−δ(a, y)+d′+(a) + δ(a, y′)+d+(a)

)⊕ [δ(a, y), δ(a, y′)]⊕ 0 (by (0.4)(1))

=
(−Da,yd′+(a) + Da,y′d

+(a)
)⊕ [δ(a, y), δ(a, y′)]⊕ 0 = 0

(2)

by (3.3). But (1) and (2) are exactly (0.6)(i)(ii) for a.

3.5 Theorem. A Jordan pair generated by a finite collection of absolute zero
divisors is nilpotent.

Proof: If V is such pair, (3.4) implies that the Lie algebra TKK(V ), which has
the same generating system as V , is generated by a finite collection of sandwiches.
Then TKK(V ) is locally nilpotent by (2.3).

If V is generated by absolute zero divisors, [6, 4.6] applies to show that each
element in V is a finite sum of absolute zero divisors of V . For such a pair V , any
Jordan monomial in the sense of [1, 1.1] (one can think of Jordan triple monomials
applied to T (V )) can be expressed in terms of monomials in brackets { , , } of the
same degree: given a ∈ V σ, b ∈ V −σ, we can write a as a finite sum a =

∑
i ai, where

the ai’s are absolute zero divisors of V ; thus

Qab =
∑

i

Qaib +
∑

i<j

{ai, b, aj} =
∑

i<j

{ai, b, aj}

because Qai = 0, for all i. By (3.2)(ii), such Jordan monomials in brackets { , , }
are Lie monomials of the same degree evaluated in TKK(V ), hence the nilpotency of
TKK(V ) implies the nilpotency of V .

3.6 Corollary. A Jordan algebra or triple system generated by a finite col-
lection of absolute zero divisors is nilpotent.

Proof: If J is a triple system generated by finite collection of absolute zero di-
visors, then the double pair V (J) is also generated by finite collection of absolute zero
divisors, hence V (J) is nilpotent by (3.5), which readily implies that J is nilpotent.

If J is a Jordan algebra generated by the collection A = {a1, . . . , an} of absolute
zero divisors, then the underlying triple system of J is generated (as a triple system)
by the finite set Ã = A∪ {a2, a ◦ b | a, b ∈ A} [1, 1.4], which also consists of absolute
zero divisors of the algebra or the triple J by (3.1). Thus J is nilpotent as a triple



14 anquela

system, i.e., there is a natural number N such that any Jordan triple monomial of
degree at least N evaluated on J vanishes. In particular any Jordan triple monomial
of degree at least N evaluated on Ã vanishes, which implies by [1, 1.9] that any
Jordan algebra monomial of degree at least 2N evaluated in A vanishes. Since J is
generated by A as a Jordan algebra, this implies that any Jordan algebra monomial
of degree at least 2N evaluated in J vanishes, i.e., J is nilpotent

We can rephrase the above results (3.5) (3.6) as follows.

3.7 Corollary. A Jordan system (algebra, triple system or pair) generated by
a set of absolute zero divisors is locally nilpotent.

3.8 We recall that the McCrimmon radical (also called small radical in [6, 4.5])
Mc(J) of a Jordan system J is the smallest ideal of J which produces a nondegenerate
quotient. It can be obtained by a transfinite induction process as follows: Let M1(J)
be the span of absolute zero divisors of J , which is an ideal of J by [6, 4.6]. Once we
have the ideals Mα(J) for all ordinals α < β, we define Mβ(J) by

(i) Mβ(J)/Mβ−1(J) = M1(J/Mβ−1(J)) when β is not a limit ordinal,

(ii) Mβ(J) = ∪α<βMα(J) when β is a limit ordinal.

Then Mc(J) = limα Mα(J), so that for any Jordan system J , Mc(J) = Mα(J) for
some ordinal α (such that M1(J/Mα(J)) = 0, i.e., J/Mα(J) is nondegenerate).

3.9 Corollary. For any Jordan system J , the McCrimmon radical Mc(J) is
locally nilpotent.

Proof: Taking into account (3.8), we just need to prove that Mα(J) is locally
nilpotent for any ordinal α, which we will do by transfinite induction (on α):

(1) M1(J) is locally nilpotent by (3.7).

(2) Let us assume that Mα(J) is locally nilpotent for any ordinal α < β, β > 1.

(a) If β is a limit ordinal, then Mβ(J) = ∪α<βMα(J), and any finite set S
of elements of Mβ(J) is contained in Mα(J) for some α < β, hence the
subsystem generated by S is nilpotent by local nilpotency of Mα(J).

(b) If β is not a limit ordinal, then Mβ(J)/Mβ−1(J) = M1(J/Mβ−1(J)) is
locally nilpotent by (1), and Mβ−1(J) is locally nilpotent since β − 1 < β.
Hence Mβ(J) is locally nilpotent too.

3.10 Corollary. Simple Jordan systems are always nondegenerate.

Proof: Let J be a simple Jordan system. If J is degenerate, then Mc(J) 6= 0,
hence J = Mc(J) by simplicity, which implies that J is locally nilpotent by (3.9).
But then, we can apply [1, 2.3] to obtain J = 0, which is a contradiction.

3.11 Remark: Some authors consider a stronger definition of an absolute zero
divisor z of a Jordan algebra J . They require z2 = 0 besides UzJ = 0. Obviously,
those “strong” absolute zero divisors are absolute zero divisors in our sense (0.5), so
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that (3.6) and (3.7) remain valid. It is very easy to check that the absence of nonzero
“strong” absolute zero divisors is equivalent to the absence of nonzero absolute zero
divisors (0.5), so that there is only one notion of nondegeneracy for Jordan algebras,
hence only one McCrimmon radical.
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