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RADICAL IDEALS.*
By RrINHOLD BAER.

The radical has been introduced into the theory of rings with the intent
of constructing a two-sided nilideal modulo which there do not exist nilpotent
right-ideals different from 0. Thus it seems justified to define as a radical
ideal every ideal meeting these requirements. Every ring possesses at least
one radical ideal; and both the cross-cut and the sum of all the radical ideals
are themselves radical ideals which may be called the lower and the upper
radical respectively. It is possible that the upper and lower radicals are
different and that neither of them is nilpotent. If all the radical ideals are
equal, then we say that the radical exists; and this happens e. g., if every
right-ideal, not 0, in the quotient ring modulo the lower radical contains a
smallest right-ideal different from 0. If this latter condition is satisfled by
every quotient ring of the ring under consideration, then a finite or trans-
finite power of the radical is 0.

Several applications of the theory of radical ideals are given: we prove a
criterion for the existence of the identity element in rings that need not satisfy
the minimum condition for right- (or left-) ideals; and we deduce the double
chain condition for right-ideals from properties considerably weaker than the
minimum condition. '

It should be noted that we have restricted our attention throughout to the
consideration of right-ideals.

1. Existence of the upper and lower radicals. The element z in the
ring R is a milelement, if ' = 0 for some exponent 7; and the right-ideal J
in B may be termed a nilideal, if every element in J is a nilelement. The
right-ideal J is nilpotent, if J?==0 for some exponent 7. It is clear that
nilpotent right-ideals are nilideals, though the converse need not be true.!
It is well known ® that the sum of a finite number of nilpotent right-ideals
is a nilpotent right-ideal; and it is obvious that @/ is a nilpotent right-ideal,
whenever J is a nilpotent right-ideal and z an element in R. From these
two facts one readily deduces the following well known statement.

* Received May 15, 1942. Presented to the American Mathematical Society.
April 16, 1942.

* For an example ci. Koéthe (1), p. 165 (the numbers in parentheses refer to the
bibliography at the end of the paper).

2Cf. e.g. v. d. Waerden (1), p. 154.
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538 REINHOLD BAER.

LeMMA 1.1. The sum N = N(R) of all the nilpotent right-ideals in B
1s a two-stded nilideal in R.

Note that the ideal N (R) meed not be nilpotent, as follows from an
example due to Kéthe®

The ideal P in the ring R shall be termed a radical ideal,* if

(1.a) P is a two-sided ideal;

(1.b) P is anilideal;

(1.¢) the quotient-ring R/P does not contain nilpotent right-ideals
different from 0.

There exist ideals in R which meet the requirements (1.a) and (1.b),
e. g. the null-ideal. Thus we may form the sum ® U = U (R) of all the ideals
P in R satisfying conditions (1.a) and (1.h). This ideal U is clearly a two-
sided ideal in R and shall be called the upper radical of R.

There exist ideals in R which meet the requirements (1.a) and (1.c),
e.g. the ideal P=R. Thus we may form the cross-cut L = L(R) of all
the ideals P in R which satisfy conditions (1.a) and (1.c¢). This ideal L is
obviously a two-sided ideal in R and shall be termed the lower radical of R.

It is an immediate consequence of our definitions that every radical ideal
is situated between the upper and the lower radical. But the main justification
for our terminology may be seen in the following fact.

THEOREM 1.2. The upper and the lower radical of the ring R are radical
ideals in R.

Proof. It has been shown by Kothe ¢ that the sum of all the two-sided
nilideals in R is a nilideal. Denote by W the uniquely determined two-sided
ideal in B which satisfies: U =W and W/U = N(8/U). There exists, by
Lemma 1.1, to every element # in W a positive integer ¢ such that «! is an
element in the nilideal U'; and hence every element in W is a nilelement. Now
it follows from the definition of the upper radical that W= U, N(R/U) = 0;
and thus we have shown that the upper radical of R is a radical ideal in E.

L =1U, since we have just shown that the upper radical U is a radical
ideal, and since the lower radical L is certainly part of every radical ideal in R.
Consequently L is a nilideal, since U7 is a nilideal. Every nilpotent right-

3 Cf. Kothe (1), p. 165.

+ The existence of radical ideals will be assured by Theorem 1.2 below.
® This ideal has been considered by Fitting (1), p. 21.

¢ Kothe (1), p. 170.
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ideal in R/L has the form S/L for S a suitable right-ideal between L and R;
and from the nilpotence of S/L we infer the existence of a positive integer ¢
such that S* = L. Suppose now that condition (1.c) is satisfied by the two-
sided ideal 7' in R. Then L=T and ((T + §)/T)¢=0, since (T -+ 8)*
=T+ 8 =T+ L=T; and it follows from (1.c) that (T'+ 8)/T =0
or T4+ 8=Tor §<1T. Thus we have shown that S is part of every ideal T,
satisfying (1.a) and (1.c); and hence S = L, proving ” that L is a radical
ideal in B.

Remarks. 1. The following construction of the lower radical may be of
some interest (in particular in case the transfinite induction involved in it
happens to stop after a finite number of steps) :

(1) Q(0)=0.
(ii) Suppose that the two-sided ideal @ (u) has been defined for every
u < 0.

Case 1. If v =w -+ 1 is not a limit-ordinal, then @(v) is the uniquely
determined ideal in £ which contains @ (w) and which satisfies: Q(v)/Q (w)
= N(R/Q(w)); that @(v) is a two-sided ideal in R, is an immediate con-
sequence of Lemma 1. 1.

Case 2. If v is a limit-ordinal, then denote by @ (v) the join of all the
ideals Q@ (w) forw < v. It is readily verified that @ (v) is a two-sided ideal in Z.

(iil) Since the @ (v) form an ascending chain of ideals in R, there exists
a (smallest) ordinal z such that Q(z) = @(z+ 1); and we put Q(z) = Q.

Tt is clear from our construction of @ that @ is a two-sided ideal in R and
that R/ does not contain nilpotent right-ideals different from 0. Hence it
follows from the definition of the lower radical L of R that L = Q.

Suppose next that the ideal T in R meets the requirements (1.a) and
(1.c). It is clear that Q(0) = T'; and thus we may assume that every @ (u)
for u < v is part of T'. Then it is readily verified that @ (v) is also part of T';
and thus it follows by complete induction that @ is part of 7. But this shows
that Q = L; and thus we have shown that the ideal @ just constructed is the
lower radical L of R.

2.3 If T is a two-sided ideal between L and U, then the upper radical of
R/T is U/T; and if T is a radical ideal, then the lower radical of R/T is 0.

" The author is indebted to the referee for this proof, which is much simpler than
the author’s original proof, of the fact that L is a radical ideal.
® This remark is due to the referee.
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3. It has been pointed out before that every radical ideal is situated
between the upper and lower radical; and it is a consequence of Theorem 1.2
that every subideal of the upper radical is a nilideal. It may happen that
there exist two-sided ideals between the upper and the lower radical which
are not radical ideals; an example for this phenomenon will be constructed in
section 2.

4. It is a consequence of Theorem 1.2 that the upper and lower radicals
are equal, if U/L is a milpotent ideal in R/L. In general, however, the upper
and lower radicals may be different, as will be seen from the example con-
structed in section 2.

If the upper and the lower radical are equal, then this ideal may be
termed the radical K = K (R) of the ring R ; and we say then that (he radical
of R exists. It should he noted that the radical need not be nilpotent, as may
be seen from an example due to Kothe.?

2. Existence of different radical ideals. In this section we construct
a ring with the following properties :

(i) Every element in the ring is a mnilelement so that the ring is its
own upper radical U.

(ii) The ring does not contain nilpotent right-ideals different from 0
so that its lower radical is 0.

(iii) The ring conlains a two-sided ideal which is not a radical ideal.

Denote by G an abelian group which is the direct sum of a countably
infinite number of infinite cyclic groups; and denoteby b(0),b(1),b(—1), -,
b(1),b(—1), - - - a basis of G. Then there exists one and only one endo-
morphism (= homomorphism) u(¢), for t=1,2, - - -, of G such that

N 0, if j=0 mod 2¢
b)u() = { b(j—1), it 520 mod 2.

The following statement may be easily verified by complete induction :
b(j—m—1),if j52n mod Rnfor 0 =n=m
0, if j=n mod 2 for at least one n with 0 = n < m.

(*) () u(io) - u(im)= %

Denote by U the ring of endomorphisms of G which is generated by the
endomorphisms % (1), u(2),- - -.
k
Everyelement # =4 0 in U has the form: z = X z; where x; — == w((7,0))

i=1

® Kothe (1), p. 165.
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“u((1,mi)), 0 < (4,7), 0= m;. If h is the maximum of all the numbers
2(tm then it is an immediate consequence of (*) that b(j)ai, - - - @i, =0
for every j, since the product of endomorphisms contains at least h factors
u(s) with 28 =< /. Consequently this product is 0 and this implies that a* = 0.
The ring U has therefore property (i).

For a proof of property (ii) we need a closer analysis of the structure
of the endomorphiqms in U If z is an endomorphism different from 0 in U,

then L——Ey(l); y(i)= 2 e(,7)y(57), e(t, )= =1, y (%)) =u((i,7;0))

u((t,],z)), 0 < (1, ] n), 0=Fk(1), and y(n) 5= 0. Denote by  some
integer satistying: m 4+ 1 < 2" and (4, 7;n) =»r for i =0, - -, m;
j=1, - k(@) ; n=0," -1

1f h is some preassigned positive integer, then denote by s an integer
satisfying 2'h =< 25. We proceed to prove that (au(s)” " ')"s£0; a fact
that implies the impossibility of nilpotence of right-ideals different from 0.

It will be convenient to put z(%,7) =y (¢, /)u(s)* ™"

Since y(m) =0, there exists an integer ¢ such that b(f)y(m) s=0.
Hence we may assume that the positive integer & has been determined in such
a way that

S b(t—m—1) for j=1,-- -,k
b(t)y(m,j) = { 0( ) for Jk <]

k
Then b(t)y(m) = X e(m, )b(t — m — 1) == 0; and this shows that
j=1

i
> e(m,j) =0, a fact we shall have to use later on.
j=1

IHo=i,=m, 1=j,=Fk(ls) for 1<v="h, and if ¢ is 0 or 1, then
it follows from (*) that b(¢t 4 eh®")z(1y,71) - - 2(th, jn) 1s either 0 or

b(l ehz"—]i (v 14 2 —m — 1) )= b (¢ + (6 — 1A + mh— 3iv)
v=1

and this lqtter element is equal to b(¢ 4 (e—1)h27) if, and only if,
Ty=+ + =y =,

If kB < jv for some v, then b(¢)y(m, j») = 0; and thus there follows from
(*) the existence of an integer n such that 0 = n = m and {==nmod (™ jv:®,
But then we find that ¢ 4 eh2"=t=n=n 4 (v—1)2" mod 20" Jiv;" and
hence we may deduce from (*) that b(¢+ eh2)z(m, ji) - - - z(m, jr) =0.
The results obtained in the last two paragraphs may be stated as follows:

It b(t + eh2")2(iy, 71) -« -« 2(W, u) = b(t + (¢ — 1)h2"), then
= =g=mand 1 =7,k

Assume now the existence of integers j., i’» such that 1 = j,, /v =k and
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b(£)2(m, 1)+ #(myja) = 0, B(E+ h2)2(m, f4) - - 2(msf») — 0. Then
we infer from (*) the existence of integers n, v satisfying: 1==v=h and

e n+ (v—1)2" mod ™ Jivin) for 0 =n=<m
" {n+4+ (v—1)2" mod 2¢ for m< n < 2.

If 0 =n = m, then {=mnmod R Jvin; and we could deduce from (*) that
b(t)y(m, j») = 0 which is impossible, since j» = k. Thus there exist integers
n, v such that m << n <2, 1=v=<h and t=n+4 (v—1)2" mod 2%; and
likewise there exist integers n’, v such that m <2 <2, 1 =v =<5 and
t 4+ h2r=n" 4 (+’—1)2"mod 2%. Since r < s, it follows from these two
congruences that n=n"mod 2"; and since m < n, n’ < 27, we deduce that
n=mn’. Sonsequently (v-—1-4 h)%" = (v"—1)2"modR or h—+v—1’
=0 mod 2%7. Since 1 <<wv, v"="h, we have 0 < h +v—v" < 2h = 257",
a contradiction. Thus we have shown that there exists an integer ¢’ such that

b(¢)2 (s, 1)+ + - #(1h, n) = b (¥ — hR7)

if, and only if, i, =" - = =mand 1=, =<k forv=1," - -, h.
Now it is readily verified that

b() (zu(s)*mt)h = (j_ﬁle(m;j))”b(t'—h?’) + /;_’."C(i)b(i)
40, o

since the factor of (¢ — hR") is, by a previous remark, different from 0.
This completes the proof of the fact that (ii) is satisfied by the ring U.
To prove (iii) let us consider the two-sided ideal T in U which is
generated by u(2), u(3), - -. Every element in T is a linear combination
of products u () - * - u(in) with the restriction that none of these products
is a power of u(1).
0 for even j
b(j—1) for odd j°
it is readily verified that U*=<T. Thus all we have to show is that u(1)
is not an element in 7.

We note that b (j)u(1) = { Hence 4 (1)? =0; and

Every element o 54 0 in T has the form: o= ic(i)u(i) + 2’ for 2’ in
U?so that b(t)a’= X d(j)b(j). If v=wu(1), theli_;t follows from b (1)u ()
e {0 fori—1
1b(1) foris=1
that gc(i) = 0. This contradiction shows that (1) is not in 7T so that

k
=b(0) that X c(t) =1; and it follows from b(2)u(i) =
i=2

U* =T < U, as was required.
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If we adjoin to the ring U of endomorphisms of the abelian group G the
identity-endomorphism, we obtain a ring B whose upper radical is U, whose
lower radical is 0 and which contains the two-sided nilideal 7" such that R/T
contains nilpotent right-ideals different from 0.

3. Characterization of the upper radical. The right-ideal J in the
ring R is termed a minimal right-ideal, if 0 < J, and if there does not exist
a right-ideal J” such that 0 < J’ < J.

TurorEM 3.1. If T is a radical ideal in the ring R, and if every right-
ideal different from 0 in the quolient ring R/T contains e« minimal right-
ideal, then T is the upper radical U of R and the upper radical of R contains
every nilideal *° in R.

Proof. 1If the nilideal J in R is not part of T', then there exists an ideal
V between I' and T + J such that V/T is a minimal right-ideal in R/T.
Since V/T is part of (1" 4 J) /T, and since J is a nilideal, V /T is a nilideal.
A minimal right-ideal is either nilpotent or idempotent; and since T' is a
radical ideal in R, it follows that ¥/T is idempotent. But it is well known **
that idempotent minimal right-ideals contain idempotent elements not 0.
Thus the nilideal ¥ /T contains an idempotent element not 0, a contradiction.
Hence it follows that 7' contains every nilideal in R. Since T is a radical
ideal, it is a two-sided nilideal and therefore part of the upper radical. Since
the upper radical is the sum of all the two-sided nilideals, it follows from
what we have shown just now that U is part of T, i.e. U =T contains every
nilideal.

The right-ideal J is termed & maximal right-ideal vn the ring R, if J < R,
and if there does not exist a right-ideal J” such that J < J” < RB. The element
e in R is a left-identity element, if ex = x for every element « in the ring E.

LemMma 3.2, If the ring B contains a left-identity element e, {hen each
milideal is part of every mazimal right-ideal.

Proof. If the nilideal ¥ were not part of the maximal right-ideal J, then
R =17V +J and there would exist elements v and § in V and J respectively
such that e=wv -+ j. By complete induction we may show the existence of
elements j(¢) in J such that e =v?* 4 j(t) since

e = ¢* = (j + v 4 ] (i) = v - joi + (i) = v 4 (i + 1),

** This shows that under the hypotheses of Theorem 3.1 the upper radical meets
all the requirements, concerning right-ideals, imposed upon the radical by Kéthe (1),
p. 169.

1 Cf. e.g. v. d. Waerden (1), p. 1567, Hilfssatz 3.
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But v is a nilelement; and hence it follows that.e is in J and that therefore
J= R, an impossibility which proves our contention.

THEOREM 3.3.)2 If the ring R contains a left-identity element, and if
every right-ideal different from 0 in the quotient ring R/U contains a minima
right-ideal, then the upper radical U of R is the cross-cut of all the mazimal
right-ideals in R.

Remark. The example in section 2 shows the impossibility of omitting
the hypothesis concerning B/U ; and Theorem 9.6 below shows the need for
assuming the existence of a left-identity element in R.

Proof. 1If the intersection J of all the maximal right-ideals in B/U were
different from 0, then J would contain a minimal right-ideal J’; and con-
sequently we could infer *® the existence of an idempotent e <0 in J'. It is
well known that R/ is the direct sum of the right-ideals J’ and Z where
J" consists of all the elements v = ev and where Z consists of the elements 2
satisfying ez = 0. Thus the crosscut of Z and J’ is 0. Since J’ is a minimal
right-ideal in R/T7, Z is a maximal right-ideal in R/U. Hence J ' =J = Z,
a contradiction showing that J =0. Thus we have proved that U is the
intersection of all the maximal right-ideals in R which contain U; and it
follows from Lemma 3.2 that U is part of every maximal right-ideal in R,
since U is, by Theorem 1.2, a nilideal.

4. The anti-radical. We state the following well known fact* for
future reference.

LemuMa 4.1, If N is a sum of (a finite or infinite number of) minimal
right-ideals in the ring R, then every right-ideal contained in N is a direct
summand of N and s itself a direct sum of minimal right-ideals in R.

The sum *> M = M(R) of all the minimal right-ideals in the ring R
shall be called the anti-radical of R; and we put M(R) =0, if there are no
minimal right-ideals in R. This definition may be justified by the fact that
the upper radical is, under not too narrow assumptions, just the cross-cut of

** The author proved this theorem originally, using a stronger hypothesis. He is
indebted to the referee for supplying him with a proof for the theorem in its present
form.

1 Cf. e.g. v. d. Waerden (1), p. 157, Hilfssatz 3.

14 Cf. e.g. MacLane (1), p. 458, Theorems 3 and 7.

> This ideal has been investigated by Hopkins (1) under the hypothesis that the
minimum condition be satisfied by the right-ideals in the ring.
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all the maximal right-ideals in B (see Theorem 3.3) ; and by the fact which
we shall prove immediately that radical ideals and the anti-radical annihilate
cach other.

If J is a minimal right-ideal in the ring R, « an element in R, then aJ
is either 0 or a minimal right-ideal in R ; and this shows that the anti-radical
18 a two-sided ideal.

THEOREM 4.2. If M is the anti-radical of the ring R and J a nilideal
in B, then MJ = 0.

Proof. If b is an element in the minimal right-ideal B, j an element
in the nilideal J, and if bj were different from 0, then bj would be an element
not 0 in the minimal right-ideal B so that B would be the smallest right-
ideal containing bj. Consequently there exists an element » in R such that *°
b=bjr=bjx- - x=bj=b(jrx=j=x-- - =xj)=>0f where j/ is an ele-
ment in J, since j is an element in the right-ideal J. There exists an integer ¢
such that /i =0 and this leads to the contradiction: 0s£bj="5b)j=" - -
= bj""j = 0. We have shown, therefore, that BJ = 0 for every minimal right-
ideal B in R ; and this fact clearly implies MJ = 0.

The following condition will be imposed frequently upon the rings under
consideration.

(4. A) If x is an element in the ring R, then x is contained in the
right-ideal zR.

This requirement is met e.g. by all the rings which contain a right-
identity element; and (4. A) is satisfied by the ring R if, and only if, J = JR
for every right-ideal J in R.

THroREM 4. 3. If condition (4.A) is satisfied by the ring R, if T 1s a
lwo-sided ideal in R, and if R/T is a sum of minimal right-ideals, then the
anti-radical M contains cvery element x, satisfying: «T = 0.

Proof. If 2T =0 is satisfied by the element z in R, and if the right-
ideal J in R contains 7" and is a minimal right-ideal modulo T, then either
@) =0 or xJ is a minimal right-ideal in R. The right-ideal zR is con-
sequently a sum of minimal right-ideals in R, since R/T is a sum of minimal
right-ideals in R/T'; and as a sum of minimal right-ideals «R is part of the
sum M of all the minimal right-ideals in R. Applying condition (4.A) to
@R = M we find finally that @ is in 3 whenever a7 = 0.

*¢ This more complicated form for the most general element in the right-ideal
cenerated by bj is due to the fact that no identity element need exist in R.
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Remark. The impossibility of omitting condition (4. A) in Theorem 4.3
may be seen from the following example: Denote by R the ring of all the
multiples of the prime number p considered modulo p* and denote by T the
ideal of all the multiples of p* in E. It is obvious that T' is a two-sided ideal
in R such that B/T is a minimal ideal and such that RT = 0, though R is
not a sum of minimal ideals.

The following statement is an immediate consequence of Theorems 1.2,
4.2 and 4. 3.

TueoreMm 4.4. (a) MU =0.

(b) If condition (4.A) is satisfied by the ring R, and if RB/U is a sum
of manimal right-ideals, then the anti-radical is exactly the set of all the
the elements x which salisfy: U = 0.

Remark. The impossibility of omitting the second hypothesis in (b) may
be seen from the example of the ring of all the integers whose radical and
anti-radical are both 0.

The following lemma will prove useful later on.

LemMma 4.5, If the right-ideal J in the ring B is contained in the anli-
radical M of R, then J2 = J®.

Proof. 1t is a consequence of Lemma 4.1 that J is a sum of minimal
right-ideals. If Z is a minimal right-ideal in R, then Z? is a subideal of Z
and consequently either Z*—=2Z2 or Z*=0. If Z is a minimal right ideal
contained in J, then Z* = Z implies that Z = J?, and Z?=0 implies that
Z is part of the cross-cut €' of J and the upper radical U. From these facts
we deduce that J =J%- C. From Theorem 4. 2 we infer that JO < MU = 0.
Jonsequently J*=.J(J* 4+ C) =J° + JC = J3.

M. Hall has shown " that every algebra may be decomposed in one and
only one way into the sum of a semi-simple and a “bound ” algebra. The
following concepts will be needed for an extension of his theorem.

We denote by A = A (R) the set of all the elements z in R which satisfy:
aU = Uz =0; and we denote by B == B(R) the set of all the elements b in
B which satisfy: bA* = A% = 0. It is obvious that .4 and B are two-sided
ideals in R, and that U = B.

THEOREM 4. 6. Suppose that condition (4. ) 1s satisfied by the ring R.

(a) If R is the direct sum of the two-sided ideals S and T, if U =T,
and if the cross-cut of A and T 1s part of U, then S = A* and T = B.

17 Hall (2), Theorem 2. 2.
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(b) If R/U 1s a sum of mintmal right-ideals, then the cross-cut of A?
and B is 0; and the cross-cut of A and B s part of U.

(¢) If R/U 1is a sum of minimal right-ideals, and if the cross-cut of A?
and the anti-radical M of R is the sum of a finite number of minimal right-
ideals,'® then R is the direct sum of A* and B.

Proof. If the two-sided ideals S and T meet the requirements of (a),
then 8T = T'S = 0 and consequently S =< 4. If D is the cross-cut of 4 and
T, then A is the direct sum of § and D, and I is part of U. Thus D*= AU
=0 and A2= 824 D?*=8; and this implies B =T.

If R/U is the sum of minimal right-ideals, then it follows from Theorem
4.4, (b) that A4 is part of the anti-radical M of R; and hence it follows from
Lemma, 4. 5 that A2 = A*. If W is the cross-cut of A* and B, then we deduce
{from Lemma 4.1 the existence of a right-ideal V such that A® is the direct
sum of W and V. Clearly A*W = WA2=0 and hence we have A*= A*
= (V + W)%= V2, proving that W =0. The cross-cut of 4 and B is part
of M and is therefore the sum of minimal right-ideals. If Z is a minimal
right-ideal, then either Z2.—=Z or Z*=0; and if Z — Z*, then Z is part of
A? and is therefore not contained in B. If Z2=0, then Z is nilpotent and
is therefore part of U/; and this completes the proof of (b).

If the requirements of (c) are met by the ring R, then A* is the sum of
a finite number of minimal right-ideals; and since the cross-cut of A* and B
is 0, it follows from U =: B that the minimal right-ideals contained in 42 are
idempotent. Now we may deduce by the customary arguments ** the existence
of an idempotent e such that A% = ¢R. Denote by I/ the set of elements =
in 4? such that ze = 0. Clearly I is a left-ideal and the two-sided ideal ER
satisfies: (FR)?*=ERFR= E°R=FEA*=FeR =0, showing that ER = U.
Applying (4. A) we infer now that £ = ER = U ; and since the cross-cut of
A% and U is part of the cross-cut 0 of A% and B, it follows that // — 0; and
from this fact we deduce that A2 — e¢R — ed? — Re — A%¢; and this shows
that the element b in R belongs to B if, and only if, be = eb = 0. If r is any
element in R, then e(r—ere) and (r-—ere)e belong both to eR — Re and
satisfy therefore: e(r—ere)=-¢e(r—ere)e=0 and (r—ere)e—-e(r—ere)e
= 0. Consequently ere helongs to A*= eRe and r — ere belongs to B, i.e.
R is the direct sum of 4* and B.

18Tt is not known to the author whether or not this hypothesis is needed for the
validity of the proposition (e).
*E.g. v. d. Waerden (1), pp. 156-158.
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5. The anti-radical series. An ascending chain of two-sided ideals
My = My(R) in the ring R may be defined by complete (transfinite) induction
as follows:

(i) M, is the anti-radical M of E.

(ii) My, is the uniquely determined two-sided ideal in £ which con-
tains M, and which satisfies: M (R/My) = My./Mo.

(iii) If v is a limit-ordinal, then 3/, is the join (and thercfore the sum)
of all the ideals M, for u < .

(iv) There exists a smallest ordinal m = m(R) such that M, = Mm.i.

THEOREM 5.1. R = M, for some (finite or infinite) ordinal m if, and
only if, the following condition s satisfied by every quotient-ring of E:

(5. B) Ewvery right-ideal different from 0 contains a minimal right-ideal.

Proof. 1f condition (5.B) is satisfied by every quotient ring of E, and
if M, <R, then R/M, contains a minimal right-ideal so that M, < My.,.
Since My = My, for some ordinal m, this shows the sufficiency of the
condition.

If R == M, for some ordinal m, and if T is a two-sided ideal different
from R, then it is easy to construct a well-ordered ascending chain of right-
ideals J (v) with the following properties:

(a) J(0)=T.

(b) J(v) <J(v+ 1) and there does not exist a right-ideal J satis-
{ying: J(v) <J <J(v+1).

(¢) If v is a limit-ordinal, then J(v) is the join of all the right-ideals
J(u) for u < w.

(d) J(w) =R for some (finite or infinite) ordinal w.

If J is some right-ideal in R such that T' << J, then there exists a smallest
ordinal # such that the cross-cut of J and J(2) is different from 7', since the
cross-cut J of J and J(w) = R is different from 7. It is an obvious con-
sequence of (c) that z cannot be a limit-ordinal; and we may readily verify
that the cross-cut ¥ of J and J(#) is a minimal right-ideal modulo T, as was
to be shown.

CoroLLARY 5.2. If R =M, for some ordinal m, then the radical K
of the ring R exists.
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Proof. It R = Mpu, then it follows from Theorem 5.1 that (5.B) is
satisfied by B/L. Hence it follows from Theorems 1.2 and 3.1 that the
lower radical L and the upper radical U of the ring R are equal, i.c. U =1L
is the radical K of R.

We note that under the hypotheses of Corollary 5.2 every nilideal is con-
tained in the radical K of R.

It should be mentioned finally that (5.B) is satisfied by every quotient
ring of R, whenever the minimum condition is satisfied by the right-ideals in R.

6. The powers of the radical. 1f J is a right-ideal in the ring R, then
the (finite and transfinite) powers J@ of .J are defined by transfinite induction
as follows:

(i) J'=J.
(ii) Jet=dJJv
(iii) If v is a limit-ordinal, then JV is the cross-cut of all the J* for
u <.
(iv) There exists a (smallest) ordinal s =s(J) such that J& = J**',
It is clear that the powers of a right-ideal are right-ideals; and that the

powers of a two-sided ideal are two-sided ideals.
If J is a right-ideal in R, and if w = v, then J* = J*.

Proof. We prove this contention by complete induction with regard to .
It is certainly true for v =—1; and thus we may assume that J» = J* for
t=w <o

Case 1. v is a limit-ordinal.

Then J° is the cross-cut of all the J* for u < v so that » < v implies
Jv = Ju,
Case 2. v =w -+ 1 for w a limit-ordinal.

Then J? = JJ* = JJ* = J#* for every u <=w. Thus J¥ is part of the
cross-cut of all the J¥** for v < w; and this cross-cut is just J¥, since w is a
limit-ordinal.

Case 3. v =12z 2 for some ordinal z.

Then J* = JJ*"' < JJ? =J** < J* for w=2z+ 1 < v; and this com-
pletes the proof.

THEOREM 6.1. If J is a nilideal, then M J? = 0 for every ordinal v.
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Proof. 1t is a consequence of Theorem 4. 2 that M,J! = MJ = 0. Thus
we may assume that our assertion holds for every u < v.

Case 1. v=w -+ 1 is not a limit-ordinal.

Then M,/M, is the anti-radical of B/M, and (J + Mw)/Mw is a nil-
ideal in the quotient ring B/M... Hence it follows from Theorem 4.2 that
their product is 0; and from this fact we. deduce Mo = M. From the
induction-hypothesis we infer M,J® = 0. Consequently we find that
M J? = M JJ® =< M, J* = 0.

Case 2. v is a limit-ordinal.

If # is any element in My, then we deduce from the definition of M, as
the join of the M, with 4 < v the existence of an ordinal u < v such that
x is an element in M,. It isa consequence of the definition of J? that J* = J¥;
and hence it follows from the induction-hypothesis that zJ? = M,J%=0;
and thus we have shown that M,J» = 0.

COROLLARY 6.2. If R = My for some ordinal m, then K™ = 0.

Remark. The existence of the radical K of & is assured by Corollary 5. 2.
Proof. 1t is an immediate consequence of Theorem 6.1 that
Kmt = KK << RK™ = M K™ = 0.

Note that we could infer K™ = 0 from R = M, if 0 were the only ele-
ment @ in R satisfying Bz = 0.

That K* =0 need not imply B = M, may be seen from the example
of the ring of all the integers where M, = K =0 for every v.

THEOREM 6. 3. If B — M., for some ordinal m, then each of the following
properties of the right-ideal J in B implies all the others:

(i) J is a nilideas.
(i1) J is @ part of the radical K of R (whose exvistence is assured by
Corollary 5.2).
(ili) J* =0 for some ordinal k.
Proof. 1t is a consequence of Theorems 5.1 and 3.1 that every nilideal
is part of the radical. If the right-ideal J is part of the radical K of R, then
we deduce from Corollary 6.2 that J»* = K™ =0. If finally J¥*=0 for

some ordinal k, then we denote by J. the cross-cut of J and of My, and we
put Jo=10. We proceed to prove by complete (transfinite) induction that
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every J, is a nilideal, a fact that is clearly true for v = 0. Hence we may
assume that Jy is a nilideal for cvery u < v.

Case 1. v==w -+ 1 is not a limit-ordinal.

The right-ideal J* = (M + Jv) /M is part of the anti-radical My/My
of the ring R/M; it is, therefore, the sum of minimal right ideals in B/M .
If Z* is a minimal right-ideal in /M., then either Z#* = 0 or Z* = Z*2. If
the idempotent minimal right-ideal Z* were part of J*, then there would
exist an element e in J, which is not contained in Jw», though e—e® is an
element in Jy, since every idempotent minimal right-ideal contains an idem-
potent not 0.2 Tt is a consequence of the induction-hypothesis that J., is a
nilideal and that therefore e — ¢? is a nilelement. Consequently we are able
to deduce from a theorem of (. Kothe ** the existence of an idempotent j 5= 0
in Jy=J, a fact that is clearly incompatible with J*=0. Thus we have
shown that J* is the sum of minimal right-ideals whose squares are 0; and
from this result it is easily deduced that J*2==0. But J,®>= M, Is an
immediate consequence of J**==0. Since M, is a nilideal, the square of
every element in J, is a nilelement, i. e. J i a nilideal.

Case 2. v is a limit-ordinal.

Then every element in J, is contained in some J, for u < v; and it follows
from the induction-hypothesis that every element in J, is a nilelement, i. e.
that J, is a nilideal.

This shows that J is a nilideal, since J = J,, is a consequence of R = M.

Remark. If J is an ideal, neither 0 nor 1, in the ring of natural integers,
then J¢ =0, though J is not a nilideal; and this shows that the hypothesis
R = M, cannot be omitted in Theorem 6. 3.

THEOREM 6. 4. If condition (4.A) 1s salisfied by the 1ing R, and if
R/U s a swm of minimal right-ideals, then M; s, for every positive inleger 4,
exactly the set of all the elements x in R which satisfy: aUt = 0.

Proof. The validity of our contention for 1=1 is an immediate con-
sequence of Theorem 4.4, (b). Thus we may assume that M, is exactly the
set of all the elements # in B which satisfy: 2U%*=0. The ideal M;/M;_,
is the anti-radical of the ring R/M.,; and (U + M;-,)/M;-, is, by Theorem
1.2, a two-sided nilideal in R/M;, modulo which this ring is a sum of

**E.g. v. d. Waerden (1), p. 157, Hilfssatz 3.
2t Kothe (1), p. 168, Hilfssatz 3.
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minimal right-ideals. Hence it follows from Theorems 4.2 and 4.3 that
M; is exactly the set of all the elements = in R which satisfy: 2U < M,_,.
But it is a consequence of the induction-hypothesis that zU is part of M;,
if, and only if, 0 = 2l7U*"* = 2U*%; and @ is therefore an element in M; if, and
only if, #U* = 0, as was to be shown.

THEOREM 6.5. If the right-ideal J in R is part of M, for i o positive
i?lteger’ then Jzt — J2‘+1.

Proof. It is a consequence of Lemma 4.5 that our theorem is true for
t=1. Thus we may assume the validity of the theorem for subideals of M;
and we have to derive it from this induction hypothesis for the subideals
of M.

Assume now that the right-ideal J in R is part of M;i.;. The right-ideal
(M;+J)/M; in R/M; is part of the anti-radical M(B/M;) = Mi../M; of
the quotient ring R/M;; and hence we deduce from Lemma 4.5 that
M;+ J?=M; 4+ J% The cross-cut C of M; and J? is a subideal of M; and
consequently we may infer from the induction hypothesis that C*' = (C?%'*!;
and the above equation may be restated as J?==C -+ J3, since J* = J? and
since we may apply the modular (Dedekind’s) law. Expanding (C + J?)*'-

we obtain
2i-1

JE-2 (0 + Js)zi-l = (02 + j-zl Vj

where every summand V; is the sum of products of 2¢ —1 ideals of which
j are equal to J* and the remaining 2% — 1 — j factors are equal to C. Since
C = J? it follows that V; << J3i+2(2-3-0) = J2i*i-2 < J2'9-1 op

OVj = J2e-l  Jeitia
Consequently we find that
2¢-1
th-! =J2J2¢+1_2 — (0 + J3)J2¢+1_2 — C(Czt_1 + 2 V;) + J24+1+1
=02¢ +J2“1+1=02¢+1 +J24+l+1j-]

. J2t+e1
== J 2+

since 0241 =< J2"*2 << J*""1: and this completes the proof.

7. Nilpotent ideals. It is an immediate consequence of the definition
of radical ideals (cf. condition (1.c)!) that they contain every nilpotent
right-ideal. On the other hand it has been pointed out that radical ideals
need not be nilpotent. Thus we shall give in this section several criteria for
a nilideal, in particular a radical ideal, to be nilpotent.
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TueoREM 7.1. Every nilideal contained in M; for i a positive integer
1s nilpotent.

Proof. It is a consequence of Theorem 6.1 that a nilideal J contained
in M; satisfies: J¥"*' =JJ! =< }{;J! =0, and J is therefore nilpotent.

TuEOREM 7.2. TIf {he marimum-condition ** is satisfied by the nilpotent
right-ideals in {he ring R, then the lower radical of R is nilpotent.

Remark. That the hypothesis of this theorem is not sufticient for proving
that the upper radical is nilpotent, may be seen from the example in seclion 2.
It seems to be an open question whether or not the maximum condition for
right-ideals is sufficient for nilpotence of the upper radical.

Proof.  There exists a greatest nilpotent right-ideal ¢ in R. If J is a
nilpotent right-ideal in R, then ' + J is a nilpotent right-ideal so that J
is part of . Consequently G is the sum of all the nilpotent right-ideals in R.
It is a consequence of Lemma 1.1 that G is a two-sided ideal in R. There
cannot exist nilpotent right-ideals different from 0 in R/{, since Zi = @ and
the nilpotence of ¢ imply the nilpotence of Z. This shows that the nilpotent
ideal ¢ is a radical ideal: and it is readily verified that ( is the lower radical
of the ring R.

THEOREM %.3. If R==»3, for some ordinal m, and if at least one of
lhe two chains M, and Kv is finite, then the radical K of R 1s nilpotent.

Remark. The existence of the radical K is a consequence of Corollary 5. 2.

Proof. 1f R =M, for some finite ‘ordinal m, then the nilpotence of the
radical is a consequence of Theorem 7.1, since the radical is by Theorem 1.2
a nilideal.

It R = M, for some ordinal m, then it follows from Corollary 6.2 that
K™ —(, If the chain K" is finite, then there exists a finite ordinal ¢ such
that Kt = Kl —+ + + = Kn+1 — (),

The next theorem is a partial converse of Theorem 7. 3.

TuroREM 7.4. If condition (4.A) is satisfied by the ring R, if the
radical K of R ewists and is nilpotent, and if R/K 1is a sum of minimal right-
ideals, then R == M; for some postlive integer i.

Proof. There exists a positive integer ¢ such that K*=0; and it is a

—

?2 It states that every mnot vacuous class of nilpotent right-ideals contains at least
one greatest ideal.

3
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consequence of Theorem 6.4 that M; is exactly the set of all the elements =
in R which satisfy: zKi = 0. Since RK*= R0 =0, it follows that M; = E.

The third condition in Theorem %.4 cannot be omitted, since in the
ring of all the integers radical and anti-radical are both 0.

COROLLARY 7. 5. Suppose that condition (4. A) is satisfied by the ring R,
that R/U is a sum of minimal right-ideals, and that O is the only element x
in R that satisfies Re = 0. Then

Ut =0 1f, and only if, M;i =R (for i a positive integer).

Proof. That Ut =0 implies M; = R, is an immediate consequence of
Theorem 6.4; and that M; =R implies U?=0, may be inferred from
Theorem 6.1, since 0 = M;U?= RU? and since §=0 is a consequence
of RS =0.

8. Maximum and minimum conditions.?® In the results of the previous
sections there occurred hypotheses that are connected in various ways with
maximum and minimum conditions. In this section we investigate the rela-
tions between these properties.

THEOREM 8.1. Suppose that the mazimum condition is satisfied by the
right-ideals in the ring B. Then the minimum condition is satisfied by the
right-ideals in R if (and only if) condition (5.B) s satisfied by every
quotient-ring of R.

Proof. 1If condition (5.B) is satisfied by every quotient ring R, then
there exists, by Theorem 5.1, an ordinal m such that R = M.,. Since the
ideals M, form an ascending chain, and since the maximum condition is
satisfied by the right-ideals in R, there exists a positive integer ¢ such that
M; = M,;,,. Since R = M,, for some ordinal m, it follows that B = M; for
1 a finite ordinal. It is a consequence of the definition of the series M, that
Myi/My is a sum of minimal right-ideals in R/M,; and we infer from the
maximum condition for right-ideals that My,,/M, is a sum of a finite number
of minimal right-ideals. Consequently there exists a finite composition series **
of right-ideals in R; and it is well known that the minimum condition for
right-ideals is a consequence of this fact.

23 The maximum (minimum) condition is satisfied by the right-ideals in the ring R,
if in every not vacuous set of right-ideals there exists a right-ideal which is not smaller
(greater) than any other right-ideal in the set.

2t A composition series is a densest finite ascending chain of right-ideals.
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If there exists in the ring R an infinite independent set 2* of right-ideals,
then there exists in R a countably infinite, independent set of right-ideals
J(1) =0 for i=1,2,- - . The chain of right-ideals X J(j) is an infinite

i

ascending chain of right-ideals; and the chain X J( 7) is an infinite de-
i<J

scending chain of right-ideals. Thus the maximum as well as the minimum
condition for right-ideals implies the following property of rings E-

(8.C) There does not exist an infinite independent set of right-ideals.

If (8.C) is satisfied by the ring R, then it follows from Lemma 4.1 that
the anti-radical M of R is the (direct) sum of a finite number of minimal
right-ideals. The following statement is a partial converse of this fact.

THEOREM 8.2. If condition (5.B) is satisfied by the ring R, and if the
anti-radical M is a sum of a finite number of minimal right-ideals in B, then
(8. C) 1s satisfied by R.

Proof. Suppose that S is an independent set of right-ideals different
from 0 in R. If J is a right-ideal in the set S, then J contains a minimal
right-ideal J’. The set S’ of these minimal right-ideals J’ is independent
and contains as many elements as S. Since there does not exist an infinite
independent set of minimal right-ideals in R, it follows that S is a finite set
and that therefore (8. C) is satisfied by R.

LemMma 8.3. If conditions (5.B) and (8. C) are satisfied by the ring R,
and if B does not contain nilpotent right-ideals different from 0, then R is
the sum of a finite number of minimal right-ideals.

Remark. This is a generalization of the so-called “ Fundamental Theorem
on Semi-simple Rings.” *¢

Proof. Suppose that we have constructed idempotents e;,- - -, ¢, meeting
the following requirements:

(a) eiR is a minimal right-ideal.
(b) eie; =0 for =%,

This is certainly possible for n = 0.
We note that the right-ideals e;R form an independent set of right-ideals.

*5 The set 8 of ideals is said to be independent, if the cross-cut of any ideal J in
S with the sum of the other ideals in § is 0.
28 Cf. e. g. v. d. Waerden (1), p. 156.
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Let W(n) be the right-ideal of all the elements x satisfying: é e;r =0
i=1

(W(0) =R). Then it is readily seen that R = W(n) +§eiR; and we

have effected the proof of our lemma, it W (n) = 0. ShoulcTHV(n) be dit-
ferent from O, then it contains a minimal right-ideal J; and J contains, by
a well known theorem,”” an idempotent e¢=£0, since J =J% Put e,
=e—eiei. It is readily verified that e,,; is an idempotent, satisfying
eie,,+1=1evn+1ei=0 for t=1,- - -,n, and that J=en.R; and thus the
idempotents ey, - -, ey, ey, meet the requirements (a) and (b).

If this construction would never stop, i.e. if the right-ideal W(n) were
different from 0 for every positive n, then we would be led to the infinite
independent set of minimal right-ideals e;R,- - -,e;R, - - -, contradicting
condition (8.C). This completes the proof.

TuroreM 8. 4. If condition (4.A) 1s salisfied by the ring R, then each
of the following properties implies all the others:

(1) The maximum and the minimum condition are satisfied by the
right-ideals in R.

(%) The minimum condiltion 1s salisfied by the right-ideals in R.

(3) Conditions (5.B) and (8.C) are satisfied by every quolienl-ring
of the ring R ; and the descending chain of the powers of the radical ** K of
R s finite.

Proof. 1t is obvious that (1) implies (?); and that (3) is a consequence
of (?) is a consequence of facts we mentioned when introducing condition
(8.C).

If (8) is satisfied by the ring R, then it follows from Theorem 5.1 that
R = M,, for some ordinal m; and from Lemma 8.8 that R/K is the sum of
a finite number of vight-ideals. There exists a positive integer ¢ such that
Ki= Ki#'; and it is a consequence of Theorem 6. 4 that M, is, for finite n,
exactly the set of all the elements , satisfying K" = 0. This shows the
equality of My = M;.,. Hence we have M;= M., —- + = Mmn=R. Since
there do not exist infinite independent sets of right-ideals in B/Mn, it follows
from Lemma 3.3 that M,.,/M, is the sum of a finite number of minimal
right-ideals. Consequently there exists a finite composition series of right-
ideals in R, a fact which is equivalent to our property (1).

27 Cf. e. g. v. d. Waerden (1), p. 157.
28 The existence of the radical K is assured by Theorem 5.1 and Corollary 5. 2.
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Remarks. 1. In proving that (1) is a consequence of (3) we did not
use condition (3) in its entirety. 'That condition (5.B) is satisfied by every
quotient ring of R, and that the powers of the radical form a finite chain,
are hypotheses indispensable for the above proof. But it is not necessary to
assume that (8. C) is satisfied by every quotient ring of B. It would have
been sufficient to make sure that the quotient rings B/M; for finite ¢ and R/K
meet the requirement (8.C); and for the latter assumption we could have
substituted the weaker hypothesis that R/K is a sum of minimal right-ideals.

2. It has been shown elsewhere ** that a ring with minimum-condition
for right-ideals possesses a right-identity element if, and only if, it satisfies
condition (4. A); and Ch. Hopkins *® hag shown that the maximum condition
for right-ideals is a consequence of the minimum condition for right-ideals,
provided there exists a right-identity element. It should be noted, however,
that condition (4. A) is indispensable for the validity of this Theorem 8. 4,
as may be seen from the following example: denote by B any infinite abelian
group without elements of infinite order which contains only a finite number
of elements of order a prime; such a group is the direct sum of a finite
abelian group and of a finite number of groups of type® p®. If we define
zy = 0 for every pair of elements « and y in E, then R is a commutative ring,
satisfying 0 = R?. The ideals in R are just the subgroups of the additive
group R; and thus it becomes apparent that the minimum -condition is
satisfied by the ideals in R, but not the maximum condition.

9. Existence of the identity. The following statement is basic for the
considerations of this section.

LemMma 9.1. If conditions (5.B) and (8.C) are satisfied by** R/K,
then there exists an idempotent e in R such that = er=wxe modulo K for
every element x in R.

Proof. R/K is a ring without nilpotent right-ideals different from 0,
by Theorem 1.2; and R/K is, by Lemma 8. 3, the sum of a finite number of
minimal right-ideals. Hence there exists, by a well known theorem,®® an
identity element in R/K, i.e. there exists an element f in R such that

2 Baer (1), Corollary to Theorem 6.

% Hopkins *(1), p. 726, Theorem 6. 4.

31 The groups of type po have been discovered by H. Priifer; they are generated
by a countable number of elements g, subject to the relations: g  is an element of
order p; g, , = ¢,p.

32 The existence of the radical K is assured by Theorem 5.1 and Corollary 5. 2.

33 Cf. e. g. v. d. Waerden (1), p. 156.
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¢ =uf = fr modulo K for every « in B. I1f f is any element meeting this
requirement, then f*—f=f" 1is an element in K; and we deduce from
Theorem 1.2 the existence of a positive integer n = n(f) such that f»=0.
Thus there exists among the elements which represent an identity element
modulo K one, say e, with minimal n(e). It is readily verified that e is an
idempotent (which clearly meets all our requirements), since otherwise ®*
6, =-e—2e¢’ + ¢’ [for ¢/ =e>—¢] would be an element which represents
the identity element modulo K, though n(e:) were smaller than n(e).

THEOREM 9.2. If R = M, for some (finite or infinite) ordinal m, and
if condition (8. C) is satisfied by the ring ** R/K, then the property that every
element z in R is contained in Bz is a necessary and sufficient condition for
the existence of a left-identity-element in R.

Proof. 1If e is a left-identity-element in R, then z = ex belongs to Rz,
showing the necessity of the condition. We assume now that the condition:
“a belongs to R ” is satisfied by the ring B. It is a consequence of Theorem
5.1 that condition (5.B) is satisfied by every quotient ring of E; and hence
we may deduce from Lemma 9.1 the existence of an idempotent e such that
o = er=wxe¢ modulo K for every element « in R. We denote by W the set
of all the elements z in R such that ex=0. Since z=ez modulo K, it
follows that W is part of K. Finally we have B = Re -} K.

We proceed to prove by complete (transfinite) induction that W = Kv
for every v. This is certainly true for v =1; and thus we may assume that
W = K* for every u < v.

Case 1. v=w -+ 1 is not a limit-ordinal.

Then we deduce from the hypothesis that « is an element in Rz and from
the induction hypothesis the inequality:

W=RW=ReW +KW=KW=KKv—= K.
Case 2. v is a limit-ordinal.

Then K@® is the cross-cut of all the K* for u < v; and W= K" is an
immediate inference from the induction-hypothesis.

It is a consequence of B = M, and Corollary 6.2 that K™**=0. Thus
W, as a part of K™, is 0.

84 This construction is due to Kéthe (1), p. 169 and Dickson (1), p. 123.
35 The existence of the radical K is assured by Theorem 5.1 and Corollary 5. 2.



RADICAL IDEALS. 559

Since © — ex belongs to W for every z in R, it follows that z = ez for
every ¢ in R, 1. e. that ¢ is a left-identity-element in R.

Remark. The condition: R = M, was only needed in the proof to assure
that condition (5.B) is satisfied by R/K and that K™*—=0; and these two
apparently weaker conditions may be substituted for B = M.

The identity is an element ¢ in R that satisfies ex — ae = x.

COROLLARY 9.3. If R = My for some (finite or infinite) ordinal m,
and if condition (8. () is satisfied by the ring * R/K, then the following two
conditions are necessary and sufficient for the existence of the identity 1 in
the ring R:

(i) @R =0 implies x =0; and

(ii) Rz contains .

Proof. The necessity of the conditions (i) and (ii) is obvious. If these
conditions are satisfied by the ring R, then we deduce from Theorem 9.2 the
existence of a left-identity-element ¢ in R; and e is the identity 1 in R, since

(z-—we)R= (v —axe)eR = (we —2¢)R =0 implies z=uwe by (i).

THEOREM 9.4. If R = My, for some (fintte or infinite) ordinal m, and
if condition (8.C) is satisfied by the ring ** R/K, then condition (4. A) is
a necessary and sufficient condition for the existence of a right-identity-
element in R.

Proof. 1f e is a right-identity-element in R, then # = we is contained
in the right-ideal #E, showing the necessity of condition (4. A). If condition
(4. A) is satisfied by the ring R, then we deduce from Theorem 5.1 the
validity of condition (5.B) in every quotient ring of R; and hence we may
infer from Lemma 9.1 the existence of an idempotent e satisfying z==ex
==gze mod K for every element  in B. Clearly R — ¢R + K.

It will be convenient to put 0 = M,. Then we prove by complete (trans-
finite) induction that M, = Mye and that O is the only element z in M,
satisfying e — 0. This fact is patently true for ¥ = 0 and thus we assume
it to be true for every u < v.

Case 1. v==w -4 1 is not a limit-ordinal.

Then M, = Mye and 0 is the only element = in M, such that ze —0.

¢ The existence of the radical K is assured by Theorem 5.1 and Corolary 5. 2.
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If y is an element in M, such that ye = 0, then yR = yeR + yK = yK ; and
since My/M, is the anti-radical of the ring R/M., it follows from Theorem
4.4, (a) that yR =yK = M,. But it is a consequence of (4. A) that y is
an element in yR and therefore in M, ; and now we deduce from the in-
duction-hypothesis that y = 0. Consequently 0 is the only element « in M,
such that we =0; and M, = M,e is an obvious consequence of this fact.

Case 2. v is a limit-ordinal.

If 2 is an element in M,, then there exists an ordinal » < » such that
a is an element in M,. Hence it follows from the induction-hypothesis that
a = xe showing that M, = Mye and that thevefore 0 is the only element 2z
in M, such that ze = 0.

Now it is evident that B = M, = Mue = Re and that consequently e is
a right-identity-element for &.

By essentially the same arguments as the ones used in the proof of
Corollary 9.3 we deduce the following statement from Theorem 9. 4.

COROLLARY 9. 5. If R = My, for some (finite or infinite) ordinal m, and
if condition (8.C) is satisfied by the ring *® R/K, then the following two
conditions are necessary and sufficient for the existence of the identity 1 in
the ring R:

(i) Rax =0 tmplies v = 0; and
(ii) 2R contains x.

It has been assumed in Theorems 9.2 and 9.4 and in Corollaries 9.3
and 9.5 that condition (8.C) is satisfied by the ring R/K. The impossi-
bility of omitting this hypothesis may be seen from the following example:
Denote by F a field, by G an abelian group which admits the elements in F
as operators and whose rank over F is infinite, and by R the ring of all the
(proper and improper) automorphisms of the group G over F' which map G
upon a subgroup of finite rank. It is readily seen that B contains neither a
left-identity-element nor a right-identity-element, that R = M and that K =0.
If r is any element in R, then denote by (/. the set of all the elements in @
which are mapped upon 0 by ». Clearly G" and G/G. are isomorphic groups
of finite rank over B; and hence there exist idempotents ¢, f in B such that
every element in @G is left invariant by e, G, is mapped upon 0 by f and
every coset of (/@ is mapped by f upon an element in itself, since both G~
and G, are direct summands of G. Clearly r = re = fr showing that every
subset § of R is contained in both SR and RS.
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THEOREM 9.6. If conditions (5.B) and (8:C) are satisfied by *® R/K,
then the following pair of properties is @ necessary and sufficient condition for
the existence of a left-identity-element in R:

(a) IBwery right-ideal different from R 1s coniained in a maximal right-
tdeal in R.

(b)*" The radical K of R is the cross-cut of all the mazimal right-ideals
mn R,

Proof. Suppose that there exists a left-identity-element ¢ in R. If the
right-ideal J in R ig different from R, then there exists a greatest right-ideal
(+ in R which contains J, but which does not contain e. Clearly ¢ is a maximal
right-ideal in R, since B = eR. It is a consequence of Theorem 1.2 and of
LLemma 8. 3 that B/K is a sum of minimal right-ideals; and hence it may be
inferred from Theorem 3.4 that K is the cross-cut of all the maximal right-
ideals in R.

Suppose now, conversely, that the conditions (a) and (b) are satisfied by
the ring R. There exists by Lemma 9.1 an idempotent ¢ in R such that
@ =="ex ==ze¢ modulo K for every element & in R. Since the elements v satis-
fyving ev = 0 are certainly contained in K, it follows that R=eR 4 K. Iif
the right-ideal eR in B were different from R, then there would exist a
maximal right-ideal ¢ in B which contains eR. It is a consequence of (b)
that K = G'; and thus we are led to the contradiction: R =¢R + K = G < R.
Hence B = ¢R and e is a left-identity-element in R.

Remarks. 1. If R ig the ring of all the even rational integers, then the
radical of R is 0; and it is readily seen that conditions (a) and (b) are
satisfied by B. Condition (8. C) is satisfied too; but B does not contain an
identity. This shows the impossibility of omitting the hypothesis ‘that con-
dition (5.B) be satisfied by EB/K.

2. Suppose that the abelian group R is the direct sum of a group K
of type 2% and of a cyclic group of order 2 which is generated by an element e.
In R we define a commutative multiplication by the rules: wv =0, if at least
one of the factors v and » is in K; and e =e? It is readily seen that K is
the only maximal ideal in R, and that K is the radical in R. Thus conditions
(5.B) and (8. C) are satisfied by B/K and condition (b) is satisfied by .
But there does not exist an identity element in R; and this shows the im-
possibility of omitting condition (a) in Theorem 9. 6.

37 Considering this condition (b) and Theorem 4.4 it may be shown that Theorem
9.6 is a generalization of a theorem due to M. Hall; cf. Hall (1), p. 362, Theorem 3. 2.
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10. The quasi-regular elements. S. Perlis *® has recently discovered 4
characterization of the radical of an algebra which is rather different from
the usual criteria. We devote this section to a generalization of his theory.

An element « in the ring R is termed quasi-regular,®® if there exists an
element y in R satisfying: o4y 4 ay=0. If the ring B possesses an
identity element 1, then a necessary and sufficient condition for quasi-regu-
larity of the element z in R is the existence of a solution z of the equation:
(1+2z)z=1.

The right-ideal J in the ring R shall be termed quasi-regular, if every
element in J is quasi-regular.

TuEOREM 10.1. If 2 is an element in the quasi-regular right-ideal J,
then there exists one and only one solution v =2’ of the equation z + x -4 2
= 0; and such a solution satisfies 22’ = 2’z.

Proof. 1If z is an element in the quasi-regular right-ideal J, then there
exists an element y in R such that 2 4y 42y = 0. If y is some solution of
this equation, then y = — (2 4 2y) is an element in J, since z is an element
in the right-ideal J. Since J is quasi-regular, so is y; and hence there exists
an element w in R such that y + w 4 yw =0. Consequently we find that

=z+y+wtyw+:(y+w+ yw)
=z2+y+wt+ Yttt w=w;
and this shows that 0=y 4+ w -+ yw =19y + 2 + y2; and we deduce 2y = yz
from y + 2z + 2y = 0.
Suppose now that =y and =19y are solutions of the equation:
2+a+42x=0. From what we have shown in the previous paragraph of
the proof, it follows that 0 =2 - y - y2z; and thus we find that

Y=v+st+yty+ c+y+y2)y
=2+y+a+y@z+y+) +y=y;

and this completes the proof.
We denote by § = S(R) the sum of all the quasi-regular right-ideals in R.

TurEorEM 10. 2. S(R) s a quast-regular right-ideal in the ring R.

Proof. It is readily seen that it suffices to prove the following statement:
If u is contained in a quasi-regular right-ideal, and if v is contained in a quasi-
regular right-ideal, then » - v is an element of some quasi-regular right-ideal.

38 Perlis (1).
30 Perlis (1), p. 129.
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We note that (in the absence of identity elements) the right-ideal generated
by the element w consists of all the elements of the form: wi -~ wr for » in B
and 4 an ordinary rational integer (7 need not be an element in R). Thus
we have to show that (u + v)1 + (u -+ v)r is quasi-regular for every r in R
and for every rational integer ¢, whenever both « and v are contained in quasi-
regular right-ideals.

Since ur -+ ui belongs to the right-ideal generated by w, it is quasi-
regular; and hence there exists an element s such that

(uwr 4+ ut) + s+ (ur -+ ut)s=0;

and since v (r -+ rs + 1) + vt belongs to the right-ideal generated by v, it is
quasi-regular too; and this assures the existence of an element ¢ satisfying:

v(r+rstsi) it (v(r+rs-si) 4 vi)t =0.

Hence

(w4 0)7 4 (u A 0)D) (s + ¢ + s)+ ((u + 0)7 4 (w4 0)d) (s + L+ s1)
= ur 4+ ut + s 4 (ur + wi)s + (ur + wi + s + (ur 4 wi)s)t
+o(rdrs+st)fvi 4+t F(v(r+rs+si)f i)t =0;

and this proves that (u 4 v)r 4 (u + v)t is quasi-regular for every r in I
and for every natural integer ¢; i.e. w4 v is contained in a quasi-regular
right-ideal in R, as was to be shown.

THEOREM 10.3. If the right-ideal J in R consists of elements that are
quasi-regular modulo ** S(R), then J = S(R).

Proof. If the element  in R is quasi-regular modulo S (), then there
exists an element y such that # + y + 2y is in S(R); and it follows from
Theorem 10.2 that -+ y 4 @y is quasi-regular. Consequently there exists
an element z in R such that

O=z+ytaoyt+zt+(@t+yt+ay)z=z+@y+z+yz) +a(y+2+y2);

and z is therefore a quasi-regular element. The right-ideal J is thus quasi-
regular, if each of its elements is quasi-regular modulo S(R).

CoroLLARY 10. 4. If the right-ideal J in R is a nilideal modulo ** S(R),
then J = S(R).

4. e, to every element j in J there exists an element % in R such that j + k + jh
belongs to S(R).

4 I.e. to every element j in J there exists a positive integer n such that j belongs
to S(R).
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Proof. If the element w is a nilelement modulo S(22), then there exists
a positive integer n such that w*™* is an element in S(R). Since

2n

2n
w -+ 21 (— Dt +w }_‘1 (— D iw? = w4,
i= i=

it follows that w is quasi-regular modulo S(R) ; and this shows that our con-
tention is an immediate consequence of Theorem 10. 3.

Lemyma 10.5. If the element e in S(R) 1is an idempotent modulo the
Lio-sided ideal T in R, then e belongs to T.

Proof. If e is an element in S(R), then —e is quasi-regular. Hence
there exists an element f in R such that —e 4 f—ef =10. If ¢ is further-
more an idempotent modulo the two-sided ideal T', then

e=e=c¢(f—ef)=¢f —ef=¢f —e¢f=0mod T,
i.e. e belongs to 7'

TurorEM 10. 6. If the two-sided ideal T in R is part of S(R), if every
right-ideal, not 0, in R/T contains a minimal right-ideal, and if 0 is the only
nilpotent right-ideal in R/T, then T = S(R).

Proof. TIf T were different from S(R), then there would exist a right-
ideal J between 1" and S(R) such that J/7 is a minimal right-ideal in E/T.
Since 0 is the only nilpotent right-ideal in R /T, it follows that J/T =(J/T")?;
and hence we may deduce from known theorems*? that J/I' contains an
idempotent different from 0. But it follows from Lemma 10.5 that this is
impossible ; and this shows that T = S(R).

CoroLLARY 10.7. If every right-ideal, not 0, in R/U contains a minimal
right-ideal, then S(R) is the upper radical U of R4

Proof. Tt is a consequence of Theorem 1.2 that U is a nilideal and that
R/U does not contain nilpotent right-ideals different from 0; it is a con-
sequence of Corollary 10. 4 that U is part of S(R) ; and hence we may deduce
from Theorem 10. 6 that U = S(R).

We denote by S* = S*(R) the sum of all the quasi-regular two-sided
ideals in R. Clearly S* is a two-sided ideal which is part of S(R) ; and hence
it follows from Theorem 10.2 that S*(R) is quasi-regular. It is a con-
sequence of Theorem 10. 3 that S*(R/8*(R)) = 0.

¢ Cf. e.g. v. d. Waerden (1), p. 157, Hilfssatz 3.
4% This is readily seen to be an extension of Perlis’ (1) Theorems 1 and 2.




RADICAL IDEALS. 565

CoroLLARY 10.8. If every right-ideal, not 0, in R/S*(R) contains a
manimal right-ideal, then S*(R) = S(R).

Proof. Denote by H the two-sided ideal which contains S*(R) and
which satisfies H/8%* = N(R/S*) (=sum of all the nilpotent right-ideals in
R/8%). That H is a two-sided ideal, is a consequence of L.emma 1.1; and
it follows from Lemma 1.1 that H is a nilideal modulo S*. Hence we deduce
from Corollary 10. 4 that H is part of S(R) ; and we infer from Theorem 10. 2
that the two-sided ideal H is quasi-regular. Hence H = 8* and 0 is the only
nilpotent right-ideal in R/S*. Applying Theorem 10.6 we see that S* = S.

TueoREM 10.9. If the ring R possesses an identity elemen! 15 then S(R)
is part of every mazimal right-ideal in R.

Proof. If S(R) were not contained in the maximal right-ideal G in R,
then R= G+ § and there exist elements ¢ and s in G and § respectively
such that 1 =g +s. It is a consequence of Theorem 10. 2 that — s is quasi-
regular and that therefore — s + #— st =0 for some { in R. Hence 1+ /
=(9+s)(1+¢t)=9g+s+gt+st or 1=g+ gt so that 1 is an ele-
ment in the right-ideal & < R, a contradiction.

CoROLLARY 10.10. If the ring R possesses an identity element 1, and if
R/8* is @ sum of minimal right-ideals, then S(R) = S8*(R) s the cross-cut
of all the maximal right-ideals in R.

This is an immediate consequence of Lemma 3.3, Corollary 10.8 and
Theorem 10.9.

Remark. The upper radical U of the ring R is by Theorem 1.2 a two-
sided nilideal ; and hence it is a consequence of Theorem 10. 2 and of Corollary
10. 4 that U = S8*(R). That the ideals U and S* need not be equal may be
seen from the following example: R is the ring of all the (formal) power

00
series 3, ¢t in one indeterminate ¢ with coefficients ¢; from some commutative
=0
field. An element in R possesses an inverse in R if, and only if, “ its absolute
term ” ¢y 5= 0; and an element in R is quasi-regular if, and only if, 1 4 ¢,
5= (0. This shows that S*(R) = §(R) = {R whereas U(R) = 0.

TurorEM 10. 11, If J is a quasi-regular right-ideal in the ring R, then
My J? =0 for every ordinal v.
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Remark. It is a consequence of Corollary 10.4 that Theorem 6.1 is a
special case of this Theorem 10. 11.

Proof. A.If Z is a minimal right-ideal in R, and if z is any element in
Z, then 2J is a right-ideal in R which is part of Z. Thus 2J is either 0 or Z.
If 2J were equal to Z, then there would exist an element w in J such that
2w =12, Since w is an element in the quasi-regular right-ideal J, it follows
that — w is quasi-regular; and hence there exists an element v in B such
that w = v—wv. Consequently

r=w=12(v—uv) =20 —20=0>0,

an impossibility. Thus we have shown that zJ = 0 for every # in Z; and this
shows that ZJ = 0 for every minimal right-ideal Z in R. Since the anti-
radical M = M (R) is the sum of all the minimal right-ideals in R, it follows
that

MJ =0 for every quasi-regular right-ideal J in R.

B. We proceed to prove the theorem by complete induction with regard
to v. That the theorem holds true for v = 1, has been shown under A.; and
thus we may assume that our assertion is valid for every u < v.

Case 1. v=w -+ 1 is not a limit-ordinal.

Then M,/M, is the anti-radical of B/My and (J -+ Mw)/Mw is a quasi-
regular right-ideal in R/M,. Hence it follows from A. that their product
is 0; and from this fact we deduce that My = M,. From the induction-
hypothesis we infer M,J* = 0; and thus we find that

]l[UJv = j]/ILJJW = er]w = (),
Case 2. v is a limit-ordinal.

If = is any element in My, then we deduce from the definition of M, as
the join of the M, with v < v the existence of an ordinal d < v such that =
is an element in Mqa.” It is a consequence of the definition of J¥ that it is
part of J¢; and hence it follows from the induction-hypothesis that xJv
= MiJ?=0; and thus we have shown that M,J* = 0.

11. Rings admitting operators. The ring B is said to admit the ele-
ments in the system ¥ as operators, if to every element » in R and to every
element » in ¥V there exists a uniquely determined element rv in R meeting
the following requirements:
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(i) (r=xs)v=rv+sv;
(ii) (rs)v=r(sv) = (rv)s.

It is readily verified that Jv is a right-(left-) ideal in R whenever J is
a right-(left-) ideal in R; that ¥ = 0 implies (rv)%=0; and that therefore
Jo is a nilideal (a nilpotent right-ideal) whenever J is a nilideal (a nilpotent
right-ideal). Saying that an ideal J in R is V-admassible, it JV =, it is
now easy to prove the following statement:

If the ring R admits the elements in the system V as operators, then the
upper and the lower radical and all the ideals M, in the anti-radical series are
V-admaisstble.**

If the ring R satisfies condition (4. A), then there exists to every element
@ in B an element z* in R such that = x2*; and this shows that 2v =z (z*v)
for every « in B. Hence we have proved the following theorem :

If condition (4. A) is satisfied by the ring R, then every right-ideal in R
1s V-admissible.

On the basis of this theorem it becomes evident that most of the theorems
derived in this paper may be applied to rings admitting operators.

UNIVERSITY OF ILLINOTS,
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