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RADICAL IDEALS.+: 


The radical has Seen introclacecl into the theory of rings with the intent 
of constructing a two-sicled nilicleal moclulo which there do not exist nilpotent 
right-ideals different from 0. Thus i t  seems justified to define as a radical 
ideal eyery icleal meeting these requi~.enients. Every ring possesses at  least 
one raclical icleal; and both the cross-cat and the sum of all the raclical icleals 
are themselves radical icleals ~vhich may b. called the lower and the upper 
raclical respectively. It is possible that the upper and lower raclicals are 
different ancl that neither of them is nilpotent. If  all the raclical ideals are 
equal, then we say that  the raclical exists; ancl this happens e. g., if every 
right-icleal, not 0, in the quotient ring modulo the lower raclical contains a. 

smallest right-ideal cljffereilt .from 0. If this latter condition is satisfied by 
erery quotient ring of the ring under consideration, then a finite or trans-
finite power of the radical is 0. 

S e ~ e r a l  applications of the theory of radical icleals are given: we prove a 

criterion for the existence of tlie identity element in rings that  neecl not satisfy 
the minjmum conclibion for right- (or left-) icleals; and we deduce the double 
chain condition for right-ideals :t'roni properties consiclerably weaker than the 
minimum condition. 

It should be noted that we have restricted our attelltion throughout to the 
coilsideration of right-ideals. 

1. Existence of the upper and lower radicals. The element x in the 
ring R is a ~zilelerne~zt, if zi =O for some exponent i ;  and the right-ideal J 
i n  R may be termed a if The~z i l id~a l ,  every element in J is a nilelement. 
rlght-ideal J is nilpotant, if J Z=O for some exponent i. It is clear that 
nilpotent right-ideals are nilideals, though the converse need not be true.' 
It is well known "hat the sum of a finlte number of nilpotent right-lclealb 
is a nilpotent right-ideal; and it is obrious that xJ is a nilpotent right-ideal, 
whenever J is a nilpotent right-ideal and x an element in  R. From these 
two facts one readily deduces the following well known statement. 

* Received hIay 15, 1942. Presented t o  t h e  Ainericaii Rfathematical Society  
Apr i l  16, 1942. 

For a n  esainple  c f .  &the ( l ) ,11. 163 ( t h e  iluir~hers i n  parentheses re fer  t o  t h e  
l~ibl iographg a t  t h e  end o f  t h e  p a p e r ) .  

C f .  e. g.  v. cl. T\'aerden ( I ) , 11. 134. 
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LEMMA1.1. T=hT( R )  of all  t h e  ~ z i l p o t e n t  right-ideal7 in RT h e  s u ~  

i s  a tzuo-sided n i l ideal  in R. 


Note that the ideal IV(R) need not be nilpotent, as follows from an 
example due to Kothc3 

The ideal P in the ring R shall be termecl a ~.adical idenl, l  if 

(1. a )  P is a two-sided ideal; 

(1.b) P is a nilideal ; 
(1. c) the quotient-ring R/t '  does not contain nilpotent right-ideals 

different from 0. 

There exist ideals in I! which meet the requirements (1. a )  and (1.b),  
P. g. the null-ideal. Thus are nlay forirl the sum "= u ( R )  of all the idealb 
I' in R satisfying conditiol~s (1. a )  ancl (1.b ) .  This ideal I T  is clearly a two- 
sided ideal in R and shall be called 	t h e  upper i-ndical of R. 

There exist ideals in l?which meet the requirenlcrlts ( I .  a )  and (1. c),  
e. g. the ideal I== I?. Thus we may form the cross-cut L =L ( R )  of all 
the ideals P in R which satisfy conditions (1.a )  ancl (1. c) .  Thls ideal L is 
obviously a two-sicled ideal in R and $hall be termed t h e  lozuer radical of R. 

It is an immediate consequence of our definitions that eyery radicai ideal 
is situated between the upper and the lox~rcr radical. But the main justification 
for our ternlinologv ]nay be seen ill the follo~viag fact. 

THEOREM1.2. The u p p e r  a n d  tlze lozuei- radical of t h e  i - i ~ z gR are  radical 
i d ~ l r l si~zR. 

Pi-oof. It has been shown by Kothe ' that the sum of all the two-sided 
nilideals in R is a nilideal. Denote by St7 the uniquely determined two-sided 
icleal in I2 which satisfies: T i  5 15' and 1V/ / l l=  X(R/LT). There exists, by 
I~emma1.1, to evclry element x in ST' a pobitire integer i such that zLis an 
element in the nilideal li ;and hence every element in TV is a nilelement. Now 
it follows from the definition of the upper radical that 11' = I T ,  N(R/U)  = 0 ;  

and thus vTe have sho~vn that the upper I-adical of R is a radical ideal in R. 

L 5 U ,  since me haye just shonil that the upper radical U is a radical 
ideal, and since the lower radical L is certainly part of every radical ideal in R. 
Collsequelltly L is a nilideal, since 1' is a nilideal. Every nllpotent right- 

Cf. Iiiithe ( 1 ),  p. 165. 
Thc existence of radical ideals will be assured by Theorem 1 . 2  belon. 

T h i s  ideal has been consiclered by Fitting ( l ) ,p. 21. 
Kiithe (1) ,  p. 170. 
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ideal in R/L has the form B/lJ for S a suitable right-ideal between L and R ;  
;und from the nilpotence of S/L we infer the existence of a positive integer 
such that Si5 A. Suppose now that condition (1.c) is satisfied by the tx-0- 
sided ideal T in R. Then L 5 T and ( ( T  + S ) / T )  =0, since ( T  + 8 ) '  
iT +Si 5 T +L =T;  and it follows from (1. c) that ( T  + S ) / T  =0 
or T +S =T or 5'5 T.  Thus we have shown that S is part of every ideal T, 
s~t is iying (1. a )  and (I.  c) ; and hence S' 5 L, pro~ring that L is a radical 
ideal in R. 

IZemurks. 1. The following construction of the lower radical may be of 
some interest (in particular in case ihe transfinite induction involved in it 
happens to stop after a finite l~umber of steps) : 

(i) Q(0) =0. 

(ii) Suppose that the two-sicled ideal Q(u)  has been defined for every 
u< v. 

Case 1. If v = zu + 1 is not a limit-ordiaal, then Q(v) is the uniquely 

determined icleal in R which contains & (lo) and which satisfies : Q (v)/& ( z u )  
=N(IZ/Q (no) ) ; that Q (6) is a two-sided ideal in R, is an immediate con- 
sequence of Lemma 1. 1. 

Case 2. If v is a limit-ordinal, then denote by Q(v) the join of all the 
ideals & ( u )  for ZL < c. It is readily T-erified that Q ( v )  is a two-sided ideal in R. 

(iii) Since the Q(v) form an asceucling chain of ideals in 22, there exists 
a (smallest) ordinal x such that & ( 2 )  =Q (z + 1 )  ; and we put Q (2). =Q. 

I t  is clear from our construction of Q that Q is a two-sided ideal in R and 
that R/& does not contain nilpotent right-ideals difTerent from 0. Hence i t  
follows from the definition of the lower radical .L of R that I, 5 Q. 

Suppose next that the iileal T in R nteets t-he requirements (1. a) and 
( 1  c )  It is clear that Q(0) 5 T;  and thus we mag assume that every Q(u)  
for t~ < v is part of T.  'Then i t  is readily verified that Q (2)) is also part of T ;  
and thus it follows by complete induction that & is part of T. But this shows 
that Q 5 L ;  and thus me have shown that the ideal & just constructed is the 
lower radical L of 12. 

X 8  If T is a two-sided ideal between L and U, then the upper radicai of 
X/T is U/T; and if T is a radical ideal, then the lower radical of R/T  is 0. 

The author is  indebted to  the leferce for this proof, which is much simpler than 
the arlthor's original ploof, of the fact tha t  L is a radical ideal. 

T h i s  remark is  due to the  referee. 



3. It has been polutrtl out 1)efore that  every ~ a d ~ r a l  ISicleal s~ tua ted  
between the upper ailtl lom'er radical; and it is a consequence of Theorerrl 1.2 
that  every subideal of the upper radical 1s a nilideal. It ma? happen that 
there exist two-sided ideals bet~veeri the upper and the lower radical vhicll 
are not radical ideals; an example for this phenomenon ~r-111 be co~istructed In 

~ect ion2. 

4. It is a consequence of Theorem 1 . 2  that  f h e  upper nnd loicer ~ncirtrils 
rile equnl, if lT /L  is n urlpote~rl  ~ d e n l  in R/L. I n  general, how eve^, the upper 
and lower radicals may he different, as will be seen from the example toll 

<tructecl in section 2. 
If the upper and 111~ lower radical are equal, then this ideal nlav hr 

teriliecl t h e  rndicnl I< =K(IZ) of tlze ~ i n g  R :  and me say then that  / I / P  rtrtlicul 
of R exists.  It should he notecl that  the radical need not he nilpotent, as may 
be seen from an  example due to l i o t l ~ e . ~  

2. Existence of different radical ideals. In this section we construct 
:I ring with the follo~ving properties : 

( i )  Erery eleilieilt in the ring is a nileleinent so tha t  the r ing is its 
own upper radical 11. 

( i i)  The r ing does not contain nilpotent right-ideals different fro111 0 
so that  its lower radical is b. 

(iii) The ring contains :I two-sided ideal which is not a radical ideal. 

Denote by G an  abelian group which is the direct sum of a countably 
infinite number of infinite cyclic groups ; and denote by b (0) ,  b ( l ) ,  b (- I) ,. . . , 
b( i ) ,  b(-i), . . . a basis of G. Then there exists one and only one entlo. 
morphism (=homomorphism) u(*i),for i - 1 ,2 , .  . ., of G such that  

b ( j )u (%)= 0, if j= O nlod 2 %  
b ( j - I ) ,  if j + O  mod 2' .  

The following statement may be easily rerified by conlplete induction : 

b ( j - V L - I ) ,  if j+n  mod 2"for O I n I n z  
(*)  b ( j )u ( i , )  . . . I L ( ~ , , ~ ) =  0, if j E 11 mod 2'" for a t  least one n with 0 Irl I vz 

Denote by U the ring of endo~norphisilis of G which is generated by the 
eildomorphisms u ( l ) ,  u (2),  . . . . 

e 
Every element x zf:0 in U has the form : x =2xi where xi = ZG( (i,0)  )

i=l 


Kijthe ( 1 ) ,  p. 165. 



. . u (  ( i : nl i )  ), 0 < ( i ,j); 0 fmi. If  11, is the inaxinium of all the llunlbers 
? , ' i . 7 1 ) ,  then i t  is ill1 iiiimecliate consequence of (')) that  b ( j ) z i ;  . . Xi, =0 
for erery j, since t!ic product of endonlorphisms coiltains a t  least h factors 
u ( s ) with 2? 5 11. Consequently this product is 0 and this iinplies that  z" 0. 
'Phe ring 1.' has therefore property ( i ) .  

For a proof of property ( i i)  nTe need a closer analysis of the structure 
of flie ei~ilomorphisms in U .  Tf .c is all endomorphisnl different froill 0 in LT, 

m 7 ; ( i l  

t l l~ i i. c = x y ( i ) ,  ?j(i)= 2 e( i , : j )y( i ,j ) ,  e ( i , j )=  k 1, y ( i , j ) = u ( ( i ,  j ; 0 ) )  
i = O  )=I 

. . u ( ( i , j ; i ) ) ,0 < (i.j ; r ~ ) , O < k ( i ) ,  and y ( n )  f 0. Denote by 1. some 
integer satisfying: t n  + 1 < 2" ancl ( i ,  j ;  7 1 )  5 1.  for i = 0, . . . , f i b ;  

j=1: . . , l c ( i ) ;  n=0;  . . , i .  
If  1~ is some prcasbigned positive integer, then denote by s an integer 

4 i s f y i n g  2*l1~ 5 2'. We proceccl to proye that  ( s z l ( s )  ' "'-')" # 0 ;  a fact 
that implies the impossibility of liilpotellce ot right-icleals different from 0. 

It will be colirenient io put z (i,1 )  =y (i,j ) u ( s )"-"I-'. 

Since y ( m )  +0, there exists an integer f such that  b ( l )y(nz)  # 0. 
Il(.nce we may assume that  the pos i t i~e  integer li. 11as been determined in such 
n way that 

'l'l~en b ( f ) y ( m )= c(nz, i)b ( i  - 1t1 - 1 )  f 0 ;  aild this shows that 
j=1 


b 

2 e(nz, j )  # 0, a fact we shall !isre to use later 011. 
3 1 

If  0 5 i,5 7n,, 15 j ,  5 k ( i , )  for 1 5 v 5 h, and if e is 0 or 1, illen 
i t  follo~rs from (*)  that  b( t+ eh2') z (i,, j,) . . . z (ih, j h )  is either 0 or 

h h 
1,(1+ehZr-Z: (i,+1 + Z r - - m - I ) ) =  b ( t +  ( e - l ) h Z r + m h - - x i , )  

I ' = l  c=1 

and this latter elenlent is equal to b ( t + ( e-1 )  hZr) if; and only if, 
i 
I 
- .- . . -- Zh ' = 111. 

TI' k < j ,  for some 7.. then h ( 2 )  y ( m , j,) = 0 ;  and thus there follou~s from 
(*)  the rxlstence of an  integer such that  0 5 1 2  5 172 and t n mod 2t"'83L*'z). 

But then \x7c finil that t + e h Z 1  = f _= 11 E I Z  + (v -1 )", nmcl 2("193%; and 
hence n e  may drrlace from f " )  tha t  b ( t  + eh8 l ) z (n l , j l ) . . . z ( m , j h )  = O .  
rI3 he results obtaintltl 111 t h e  last two paragraphs ]nag. be stated as follcws: 

If  b ( t  + e 7 ~ 2 ~ ) z ( t , ,  . . z(ih, j h )  = b ( t  +- ( e  -j , )  l ) h 2 r ) ,  then 

? , =  . . -- i fL= 17z and 1 5  jl 5 lc. 

Assume no^^* the existeilce of intcgers j,., /II:such that 1 5 j,., j', I12 :nlcl 
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b (t)z(nz, j,) . . . z(m, jh) =0, b ( t  + h2')2(117; jll) . . . z(n2, jlh) =0. Then 
we infer from (*) the existence of integers 11, v satisfying: 1I11 lh and 

n + (21 -1)2'mod 2 (n" j~ . ;v l )  for 0 5 1 2  l 7 n
f = 

n+  ( o - - I ) P n ~ o d % ~  for na< 12 < 2r. 

If  0 5 n lm, then t =n mod 2 ( i 1 1 , j c ;1 1 )  ; ant1 we could deduce from (*:) thac 

b( t )y(m,  j,) =0 which is impossible, since j ,  5 k .  Thus there exist integers 

72, v such that 1n < 12 < 27', 12 ,v 5 k arid t =IZ+ (v -1 )  2? mod 2* ; anrl 

likewise there exist integers ?I.', v' such that rn < 11' < 2", 15 2.' 5 h and 

t $ hBr =72' -t (c' -1 )2r  mod 28. Since T < s, i t  follo~vs from these two 

congruences that  12 =1-2' mod 2" ; and since n t  < 1-2, 7z' < 2?, we deduce that  

I L  = '11'. Sonsequently ( c  .- 1+ h) 2"=( v' -1 )2r mod 2$ or h + v -z.' 


E+Z 0 mod 2"". Since 1(,c, '11' 5 h, we lla~.e 0 < h + v -V' < 212 I zS-" ,  

a contradiction. Thus T T ~l i a ~ c  sho~vll that  tlicre exists an integer t' ~ u c h  tl121t 


b (t') x (i,, j,) . . . z (ih, j h )  = b (t' -7~2') 

if, and only if, i, =. . . = il,=m alld l -5j c  lh for v =1, . . ,h. 
NOW i t  is readily verified that 

b ( t ' ) ( ~ u ( s ) " - ' ~ - l ) "= ( x e (nz, j )  ) hb (t' -hzr) + 2 c( i )  b ( i )
j:1 if1'-ileT 

.f 0; 

since the factor of b (t'-. h2?) is, by n previous remark, different from 0. 
This completes the proof of the fact that ( i i)  is satisfied by the ring I;. 
To prove (iii) let us consider the two-sided ideal T in U which is 

generated by . z ~(2) ,  u ( 3 ) ,. . . . Every element in T is a linear combinatior~ 
of products u(i,,) . . . ~ ( i , , )with the restriction that none of these prorlucts 
is a power of u ( 1 ) .  

0 for even j
TVe note that b (j)zi (1  ) = 

b ( j - 1 )  for odd j 
. IIence u (1)  '= 0 ; ; l r ~ , l  

i t  is readily ~er i f ied  that  U 2 5T. Thus all we haye to show is tllat u(1)  
is not an element in T. 

Fr 

Every element x +0 in  T has the form: R: =x c ( i ) u ( i )  + 5' for X' ir: 

% = 3  

C2 SO that b(t)x '  = 2 d ( j )  b ( j ) .  If .T= 21 ( I ) ,  then i t  follows from b ( l ) u ( i \  
1~ 

j#t-1 
( O f o r i = l  

= b (0 )  that 
i=r 

c(i) =1 ; and it follows from b (2) ti (i) = \ b ( l )  for i f  1 
P 

that 2 c(i )  = 0. This contradiction shows that u ( 1 )  is not in  T so that  
i=% 


U 25 I' < U ,  as was required. 
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If  we adjoin to the ring U of enclomorphisnls of the abelian group G the 
identity-endoniorphism, we obtain a ring R whose upper radical is U ,  whose 
lower radical is 0 and which contaics the two-sided nilideal T such that  R,'l' 
contains nilpotent right-ideals different from 0. 

3. Characterization of the upper radical. The right-ideal J in the 
ring R is termed a m i n i m a l  ~ i g h t - i d e a l ,  if 0 < J, and if there does not exist 
a right-ideal J' such that  0 < J' < J .  

T E I E O R E ~3.1. If T i s  a radicul ideal i n  t h e  ~ i n g  I Z ,  u n d  if every  r i g l ~ t -  
ideal d i f ferent  f ~ o m  0 i n  t h e  quo t i en t  r i ng  R,/T c o ~ z t a i n sa nzi~zirnal r i g h t -  
ideal ,  t h e n  T i s  t h e  u p p e r  ~ a d i c a l  U of R a n d  t h e  u p p e r  radical of R con ta in s  
e re ry  nilidectl in R. 

Proo f .  If the nilideal J in R is not part of T, then there exists an  ideal 
Tr between T and T +J such that  V / T  is a niinimal right-ideal in R/T .  
Since V / T  is part of (2' f J ) / T , ancl since J is a nilideal, V / T  is a nilideal. 
Al minimal right-ideal is either nilpotent or idempotent; and since 2' is a 
radical ideal in R, i t  follo~vs that  V / T  is idempotent. But  it is ~vell  known '' 
that  idempotent nlinimal right-ideals contain ideinpotent elemeilts not 0. 
Thus the nilideal ' / /T  contains on idenlpotent element not 0, a contradiction. 
Hence i t  follows that  T contairls every nilideal in  R. Since T is a radical 
ideal, i t  is a two-sidecl nilideal and therefore part of the upper radical. Since 
the upper radical is the sum of all the two-sided nilideals, i t  follows froin 
what we have shown just now that  1,T is part of T, i. e. U =T contains every 
nilideal. 

The right-ideal J is terilied CL nzaximcil ~ i g l z t - i d e a l  i n  tlze i.ing IZ, if J < B, 
imd if there does not exist n, right-ideal J' such that  J < J' < R. The element 
e in R is a l e f t - i den t i t y  e l e n ~ c a t ,  if e x  =x for every element x in the ring R. 

LEMMA3. 2. If t h e  I-ing K con ta in s  a l e f t - i den t i t y  e l emen t  e, i h e n  ench 
wilideul i s  part  of every  rnaximnl r ight - ideal .  

Proo f .  If  the nilideal V were not part of the maximal right-ideal J; then 
R =V +J and there mould exist elements v and j in V and J respectively 
such that e =.2: -1j. By conlplete induction we may show the existence of 
e l e i~ lcn t~  in J such that  e = sincej ( i )  	 u i  + j ( i )  

This sho~vs tha t  under the hypotlieses of Theorem 3. 1 the upper radical meets 
all the requirements, concerning right-ideals, imposed upon the radical by I<otlie ( I ) ,  
11. 	 169. 

'I Cf. e. g. v. [I. SVaerden ( I  ) ,  p. 167, Hilfssatz 3. 
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But zl is a nil-element; and hence i t  follows that  e is in J and tliat therefore 
J= R. an impossibility which proves our contention. 

THEOREM3. 3.12 I f  t h e  r ing  R contains  a le f t - ident i ty  e lement ,  and  if 
every right-ideal d i f e r e n t  froni 0 i n  i h e  quot ient  r ing R/U contains a m i n i m a ;  
right-ideal,  the17 t h e  u p p e r  radical L7 of R i s  t h e  cross-cut of all t h e  max imal  
righ f-ideals i n  R. 

R e m a r k .  The esaniple in section 2 shows the inlpossibility of omitting 
the hypothesis concerning R/U;  and Theorem 9.  6 below shows the need for 
assuming the existence of a left-identity element in R. 

Proof .  If the intersection J of all the nlaximal right-ideals in R/LT were 
different from 0, then J would contain a minimal right-ideal J'; and con-
sequently we could infer l3 the existence of an idempotent e # 0 in J'. It is 
well known that  R/IT is the direct s u m  of the right-ideals J' and Z where 
J '  consists of all the elements 2: = el; and where Z consists of the elements z 
satisfying ez I..0. Thns the crosscut of Z and J' is 0. Since J' is a minimal 
right-ideal in R,/TT, Z is a maximal right-ideal in R/C.  Hence J' 5 J 5 Z ,  
a contradiction showing that  J =0. Thus we have proved that CJ is the 
intersection of all the maximal right-ideals in R which contain I/; and ir 
follo~vs from Lemma 3. 2 that  U is part of every maximal right-ideal in R, 
since U is, by Theorem 1.2, a nilideal. 

4. The anti-radical. We state the following well known fact l4 for 
future reference. 

LEMMA4.1 .  If AT i s  a s u m  of ( a  finite or  in f in i te  n u m b e r  o f )  m i n i m a l  
right-ideals i n  t h e  r ing R, t h e n  every righ,i-ideal contained in N i s  a direct 
szimnzand of N and  is itself a direct s u m  of m i n i m a l  right-ideals i n  R. 

The sum l5 Jf =N ( R )  of all the minimal right-ideals in the ring R 
shall be called t h e  unti-radical of R ;  and we put JI (R)  = 0, if the1.e are no 
ininimal right-ideals in R. This definition map he justified by the fact that 
the upper radical is. under riot too narrow assumptions, just the cross-cut of 

'?The author proved this theorem originally. using a stronger hypothesis. He is 
indebted to the referee for supply'ing him with a proof for the theorem in i ts  present 
form. 

la  Cf. e. g. r. d, Waerden ( 1 ) ,  p. 157, Hilfssatz 3. 
14Cf. e. p. MacLane ( I i, p. 468, Theorems 3 and 7.  
"This ideal has been investigated by Hopkins ( 1 )  under the hypothesis tliat the 

minimum condition be satisfied by the right-ideals in the ring. 
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all the n~aslmal  right-ideals in R (see Theorein 3. 3 )  ; and by the fact whicli 
n tt shall pro\e iinmediately that radical ideals and the anti-radical annihilate 
cnch other. 

If  J IS  a milxima1 right-icleal in the ring R, n: all element in R, then aJ 
15 either 0 or a i ~ i i ~ l i ~ l i a l  right-iclenl in R ;  and this shows that t h e  c l r ~ f i - ~ n d i c c i l  
i s  tr two-s ided  i d e a l .  

TI-~EOREST I f  .dI i s  tjze rrnti-rc~dical of [ h e  I.i?zg R r6nd J ?lilide(li4. 2. 	 I L  

itr I?, t h e n  illJ = 0. 

1"rooj'. If  b is an element in the iniilii~lal right-ideal B, j an element, 
iu tlle ~lilideal J, a ~ i d  if b j  were different from 0,  then b j  would be an element 
not 0 in tlle miliimal right-icleal 13 so that  B ~ ~ o u l dhe the smallest right- 
ideal containing b j .  Consequently there exists an elen~erlt r in R such that  l6 

l ) = b j l - t  b j t .  . . . k h j = = b ( j ~ . I :  j t .  . . i - j )  = b j r  where j' is an  ele-
~ u e n t,inJ, since j is xn element in the right-ideal J. There exists an integer i 
such that j" = 0 ancl this leads to the contracliction: 0 # b j  = bj ' j  =. . . - b j t i j  = 0.  We have shovn, therefore, that  B J  =0 for crery miniriial right- 
ideal 	I3 ill R ;  anil this fact clearly implies JlJ =0.  

The f o l l o ~ ~ ~ i n g  coilditioll will be ilnposeil frequently upon the rings under 
consicleration. 

(4. A)  If z i s  a n  eleniel l t  ,i'tz t h e  9.ing R, t h e n  z i s  corztuined i l l  t h e  
1, igkt- idcnl  z R .  

This reqniremcn!- is met r. g. 1-)y all the rings ~ ~ h i c h  acoritairl right-
idcntity e l cmen t  :uld (4. ,%) is satisfied by the rir?g R if, nncl only if, J =J R  
for every right-ideal J in R. 

THEOREII4. 3. If condit iolr  (4. A) is s ~ i t i s f i e d  b y  I k e  ~ i n gR ,  i f  T i s  a 

I I L ~ O - s i d e d  sum of nciwimtel ~ ig l z t - idec i l s ,  the11 f h e  
idea l  in l?, ~ i n dif R/T is ii 

~cnli-rtrdical31 rontai71s p r e y  e len , i r~Z rc, s i t t i s f y i ~ z y :zT = 0. 

I ' toof .  I f  zT =0 is satisfied by the elenlent z in R, and if the right- 
itleal J ill R colltains T and is :i nliiliinal right-ideal inodulo 1', then either 
:tJ = 0 or .r.J is a minimal riyllt-icleal in R. The right-icleal X R  is con-
silc~i~eritlyn sum of minimal right-ideals in R, since R/T is a su111 of rnjrlimal 

right-ideals in R/1' ;  and as a sun1 of minirnal right-ideals 212 is part of the 

sum 111 of all the nlinimal right-idt3als it1 R. Applying contlition (1,rl) to  

:rR5 N we firlil finally that .T is ill J I  ~vhenrrern2' = 0. 


l < i  ' rllis more cornplicateil fo1.111 fur. the inobt general elemei~t i n  the right-ideal 

9nler:ctetl by b j  is c11:e to  the fact  tha t  no idcr~ti ty elenlcnt need exist in  R. 




Renzark. The ilnpossibility of omitting cond~tlon (4. A)  in Theorem 4. 3 
may be seen from the following example: Denote by R the ring of all the 
mnltil~lcs of the prime number 21 considered wodnlo p h n d  denote by T tlle 
ideal of all the multiples of p 5 n  IC. It js  obvious that T is a t~vo-sided ideal 
in R such that  R/T is a millinlit1 ideal ancl such that RT = 0, though R i s  
not a sum of minimal ideals. 

The following statement is an immediate consequence ol Theorems 1.8, 
4. 2 and 4. 3. 

TIIEOREII4. 4. ( a )  MU = 0. 

(b) If conditiofe (4. A )  i s  satisfied by  t h e  r ing R, and  if R/lT i s  a szcnz 
of m i n i m a l  right-ideals,  t h e n  tlze anti-rcidical is exact ly  t h e  set of all t h e  
tile e lements  x which snl is fy:  xLT =0. 

R e m a r k .  The impossibility of omitting the second hypothesis in  (b)  may 
1)e seen from the example of the ring of all the integers whose radical and 
:I ti-radical are both 0. 

The following lemma will prove useful later on. 

LEXXA4. 5 .  If t h e  right-ideal J i n  t h e  ring R i s  con,tained i l l  t he  n n f i -  
radical ,TI of R. the11 J 2=J3. 

Proof .  It is a consequence of Lemma 4. 1 that  J is a sum of millinla1 
right-ideals. If Z is a minimal right-ideal in IZ, then Z 2  is a subideal of % 
and consequently either Z 2 =Z or Z 2=0. If Z is a minimal right ideal 
contained in J ,  then Z2= Z implies that  Z 5 J2, and Z 2= 0 implies thnt 
Z is part of the cross-cut C! of ,I ancl the upper radical U. From these facts 
we tleduce that ,7 =J2-/- C. From Theorem 4. 2 we infer that  J C  5 X U  =0. 
(loiisequently J ?  = .T(b" C') =J 3 + JC =J 3 .  

11. Hall has shown l 7  that every algebra. m a - be decomposed in  one ant1 
onljr one wag into the sum of a semi-simple and a "bound" alpebm. T h o  
iolloa~ing concepts will be needed for an  extension of his theorem. 

We denote by A - -4 (23)the set of all the elernelits x in R ~vllich satisfy: 
sU =U:c=0 ;  and we denote by B -B(Ir ')  the set of all the elements b in 
R whicll satisfy : bil  =A2b= 0. It is ob\-ious that  .1 and B are two-sided 
ideals in R,and that  bT5 R. 

THEOREX4. 6. iS~ippose thn t  co~ ld i t ion  (4 . ,\) i s  satisfied b y  the  r ing R. 

( a )  I f  R z s  f h e  dzl-ect sunz of t h e  tzrvo-sidecl ideals X arrd T ,  i j  C IT, 
ortd if t he  cross-cut of d and T i s  p ~ 1 ~ 2  =A2 and T =B.of C, t h e n  S 

I' Hall ( 2 ) ,  Theorem 2 .2 .  



547 RADICAL IDEALS. 

(b)  I f  R/U i s  a s u m  of lnifzinzal r ight - ideals ,  theit  t h e  ci.oss-cut of AZ 
a n d  B i s  0 ;  a n d  t h e  cross-cut of 9aizd B i s  part  of U .  

(c )  I f  R/U i s  u sum of nzinilnal r ight - ideals ,  a n d  if t h e  cross-cut of A2 
aizd t h e  ant i - rodical  d l  of R i s  t h e  s u i n  of a fiizite n u m b e r  of ?ni f z imal  ~ i g h t -  
ideals,lx theiz R i s  t h e  direct  s u m  of A2 and B. 

P r o o f .  If the trvo-sicled ideals S and T meet the requirements of (a ) ,  
then ST =TS =0 and corlsequently 6' 59. If D is the cross-cut of A and 
T, then A is the direct sum of S and D, and U is part of C.  Thus U' IA U  
= 0 ancl A2=A' + ]I2  =S ; and this implies B = T. 

If R/U is the sum of minimal right-ideals, then it follows from Theorem 
4. 4, (b) that A is part of the anti-radical il/ of K ;  and hence it follows from 
Lemma 4. 5 that it" 11:" If 1V is the cross-cut of -d2and B, then we deduce 
from Lemina 4. 1 the existence of a right-ideal V such that A' is the direct 
sum of W and 8. Clearly A2W = 18d2=0 and hence we have A2=A' 
= (V  + 1.V)" IT2, proving that 1.17 = 0 .  The cross-cut of A and B is part 
of ,$I and is therefore the sum of minimal right-ideals. If Z is a minimal 
right-ideal, then either Z2 .=  Z or Z 2=0 ;  and if Z =Z2,  then Z js part of 
A h n d  is therefore not contained in B. IE 2' = 0, then Z is nilpotent and 
is therefore part of U ;  ~ililthis colnpletes i.he proof of (b ) .  

If the requiremeats of (c) are met by ihe ring R, then A' is the sun1 of 
a finite number of minimal right-ideals; and since the cross-cut of 1i2 and B 
is 0,  it follomrs from I J  B that the minimal right-ideals contained in A2 arc. 
idempotent. Now we nlay deduce by the custon~ary arguments '"he existence 
of an idenlpotent e such that 1i2= e R .  Denote by 2 the set of 'elements a 
in AQuch that x e  = 0. Clearly E is a left-ideal and the two-sided ideal ER 
satisfies : ( E R )  =ER3;R 5 B2BIBA2=B e R  =0, showing that Eli IG. 
Applying (4. ,4) we infer now that 3; ;:4 ER 5 U ;  and since the cross-cut of 
A%nd U is part of the cross-cut O 01A2 ancl K ,  i t  follows that E =0 ;  and 
from this fact we deduce that .42= e R  =eA2=R e  =A 2 e ;  and this shows 
that the element b in R beloligs to B if, ilnd only if, be = eb =0. If I- is any 
element in R, then e ( r  -et ,e )  and ( r-e r e )  e belong both to e R  = l i e  and 
satisfy therefore : e ( r - ere)= e ( r - e r e )  e =0 and ( r - e r e )  e =e ( T -  e r e ) e 
=0. Consequent,ly ere belongs to 11' = e R e  and r -ere belongs to B, i. e. 
R is the direct sum of -d2and B. 

It is not kno~vn to the author whether or not this hypothesis is needed for the 
validity of the proposition ( c ) . 

l o  E. g. v. d. 'CVaerden ( I ) ,  pp. 156-158. 



5. The anti-radical series. ,111 ascdendi~lg chain of two-sided ideals 
21,=SI?(K) ill the r ing K mag be defi~led by complete (transfinite) illductioli 
as follows : 

( i )  Jl, i:. tFLe anti-radical 31 of If. 

(i i)  1I1',+, is the i~niyuely ileterminecl two-sided ideal in 12 wliich con-
tains dlc and n.hic.11 iatisfies : 31(hJ/ilI ,) = ilf,+,/Jl,. 

(iii) If .1: is a limit-ordinal. t l ~ r n  J l ,  is the join (and therefore the sum) 
of all the ideals Jl,, for u< r .  

( i ~ )  Tlierc esists a sl!lallrst orcli~lalfa =:nl (R) such that  ill,,, =dl,,,,. 

TXIEOREIT5 .  I. H=XI , ,  for some  (f iwite ov iwfilzi te)  ordinal  nz ,if, and  
oirly i f , t h e  f o l l o ~ r i ~ l y  c o l ~ d i t i o ~ ~' is satisfied hy e v e q  quot irrz t -r i~lg  of R: 

I'troof. If conclitlon (5. B) is satisfied by every quotielit r ing of R, and 
if X ,  < K. then h'/Itf, coutains rl minirual right-ideal so that  ill, < Y,,,. 
Since dl,,, =11/,,,+, for ionle ordlr~alm. this shows the sufficiency of the 
concl~tion. 

If  R =X,,, for  come ordinal nr, arid if T is a two-sided ideal different 
i'l.om R, then i t  is eaby to collstrucl a well-ordered ascending chair1 of right- 
iclcals J ( v )  with the following p~.operties : 

(a)  J (0) = T. 

(b)  J (s) < d ( c  + 1) and there does not exist a right-ideal J satis-
fying:  J(1;) < J < J ( v +  1). 

(c)  If  I: is a liniit-ordinal, then J ( v )  is the join of all the right-ideals 
J ( u )  for u < v. 

(d)  J ( w )  = I2 f o ~sorne (finite or infinite) ordinal 10. 

If J is some right-ideal in R such that  T < J ,  then there exists a smallest 
ordlilal x such that  the cross-cut of J and J ( z )  is different from l', since the 
tross-cut J of J arld J(zu) = 12 is  (Lifferent from T. It is an  obvious con-
sequence of (c)  that  z canllot a llniit-ordinal; and me rnay readily verify 
that  the cross-cut 17 of .J and J ( z )  is a minlnlal right-ideal modulo T, as was 
to bc sliown. 

Conor,r,utrr 5. '5. If f? =JI,,, for some  ol t l in~r l n2, the11 t h e  ?.ndiccil Ii 
oJ t h e  r ing  l? ea is tc .  
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I',roof. If R =M,, then it follows from Theorem 5 .  1 that (5. B) is 
satisfied by R/T,. Heilce it follows from Theorems 1.2 and 3. 1 that the 
lower radical L and the upper radical U of the ring 12 are equal, i. c. U S= L 
is the radical I< of M. 

We note that under the llypotheses of Corollary 5 . 2  every nilideal i s  con-
tained in the raclical K of R. 

It should be mentioned finally that (5. B) is satisfied by every quotient 
ring of B, whenever the minimuin condition is satisfied by the right-ideals in R. 

6. The powers of the radical. If J is a right-ideal in the ring R, then 
the (finite ancl transfinite) powers JU of J are defined by transfinite induction 
as follows : 

(i)  J 1  =J .  

(ii) Jvtl =JJU. 

(iii) If 21 is a liinit-ortlinal, the11 J U  is the cross-cut of all the J t 4  for 
11 < c. 

(iv) There exists FI (smallest) orclillal s =s ( J )  such that J8 =Jst1. 

It is clear that the powers of n right-ideal are right-ideals; and that the 
powers of a two-sided ideal are two-sided ideals. 

If J is  a right-ideal i i z  R, and if u5 v, then JV IJ". 

Proof. We prove tliis contention by complete induction with regard to v. 
It is certainly true for v =1; and thus we may assume that JW5 Jq4for 
21 IW < v. 

Case 1. v is a limit-ordinal. 

Then J U  is the cross-cut of all the Ju for u < ,o so that ZL < v implies 
JVIJU. 

Case 2. c =w + 1 for w a limit-ordinal. 

Then Jv  =JJWIJJU -JUtl for every u5 w.. Thus Jv  is part of thc 
cross-cut of all the Jv" for u < w ;  and this cross-cut is just J W ,since w is a 
limit-ordinal. 

Case 3. v =z + 2 for some ordinal Z. 

Then Jv =JJ"" IJ J Z=J"l I Ju for w Iz + 1 < v ; and this com- 
pletes the proof. 

THEOREM6.1. If J is a tzilideal, then MJ" =0 for every ordinal v. 



Proo f .  T t  is a consequence of Theorem 4. 2 that X I J 1=MJ = 0. Thus 
\re may assume that our assertion holds for every u .< v. 

Case 1. 2' = 10 + 1 is not a limit-ordinal. 

Then ilI,/JI,, is the anti-radical of R/M, and ( J  + M,,)/lM, is a nil-
Ideal in the quotient ring Rlill,,. Hence i t  follows from Theorem 4. 2 that 
t h ~ i r  product is 0 ;  and from this fact we deduce Jl,J IM,. From the 
~ntluction-hxpotliesis wc infer 11f,,710 = 0. Consequently we find that  
,TI,J" =MGJJu'5 31,,TW = 0. 

Cuse  2. v is a limit-ordiual. 

If x is any element in Mu,then we deduce from the definition of Mu as 
the join of the 111, with u < v the existence of an  ordinal u < v such that  
a. is ail element in M u .  It is a consequence of the definition of J v  that  J v  IJ " ;  
and hence it follonrs from the induction-hypothesis that z J v  5 JluJu=0 ;  
and thus we have shown that Jf,Jti= 0. 

COI~OI~LARY If R = 0.6. 2. iMjn,for s o ~ n e  ordinal  nz, t h e n  ICiiLtl= 

12enzark. The existence of the radical K of 12 is assured by Corollary 5. 2. 

1'1-oof. It is an immediate consequence of Theorem 6 . 1  that  

Note that  we could infer = 0 from R =M,,,, if 0 were the only ele- 
ment s in R satisfying lln: = 0. 

Tha t  I<" 0 need not imply R = JI,,,, may be seen from the evampIe 
of the r ing of all the integers tvl~ere 31, =K v  =0 for every v. 

THEOREM M,,, for s o m e  orclinal rrz, lhelz eac7~ of t h e  followiizg 6. 3. If R = 

/ ~ o p e r . l i e s  of t h e  r ight - ideal  J i iz R i m p l i e s  all  t h e  o ther s :  

( i )  J i s  n izilicZeuS. 

(ii) <J i s  (L purt  of t h e  r(idicn1 IC of R ( tohose  e z i s t ~ u c e  i s  assul.ed b y  
( ' o i . o l l a ~ y5. 2 ) .  

(iii) J" 0 for. s o m e  ordinal  k .  

I'roof. It is a conspquence of Theorems 3 . 1  nncl 3. 1 tllnt every ~lllideal 
is part of the ~ailical. If the right-ideal J is part of the radical X oi 22, the11 
we cleduce from Corollary G .  2 that  JVM15 Tinw1 =0. If finally J" 0 for 
some orclillal li, then we clcnote by J ,  the cross-cut of J and of &I,, and wcA 
put  J o=0. '\Ire proceed to prove by conlplete (transfinite) induction that 
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eiery J, is a nilideal, a fact that is clearly true for 7. =0. I-Ience we map 
ttssuine that JILis a nilideal for cvery < c. 

Case  I. v = zu + 1is not n limit-ordinal. 

The right-ideal J* = (AI,,.+ J,),/V,, is part of the anti-raclicai !21,,/,1lW 
of the ring R/JI,,; it is, therefol-e, the snm of mininlal right ideals in B/Af,,. 
Tf Z* is a rnini~nal right-ideal in R/iV,,, then either 2'"'=0 or 2%=%*? If 
the idempotent minimal right-ideal Z *  were part of J::', then there mould 
exist an element e in  J ,  which is not contained in J.,,,though e -e? is an 
rlelnerlt in J,,: since every idenlpotent minimal right-icleal contains an idem- 
potent not 0." It is a co~lsequence of the induction-hypothesis that J.,,is a 
nilideal and that therefore e - (3' is a nilelement. Coilsequelltly we are able 
to deduce from a theorein of G. I<,othe'l the existence of an iclempotent j # 0 
in J, 5 J, ,z fact that is clearly incompatible with Jk=0. Thus we haye 
shorn11 that J:Kis the sun1 of nlinimal right-ideals ~i~hose squares arc 0 ;  and 
from this result it. is easily deduced that J;" =0. Rut J t i 5Jl,, is a13 
imlnediate consequellee of J * '  =0. Since 3[,, is a nilideal, the square of 
cvery element in Stj is a nilelement, i. e. J,:is a nilicleal. 

Case  2. is a ljinit-ordinal. t i  

Then every element in J ,  is contained in sollie JtLlor z~ < v ;  and it follows 
froin the induction-hypothesis that everg element in J ,  is a nilelement, i. e. 
that J,, is a nilideal. 

This shows that J i; a nilideal, since J =.I,,, is a consequence of R =AII,,,. 

Remcr1.X. If J is an ideal, neither 0 nor 1, in the ring of natural integers, 
then Ju=0, though J 1s not a nilidcal; and this sllowi that the hypothesis 
f: = cannot be onliitecl in Theorem 6. 3. 

T r r ~ o n ~ ~ r6. I. If co,~cli t ion (4 . A )  z s  sn/isf ied by Ihe 1z11y R, ( r ~ dif 
X/O is cx sun^ i l len  J l ,  is, f o r  curry posit ire i t t teger i,of ~ n i ? z i m a l  ~igl~t-ideals, 
e.rtrcfl?j t h e  set  of all  t h ~  .C in I? zchicl~ sutisfy. fi.Uz=0.c l c ~ ~ ~ e n f s  

P ~ s o o f .  The ~a l id i ty  of our contention for i =1 is an immediate con-
sequence of Theorem 4.4, (b ) .  Thus we may assume that Xi-, is exactly the 
set of all the eleineilts x in B which satisly : zUi-s =0. The ideal Ni/JjIi-l 
is the anti-radical of t,he ring R/,?li_S; and ( U  +&fi-l)/Mi-s is, by Theorem 
1.2, a two-sided nilideal in R,/Jli-, modulo which this ring is a sum of 

'O E. y.  v. d. Waerden ( I ) ,p. 157, Hilfssatz 3. 

" Kiitlic ( l ) ,  p. 168, Hilfssatz 3. 
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nlinimal right-ideals. Hence it follows froin Theorems 4.2  and 4. 3 that 
Mi is exactly the set of all the elemellts x in 12 which satisfy: XU 5 Mi-,. 
But i t  is a consequence of the induction-hypothesis that XU is part of Mi-, 
if, and only if, 0 =zlT[Jb1 =XU" and x is therefore an element in  Mi if, and 
only if, zUi  =0, as was to be shown. 

THEOREM If tlze ,right-ideal J i,tc R is part of iMi for i a positive6. 5. 
iuteger, the12 JZ1=Jfi+l. 

Proof. It is a consequence of Lemina 4. 5 that our theorem is true for 
i =1. Thus n7e lnay assume the validity of the theorem for subideals of M i  

and we have to derive it from this incluctioi~ hypothesis for the subideals 
of Mi+1. 

Assunle now that the right-ideal J in R is part of 1CIitl. The right-idea! 
(dlr  + J ) / M i  in R / M i  is part of the anti-radical M(R/illi) =Mi+l/Mi of 
the quotient ring R/&li; and hence we deduce from Len~nla 4. 5 that 
Mi +JZ=Mi +J3. The cross-cut C of Mi and J V s  a subideal of and 
consequently we may infer from the induction llypothesis that C2" CG2"1; 
and the above equation may be restated as J' =C +J3,since J35 JZand 
since we may apply the modular (Declekiad's) law. Expanding (C + J3)';-l 
r e  obtain 

where every sumn~ancl Vj is the sum of products of 2" 1 ideals of which 
j are equal to JQnd the remaining 2" 1-j factors are equal to C. Since 
c 5 JZ, i t  follows that V 5 J3j+2(~-1-1)= J Z i + ' + f - 2  -< JZ1+l -1  or 

Consequently we find that 
24-1

p4+l=pJ2,+,2 = (c+JR)J"+~-z =Q (Cis-I +2 Vj) + J2f+l+l  

i=1 

- -<J2'+'+l;since C2lt1 <J21+1+2 and this completes the proof. 

7. Nilpotent ideals. It is an immediate consequence of the definition 
of radical ideals (cf. condition (1.c) !) that they contain every nilpoteilt 
right-ideal. On the other hand i t  has been pointed out that radical ideals 
need not be nilpotent. Thus we shall give in this section several criteria for 
a nilideal, in particular a radical ideal, to be nilpotent. 
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THEOREN7 . 1. E I : P ~ Ynilidecll confa i t led  in LII, for i n plositive iiztegel. 
i s  n i lpote t l t .  

P r o o f .  It is a consequence of Theoren1 6. 1 that  a nilideal J containetl 
in J I i  satisfies: .IZT1=JJiIX , J i  = 0, and .7 is therefore ailpotent. 

THEOREM7 . 2.  T f  llze t?~cr.rir,lzirrz-cotlditio~z" iis .sntiisfi~db y  t h e  w i lpo t e~ l t  
~ ' g h t - i d e c i l sit[ ( h e  r ing  R ,  11lcn / h e  lotoet. radical o f  R is n i l p o t e r ~ t .  

Renln1.1~. Ths t  the hgpothesis of this theoreill is not sufficient for proving 
that  the upper radical is nilpotent, may be seen froin the exanlple in eection 2. 
It seems to be an open questioil ~ ~ h e t h e ror not the inaxinlmii colldjtion foi. 
right-ideals is suficient for nilpoteuce of the upper raclical. 

l 'roof.  Theri, exists a greatest nilpotent right-ideal G ill I?. If J is a 
ilill~otentright-ideal in R, tllen G + ,I is a ~lilpoteiltright-ideal so that J 
is part of G. Consequently G is the Pum of all the nilpotent right-ideals in H. 
It is a consequence of Lenlnla 1.1 that G' is a two-sicled ideal in K .  There 
cannot exist nilpotent right-icleale different S ~ o m0 in RIG, since Z S G aall 
the nilpotence of G' illlply the nilpnteilce of %. This s h o ~ ~ sthat  the nilpotent 
ideal (I! is a ~atl icalitleal: R I ~ L ~jt is readily \-erified that G! is the lover radical 
of the ring R. 

TIIEOREJI ;. 3. I f  R - J1,,, Jot, some oicliizcil m ,  cincl if ( i t  lecist otze 0 1  
i h e  tzoo chcii~lsJf, nild T i b  i s  finite, t l ~ e nt h c  i,adicnl K of R is ~ l i l p o t e r ~ l .  

Re~r~cir l i .The existe1ic.e of the radical I< is a concequence of ('orollary 3. 2 .  

Proo f .  If IZ = .II,,, for some finite'orclinal nl, then the nilpotell.ce of the 
radical is a consequence of Theoreni 7. 1, since the radical is hy Theoren1 1. '2 

a nilideal. 

If IZ  = froin Corollary 6. 2 thatXI,,for solne ordinal nz, the11 it f o l l o ~ ~ ~ s  
X V I + I  -- 0. If  the chaill 1s finite, then t h ~ r eexists a finite ordinal i such 
that K i  =J<i+l =. . . --Ku"1 --0. 

The nest  theorem is a partial converse of Theorem 7 . 3. 

THEOREM7.4. I f  cond i t i on  (4 .A )  i s  scitisfied b y  t h e  ?wing R, if t h e  
radical K of R exis t s  n n d  i s  ~ z i l p o t e n t ,a n d  if R/K i s  n s u m  of mi iz imal  r i g h t -
idecrls, t h e n  R =&I, f o r  sonap posil ice i n t e g e r  i. 

Proo f .  There exists a positive integer i such that  K i  =0 ;  and it is a 

2 2  It states t h a t  every not racunus class of nilpotent right-ideals contai~lsa t  least 
one greatest ideal. 

3 
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co~lsequence of Theorem 6.4  that M ,  is exactly the set of all the elements x 
in R which satisfy: xRi=0. Since RKi =RO =0, i t  follows that .Mi =R. 

The third condition in Theorem 7.4  cannot be omitted, since in the 
1~i11gof all the integers radical and anti-radical are both 0. 

COROLLARY Buppose that co7zditiolz (4 .A )  is satisfied by the ring R,7. 5 .  
illat R/U is n sul7z of  ~ni~einzalright-ideals, und that 0 is ihe only element x 
in R that salisfies Rx =0. T'leen 

U"=0 if, and only if, illi =R (for i cc positice integer). 

Proof. That f i t  = 0 implies 31, =R, is an immediate consecluence of 
Theorem 6. 4 ;  and that M i=R implies U 1=0, may be inferred from 
Theorem 6 .  1, since 0 =MiUL =RITi, and since S = 0 is a consequence 
of RX = 0. 

8. Maximum and minimum condition^.^^ I11 the results of the previous 
sections there occurred hypotheses that are connected in various ways with 
maximum and nlinimunl conditions. I n  this section we investigate the rela- 
tions between these properties. 

5.1.THEORE~I Suppose that t h e  ~iznxinzum condition is safis&ed b y  the 
light-ideals in the rireg R. Then the milzin~unz condition is satisfied by the 
iighi-ideals in R if (nnd o ~ ~ l y  condifioil ( 5 .  B )  i s  sntisfied byi f )  eaery 
quotient-ring of R. 

P~oof .  If conditioil (5. B) is satisfied by every quotient ring R, then 
there exists, by Theorem 5. 1: an ordinal m such that R =If.,,,.Since the 
ideals ,$I, form an ascencliiig chain, and since the lnaxilnunl conditioil is 
satisfied by the right-ideals in R, there exists a positive integer i such that 
I = i l l +  Since R =ill,, for some ordinal nz, it follows that R =3li for 
i a finite ordinal. It is a consequence of the definition of the series 3f, that 
31,+,/Mu is a sum of minimal right-ideals in R/M,; and we infer from the 
maximum conditioil for right-ideals that AM,,,/,W,is a sum of a finite number 
of minimal right-ideals. Consequently there exists a finite compositioll series 24 

of right-ideals in R ;  ancl i t  is well known that the minimum condition for 
right-ideals is a consequence of this fact. 

"The maximum (minimum) conditioli is satisfied by the right-ideals in the ring R, 
if in every not vacuous set of right-ideals there exists a right-ideal which is not smaller 
(greater) than any other right-ideal in the set. 

?'A composition series is a densest finite ascending chain of right-ideals. 
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If there exists in the ring R an infinite independent set 2 5  of right-ideals, 
then there exists in R a countably infinite, independeilt set of right-ideals 
J ( i )+0 for i =1,2, . . . . The chain of right-ideals J ( j )  is an infinite 

i i 

ascellcling chain of right-ideals; and the chain J ( j )  is an infinite de- 
i <j 

scending chain of right-ideals. Thus the maximum as well as the minimum 
condition for right-ideals implies the following property of rings R -  

(8. C )  Thew does not cakt an infinite independe it set of right-ideals. 

If (8. C) is satisfied by the ring E, then it follows from Lemma 4. 1 that 
the anti-radical Jjr of I2 is the (direct) sum of a finite number of minimal 
right-ideals. The following statement is a partial converse of this fact. 

THEOREM8.2. If condition (5.13) is scctisfied by the ring R, and if the 
nrzti-radical 31 is CL sun2 of a ,finite rlurnbar of minimal right-ideals i n  R, then 
( 8 .  C) is satisfied by R. 

Proof. Suppose that S is an independefit set of right-ideals different 
from 0 in R. If J is a rig-ht-ideal in the set 8,then J contains a minimal 
I-ight-ideal J'. The set X' of these minimal right-ideals J' is independent 
and contains as many elements as S .  Since there does not exist an infinite 
independent set of minimal right-ideals in R, i t  follows that X is a finite set 
and that therefore (8. C) is satisfisd by R. 

LI:MMA8.3. If conditions ( 5 . B )  and ( 8 .  C )  are satisfied by the ving R, 
anti if R does not contain i~ilpoteqlt right-ideals different from 0, then R is  
thc szlnz of a finite nzlrnher of .mirzimnl right-zdeals. 

Remurk. This is a generalization of the so-called " Fundamental Theorem 
on Semi-simple Rings." 2B 

P7-00f. Suppose that, we have constructed idenlpotents el,. . . ,en meeting 
the following requirements : 

(a)  eiR is a minimal right-ideal. 

(b) eiej =0 for i -+j .  

This is certainly possible for 71, =0. 

We note that the right-ideals eiR form an independent set of right-ideals. 


"The set 8 of ideals is said to be independent, if the cross-cut of any ideal J in 
S with the sum of the other ideals in X is 0. 

2 6  Cf. e. g. v. d. Waerden ( 1), p. 15.6. 
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Let Tlr(n) be the right-ideal of all the elenlellts .t: satisfying: 2
I 1  

~ i . c= 0 
i = l  

I 1  

( W ( 0 )=R ) .  Then i t  is reaclilg seer1 that X = Il '(i1) $ 2 eiR; ancl v e  
i=l 

]lave effected the proof of our lemlna, if I l ' ( r l )  = 0. Sliould ll'(ir ) 1)e t l  i f -
ferent froni 0, then i t  contai~ls a minimal right-ideal J;  ancl J coritains, 1)y 
a well kn0m.n theorem," an idempotent e +0, since J = J2 .  Put  P,,,, 

n 


= e -e 2 e,. It is rer,clil? ~-cl.ifird that e,,+, is an iclempotent, satiseying 
1 = 1  


e ,e ,+,  = e,+,e, = 0 for i =1, . . . . 1 1 ,  and that  .J = e, ,+lR; anil thub t l l ~  
idempotelits e, ,  . . . ,P,, .  e,,, iileet the requirements (a)  and ( b ) .  

I f  this constructioll woul(1 nerer stop. i. e. if the right-icleal W ( n )  were 

different froni 0 for erery positive n, then we n7oulcl l ~ e  lecl to the infinite 
indepenclent set of rninilnal right-ideals c,R, . . . ,e , R ,  . . . . contraclictillg 
condition ( 8 .  C ) .  This t o n ~ p l e t ~ sthe proof. 

THEOREIT I f  (-1. A)  i~ vrlzsfied b y  17io rirly If, t l leu e(rc/l 8.4. ~ o i 1 c l i l i o 1 ~  
of t h e  fol lozring p i .o l ie~ t ies  i?,zl~l ies  (ill t h e  ot1l~i .v:  

(1) T l z e  n z c i z i n ~ t i ~ r ~  t h e  naini i t lu~iz  cor td i l ion  ctre sc(ti,s$etl byaltd / l i p  

7 iglzt- ideals  it^ R. 

( 2 )  T l z e  ~i1ini77l~inz collditiorl is anlisficd b y  Llte r i g h t - i d e n l s  ill If. 

( 3 )  C o n d i i i o r l s  (5. R )  ai~c l  (8.C )  (ire s a t i ~ f i e d  b y  e.ce7.y q u o l i e n l - ? " i ~ y  
of t h e  q-iizg h'; nild tlle clesceircfiiiq c l l ~ i i ~ ~  of tlze powe1.s of  t h e  rcidical " IR o f  
R i s  f ini te .  

l'i'oof. It is obvious that (1)  iiliplies ( 2 )  ; and that  ( 3 )  is a. conseqliel~ce 
of ( 2 )  is a consequence of facts Ire mentionecl when introducing conditioll 
( 8 .  C ) .  

If  ( 3 )  is satisfied b y  the ring R, then it follo~vs froni Theorem 5. 1 that  
R = llfl , ,  for sollle ortlinal 772; ancl from Lemma 8. 3 that  R / l i  is the suln of 
a finite number of right-ideals. There exists a positive integer i such that 
Xi=Iii+';and i t  is a consequence of Theore111 6 .  4 that  M n  is, for finite 11,  

exactly the set of all the eleiileilts a:, satisfying xKn =0 .  This shows the 
('quality of N i= . ,!Ifi,, . . . = =R. SinceXi+,Hence we !lave ilIi = = X,, 
there do not exist infinite indepenclent sets of right-ideals in h'/X,,, it f o l l o ~ ~ r ~  
from Lemma 3. 3 that  2Jf,.,,/31,, is the pun1 of a finite number of millillla1 
right-ideals. Consequelltly there exists a finite composition series of right-
ideals in  R, a fact which is equ i ra l~n t  to our property (1). 

"Cf. e. g. V. d. '\T7aerde~~ 11. 137.(1) ,  
's The existence of the radical Ti i~ aesurcd by Thcorenl 3. 1 and Corollary 5 .  2. 
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Remarks. 1. In proving that (1)  is a consequence of ( 3 )  we did not 
use condition (3) in its entirety. That condition ( 5 . B) is satisfied by every 
quotient ring of R, ancl that the powers of the radical form a finite chain. 
are hypotheses indispensabk for the above proof. But i t  is not necessary to 
assume that (8. C') js satisfied 1)y eTery quotient ring of R. It would have 
been sufficient to make sure that the quotient rings R/M, for finite i and R/K 
meet the requirement (8. C )  ; ancl for the latter aqsumption we coulil have 
substituted the weaker hypothesis that R / E  is a sum of minimal right-ideals. 

2. It has been shorvn elsewhere " that a ring with minimum-condition 
for right-ideals possesses a right-identity elenlent if, and only if, i t  satisfies 
condition (4. A )  ;and C'h. Hopkins 30 has shown that the maximum condition 
for right-ideals is a consequence of the minimum condition for right-ideals, 
provided there exists n right-identity clement. It should be noted, however, 
that condition (4. 4) is indispelisable for the validity of this Theorem 8. 4. 
as may be seen from the followillg exaillple: denote by R any infinite abelian 
group without elements of infinite order which contains only a finite number 
of elements of order a prime; such a group is the clirect sum of a finite 
nbelian group and of a finite number of groups of type31 pm. If we define 
xy =0 for every pair of elements x and y in R, then R is a commutative ring, 
satisfying 0 =R'. The ideals in R are just the subgroups of the additive 
group R ;  and thus it becomes apparent that the minimum condition is 
satisfied by the ideals in 8,but not the maximum condition. 

9. Existence of the identity. The following statement is basic for the 
considerations of this section. 

LEMMA9. 1. If conditiolw (5. B )  and (8. C )  are satisfied by3' R /K ,  
then thei-e exists an idempotent e in R such that x= e x ~ x emodulo K for 
every elenicni a i n  R. 

l'roof. R/K is n ring without nilpotent right-ideals different from 0, 
by Theorem 1.2 ;  ancl R/K is, by Lemma 8.3, the sum of a finite number of 
nlinimal right-ideals. Hence there exists, by a well known theorem,83 an 
identity element in R/K. i. e. there exists an element f in R such that 

2a  Raer ( 1 ), Corollary to  Theorem G .  
"Hopkins .( 1 ) , p. 726, Theorem 6. 4. 
'l The groups of type pw have been discovered by H. Prufer; they are generated 

by a countable number of elements g ,  subject t o  the relations: go is a n  element of 
order P ;  g,_, =B,P. 

32 The existence of the radical K is asciured by Theorem 5 .  1 and Corollary 5.2 .  
33 Cf. C. g. \ .  d. ITaerdcn ( 1) ,p. 156. 
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x = xf = fx modulo X for every z in R. If f is any element llleetiilg thih 
requirement, then f 2  -f = f' is an element i11 K ;  and we deduce from 
Theorem 1.2 the existence of a positive integer n = n ( f )  such that f'" = 0. 
Thus there exists among the elements which represent an identity element 
modulo K one, say e, with minimal n ( e ) .  It is readily verified that e is an 
idempotent (which clearly meets all our recluirements), since othe~~vise"  
el = e -- 2eef + e' [for e' = eL-el would be an element which represent3 
the identity element modulo K,  though n(e , )  were smaller than 12 ( e ) .  

THEOREM9.2. If I? = Jl,,, f o ~  son7 e (finite or infiwite) ordinal nz, ant1 
if condilion ( 8 .  C) i s  satisfied by  the l.ing 35 R/K, then the prope~ty that ever!] 
elemetzt x in R is contnined in R x  is n necessrLry and sufficient condition for 
the existence of a left-idel~fity-element in R. 

Proof. If e is a left-identity-elemeut in X,then x = ex belongs to Rx,  
showing the necessity of the condition. We assume now that the condition: 
( ' 3  belongs to Rx" is satisfied by the ring R. It is a consequence of Theoren1 
5 .  1that condition (5. B) is satisfied by every quotient ring of R ;  and hence 
we may deduce from Lemma 9 . 1  the existence of an idempotent e such that 
x = ex= xe modulo K for every element x in K .  \Ire denote by TV the set 
of all the elements x in R such that ex = 0. Since x = ex moclulo Ii, it 
follows that W is part of X. Finally we have R = Re + Ii. 

We proceed to prove by complete (transfinite) induction that TB 5 ICL 
for every v. This is certainly true for v = 1 ;  and thus we may assume that 
117 IKt&for every u < v. 

Case 1. v = 10 + 1 is not a limit-ordinal. 

Then we deduce from the hypothesis that x is an element in R x  and from 
the induction hypothesis the inequality : 

Case 2. u is a limit-ordinal. 

Then Kv is the cross-cut of all the KUfor u < v ;  and IY 5 Iiv is an 
immediate inference from the induction-hypotilesis. 

It is a consequence of R =M ,  and Corollary 6 .2  that KW*l= 0. Thus 
TV, as a part of Rm+l,is 0. 

3 T h i s  coilstructioll is due to Kiithe ( I ) ,p. 169 and Dicksoil ( l ) ,p. 123. 
3 V h e  existence of the radical K is assured by Theorem 5.1 and Corollary 5. 2. 
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Since x -ex belongs to Tlr for e17ery x in R,it follows that x = ex for 
every x in R,i. e. that e is a left-identity-element in R. 

Remark. The condition: IZ= was only needed in  the proof to assure 
that condition ( 5 .  R )  is satisfied by R/X and that IinZ+l=0;  and ihese two 
apparently weaker conditions may be substituted for R =M,,. 

The idefllity is an element e in R that satisfies ex =xe =x. 

COROLLARY9. 3. I f  R =J!ll,L for sonze (fiwite or infinite) ordinal ~ 1 , 

and if condition ( 8 .  C )  is sc~tisfied by the ring 35 R/K,  then the following two 
conditions are necessary ic.nd suficient for the existence of the identity 1 i~t, 
the ring R: 

( i )  rcR =0 implies x =0;and 

(ii) R s  contains 5. 

Proof. The necessity of the conditions ( i )  and (ii) is obvious. I these 
conditions are satisfied by the ring R, then we deduce from Theorem 9.2 the 
existence of a left-identity-element e in R;and e is the identity 1 in R, since 

( 2-- xe)R = ( 2-xe) eR = (xe ze)R =0 implies x =ze by ( i ) .  

THEOREM9.4. If I: =dl,,, f o r  some (finite or infinite) ordinal m, aqld 

i f  condition ( 8 .  C )  is sc~tisfied b y  the ring 36  R / X ,  then condition (4.  A)  i s  
a necessary nnd suficient condition for the exisieizce of a right-identity-
~lernent in R. 

Proof. If e is a right-identity-element in R, then x =xe is contained 
in the right-ideal xR, showing the necessity of condition (4. A) .  If coildition 
(4. A) is satisfied by the ring R, then we deduce from Theorem 5 . 1  the 
~aliclity of conclition ( 5 .  B) in  every quotient ring of R;and hence we may 
infer from Lemma 9. 1 the existence of an idempotent e satisfying a 3e.r 
--xe mod Ii for every element x in R. Clearly R = eR 4-K. 

I t  will be convenient to put 0 =JI,. Then we prove by complete (trans- 
finite) induction that .V,= Jf,e and that 0 is the only element x in ill, 
satisfying xe = 0. 'I'his fact is patently true for v = 0 and thus we assume 
it to be true for every u < c. 

Case 1. v = + 1 is not a limit-ordinal. 

Then M,, =Af,>e ancl 0 is the only element x in M,,such that xe =0. 

3e The esiste~lce of the raclical I( is assured by Theore111 5. 1 and Corollary 5. 2. 
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If y is an ele~ncilt in 31, such that ye =0, ihen y R  =yeR + yli' =yK ;and 
since Mt,/ill,, is the anti-radical of the ring R/JI,,,, it follows from the or en^ 
4.4, (a)  that yR =y K  5 M,. Rut it is a consequence of (4. A)  that y is 
:la element in yR and therefore in ill,; ancl now we deduce from the in- 
duction-hypothesis that y =@. Consequently 0 is the only eleinent z in Mu 
such that z e  =0 ;  ancl ML=M,e is an obvious consequence of this fact. 

Case 2. v is a limit-ordinal. 

If x is an eleinent in M ,  then there exists an ordinal 2~ < v such that 
a: is an element in  Mu. Hence i t  follows from the induction-hypothesis that 
a: =xe showing that BI, =M,e and that therefore 0 is the only element z 
in 64, such that ze =0. 

Now it is evident that IZ =Af,, -- ill,,,e =R e  ailcl that consequentlg e is 
a right-identity-element for X. 

By essentially the same argumerits as the ones used in the proof of 
Corollary 9. 3 we deduce the following statement froin Theore111 9. 4. 

COROLL~IRY9. 5. If R =Ailnt for sosile ( f ini te  or ilt f i~aite) ordinc~l rn, utzd 
if co,ndition (5.C )  ,is sahisfisd by  tlte 1.in.gS6 R/Ii, then  the following tzao 
conditions aye necessary and sufficient fol. the existence of the ident i ty  1 it1 
the R: 

( i )  Rz =0 in~,pliesz =0 ; tind 

(ii) s R  co~zfnins2. 

It has been assumed in Theorems 9. 2 and 9 . 4  and in Corollaries 9. 3 
and 9. 5 that conclition (8. C )  is satisfied by the ring R/Ii. The impossi- 
bility of onlitting this hypothesis inay be seen from the follon~iilg example: 
Deilote by F a field, by G an ~beliail group which admits the eleii~ents in F 
as operators ancl whose rank over F is infinite? ancl by R the ring of all the 
(proper and improper) antomorpl~isms of the group G over F which map G 
upon a subgroup of finite rank. It is readily seen that R coiltains neither a 
left-identity-element nor a right-identity-elemlent, that R =1I1ancl that Iir =0. 
If 1. is ally element In R, then denote by (7,. the set of all the elements in G 
which are mapped upon 0 by r .  Clearly Gr and G/Gr are isomorphic groups 
of finite rank over R ;  and hence there exist irlempotents e; f in R such that 
every element in G r  is left illvariant by e, GI. is inapped upon 0 by f and 
every coset of G,/G,. is mapped by f upon an element in itself, since both Gr 
and G,. are direct summands of G. Clearly 1. = re = fr showing that every 
subset 8 of R is containecl in both 8R and A'8. 
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THEORRIT9. 6. If c o ~ z d i t i o n s ( 5 . B )  ci~zd (8. C )  are  scctisfied bg 36 R/R.  
llterl tlze followirzg p a i r  of propel  f i e s  i s  n ~ ~ e c e s s u r y  foru ~ z d  su f f ic ien t  c o n d i t i o ? ~  

I11e eaisfetzce o f  n l e f t - i d e n t i t y - e l e m e ~ z t  i n  K :  


( a )  E?jery  I i gh t - idea l  d i f t e r e n t  f ~ o m  R i s  contiti17ed i/z n ~ i g 7 1 t -~)lc~zi??laZ 
rdctrl i n  R. 

( l ~ ) ~ 'T h e  ~ n d i c c r l  IT of R i s  tlzr cross-cut  o f  ell1 t h e  n z n z i n ~ a l  7.ight-idetrls 
I l l  R. 

I'roof. Suppose that  there esists a left-itlentity-element e in H. If  the 
13ight-ideal J in R is diflerent fro111 R, then there exists a greatest right-ideal 
C/ in R which contains J ,  but which does not co~ztain e. Clearly G is a masinla1 
l.ig11t-ideal in R, since K = e R .  It is a consequence of Theorem 1.2 and of 
idemma8. 3 that  R / K  is a suin of ~nininlal  right-ideals; and hence i t  may bc 
iilferrecl fro111 Theoren1 3. 4 that  K is the cross-cut of all the nlaxinlal right- 
ideals i n  K. 

Suppose now, conversely, that  the co~iditions (a)  and (b)  are satisfiecl by 
the ring I?. There exists by L ~ m m a  9. 1 an idempotent e i n  R such that  
:r. = e a  =a e  nlodulo li' for every elenlent n: in R. Since the elements ?j satis-
I'7ing ev  = 0 are certainly co~l ta j~ied  =in X,i t  follows that  R c R  +8.Ii 
the right-ideal e R  i n  R .irere different from R; then there woulcl exist a 
~naxinlal right-icleal G i11 1Z vhich co~ltains e R .  It is a consequence of (b)  
that  K IQ; and thus wc are led to the contradiction: I2 = e R  + Ii IG < .R. 
LIence R = elE ancl e is a left-identity-element, in R. 

RemaI .ks .  1. If IZ is the ring of all the even rational integers, then the 
1.ac1ical of R is 0 ;  and it is readily seen tha t  conditions ( a )  and (b) are 
satisfied by R. Condition (8. C') is ~atisfied too; but  R does not contain an  
identity. This s h o ~ ~ s  of omitting the hypothesis That the Impo~sihi l~ ty  con-
clltion (5. R )  be satisfiecl by R/R.  

2. Suppose that  the abelian ,group R is the direct suln of a group 1~' 
of type 2m and of a cyclic group of order 2 which is generated by an  elen~ent P. 
I n  R we ciefine a comnlutative lnultiplication by the rules : 212: =0. if a t  1e:lst 
one of the factors 21 and v is in K ;  ancl e = e'. It is readlly seen that  X 1s 
the only niaxjnlal ideal i n  B, and that  K is the raclical in R. Thus  conditions 
( 3 . R )  and (8. C )  are satisfiecl by R/K and condition (b)  is satisfied bg B. 
But there does not esist an ~den t i tg  element in R ;  and this shows the im- 
possibility of omitting cond~tion ( a )  in Theorem 9. 6 .  

3' Co11sidel.iilg this cotidition tha t  Theorelm ( b )  aacl Theorem 4. 4 i t  ]nay bc s h o ~ ~ n  
9.  6 is a gelieralization of a theorem clue to  hf. Hall ;  cf. Hall ( I ) , 13. 362, Tlieorerll 3 .  2. 

http:RemaI.ks


10. The quasi-regular elements. S. Perlis 38 has recently d~scovered :t 
characterization of the radical of an algebra which is rather different from 
the usual criteria. We clevote this section to a generalization of his theory. 

An element z in the ring R is termecl qunsi-regt~lur,~"f there exists ti11 

elenlent y in R satisfying: z+ y +zy =0. If the ring R possesses a11 
identity element 1, then a necessary and sufficient condition for quasi-reg11- 
larity of the element x in R is the existence of a solution z of the equation: 
(1 $ x)z =1. 

The right-idenl J in the ring R shall be termed quasi-regz~ln,; if eves! 
element in J is quasi-regular. 

THEOREN10.1. If z is C L I Z  elenzent 7 i g l ~i i ~  t h e  quusi-regz~da~. 1-ideal J ,  
i l len there  exists one n n J  o?zly 072s solution :c =z' of the  equa t io i~  2 + x + z.r 
=0;atzd such CL so lz~t ioi~,  z'z.suiisfies zz'= 

Proof.  If 2 is an element in the quasi-regular right-ideal J ;  then t l l ~ s t ~  
t i s t s  an element y in R such that 2: + y + zy =0. If y is some solution of 
this equation, then y =- (z+zy) is an element in J, since z is an element 
in the right-ideal J .  Since J is quasi-regular, so is y; and hence there existh 
an element w in I? such that y + w + yw =0. Consequently we find that 

:~nd this shows that 0 =y + to -1- Y E  =y + z + yz ; and we deduce zy =yz 
from y + z + zy =0. 

Suppose now that z=y arlcl z=y' are solutions of the c.qu a t 'ion : 
2: + a+ zx= 0. From what we have sho~vn in the previous paragraph of 
the proof, i t  follows that 0=z -1y $-yz; and thus we find that 

and this completes the proof. 
We denote by S=B ( E )  t he  s u m  of all t he  quasi-regular righf-ideals i l l  K. 

THEOREM10.2. 8 ( R ) i s  a quasi-regzclav riglzi-ideal in the  i.irlg R. 

P ~ o o f .  It is readily seen that it, suffices to prove the following statement : 
If u is contained in a quasi-regular right-ideal, and if t3is contained in a quasi- 
regular right-ideal, then u + v is an element of some quasi-regular right-ideal. 

38 Perlis ( 1) . 

30 Perlis ( 1) , p. 129. 
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IVe note that (in the absence of identity elements) the right-ideal generated 
hg the element IU consists of all the elements of the form: w i  -1- zur for 1. in I? 
and i an ordinary rational integer ( i  need not be an elelllent in R ) .  Thus 
we have to show that ( u  +v)i + (u  -+v) r is quasi-regular for every r in li 
and for every rational integer i, whenever both u and v are contained in  quasi- 
regular right-ideals. 

Since u r  + ui belongs to the right-ideal generated by u, i t  is quasi- 
regular; and hence there exists an element s such that 

(u r  +ui) + s + (ur  +ui)s  =0 ; 

:1nd since v ( r  + rs +ri) + vi belongs to the right-ideal generated by u, i t  is 
quasi-regular too; and this assures the existence of an element t satisfying: 

v ( r  + rs -1- si) + vi + t + (v ( r  + rs -+si) +vi) t =0. 
llence 

and thi$ proves that (u  + v ) r  + (u  +v ) i  is quasi-regular for every r in l i  
and for every natural integer i :  i. e. zc + v is contained in a quasi-regular 
1,ight-ideal in R, as mas to be shown. 

THEOREM10. 3. If the right-ideal J in R consists of elements tlzut are 
quasi-regular modulo" E ( R ) , ihen J hS(R). 

Proof. If the element .l: in I: is quasi-regular nlodulo S(IZ), then t h e r ~  
exists an element y such that x + y + xy is in S ( R )  ; and it follows from 
Theorem 10.2 that 3:-+ y +xy is quasi-regular. Consequently there exist? 
an element x in R such that 

and x is therefore a quasi-regular element. The right-ideal J is thus quasi- 
regular, if each of its elements is quasi-regular modulo S ( R ) .  

COROLLARY10.4. If the right-ideal J i n  R is a ~zilidecll nzodulo 41 X ( l ? ) ,  
t l~e t zJ I S ( R ) .  

40 I. e. to every element j in J there exists an element h in R such that j + h $ jh 
belongs to S ( R ) . 

41 I. e. to every element j in J there exists a positive integer 1% such that jnbelongs 
t o  S ( R ). 



Pl.oof. If the element zc is a nilelenlent i-~odnlo N ( I Z ) ,  then there exists 
a positire integer 12 $uch that w2"'l  is an element in S(R). Since 

it f o l l o ~ ~ sthat ru l q  quasi-rpgular modulo P(R); and this shows that our con- 
teiltion is an  inln~cdinte coiisecluence of Theorem 10. 3. 

IAEAI~I~I10.5 .  I f  t h e  elcnrciit e irl S(K) i s  iirl i d e n ~ p o t o l i  modulo t h e  
Orso-sided ideril T it? R, then e beloirgs l o  T .  

Proof.  If  'E is an elpment in R ( R ) ,tllen -e is. quasi-regular. Renee 
there exists all elemcnt f i n  R such that -- e + f -ef =0.  If e is further- 
niore irll idempotent nloilulo the tvo-sided icleal T. then 

TJ~~:ORESI10. 6 .  If tlre fwo-sitled i d ~ n l  T i n  R is pcii.t of S ( R ) ,if every 
right-ideirl, irot 0, i n  R/T confaills n min imal  right-ideal,  ntld if 0 i s  ihe  on ly  
riilpoleilt light-it7rirl in R,'T, flzen T =S ( R ) .  

1'i.oof. Tf T nr re  different from R(R) . then there would exist a right- 
lcleal J betxecll 7' ar~ilP ( R )  such that J/T is a rniuim:~l right-icleal in R/T.  
Since 0 is the onl!. nilpotent right-ideal in I? IT, it follows that  J/T =( J / T )'; 
:incl hence n e  may declnce from known theorenls 4'  that J/T contains an  
itlenipotent diffcrcnt iron1 0. But i t  follows from Lemma 10. 5 that  this i \  
~inpoqsihle; and this shoas that  'I'=S(IZ). 

Colzor,r- \RY 10. Ti. I f  euery t.igl~i-ideal. no1 0, ilz R/U co~ziairzs n mitl imal 
right-idrill, t l z ~ l l  S ( K )  is the  upper  radical C of 

Proof .  It is a consequence of Theorell1 1.2 thnt U is a nilideal and that 
R/l:  does not contain llilpotent right-ideals different Pro~ll 0 :  i t  is a con-
sequence of Corollary 10. 4 that T i  is part of S(I2);and hence we may declnce 
from Theorenz 10. G that T T=S (12). 

W e  denote bp 8" = IS* ( R )  tlze s z in~  of all t h e  quasi-regular two-sided 
id~crlsi l l  R. Clcarly 8': is a two-sided ideal which is part  of X(R);anil hence 
~t follows from Theoreln 10. 2 that  ,S'"(R) is quasi-regular. T t  is a con-
sequence of Theorem 10. 3 that LS"(K/S* ( R )) =0. 

"('f. e. g. r. cl. IVaerden (1).11. 157, Hilfssatz 3. 

'.' This is rekdilp seen to  be an extension of Perlis' ( I )  Thcorems 1 and 2. 
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CO~OLLARY .If contains (110. 8. eveiry i.igh,t-ideal, not  0, i ~ tR/S" (R)  

m i n i m a l  right-ideal,  fh.eiz S* (R)  =8 ( R ) .  


Z'roof. Denote 1)y H the two-siclecl ideal which contains S * ( R )  and 
which satisfies H/S'% =N(R/S:%) (= s u n  of all the nilpotellt right-ideals in 
R/S"). That I$ is a two-sidecl ideal, is a consequence of Leinma 1.1; and 
it follows from Len~ma 1. 1 that 13 is n nilicleal nioclulo 8:'.Hence we deduce 
from Corollary 10.4 that IZ is part of S ( R )  ;and we infer froin Theorem 10. 2 
that the two-siclecl ideal I1 is quasi-reg~zlar. Hence H =9':'and 0 is the only 
ililpotent ~.ight-icleal in K / S " .  Spplging Theorem 10.6 we see that S* =8. 

THEOREM10. 9. I f  t h e  r ing R possesses a n  i d e n t i t y  elerrlet11 lj t h e n  L ~ ( R )  
i s  part of every rnarcimal right-ideal i n  R. 

Proof .  If S ( R j  were not contained in the inaximal riglit-ideal G in R,  
then R =G +S ancl these exist elements g and s in G and S respectively 
such that 1=g + s. I t  is a consequence of Theoreill 10.2 that -s is quasi- 
regular and that therefore -s + t -st  =0 for some I in R. Hence 1+ 1 

= ( g  + s )  ( 1  + t )  =g + s + gt  + st  or 1 =g + gt  so that 1 is an ele-
ment in the right-ideal G < R, a contradiction. 

COROLLARY10. 10. If 1 l~e  ~ . i ~ e g  R possesses a.n idelzti ty e lemeat  1, altd if 
R/S* is a s u m  of m i n i m a l  vight-ideals, ihete S ( R )  =S*(R)  i s  Ihe cross-cut 
of all t h e  m a z i m a l  right-ideals in B. 

This is an immediate consequence of Lemma 3.3 ,  Corollary 10.8 and 
Theorem 3 0.9. 

Renzark. The upper radical U of the ring R is by Theorem 1.2 a two-
sided nilideal ;and hence it is a consequence of Theorem 10. 2 and of Corolla~y 
10.4 that U 5 S*(M). That the ideals l7 and S* need not be equal may be 
seen from the following e,xanzple: B is the ring 05 all the (formal) power 

00 

series c i t i  in one indeterminate i with coeficients ci from some commutative 

fiela. An element in R possesses an inverse in R if, and only if, " its absolute 
term" c,, +0; and an element in R is quasi-regular if, and only if, 1+ c, 
# 0. This shows that B*(lr') =8 ( R )  = iR whereas l J (R)  =0. 

THEOREM10. 11. I f  J is CL qzcasi-regular right-ideal in the  ving R, t h e t ~  
M J V  =0 for er:ery ordinal v .  
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Remark. It is a consequence of Corollary 10. 4 that  Theorem 6. 1 is a 
.pecial case of this Theorem 10. 11. 

P~oof.,4. If % is a minimal right-ideal in R, and if z is any element in 
X,then zJ is a right-ideal in R which is part of Z. Thus zJ is either 0 or Z. 
If zJ were equal to Z, then there mould exist an element w in J such that  
zzu =z. Since w is an  element in  the quasi-regular right-ideal J, it follows 
!hat -w is quasi-regular; and hence there exists an element v in R such 
that w =v-tur. Consequently 

>ill  impossibility. Thuq we have show11 that  zJ =0 for eTerg z i n  Z ;  and this 
>bows that  ZJ = 0 for every minimal right-icleal Z in R. Since the anti- 
radical 111= I f  ( R )  is the suin of all the minimal right-icleals in R, i t  follows 
that  

i11J = 0 f o ~every qunsi-regular ~ight-ideal  J in R. 

B. We proceed to prove ihe theorem by complete ilicluction with regard 
to v. That the theorem holds true for z: 1, has been s h o ~ ~ ~ n  = uncler A.; and 
rhus we mag assume that  our assertion is d i d  for eve1.y u < 2'. 

Case 1. v = u:+ 1 is not a limit-ordinal. 

Then Jf, />I,, is the anti-radical of B,/&f,,and (J+ Jl,,)/XI, is a quasi- 
regular right-ideal in R/Jf,. Hence i t  follo~vs from A. that  their product 
1s 0 ;  and from this fact we deduce that  111,.7IM, .  From the induction- 
Iivpothesis we infer If,,J1"= 0 : and thus vre find that  

Case 2. 21 is a limit-orclinal. 

If  x is any element in  JI,, t h e ~ iwe deduce from the definition of ill, as 
i l ~ ejoin of the ilfL,with u <. 2' the existence of an ordinal d <: v such that  x 
is an element in  Xd.' It is a consequence of the definition of Jvthat i t  is 
part of J" and hence it follo~vs from the induction-hypothesis that  xJw 
IATlc~Jd 0 : and thus we have shown that  ilf,J1== 0. 

11. Rings admitting operators. The ring R is said to admit the ele- 
nients in the system V as operators, if to every element r i n  R and to every 
element v i n  V there exists a uniquely determined element rv in R meeting 
the following requirements : 
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( i )  ( , r & s ) v = r a + - s v ;  

(ii) ( la)v = r (sv) = ( rv)  s. 

It is readily rerified that J v  is a right-(left-) ideal in R whenever J is 
a right-(left-) icleal in R ;  that 1.6 =0 implies (TV) 6 =0 ;and that therefore 
,Jz? is a niliileal (a nilpotent right-ideal) whenever J is a nilideal (a  nilpotent 
13ight-ideal). Saying that an ideal J in  R is V-admissible, if J V  5 J, it is 
now easy to prove the following statement: 

If the r ing E admits the elemetzts in, the system Y as operators, then the 
uppel. and the lower radical alzd all the ideals 121, in the anti-radical series are 
V-ndrni~sible.~~ 

I f  the ring R satisfies condition (4. A) ,  then there exists to every element 
.x in R an element z* in IZ such that z =ax*;and this shows that zv =z(z*v)  
for every x in R. Hence we have proved the following theorem: 

If co~~dition(4.A)  is satisfied by the ~ i n g  R, then every right-ideal in R 
i q  V-admissible. 

On the basis of this theoreill i t  beconies evident that most of the theorems 
derived in this paper nlay be applied to rings admitting operators. 
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