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ABSTRACT. We develop a Goldie theory for associative pairs and characterize 
associative pairs which are orders in semiprime associative pairs coinciding 
with their socle, and those which are orders in semiprime artinian associative 
pairs. 

$1. Introduction. Goldie's Theorem is certainly one of the fundamental 
results of the theory of (associative) rings. Today this theorem is usually 
formulated as follows: A ring R is a classical left order in a semisimple 
(equivalently, semiprime artinian) ring Q if and only if R is semiprime, left 
nonsingular, and does not containinfinite direct sums of left ideals. Moreover, 
R is prime if and only if & is simple. 

In 1990 J. Fountain and V. Gould [18] introduced a notion of order in a 
ring which need not have a unit, and gave [19] a Goldie-like characterization 
of two-sided orders in semiprime rings with descending chain condition (dcc) 
on principal one-sided ideals (equivalently, coinciding with their socle). Later 
P.N. ~ n h  and L. Mbki  [3] extended this result to one-sided orders: 

The first two authors, jointly with E. Sbchez Campos, studied [16] a 
notion of local order for associative algebras equivalent to that of Fountain- 
Gould for orders in simple rings with minimal inner ideals, and proved an 
extensinn of Pnsner's thenrem t ~ )  p n i e  algebras sztisfS'ing a generalized poly- 
nomial identity (result revisited in [4]). 
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Recall that an associative pair (of the &st kind) is a pair (A+, A-) of 

@-modules (@ is an arbitrary unital commutative ring of scalars) equipped 
with trilinear maps (x, y,z) -+ xyz from Au x A-m x Am in Am ((T = f) 
satisfying the following identities 

Every associative algebra A gives rise to an associative pair A = (A, A) un- 
der the triple product abc, where juxtaposition denotes the product of A. A 
more interesting example is given by B = (hom(M, N), hom(N, M)), where 
M and N are left modules over a @-algebra A, under the triple product abc 
where juxtaposition now denotes the mapping composition. If M and N are 
actually finite dimensional left vector spaces (of dimensions m and n respec- 
tively) over a division @-algebra A , then B G (Mat,,,(A), Matmxn(A)) 
is a simple artinian associative pair, and conversely, every simple artinian 
associative pair is isomorphic to one of these (see [24] for the corresponding 
result for associative pairs of the second kind). Another step in the structure 
theory of associative pairs was the classification of prime associative pairs 
with minimal inner ideals [8,11]. 

Associative pairs play a fundamental role in the new approach (see [I]) 
to Zelmanov's classification of strongly prime Jordan pairs, and had been 
already used by 0. Loos in the classification of the nondegenerate Jordan 
pairs of finite capacity [24]. 

The purpose of this paper is to develop a Goldie theory for associative pairs 
following the pattern of that for associative algebras (rings), but defining 
orders in associative pairs in the unique way which seems to be possible, 
namely, locally. Thus our definition of order in an associative pair is inspired 
by that of local order in associative algebras already cited, and even by its 
Jordan version introduced in a previous paper [12] by the first two authors. 

There is a link between associative pairs and associative algebras. Let 
A" = (A+, A-) be an associative pair and b in A-. Then the submodule 
bA+b equipped with the multiplication defined by (bxb) . (by b) = bxby b is an 
associative algebra called the local algebra of A at b (Section 5) and denoted 
by Ab. Analogous definition is given if b is in A+. Note that if b E A* is von 
Neumann regular, i.e., b E bAFb, then Ab is unital with b as the unit. By 
using local algebras we can define orders in associative algebras. 

Suppose now that A = (A+, A-)  is a subpair of an associative pair Q = 
(Q+, Q-). We say (Section 8) that A is an order in Q if for each q E Qf 
there exists b E A' such that (i) b is VQn Neumann regular in Q, (ii) q E 
bQrb, and (iii) the local algebra Ab of A at b is a two-sided order in the 
unital associative algebra Qb. This definition is consistent with the classical 
one for orders in associative algebras: Let A be-a subalgebra of a unital 
associative algebra &. Then the associative pair A = (A, A) determined by 
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' A  is an order in the associative pair Q = (&, &) determined by & if and 
only if A is an order in &. Moreover, it also extends the Fountain-Gould 
notion of order in simple associative algebras with minimal one-sided ideals. 
In a more purely pair context, if D is a two-sided order in an associative 
division algebra A, and m and n are positive integers, then the associative 
 air (Mat,,,(D), Matmx,(D)) is an order in (Magn',,,(&), Mat ,, ,(A)). 

We also introduce the notion of left (right) singular ideal (Section 3), and 
prove the following main result. 

Theorem 8.10. For an associative pair A the following conditions are equiv- 
alent: 

(i) A is an order in a semiprime associative pair Q coinciding with its 
socle, 

(ii) A is semiprime, satisfies the ascending chain condition on the left 
annihilators of single elements, l a n ~ ( x )  for x E A+, and has finite 
both left and right local Goldie dimension, 

(iii) A is a semiprime locd Goldie associative pair, 
(iv) A is semiprime and d l  its local algebras are Goldie. 

In this case, 

(1) A is prime if and only if Q is simple, and 
(2) A is Goldie if and only if Q is artinian. 

A key tool in the proof of this theorem is the notion of standard imbedding 
(Section 4) of an associative pair (see [27]). This notion is used to prove the 
implication (iii) + (i) of Theorem 8.10. We &st show (Section 6) that a 
semiprime local Goldie associative pair A is an essential subdirect product of 
prime local Goldie associative pairs, which allows us to reduce the question 
to the case that A is prime. Then the standard imbedding (A, e) of A is a 
prime nonsingdar algebra and such that the set I(d) of those elements of A 
hzving finite both left and right Goldie dimension is a nonzero ideal. In this 
situation, by a result of P. N. Anh and L. M&ki [4], A can be embedded in 
a prime associative algebra & with minimal one-sided ideals such that I(A) 
is a Fountain-Gould order in the socle Soc(Q) of Q. Hence we obtain that 
A = (eI(A)(l - e), (1 - e)I(A)e) is an order in the simple associative pair 
with minimal inner ideals Q = (eSoc(Q)(l - e), (1 - e)Soc(&)e). 

Another important fact in the proof of this theorem is the iocai character- 
ization of certain properties of associative pairs. Primeness, nonsingularity, 
left (right) local Goldie dimension, and coincidence with the socle are prop- 
erties of an associative pair which can be characterized in terms of its local 
algebras. This technique of using local algebras to pass information back 
and forth between pairs and algebras has been usefully used in the current 
structure theory of Jordan systems (algebras, trises and pairs) [2, 5, 6, 7, 
281. 
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$2. Basic notions a n d  associative pairs with chain conditions o n  in- 
ner ideals. Throughout this paper @ will denote a unital commutative as- 
sociative ring of scalars. Let A = (A+, A-) be a pair of @-modules, equipped 
with trilinear maps (x, y, z) -+ xyz from A" x A-" x A" in A" (a = f ). Then 
A is called an associative pair if the identities 

are satisfied. We define left, middle and right dtiplications by 

It follows from (1) 

(3) X(u, v)X(x, y) = X(uvx, y) = X(u, vxy) 

and similarly 

Hence it is clear that the linear span of all operators T : Au -+ A" of the form 
T = X(a, b)  or T = I d ~ m  (a E A", b E A-") is a unital associative algebra de- 
noted by A(AU, A-") and A" is clearly a left A(AU, A-")-module. Similarly 
it is defined II(A-", A") as the linear span of all the right multiplications 
plus the identity on A". Then A" becomes a left U(A-", A")-module. This 
allows us to apply results of modules to associative pairs. The left ideals 
L c A" of A are precisely the left A(AU, A-")-submodules of A", and the 
right ideals R c Am are the left. II(APr, A")-submodules, while a two-sided 
ideal B c A" is a left and right ideal. 

A left ideal U of A contained in A" is uni form if it is so as A(AU, A-")- 
module, i.e., any nonzero left ideals L, M of A contained in U have nonzero in- 
tersection. An element a € A" is I-uniform if the principal left ideal AUA-"a 
generated by a is uniform. Let L c A" be a left ideal of A which does not 
contain infinite direct sums of nonzero left ideals. By [20, Prop. 3.191, there 
exists a nonnegative integer n, called the left Goldie (or  uni form) dimension 
of L, such that L contains a direct sum of n nonzero left ideals and any 
direct sum of nonzero left ideals contained in L has at most n summands 
(notice that any direct sum of n nonzero left ideals is essential in the sense 
that it intersects any nonzero left ideal contained in L and its summands are 
necessarily uniform). Now a uniform nonzero left ideal is just a nonzero left 
ideal of left Goldie dimension one. If both A+ and A- have G t e  left Goldie 
dimension then we will say that the whole pair R h a s  finite left Goldie (or  
uniform) dimension. The left Goldie (or uni form) dimension of an element 
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va E A" is the left Goldie dimension of the principal left ideal generated by a. 
If any element of A has finite left Goldie dimension, we will say that A has 
finite left local Goldie dimension. 

An ideal I of A is a pair I = (I+,  I-) of two-sided ideals, I" c A", such 
that AUI-"A" c I" (cr = 5). If B = (B+, B-) and C = (C+, C-)  are ideals 
of A, then 

is an ideal of A, and we have that the lattice C(A) of all ideals of A is an 
algebraic lattice in the sense of [Is]. 

An associative pair A is semiprime if and only if IDA-"I" = 0, cr = f, 
implies I = 0 for I ideal of A, equivalently, I * I = 0 implies I = 0, while A 
is prime if and only if PA-"  J" = 0, a = f, implies I = 0 or J = 0, for I 
and J ideals of A, equivalently, I * J = 0 implies I = 0 or J = 0. 

Clearly an element a in A+ gives rise to an ideal I = (I+,I-) of A by 
taking I+ := @a f A+A-a + aA-A+ f A+A-aA-A+ and I- := A-aA-. 
This allows us to obtain elemental characterizations of semiprimeness and 
primeness (see [I, 1.181): A is semiprime if and only if A is nondegenerate 
(aAUa = 0 implies a = O), and A is prime if and only if A is elementally 
prime (aAUb = 0 implies a = 0 or b = 0, a, b E A-"). 

Each associative algebra A gives rise to m associative pair A = (A, A) un- 
der the triple product abc where juxtaposition denotes the associative prod- 
uct of A. Similarly, each associative pair A becomes a Jordan pair, denoted 
by A ~ ,  with quadratic maps Q(x)y = xyx. This will allow us to  apply 
Jordan-theoric results to associative pairs. We can transfer the Jordan no- 
tion of inner ideal to associative pairs. An inner ideal K of A contained in 
A" is a @-submodule of A" such that xA-"x C K for my x E K. Note 
that if L is a left ideal and R is a right ideal of A, both contained in the 
same A", then L n R is an inner ideal. Now, the elemental characterization 
ofsemiprimeness reads: an associative pair A is semiprime if and only if the 
Jordan pair AJ is nondegenerate. 

Let X C A". The left annihilator of X in A is defined to be the set 

written lan(X) or lanA(X) when it is necessary to emphasize the dependence 
on A. Similarly, the right annihilator ranA(X) = ran(X) of X is defined by 

{b E A-" : XbA" = 0 = A-"Xb) 

We also write annA(X) = ann(X) := Ian(X) n ran(X) to denote the anni- 
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hilator of X. Clearly, Zan(X) is a left ideal of A, ran(X) is a right ideal, and 
ann(X) is an inner ideal of A [1,1.15]. 

Lemma 2.1. Let A be a semiprime associative pair. For a E Am, b E 
the following conditions are equivalent: 

(i) A(a, b) = 0, 
(ii) p(a, b) = 0, 

(iii) a E lan(b), 
(iv) b E ran(a). 

Proof. Since (iii) @ (iv) + (i) + (ii) is straightforward from the definitions of 
lan(b) and ran(b), we just need to prove the equivalence (i) @ (ii). Suppose 
p(a, b) # 0. Then xab # 0 for some x E A-O implies, by nondegeneracy of A, 
that xabcxab # 0 for some c E Au. Hence X(a, b)c # 0. Similarly, X(a, b) # 0 
implies p(a,b) #0.  

Now we record some properties of annihilators in semiprime associative 
pairs which will be used later. Note first that if I = (I+, I-) is an ideal of 
a semiprime (equivalently, nondegenerate) associative pair A, then I+ = 
0 if and only if I- = 0. Indeed, I+ = 0 + A+I-A+ C I+ = 0 + 
(I-A+I-)A+(I-A+I-) = I-(A+I-A+)I-ASI- = 0, hence I-A+I- = 0, 
and I- = 0, using twice the nondegeneracy of A. 

Proposition 2.2. Let A be a semiprime associative pair, B c A+ a two- 
sided ideal of A, and I = (I+,  I-) be an ideal of A. Then 

(i) lan(B) = ran(B) = ann(B) is a two-sided ideal of A. 
(ii) ann(B) = {z E A- : zBz = 0). 

(iii) Iu n ann(1-") = 0. 
(iv) ann(I) := (ann(I-), ann(I+)) is an ideal of A called the annihilator 

ideal of I. 
(v) A/ann(I) is a sempri& associative pair. 

Rroof. (i) Let z E lan(B). For any a E A- and b E B, we have 

By nondegeneracy of A, A-Bz = 0, which implies z E ran(B) by Lemma 
2.1. This shows lan(B) C ran(B). Similarly, ran(B) c Ian(B). 
(ii) zBz = 0 implies, for any n E -4- m d  E E 2, 

and zBA- = 0 by nondegeneracy of A. Hence, z E' lan(B) by Lemma 2.1 
and lan(B) = ann(B) by (i). 
Now (iii), (iv) and (v) follow from (ii) applied to the two-sided ideals I&. 
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.- As a direct consequence of the preceding proposition, we obtain that for 
two ideals B and C of a semiprime associative pair A, the following are 
equivalent: (a) B * C = 0, (b) B fl C = 0, and (c) B C ann(C). Indeed, 
the equivalence (a) ($ (b) follows from [15, 2.11 applied to the semiprime 
algebraic lattice (L(A), *). Moreover, (a) -S (c) shows that ann(C) coincides 
with the annihilator CL defined in (L(A),*) (see [15, ~ .2] ) .  Another useful 
property of annihilators is the following. 

Lemma 2.3. Let I be an ideal of a semiprime associative pair A: For any 
subset M of I+ ,  lanl(M) = l a n ~ ( M )  fl I-.  

Proof. Clearly lanA(M) n I- is contained in lan~(M).  Let z E lanl(M). By 
Lemma 2.1, we just need to show that zMA- = 0. If m E M and a E A-, 
then zmaA+zma c zmI- = 0, which implies zma = 0 by semiprimeness of 
A, as required. Cl 

Following [22, p.701, let (X, XI, < ., . >) and (Y, Y', < ., . >) be two dual 
pairs of vector spaces over an associative division @-algebra A. An operator 
a : X -+ Y is adjointable if there exists a# : Y' + XI, necessarily unique, 
such that < xa,yl >=< X , U # ~ '  >. Notice that we write the mappings of 
a left vector space on the right (thus composing them from left to right), 
and the mappings of a right vector space on the left (thus composing them 
from right to left). We denote by L(X,Y) the set of all adjointable linear 
operators of X to Y, and by 3(X, Y) the subset of those operators having 
finite rank. 

For x' E XI, y E Y, write x' 8 y to denote the adjointable linear operator 
from X to Y dehed  by X(X' @ y) =< x,xl > y for x E X with adjoint 
(x' 8 Y)#Y' = x' < Y, Y' >. Note that (x' 8 y)b = x' 8 yb for all operator 
b from Y to X ,  and a(xl 8 y) = a#%' 8 y for all adjointable a E L(Y,X). 
Every a E F ( X ,  Y) can be expressed as a = C xi @ yi, where both {xi} c X' 
and {yi} c Y are linearly indebendent, which just means that F(X,Y) is 
isomorphic as @-module to the tensor product X' @a Y (see [22, Prop. 1, 
~ . 7 4 ]  and [14, p.3]). We have that 

(F(X, Y), 3(Y, X)) = (X' @a Y, Y' @A X )  

is an associative pair under the triple products abc with juxtaposition denot- 
ing the mapping composition. Actually, by [8] or [ll] ,  an associative pair is 
simple with minimal inner ideals if and only it is isomorphic to one of these. 

Proposition 2.4. Let A = (F(X, Y), F(Y, X))  be the associative pair de- 
fined by two dual pairs (X,X1, < ., . >) and (Y, Y', < ., . >) of vector spaces 
over an associative division @-algebra A. . 

(i) For V' and W, subspaces of X' and Y respectively, we have that 
V' @ W is an inner ideal of A, X' 8 W is a left ideal, and V' @ Y is 
a right ideal, all of them contained in A+. Conversely, for any inner 
ideal I of A contained in A+ = F(X, Y), we have that I#Y' and X I  
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are subspaces of  X' and Y respectively, and I = I # Y r @ X I .  Similarly, 
left ideals L of A contained in A+ are of the form L = X' @ X L ,  and 
right ideals R of  A contained in A+ are of the form R = R#Y' @ Y .  

(ii) I f  a left ideal L C A+ is principal, then X L  is iinite dimensional and 
the converse, i.e., X L  being finite dimensional implies L is principal, 
holds when d i m X L  5 dimX. 
I f  a right ideal R c A+ is principal, then R#Y1 is finite dimensional, 
and the converse is true when R#Y' dimY.  
A n  inner ideal I C A+ is principal if and only if X I  and I # Y r  have 
the same k i t e  dimension. 

(iii) For a left  ideal L C AS,  ran(L) = ( X L ) ' -  @ X ,  for a right ideal 
R c A', lan(R)  = Y' @ (R#Y')', and for an inner ideal I c A+, 
a n n ( I )  = ( X I ) I  @ (I#Y')'-. 

( iv)  I f  L is  a principal left ideal of A, then lan(ran(L)) = L. Similzly, 
ran( lan(R))  = R for a principal right ideal R of  A,  while a principal 
inner ideal I c A* coincides with its double annihilator if and o d y  
if a n n ( I )  # 0 or I = A*. 

Moreover, the following conditions are equivalent: 

(a )  A satisfies the descending chain condition (dcc) on all inner ideals, 
( b )  A satisfies the ascending chain condition (acc) on all inner ideals, 
(c )  A satisfies the dcc on all left ideals, 
( d )  A satisfies the acc on all left ideals, 
(e )  A satisfies the dcc on all right ideals, 
( f )  A satisfies the acc on all right ideals, 
(g )  both vector spaces X and Y are finite dimensional, and hence A is  

isomorphic to  (Mat,,,(A), Mat, ,,(A)) for some positive integers 
n and m. 

Proof. (i) Note first that V' @'W is an inner ideal o f  A for any V' and W 
subspaces o f  X' and Y respectively. Conversely, let I be an inner ideal of A 
contained in A+ = F ( X ,  Y ) .  As in 114, Theorem 31, we have that the sets 

~ - 

X I  = {xu  : x E X ,  a E I )  and I#Y' = {a#yl : y' E Y',  a E I }  

are subspaces o f  Y and X' respectively, and I = I#Y1 @ X I .  The assertions 
concerning left  and right ideals can be proved similarly. 
(ii) can be shown a-s (17) of (141. 
(iii) Let I = I#Yr @ X I  be an inner ideal of A contained in  A+. W e  will 
show ann ( I )  =   XI)^ @ ( I #Y1 ) ' - ,  where as usual, v''- is the orthogonal 
of the subspace V' of  X' relative to the dual pair ( X , X r ) ,  and WL is the 
orthogonal o f  the subspace W of Y relative to (Y, Y'): Since J = ann( I )  is 
an inner ideal o f  A, we have by the dual of (i) that ann ( I )  = J # X 1  @ Y J.  W e  
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claim that J#X' C (XI)'- and Y J  C (I#Y1)I. Without loss of generality, 
we may assume that I is nonzero. Then 

 XI)^ 8 (FYI)'-)IA- =    XI)^ 8 ( P Y ' ) ~ ) ( I # Y '  @ XI)(Y' @ x )  

=   XI)^@ < ( P Y ' ) ~ ,  I#Y' >< X I ,  Y' > X = 0 

implies ( X I ) I  @ (I#Y1)l  C lan(1) by Lemma 2.1. Analogously, 

A-I((xI)'- (Pyl)'-) = o 

implies ( X I ) I  @ (I#Y1)'- C ran(I). On the other hand, 

implies Y J c (I#Y')I since I is nonzero. Similarly, J#X' c (XI)'-. 
The corresponding results for left and right ideals are easier. 

(iv) follows from (iii), using the fact that any bite dimensional subspace 
coincides with its double orthogonal. 

Suppose now that Il = I ~ Y ' @ X I ~  and I2 = I$Y' @XI2 are inner ideals 
of A contained in A+. It is obvious, using (i), that I1 c 12, Il # I2 if and only 
if I ~ Y '  c I~#Y', XIl C XI2 and either I ~ Y '  # I~#Y' or X 4  # XIz. Hence 
A satisfies the dcc (equivalently, acc) on all inner ideals if and only if both 
vector spaces X and Y are finite dimensional. This proves the equivalences 
(a)w(b)*(g). Similarly, by using the geometrical represent ation given in 
(i) of left (right) ideals of A contained in A+, and of left (right) ideals of A 
contained in A-, we obtain the xcmaining equivalences. 

For a semiprime associative pair A the socle Soc(A) = (Soc(A)+, Soc(A)-) 
ii-by definition the socle of AJ, i.e., Soc(A)" is the sum of all minimal inner 
ideals of Am, u = &. By [9, Theorem 11 Soc(A) is a direct sum of simple ideals 
of A each of which contains a minimal inner ideal. It follows from [25] that a 
semiprime associative pair A coincides with its socle if and only if it satisfies 
the dcc on principal inner ideals. Moreover, Soc(A) is a von Neumann regular 
ideal. If A is a semiprime associative algebra, then Soc(A)+ = Soc(A)- 
coincides with the usuai associative socie of A (see [ lOj ) .  

Let A = @Mi be a semiprime associative pair coinciding with its socle, 
where the Mi are its simple components. By using the von Neumann reg- 
ularity of A, it is easy to see that any inner (left, right) ideal K of A is a 
direct sum IC = @Xi of inner (left, right) ideals K; of the M,. Moreover, if 
K is principal then only finitely many K; are nonzero. 

The above results yield the following theorem we include for completeness. 
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Theorem 2.5. Let Q be a semiprime associative pair satisfying the dcc on 
principal inner ideals (equivalently coinciding with its socle). Then 

(1) Q satisfies the following chain conditions: 

(i) the dcc on principal left ideals, 
(ii) the dcc on principal left ideals, 

(iii) the acc on ann(x), lan(x), and ran(x) for x E A" (a = f). 

(2) Q is a direct sum of simple ideals each of which is isomorphic to an 
associative pair (F(X, Y), F(Y, X)) defined by two dual pairs of vector spaces 
over a division Q-algebra A. 

(3) The following conditions are equivalent for Q 
(i) Q satisfies the dcc on all inner ideals, 

(ii) Q satisfies the dcc on all left ideals, 
(iii) Q satisfies the dcc on all right ideals, 
(iv) Q satisfies the acc on all inner ideals. 
(v) Q satisfies the acc on all left ideals, 

(vi) Q satisfies the acc on all right ideals. 

Moreover, any of the conditions of (3) is equivalent to 
(4) Q is a direct sum of finitely many simple ideals each of which is iso- 

morphic to (Mat,,,(A), Mat,,,(A)) where A is a division @-algebra and 
m, n are positive integers. 

Associative pairs satisfying conditions (i)-(6) of (3) are called artinian. 

Proposition 2.6. Let Q be a semiprime associative pair with dcc on princi- 
pal inner ideals (equivalently, coinciding with its socle). If Q is not artinian 
then Q has infinite both left and right Goldie dimension. 

Sroof. If Q is not artinian then Q contains infinitely many simple ideals or 
Q contains a simple ideal M which is not artinian. In the first case it is 
clear that Q has idk i t e  direct ,sums of left ideals and of right ideals. In the 
second case, by Proposition 2.4, M = (F(X, Y ) ,  3(Y, X)) where some of the 
vector spaces X or Y is infinite dimensional. Hence, by Proposition 2.4(i) 
and (ii), we can construct an infinite direct sum of left (right) ideals of M, 
and therefore of A as well. 

53. T h e  singular ideal of a semiprime associative pair. The notion 
of nonsingularity proved particularly useful in the general theory of quotient 
rings initiated by Y. Utumi in 1956. Here we show the existence of a singu- 
lar ideal in any semiprime associative pair A and study its properties. Set 
ZI(AU) = {z E A" : lan(z) is an essential left ideal of A). 

Theorem 3.1. For a semiprime associative pair A, (ZI(A+), &(A-)) is an 
ideal of A called the left singular ideal of A and denoted by Zl(A). 

Proof. It is easy to see that Zl(A+) is a right ideal. Now let z E Z1(Af), 
x E A+, and y E A-. We must show that lan(xyz) is an essential left 
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ideal. Let L be a nonzero left ideal of A contained in A-. If Lxy = 0 
then A+Lxyz = 0 and hence L C lan(xyz) by Lemma 2.1. If Lxy # 0 
then Lxy f l  lan(z)  # 0. Taking 0 # lxy E lan(z), with 1 E L,  we have 
0 # 1 E lan(xyz)  n L .  We have shown xyz E Zl(A+). Therefore Z1(A+) is a 
two-sided ideal. Similarly Zl(A-) is a two-sided ideal. It remains to prove 
that the pair (Zl(A+),  Zl(A-))  is invariant under middle multiplications. Let 
z E Z l ( A f )  and yl, y2 E A-, and take a nonzero left ideal L of A contained 
in A+. If AdLyl  = 0 then, by Lemma 2.1, L lan(yl) c lan(ylzy2). I f  
A-lyl # 0 for some 1 E L,  then A-lyl n lan(z) # 0. Take 0 # alyl E lan(z) ,  
where a E A-. By semiprimeness of A,  there exists b E A+ such that 
bal # 0, but alyl E lan(z) implies bal E lan(y1zyz) f l  L. In both cases 
Lf l lan(y l zy2)  # 0, so lan(ylzy2) is essential, which completes the proof. [3 

A semiprime associative pair A = (A', A-)  will be called left nonsingular 
if its left singular ideal Zl(A) = 0. Right nonsingular pairs are defined 
similarly, while nonsingular means that A is both left and right nonsingular. 

Proposition 3.2. Let I be an ideal of a semiprime associative pair A. Then 
Zl ( A )  n I = Zl ( I ) .  

Proof. We may assume I # 0. Let z E Zl(A)+ f l  I+. For any nonzero left 
ideal L of I contained in I-,  I-I+L is a left ideal of A contained in L c I -  
which is nonzero by semiprimeness of A (otherwise (LA+L)A+(LA+L) = 
L(A+LAf LA+)L C I-I+L = 0 + LA+L = 0 =S L = 0). So, by Lemma 2.3, 
0 # lanA(z)  f l  I-I+L c lanl(z) n L, which implies z E Z,(I)+. Conversely, 
let z E ZI ( I )+  and 0 # a E A-. We will show that A+ A-a f l  lanA(z) # 0 ,  
which obviously implies that any nonzero left ideal of A contained in A+ 
hits ZanA(z). If a E l a n ~ ( z )  we have finished. Suppose then a 6 lanA(z). 
By Lemma 2.1 A+az # 0. Hence by semiprimeness of A, 0 # azA-A+a c 
I-A+a which is a left ideal of J. Since z E Zl(I)+, we have 0 # I-A+a f l  

ZanI(z) c A-A+a n lanA(z) by Lemma 2.3, which completes the proof. 

' -  An ideal I = (I+,  I - )  of an associative pair Ais called essential if I f l  J # 0 
for any nonzero ideal J of A. If A is semiprime, we have by Proposition 2.2 
that I is an essential ideal if and only if I+ and I -  are essential left ideals. 

Corollary 3.3. Let A be a semiprime associative pair and I an essential 
ideal of A. Then A is left nonsingular if and only if I is left nonsingular. 

Prccf. E!y Propoaitioil3.2, ZI(lj # 6 implies Zl(rlj j O. Assume, converseiy, 
that I is left nonsingular. Now Zl(A) n I = 0 implies Zl(A)  = 0 since I is an 
essential ideal of A. 

Proposition 3.4. Let A be a semiprime associativepair.and let 0 # a E A+ 
be von Neumann regular. Then a is not in Zl(A)+. 

Proof. Suppose, on the contrary, that a E Zl(A)+ and let b E A- be such 
that a = aba. Thus A-ab is a nonzero left ideal of A and hence 0 # xab E 



2998 FERNANDEZ LOPEZ ET AL. 

' A-ab n lan(a) for some x E A- which leads to a contradiction since xab = 
xabab = 0 because xab E lan(a). 

Corollary 3.5. Let A be a se~nlprime associative pair whose socle is essen- 
tial. Then A is nonsingulax. 

Proof. Since Soc(A) is von Neumann regular [25, Theorem 11, Zl(Soc(V)) = 
0 by Proposition 3.4, which implies Zl(A) = 0 by Corollary 3.3. 

Proposition 3.6. Let A be a semiprime assoeative pair satisfying the acc 
on left annihilators lan(a) (a E A+). Then A is nonsingular. 

Proof. Let us first show that A is left nonsingular. Otherwise both Zl(A)+ 
and ZI(A)- are nonzero by semiprimeness of A. Then we can take a nonzero 
element x E Zl(A)+ with lan(x) maximal in the set { l ~ n ( ~ )  : 0 # y E 
Zr(A)+). Let a E A- be such that xax # 0. Then A-xu # 0 and hence 
there exists 0 # zxa E lan(x) for some z E A-, which implies by Lemma 
2.1 that z E lan(xax), with z $ lan(x), which contradicts the maximality of 
lan(x). 

Suppose now &(A)+ # 0 and take 0 # x E &(A)+ with lan(x) maximal 
in the set {lan(y) : 0 # y E &(A)+}. By semiprimeness of A, there exist 
a, b E A- such that xaxbxax # 0. Hence axA- is a nonzero right ideal and 
axA- n ran(x) # 0. Let 0 # axz E ran(x) with z E A- and take c E A+ 
such that axzcaxz # 0. Then bxaxzcA- = 0 implies (by Lemma 2.1 again) 
bxa E lan(xzc) = lan(x) since lan(x) is maximal, which is a contradiction 
because xax bxax # 0. 

54. T h e  s tandard  imbedding of an  associative pair. Let A be a uni- 
tal associative algebra. Consider the Peirce decomposition A = All $ Alz $ 

Azl $Az2 of A with respect to an idempotent e, and denote by n;j : A t Aij 
the corresponding Peirce projections (see [24, p.921). For any set X c A we 
put Xij := rij(X). Then (Al2,-dz1) is an associative pair with the usual as- 
sociative triple product. Conversely, every associative pair A = (A+, A-) can 
be obtained in this way (see [27, (2.3)]), i.e., there exists a unital associative 
algebra A with an idempotent e such that A is isomorphic to the associative 
pair (Alz, AZ1) defined above, where A11 ($122 respectively) is spanned by 
e and all products ~ 1 2 ~ 2 1  (1 - e and all products yzlxlz respectively) for 
2 1 2  E Alz, y21 E A z ~ ,  and has the property that 

xl1d12 = A21x11 = 0 implies xll = 0, and 
(5) 

x22A21 = A12x22 = 0 implies 2 2 2  = 0. 

The pair (A, e) is called the standard imbedding of A. If A is semiprime then 
(5) is equivalent to 

xllAlz = 0 implies xll = 0, and 
(6) xzzA21 = 0 implies 2 2 2  = 0, 
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' or to 

Azlxll = 0 implies xll = 0, and 
(7) A1Zx22 = 0 implies xz2 = 0. 

Proposition 4.1. Let A = (A+, A-) be an associative pair with standard 
imbedding (A, e). 

(i) I f 1  is a nonzero ideal of A, then (Z12,Tzl) = ( Z n  A+,Zfl A-) is a 
nonzero ideal of A. 

(ii) Let L be a left ideal of A contained in A+. Then L := L $ AZ1 L is a 
left ideal of A. Moreover, L = 0 if and only if L = 0, and for L1 and 
L2 left ideals of A contained in A+, L1 is strictly contained in L2 if 
and only ifL1 is strictly contained in L2. 

Suppose now that A is semiprime. 

(iii) I fL  is a left ideal of A then LIZ and Lzl are left ideals of A. Moreover, 
L = O  ifandonlyifL12 = O  andLZ1 =O. 

(iv) Let L be a nonzero left ideal of A contained in Alz $ Az2. Then 
LIZ = L fl Alz is a nonzero left ideal of A. 

(v) Let L and M be left ideals of A contained in A+, and let L and M 
be the corresponding left ideals of A. Then L n M = 0 if and only if 
L n M = O .  

Proof. (i) First we note that Z n A+ = Z fl A12 = Z12 since Z is an ideal 
of A, and similarly Z fl A- = Zzl . If Z12 = ZZ1 = 0 then for any x E Z, 
x = ~ 1 1  + 222; but A z l ~ l l  = Azlx C Z fl A21 = Zzl = 0, and x ~ ~ A ~ ~  = 
xA12 c Z n A12 = Z12 = 0. Hence 211 = 0 by ( 5 ) ,  and similarly xZ2 = 0. 
(ii) Clearly, if L is a left ideal of A contained in A+ then L := L $ dzl L is 
the left ideal of A generated by L. 

Suppose now that A is semiprime. 
(iii) Let L be an ideal of A. It i'k'easy to see that LIZ and Czl are left ideals 
of A. Indeed, 

Now, if LIZ = L21 = 0 then, for any x E L, x = XII  + 222; but Azlxll = 
Aplx c L n A21 C 1321 = 0. Hence xll = 0 by (7), and similarly x22 = 0. 
(iv) Let L be a nonzero left ideal of A contained in Alz $ AZ2. Clearly 
LZ1 = 0 and hence LIZ # 0 by (i). Moreover, LIZ = eL c L n A12 c L12, 
which impiies L12 = L n .Al2. 
(v) Clearly, L fl M > (L n M)  @ A21(L n M) for L and M left ideals of A 
contained in A+. Hence, 13 n M = 0 implies L fl M = 0. Suppose now that 
L fl M = 0, and take a12 + a22 E L n M. By the Peirce decomposition, 
a12 E Lfl M = 0 and a22 E AzlLnd21M. Hence A12az2 E L n  M = 0. Thus 
a22 = 0 by (7), and L n M = 0, as required. 
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Proposi t ion 4.2. Let A = (A+,A-) be an associative pair with standard 
imbedding (A, e). Then A is semiprime (respectively prime) if and only if A 
is sermprime (respectively prime). 

Proof. It is easy to see that if A is semiprime then A is Dondegenerate. If 
x12A21x12 = 0 then, by the Peirce relations, xI2Axl2 = 212A21~12 = 0, 
which implies 2 1 2  = 0 by semiprimeness of A. Similarly, x21A12~21 = 0 
implies 2 2 1  = 0. Conversely, suppose that A is semiprime. Let Z be an ideal 
of A such that P = 0. Then (Z n A+,Z n A-3. is an ideal of A satisfying 
( Z n  Af ) (Zn  AF)(Z n A*) c 2 = 0. Hence ( Z n  A+,Zn A-) = 0 by 
semiprimeness of A, which implies Z = 0 by Proposition 4.1. 

Let A be prime. As in the first part of the proof, if zlzAzl y12 = 0 then 
x12Ay12 = x12A21y12 = 0, which implies xl2 = 0 or ylz = 0 by primeness of 
A and similarly x21A12~21 = 0 implies x21 = 0 or yzl = 0, showing that A is 
prime. 

Finally, suppose that A is prime. Let Z and 3 be ideals of A such that 
Z 3  = 0. Then ( Z n  A+ ,Zn  A-) and ( J  n A+,J n A-) are ideals of A 
satisfying (Z n A*)A?(Z n A*) c 23 = 0. Hence ( Z n  A+,Z n A-) = 0 or 
( 3  n A+, 3 n A-) = 0 by primeness of A, which impliesZ = 0 or 3 = 0 by 
Proposition 4.1. 

Proposition 4.3. Let A = (A+, A-) be a semiprime associative pair with 
standard imbedding (A, e). An element a E A+ has left Goldie dimension 
equal to n in A if and only if a has left Goldie dimension equal to n in A. 

Proof. Let {Li) be a direct sum of nonzero left ideals of A contained in 
Aa. Then each .Ci is contained in d l 2  $ d 2 2 ,  and hence by Proposition 
4.l(iv), L' n Alz is nonzero and it is contained in Aa n Alz = Alla = 
@a + A+A-a. By semiprimeness of A, 0 # A12A21(Ci fl Alz) C A-A+a, 
and, since d12A21(Li n Alz) C .Ci, {A12A21(Li n Alz)) is a direct sum of 
left ideals of A. Conversely, w6'must show that any direct sum of nonzero 
left ideals of A contained in A+A-a gives rise to a direct sum of left ideals 
of' A contained in Aa; but this follows from Proposition 4.l(ii) and (v). 

Proposi t ion 4.4. Let A =.(A+, A-) be a semiprime associative pair with 
standard imbedding (A, e). For every subset X C AS, l a n ~ ( X )  = lanA(X)n 
A-. 

Proof. Clearly, l a n ~ ( X )  n A- C l a n ~ ( X ) .  Conversely, let 221 E lanA(X). 
m r  
1 nen 

z ~ ~ X A Z ~ ~ X  c z ~ ~ X A ~ ~ X  = zZIXA-X = 0 

implies zzlX = 0 by semiprimeness of A (Proposition 4.2). 

As usual (see [20, p.311). denote by Zl(A) the left singular ideal of an 
associative algebra A, i.e., 

Zl(A) = {z E A : lan(z) is an essentialleft -ideal of A). 
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Singular ideals are compatible with standard imbeddings in the following 
sense. 

Proposition 4.5. Let A = (A+, A-) be a semiprime associative pair with 
standard imbedding (A, e). Then Zr(A) n A' C z~(A)*. Hence, if A is left 
nonsingular, then A is left nonsingular. 

Proof. Let zzl E Zj(A) n A-, and L be a nonzero left ideal of A contained in 
A+. By Proposition 4.l(ii) the left ideal of A generated by L, C = L$Az1L, 
is contained in.A12 $ A22. Then L: n land(zz1) is a nonzero left ideal of A 
contained in A12 $ d 2 2 .  Hence by Proposition 4.l(iv), L n land(zzl) n A12 
is a nonzero left ideal of A equal to L.n lanA(zzl) by Proposition 4.4. We 
have shown ZI  (A) n A- C Z[(A)-. Similarly Zj(A) n A+ c Zl(A)+. 

Suppose now that A is left nonsingular. Then Zj(A)' = 0 implies Zi(A) n 
A* = 0 and hence Zj(A) = 0 by Proposition 4.l(i). O 

Now we compute the standard imbedding of a simple associative pa i~  
coinciding with its socle. 

Proposition 4.6. Let A = (F(X, Y), 3(Y, X)) be a simple associative pair 
with minimal inner ideals, where (X, X') and (Y, Y') are two dual pairs of 
vector spaces over a division associative @-algebra A. Then the standard 
imbedding (A, e) of A is given by A = F(V,V) + @Idv relative to a dud  
pair of vector spaces (V, V'), where 

and e is the ~rojection of V onto X, i.e., (a + y)e = x. In particular, 
if A is artinian then A = 3(V,V) = Enda(V) E Mat,,,(A) with n = 
dimax + dimAY. -. 
Proof, I t  follows from the construction of the standard imbedding (see 1271) 
&id from the fact that 3(X, Y)F(Y, X)  = F(X, X) and F(Y, x)?(x, Y) - 
( Y  Y). 

Proposition 4.7. Let A = (A+, A-) be a semiprime associative pair with 
standard imbedding (A, e). Then 

(i) Soc(A)" = Soc(A) n A", (u = k), and 
jiij A is artinian if and ody if A is artinian. 

Proof. (i) B y  Proposition 4.2, A is semiprime. Now let a12 E Alz = A+. 
Clearly xlzAxlz = xlzA-xlz. Hence the minimal inner ideals of A contained 
in A+ are precisely the minimal inner ideals of A contained in d l2 ,  which 
implies, via the Jordan characterization of the associative socle [lo, Prop. 
2.6(i)] that Soc(A)+ = Soc(A) n A+, and the S ~ I W  is true for Soc(A)-. 
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' (ii) If A is artinian then it is a direct sum of finitely many ideals Mi each of 
which is a simple artinian associative pair. It is easy to see that the standard 
imbedding (A, e) is the direct sum of the standard imbeddings (Mi ,  e;) of 
the Mi. Hence A is artinian by Proposition 4.6. Conversely, if A is artinian 
then A is artinian by Proposition 4.l(ii). 

$5.  T h e  local algebras of a n  associative pair. Let A be an associative 
pair and let b E A-. Then the submodule bA+b under the multiplication 
given by (bxb) - (byb) := bxbyb is an associative algebra called the local algebra 
of A at b, and denoted Ab. Note that if b is von Neumarm regular then Ab is 
unital with b as a unit element. 

Local algebras, which were introduced by K. Meyberg [29] and which play 
an important role in the current structure theory of Jordan systems [2,5, 6, 7, 
281, are usually presented in a different way [5,0.4]. Recall that A+, endowed 
with the b-homotope product x -(b )  y = xby, becomes an associative algebra 
A&) which has as an ideal the set Ker(Ub) := {x E A+ : bxb = 0). Moreover, 

the mapping x + ICer(Ub) -t bxb is an isomorphism from A & ) / K ~ T ( u ~ )  onto 
our local algebra Ab (see [2, Example 1.61). 

However, our defbition is more suitable for our purposes than the usual 
one, for instance, if A is a subpair of an associative pair Q and b is in A-, then 
the local algebra Ab is a subalgebra of Qa with our definition. We will also 
need an extension of the notion of local algebra which we define as follows. 

Let A be a subpair of an associative pair Q and let b E Q- be such 
that A+ is a subalgebra of the homotope Qfb). Then bA+b can be regarded 
as a subalgebra of the local algebra Qb of Q at b which will be called the 
generalized local algebra of A at b, and will also be denoted by Ab. If b is 
actually in A-, then the defbition of generalized local algebra agrees, of 
course, with that given above. 

Sometimes we will consider fdcal algebras of associative algebras. This is 
nothing new since, as pointed out above, every associative algebra gives rise 
to an associative pair. With this in mind we state the following generalized 
transitivity of local algebras. 

Lemma 5.1. Let A be a subpair of an associative pair Q. 

(i) If b E A- and x E A- n bQ+b, then bA+b is a subalgebra of the x- 
homotope (Qb)(%) of the local algebra of Q at  b, and the generalized 
iocd dgebra (Abj, of Ab coincides with A,. 

(ii) If q E Q- is such that A- is a subalgebra of the q-homotope Q(q) 
then, for each y E Aq, A- is a subalgebra of the y-homotope Q(,,, 
and the generalized local algebra A, of A at y agrees with the local 
algebra (Aq), of the generalized local algebra Aq. 

Proof. Straightforward., 
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Some of the results stated in the next proposition were previously proved 
for Jordan pairs [2, 6, 71. Nevertheless, they are included here for the sake 
of completeness. 

Proposition 5.2. Let A be a semiprime associative pair. Then 

(i) All the local algebras of A are semiprime. 
(ii) A is prime if and only all the local algebras of A at nonzero elements 

are prime. 
(iii) If A is simple then dl the local algebras of A at nonzero elements are 

simple. 
(iv) b E A- has left Goldie dimension equal to m in A if and only if Ab 

has left Goldie dimension equal to m. 
(v) Soc(Ab) = Soc(A)- n bA+b. Hence A coincides with its socle if and 

only if Ab is artinian for each b E A-. 
(vi) If A coincides with its socle, then A has finite both left and right 

locd Goldie dimension. 

Proof. (i) We just need to prove that Ab is semiprime for any nonzero b E A-. 
Now 0 = bab . Ab . bab = babA+bab implies bab = 0 by semiprimeness of A. 
(ii) If A is prime, we have as in (i), that 0 = bab . Ab . bcb = babA+bcb 
implies bab = 0 or bcb = 0. Suppose conversely that Ab is prime for each 
0 # b E A-, and let I = (I+, I-) and J = ( J+ ,  J-) be ideals of A such that 

Ju = 0. Then b I + b  and b J S b  are ideals of Ab such that b I + b  - b J + b  = 
bI+bJ+b = 0. Hence, by primeness of Ab, b I + b  = 0 or b J + b  = 0, equivalently 
b E ann(I+) or b E ann(J+) by Proposition 2.2(ii) since A is semiprime, 
which implies A- = ann(I+) U ann(J+) and therefore A- is equal to one of 
them, say ann(If ). In this case I+ = 0 by Proposition 2.2(iii), hence I = 0 
by semiprimeness of A. 
(iii) If A is simple and 0 # E .E A-, then Ab is simple. Indeed, given 
0 # bxb E Ab we have, by simplicity of A, that A+ = A+bxbA+, and hence 
Aj = bA+b= A b .  b ~ b .  Ab. 
(iv) Let L be a nonzero left ideal of A contained in A-A+b. By semiprimeness 
of A, we have that bA+L is a nonzero left ideal of Ab contained in L. Hence 
every direct sum of n nonzero left ideals of A contained in A-A+b provides 
a direct sum of n nonzero left ideals of Ab. 

Conversely, let {L;}lsiln be a direct sum of nonzero left ideals of Ab. For 
each 1 < i < n take a nonzero element yi E Li. Then (-A-P_+yi)15ii, is 
a direct sum of nonzero left ideals of A contained in A-A+b. Indeed, each 
A-A+y; is nonzero by semiprimeness of A, and if XI + . . . + x, = 0 with 
xi E A-A+y; and, say X I  # 0, then by semiprimeness again, 



which is a contradiction. 
(v) Since the inner ideals of Ab are precisely those inner ideals of A contained 
in bA+ b, Soc(Ab) = Soc(A)- fl bA+ b. Now it follows by [26, Prop.3(2)] that 
if b E Soc(A)- then b has finite rank and it is von Neumann regular. Hence 
Ab is artinian with capacity equal to the rank of b (see Corollary 1 of [26]). 
Conversely, if Ab is artinian then Ab has bounded length for the chains of 
inner ideals, i.e, there is a bound for the lengths of chains of inner ideals 
of AJ contained in bA+b, hence for chains of principal inner ideals xA+x, 
with x in the inner ideal of generated by b:.Thus b E Soc(A)- by [26, 
Prop.3(2)] again. 
(vi) By (v), any local algebra of A is artinian and hence it has finite both left 
and right Goldie dimension. Then, by (iv), A has finite both left and right 
local Goldie dimension. 

Proposi t ion 5.3. Let A be a semiprime associative pair, and b E A-. Then 

(i) Zr(Ab) C Zr(A-), 
(ii) if b E Zl(A-) then Zl(Ab) = Ab. 

Hence A is left nonsingular if and only if Ab is left nonsingular for all b E A- , 

Proof. (i) Let bab E Zl(Ab) and L be a nonzero left ideal of A contained 
in A+. We may consider two possibilities: If A-Lb = 0 then, by Lemma 
2.1, L C lanA(b) C lan~(bab), so L fl lan~(bab) # 0. On the other hand, 
if A-Lb # 0 then, by semiprimeness of A, 0 # bA+A-Lb C bLb where bLb 
is actually a left ideal of Ab. Since bab E Zl(Ab), there exists 0 # blb E 
lanAb(bab) with I E L, equivalently, blb # 0 with blbab = blb. bab = 0. Hence, 
by semiprimeness of A, A+bl # 0 with A-A+blbab = 0, which implies by 
Lemma 2.1 again that A+bl C lan~(bab) fl L. In any case lan~(bab) hits L, 
hence lanA(bab) is an essential left ideal of A and bab E ,%',(A-), as required. 
(ii) Suppose now that b E Zl(A-). We must prove that lanA,(bab) is an 
essential left ideal of Ab for any-3ab E Ab. We may assume bab # 0. Let 0 # 
bcb E Ab. Since Ab is semiprime (Proposition 5.2(i)), the left ideal Ab - bcb of 
& generated by bcb is nonzero. If bcb E lanAb(bab) then Ab.bcb C lanA,(bab). 
Thus we may assume bcb $ Zan~,(bab). Then bcbab = bcb . bab # 0 implies 
A+bcba # 0. Since b E Zl(A-), there exists 0 # xbcba E A+bcba n lanA(b). 
Hence, by semiprimeness of A, 0 # baAVxbcb = baA-xb - bcb c Ab . bcb n 
lanAb(bab) since bad-xbcb . bab = bad-xbcbab = 0. We have shown that 
IanAb (bab) is an essential left ideal of Ab, for any bab E Ab, i.e., Zl(As) = As. 

For the last part of the proof, if Zl(A-) = 0 then, by (i), Zr(Ab) = 0 for 
every b E Ad. Conversely, suppose that Zl(Ab) = 0 for every b E A-. Then, 
by (ii), b E Zl(A-) implies Ab = Zl(Ab) = 0, so bA+b = 0, and hence b = 0 
by semiprimeness of A. Since (Zl(A+), Zl(A-)) is an ideal of A, &(A-) = 0 
implies Zl(A+) = 0 by semiprimeness of A. 

Every semiprime associative pair A which is leftponsingular and such that 
every element x E An, u = f has finite left GoldFe dimension will be called 
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a left local Goldie associative pair. If additionally A has finite left (global) 
Goldie dimension then A will be called a left Goldie associative pair. Right 
and two-sided corresponding notions are defined dually. It follows from [25, 
Cor.l], Proposition 5.2(vi) and Corollary 3.5 that semiprime associative pairs 
with dcc on principal inner ideals are local Goldie. 

Proposition 5.4. A semiprime associative pair A is a left local Goldie as- 
sociative pair if and only if Ab is a left Goldie associative algebra for every 
~ E A * .  

Proof. It follows from Proposition 5.2(iv) and Proposition 5.3. 

Corollary 5.5. Every left local Goldie associative pair A having finite right 
local Goldie dimension is local Goldie. 

Proof. By Proposition 5.4 all the local algebras of A are left Goldie. Since 
they have also finiti: right Goldie dimension by Proposition 5.2(iv), they are 
also right Goldie [21, Lemma 7.2.21. Hence A is local Goldie by the dual of 
Proposition 5.4. 

$6. Local Goldie associative pairs. The study of semiprime local Goldie 
associative pairs can be reduced to the prime case via the notions of uniform 
ideal and essential subdirect product. We refer to the reader to [20,13] were 
similar notions were considered for associative and Jordan algebras respec- 
tively. 

A nonzero ideal I of an associative pair A will be called uniform if for any 
nonzero ideals B and C of A inside I ,  B n C # 0. 

Proposition 6.1. Let A be a semiprime associative pair. Then every l- 
uniform element u € A+ generates a uniform ideal. 

Proof. Let I = I(u) be the ideal of A generated by U, and let B and C be 
nonzero ideals of A contained in I .  Then both left ideals A + B - ~  and A+C-u 
are nonzero. Otherwise A+B-u = 0 would imply u E ran(B-) = ann(B-). 
Hence B+ c I+ c ann(B-) since ann(B) is an ideal of A by Proposition 
2.2(iv), which is a contradiction by semiprimeness of A, using Proposition 
2.2(iii). Then, by 1-uniformity of u, 0 # A+B-u n A+C-u c B+ n C+. 
Therefore I is uniform. 

As pointed out before, the lattice C(A) of all ideals of an associative pair 
A is an algebraic lattice relative to the +product. Hence, as a particular case 
of [IS, Prop. 3.11, using that C(A) is a modular,lattice, we obtain: 

Proposition 6.2. Let A be a semiprime associative pair. Then 

(i) a nonzero ideal I = (I+, I-) of A is uniform if and only if the mnihila- 
tor ideal ann(I) is maximal among all annihilators ideals ann(B) with 



B = (B+, B-) being a nonzero ideal of A, equivalently, A/ann(I) is 
a prime associative pair, 

(ii) for each uniform ideal I = (I+, I-) of A there exists a unique max- 
imal uniform ideal U = (U+, U-) of A containing I ,  actually U = 
(ann(ann(I+)), ann(ann(1-))), 

(iii) the sum of all maximal uniform ideals of A'is direct. . 

A subdirect product of associative pairs A < n A, will be called an 
essential subdirect product if A contains an essential ideal of the full product n A,. If A is actually contained in the direct sum of the A,, then A will be 
called an essential subdirect sum. An ideal I of a semiprime associative A is 
called a closed ideal if I = ann(ann(1)). Since the third annihilator coincides 
with the &st one, an ideal is closed if and only if it is the annihilator of an 
ideal. Notice that by Proposition 6.2(ii) maximal uniform ideals are closed. 

Theorem 6.3. For an associative pair A the following conditions are equiv- 
alent: 

(i) A is an essential subdirect product of prime associative pairs A,, 
(ii) A is semiprime and every nonzero ideal of A contains a uniform ideal, 

(iii) A is semiprime and every nonzero closed ideal of A contains a uniform 
ideal. 

Actually we can take A, = A/ann(M,) where {M,) is the family of all 
maximal uniform ideals of A. 

Proof. (i) + (ii). In general, any subdirect product A of a family {A,) of 
semiprime associative pairs is also semiprime. Indeed, if B is an ideal of A 
such that B * B = 0 then, for each index a ,  n,(B) is an ideal of A, with 
.ir,(B) *n,(B) = 0 which implies a,(B) = 0 by semiprimeness of the A,, so 
B = 0. Let M c A be an essential ideal of the full direct product n A,, and 
set M, := M n A,, where we are regarding A, as an ideal of n A,. Then 
M, is a nonzero ideal of A, contained in A since M is an essential ideal 
of nA,.  Actually M, is a uniform ideal of A since Ma is uniform in A, 
because A, is prime, and any ideal of A contained in M, is an ideal of A,. 
Now if I is a nonzero ideal of A then x,(I) is a nonzero ideal of A, for some 
index a. Hence, by primeness of A,, 0 # T,(I) * M, C I n  Ma. Therefore I 
contains the nonzero ideal I n  M,, which is uniform since it is contained in 
A[,. 
(ii) + (iii) is trivial. 
(iii) + (i). Let C M, be the sum of all maximal uniform ideals of A, which 
is direct by Proposition 6.2(iii). Since a n n ( x  M,) is a closed ideal, it must 
be zero: otherwise ann(C Ma) would contain a uniform ideal, and therefore 
a maximal uniform ideal because it is closed, which leads to contradiction. 
Hence, by a standard argument, nann(M,) = a n n ( C  M,) = 0 implies that 
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A is a subdirect product of the associative pairs A, := A/ann(M,) each 
of which is prime by Proposition.6.2(i). Finally, the homomorphic image of 
@Ma in A, is an essential ideal of n A, since if B is an ideal of n A, 
such that 

B * (@M,) = $(B *Ma) = $(n,(B) *Ma) = 0 

then, for each (2, n,(B) * M, = 0, so n,(B) = 0 by primeness of A,, and 
hence B = 0, which completes the proof. 

Lemma 6.4. Let A be a semiprime associative paii- and I an ideal of A. 
Denote by 2 the quotient pair A/ann(I) = (A+/ann(I-),A-/ann(l+)). 
We have 

(i) any direct sum of nonzero left ideals of 2 can be Lifted to a direct 
sum of nonzero left ideals of A. Hence if A has finite left Goldie 
dimension, then has also finite left Goldie dimension, 

(ii) i f a  E A+ has & i t e  left Goldie dimension in A, then -d := a + ann(I) 
has finite left Goldie dimension in x, 

(iii) i f  A is left nonsingdar and I is a uniform ideal, then 2 is a prime 
left nonsingular associative pair. 

Proof. (i) Let CZ, be a direct sum of nonzero left ideals of contained in 

p. Denoting by n : A --+ 2 the canonical projection of A onto 2, we have 
that L, := x- l (Z , )  n I+ is a nonzero left ideal of A, contained in A+, for 
each index a. Let us now show that the sum L, is direct. Indeed, since the 
sum of the 1, is direct, for each index ,B, the intersection L,g n L,) 
is contained in ann(1-), but this intersection is also contained in I+, so 
LB n (C,,, L,) = 0 by Proposition 2.2(iii), as required. 

(ii) Let C 1, be a direct sum of nonzero left ideals of inside the principal 
-+-- 1e;ft ideal A A a. By taking L, := x-l(T,) n A+A-an I+, we can obtain as 

above a direct sum C L, of nonzero left ideals of A, contained in nA+A-a. 
(iii) Assume now that A is left nonsingular and I is uniform. By Proposition 
6.2(i), 2 is a prime associative pair. Since A is left nonsingular, I is also 
left nonsingular, using Proposition 3.2. But I can be regarded as an ideal 
of 2 via the isomorphism x H x -t ann(IF), for x E I*, and moreover, I is - - 
psgpy(tid i~n -4 sbce -4 is prize. Hence, CcroUzy 3.3 zppEes, sh~n-kg th& 
A is left nonsingular. 

Theorem 6.5. Let A be a semiprime left local Goldie associative pair. Then 
A is an essential subdirect sum of prime left local Goldie associative pairs. 
More precisely, 

@Ma a A i @A/ann(M,), 

where M, ranges over all maximal uniform ideals of A. 



Lf A is actually left Goldie then A is an essential su bdirect sum of finitely 
many prime left Goldie associative pairs. 

Proof. Since A has finite left local Goldie dimension, any nonzero ideal of 
A contains an I-uniform element, and hence a uniform ideal by Proposition 
6.1. Then, by Proposition 6.3, A is an essential subdirect product of prime 
associative pairs A, = A/ann(M,), with M, a maximal uniform ideal of 
A, each of which is a prime left local Goldie associative pair by Proposition 
6.4(ii)(iii). Let us see that A C $A,: Otherwise, there exists x E A* such 
that x $ ann(M,) for an infinite number of a's. Say x $ ann(M,) for every 
(Y E A, where A is an infinite subset of indexes. Then xM,'Fx # 0 for every 
(Y E A, which implies 0 # A*M:X =: I, C M,, where I, is a left ideal of 
A contained in A * A ~ X ,  for every a E A, and the sum I, is direct. 
This implies that x has infinite left Goldie dimension, hence A has infinite 
left local Goldie dimension, which is impossible. 

Suppose additionally that A has finite left Goldie dimension. Then it 
follows from Proposition 6.2(iii) that A contains only a finite number of 
maximal uniform ideals, arid hence A is an essential subdirect sum of a finite 
number of A,. Moreover, each A, has now .finite left Goldie dimension by 
Lemma 6.4(i). 

87. Orders in associative algebras. We record in this section some re- 
sults on orders in associative algebras which will be used later. Recall that a 
subalgebra A of a unital associative algebra & is a left order in & (relatively 
to a multiplicatively closed set S of A) if (i) S C Inv(Q), and (ii) for every 
q E &, q = s-la where s E S and a E A. Right orders and (two-sided) or- 
ders are defined similarly. In the particular case that S coincides with the set 
Reg(A) of those regular elements of A, the orders will be said classical. The 
reader is referred to [20, 21, 301 for general results on orders in associative 

-. 
algebras (rings). . - 
Lemma 7.1. Let A be an associative algebra which is a left order in a 
unital associative algebra Q relative to a multiplicatively closed set S of A 
and s E S. Then 

(i) s As is a left order in & relative to sSs, and 
(ii) the local algebra A, of A at s is a left order in the local algebra Q, 

relative to sSs. 

Proof. (i) Clearly sSs is contained in Inv(&). Now let q E Q and write 
sqs-' = r-la for some r E S and a E A. Then q = s-lr-Is-lsas = 
(srs)-Isas. 
(ii) Note that sts E sSs belongs to Inv(&,) if and only if (sts).&,.(sts) = Q,; 
but 

( s ~ s )  - Q, . ( s~s )  = S ~ S ~ S ~ S  = 8 = SQS = Q, 
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because s ,  and hence also sts are invertible in Q. Now let sqs E 8, and set 
sq = r-la for some r  E S and a  E A. Then (srs)  . (sqs) = srsqs = sas. 

There is a natural geometric notion of order in a dual pair of vector spaces 
which is compatible with the algebraic one as we next show. 

Definition 7.2. Let ( X , X 1 ,  < ., . >) be a dual pair of vector spaces over A. 
We shall say that ( N ,  N ' ,  D )  is a left (right) order in ( X ,  X ' ,  < ., . >) if 

(i) D is a left (right) order in the division associative algebra A, 
(ii) N is a left D-submodule of X such that 'DX f l  N # 0, for each 0  # 

x  E X ,  
(iii) N' is a right D-submodule of X' such that x'D n N' # 0  for each 

0  # x' E X ' ,  and 
(iv) < N , N '  >C D. 

If ( N ,  N', D )  is both left and right order in ( X , X 1 ,  < ., . >), we will say that 
( N ,  N ' ,  D )  is an order in ( X , X 1 ,  < ., . >). 

Proposition 7.3. Let ( N ,  N ' ,  D )  be a left order in the canonical dual pair 
( X ,  X ' )  d e h e d  by a finite dimensional left vector space X over a division 
associative algebra A. Then any subalgebra d of E n d & ( X )  = X' @A X 
containing N' @ D  N is a left order in Enda(X) .  

Proof. Let us first see that any a  E Reg(A) is invertible in E n d A ( X ) .  Since 
a  is invertible if and only if a is injective, we just need to show that the kernel 
of a  is zero; but ker(a) # 0 implies ker(a) n N # 0 by 7.2(ii), now taking 
0  # v  E ker(a)  n N and 0 # v' E N', we obtain (v' @ v)a = v' @ va = 0  with 
0  # v' @ v  E N' @ D  N C A, which is a contradiction. 

Let q = x i  @ yl + . . . x i  @ y, where both { x i }  c X', and i y i }  c X 
are linearly independent sets. We can write each xi @ y; = vi @ X;lwi 
for some v: E N' n x ~ D ,  wi E N n Dy;, and X i  E D. Let rn = d i m A X .  
yJIe construct a left denominat& b E N' @D N for p as follows: Complete 
{v:, . . . , v:} to a basis { v i ,  . . . , v h }  of X'.  Then there exist . . , p,) c D 
and { v l ,  . . . , v,) C N linearly independent such that, for each 1 5 i  < m, 
< v;, vf >= pi and < v;, >= 0 for j # i. Now, for each 1 5 i < r ,  we have 

v;(v: @ X;lw;) =< v;,  v: > x;lw; = a i l p i w i  

for some a i  and Ei in D, a; # 9. Tor r  < j 5 m, iet a j  = O j  = 1. By 
multiplying the elements of a basis of X' by suitable elements of Dl we 
obtain a basis of X' contained in N'.  Putting b  =: wi 8 a l v ~  + 
. . . + w; @ a , ~ ,  E N' @D N ,  we have that b  is invertible in E n d a ( X )  and 
bq=w; @ P l w l +  ... W : @ P ~ W , E N ' @ D N .  

Let A be a subalgebra of an associative algebra Q. We will say that & is 
a tight left cover of A if for each nonzero q  E Q, Aq n A # 0. Clearly, if A is 
a left order in & then Q is a tight left cover of A.. 



Proposition 7.4. Let A be a (semiprime) left Goldie algebra which is a 
subalgebra of a semiprime artinian algebra Q. If Q is a tight left cover of A 
then A is a left order in Q. 

Proof. (1) Reg(A) c Inv(Q). Indeed, let r E Reg(A). By [30, Lemma 1.10, 
p. 541, r E Inv(Q) if and only if lane(r) = 0. NOW if lang(r) # 0 then (by 
tightness of A in Q), 0 # lang(r) fl A C lana(r), which is a contradiction 
because r E Reg(A). 
(2) Given 0 # q E Q, set (A : q) := {X E A : xq E. A). We claim that (A : q) 
is an essential left ideal of A. Let C be a nonzero left ideal of A. If Cq = 0 
then C c (A : q) ,  so we may suppose Cq # 0. Then, by tightness of A in Q 
again, 0 # A13q n A C Cq fl A, so C II (A : q) # 0 which proves the claim. 
Since any essential left ideal of A contains a regular element [21, Lemma 
7.2.51, there exists r E Reg(A) such that rq E A. Hence by (1) q = r-'a for 
some a E A, which completes the proof. 

Proposition 7.5. Let A be a left order in a semiprime artinian associative 
algebra Q. Then every essential ideal Z of A is also a left order in Q. 

Proof. By the classical Goldie theorem, A is left nonsingular and has finite 
left Goldie dimension. Hence Z is also left nonsingular (see Corollary 3.3 for 
the analogous result for associative pairs) and has finite left Goldie dimension. 
Let 0 # q E Q. Since Z is essential in A, and Q is a tight left cover of A, we 
have Zq n Z > Z(Aq n A) # 0, which proves that Q is a tight left cover of 2.  
Hence by Proposition 7.4, Z is a left order in Q, as required. 

We warn the reader that it is necessary to consider (two-sided) orders in 
the next lemma. Merely left orders seem not to be enough. 

Proposition 7 .6 .  Let A be a semiprime associative algebra which is an 
order in a unital associative alg2bra Q, and let 0 # q E Q. We have 

(i) q A q n A #  0. 

Moreover, if Q is artinian then 

(ii) there exists b E A such that qQq = bQb. 

Proof. (i) Writing q = a-lb = da-I we have, by semiprimeness of A, that 
a q a ~ a q a  # U, which impiies U # qadaq = ddb C qAq n A. 
(ii) Note that by (i) Q is semiprime. Suppose now that Q is artinian. Then, 
by Proposition 5.2(i) and (v), the local algebra Qq of & at q is also semiprime 
and artinian (since inner ideals of Qq are just those inner ideals of Q contained 
in qQq) and q is its unit element (since q is von Neurnann regular in Q). Write 
q = ql + . . . + q, as a sum of orthogonal division idempotents in Qq. By 
(i), for each 1 < i 5 n there exists 0 # b; E q;Aq; n A. Since any element 
x E Q, generate the same principal inner ideal in Qq as in Q, and since 
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the q; are mutually orthogonal in Q,, we have, for b := bl + . . . + b,, that 
qQq= bQb. 

As pointed out in the introduction, there exists a notion of order in rings 
which need not have a unit. We begin with some definitions. An element 
a E A is called semiregular if 

a2x = 0 + ax = 0, and xu2 = 0 + xa = 0 

for x E A' (the unitization of A). We denote by 'semiReg(~) the set of all 
semiregular elements of A. Certainly SemiReg(A) 2 Reg(A). We remark 
that if a E a2Q n Qa2 for some over-algebra Q > A, then a E SemiReg(A). 

Let LocInu(A) denote the set of elements a E A which are locally invertible 
in the sense that there exists an idempotent e E A such that a is invertible 
in the unital algebra eAe. Then the local inverse a# E eAe is precisely the 
group inverse of a, and it is characterized by the conditions: 

The idempotent e is also unique, e = aa# = a#a. Moreover, a is locally 
invertible if and only if a E a2Aa2 (see [17]). Thus, by the above remark, if 
a E A is locally invertible in some over-algebra Q, then a is semiregular in 
A. 

A subalgebra A of a not necessarily unital associative algebra Q is said to 
be a Fountain-Goubd left (right) order in Q whenever 

(1) SemiReg(A) C Loclnu(Q), and 
(2) every element q E Q can be written in the form q = a#b (q = dc#) 

where a,  c E SemiReg(A) and b, d E A. 

Left and right Fountain-Gould ,orders will be simply called Fountain-Gould 
orders. If condition (2) done is satisfied, then A is a weak left (right) order 
in Q. By [18, Proposition 2.61, weak left orders in semiprime associative 
algebras coinciding with their socles are actually Fountain-Gould left orders. 

58. Orders i n  associative pairs. In this section we introduce a notion 
of order in associative pairs and give a Goldie-like characterization of orders 
in semiprime associative pairs with dcc on principal inner ideals, and in 
semiprime artinian associative pairs. 

Definition 8.1. Let A be a subpair of an associative pair Q. We will say 
that A is a left (right) order in Q if for any q E Qu there exists x E A" such 
that 

(i) x is von Neumann regular in Q, 
(ii) q E X Q - ~ X ,  and 
(iii) the local algebra A, of A at x is a left (right) order in the unital 

associative algebra Q,. 



As usual, order will mean left and right order. Next we will see that orders 
in associative algebras can be characterized as orders in the pair sense. The 
reason for this fact is that isotopy and isomorphism are equivalent notions 
in unital associative algebras. 

Proposition 8.2. Let A be a subalgebra of a unital associative algebra Q. 
Then A is a left order in Q if and only if the associative pair A = (A, A) is 
a left order in the associative pair Q = (Q, Q). 

Proof. Let A be a left order in Q relative to a multiplicatively closed set S 
of A. Then given q E Q there exists s E S such that q E Q = sQs, s is von 
Neumann regular in Q, and by Lemma 7.l(ii), A, is a left order in Q,, which 
proves that the associative pair (A, A) is a left order in (Q, Q) 

Suppose now that the associative pair A = (A, A) is a left order in Q = 
(Q, Q). Then given the unit element 1 of Q, there exists x E A such that 
1 E XQX (SO x is invertible in Q), and A, is a left order in Q, relative to a 
multiplicatively closed set XSX of A,. We claim that xS is a multiplicatively 
closed set of A and that A is a left order in Q relative to IS. Indeed, (i) 
given xsl and xs2 in xS, we have that (xs1x)-(zszx) = xslxszx E XSX, and 
hence xslxsz E x S  since x is invertible in Q, (ii) given xs E xS, we have 
that xsx is invertible in Q ,  with inverse xwx, so x = (xsx) . (xwx) = xsxwx 
which implies xsxw = 1, and similarly, xwxs = 1, i.e., xs is invertible in Q 
with inverse xw, and (iii), given q E Q, since q E Q,, there exists xsx E xSx 
such that (xsx) . q E xdx,  SO xsq E A, as claimed. 

There exists also a relationship between Fountain-Gould orders in asso- 
ciative algebras and orders in associative pairs given by the next proposition. 

Proposition 8.3. Let A be a subalgebra of an associative algebra &. 
(i) If the associative pair A = (A, A) is a left order in the associative . . 

pair Q = (Q, &), then A is a weak left order in Q. 
(ii) If & is a simple associative algebra coinciding with its socle, then A 

is a Fountain-Gould order in Q if and only if A = (A, A) is an order 
in Q = (&, Q). 

Proof. (i) Given q E Q, there exists x E A such that q E x&x and A, is a 
ieft order in 8,. 'Take xsx E A, n Inv(Qz) such that (xsx) . q E A,. Then 

(1) xsq = (xsx) - q E A and 
(2) q E Q, = (xsx) . Q, = xsxQx c xsQ, with xs E LocInv(&). 

To see the last part note that x E (xsx). (xsx) . Q, . (XSX) = XSXSXQXSX im- 
plies xs E ( z s )~&(xs )~ .  NOW it follows from (1) and (2) that q = (xs)#(xsp) 
with xsq E A, which proves that A is a weak left order in Q. 
(ii) Suppose now that Q is a simple associative algebra coinciding with its 
socle. If the associative pair A = (A, A) is an order in Q = (Q, Q), then 
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it follows from (i) and [18, ~ ro~os i t i on  2.61 that A is a Fountain Gould 
order in Q. Conversely, if A is a Fountain Gould order in Q, then, by [3, 
Proposition 101 and its dual, for every s E SemiReg(A), the algebra sAs 
is a classical order in the (simple artinian) associative algebra eQe = s&s 
with e = ss#. Hence, by Lemma 7.l(ii), the local algebra A, of A at s 
is an order in Q,. Thus we just need to prove that given q E Q, there 
exists s E SemiReg(A) such that q E 5-9s. By Litoff's theorem [22, p.901, 
there exists an idempotent e E & such that q E e?e with e = el + . . . + en 
a sum of orthogonal division idempotents. By [18, Lemma 2.11, we can 
write each e;, 1 5 i 5 n, as ei = aTbi = d i ~ #  with bi,c; E A, a;,ci E 

SemiReg(A), aia#bi = bi and dici#ci = d;. Since A is [19, Theorem 
1.11 O # d;Abi = d;c#c;daia#b; = eicidaiei c eidei n A. Hence any 
0 # s; E eiQei n A is semiregular in A (since eiQei is a division associative 
algebra) and satisfies e; E e;&e; = s;Qs;. Finally, taking s = s l + .  . .+s,, we 
have that s E Inv(eQe) and hence s E SemiReg(A), with g E eQe = sQs, 
as required. 

Now we give an example of orders in associative pairs which has a Faith- 
Utumi flavour [23]. As it will be proved in a forthcoming paper, any order 
in a simple associative pair coinciding with its socle is isomorphic to one of 
these. 

Proposition 8.4. Let (N, N', D) and (M, M', D) be left orders in dud  pairs 
of vector spaces (X, X', < ., . >) and (Y,Y1, < ., . >) respectively, over a divi- 
sion @-algebra A. Then any subpair A of Q ,= (3(X, Y), F(Y, X)) containing 
(N' @ D  M, MI @ D  N) is a left order in (F(X, Y), 3(Y, X)). 

Proof. Without loss of generality we may assume A = (N1@.~ M, M 1 @ ~  N). 
Let q = y: @ xl + . . . + y: @ 2, E F(Y,X) where {xi) and {y:} are linearly 
independent sets. We can writeeach y: @ xi = w: @ X;lvi with w: E M', 
vf-E N ,  and X i  E D. Taking b = wi @ v l  +... +w: @v,  E A-, we 
have, by Proposition 2.4(i), that bQ+b = qQ4q since Im(b) = Im(q) and 
~m(b#)  = ~rn(q#).  We needn't worry about the von Neumann regularity of 
b in Q because the whole pair Q is so. Let p E Q+ be such that bpb = b. To 
prove that Ab is a left order in Qb we note that Qb is isomorphic to the simple 
artinian associative algebra b#X1 @ Ybp under the mapping bsb + bsbp, 
where (Ybp, b+Xf) is a r-dimensional dual subpair of (Y, Y'). Under this 
isomorphism, Ab is isomorphic to (b#Nf @ D  Mbp) where (Mbp, b#N1, D) is 
a left order in  (Y bp, b#X1). Indeed, 

< Mbp, b # ~ '  >=< Mbpb, N' >=< Mb, N' >c< N, N' >c D 

and the remaining conditions can be verified easily. Hence Ab is a left order 
in Qb by Proposition 7.3, which completes the proof. - 



Remarks. We note that Propositions 8.4 and 8.2 provide a generalization of 
Proposition 7.3 to arbitrary simple algebras coinciding with their socle (i.e, 
with nonzero socle). 

In the particular case that the dual pairs (X, X') and (Y, Y') are finite di- 
mensional Proposition 8.4 implies the following assertion: Let D be an order 
in a division associative algebra A, and p, q two positive integers. Then any 
subpair A of Q = (M,,,(A), Mq,,(AoP)) containing'(MPSq(D), Mq,,(D0P)) 
is an order in Q. 

Orders in associative pairs satisfy a that will be very useful 
in what follows. We stress such a property by saying that an associa- 
tive pair A = (A+ ,A-) is a left triple product order in an associative pair 
Q = (Q+, Q-) if for any q E Q* there exists a E AT and b E A* such 
that baq E A* and bap # 0 for any nonzero p in the principal right ideal 

WQT, 

Proposition 8.5. Let A be an associative pair which is a left order in an 
associative pair Q. Then A is a left triple product order in Q. 

Proof. Let 0 # q E Q-. Then there exists b E A- such that b is von Neum- 
regular in Q, q E bQ+b, and Ab is a left order in the unital algebra Qb. Taking 
bab E Aa a left denominator for q, we have baq = bab . q E Ab c A-. On the 
other hand, if bwb is the inverse of bab in Qb, we have bwbab = bwb. bab = b. 
Hence, for p E II(Q+, Q-)q, bap = 0 implies p = 0. 

Let us see how far we can go with the definition of left triple product order 
in associative pairs. 

Proposition 8.6. Let A be an associative pair which is a left triple product 
order in an associative pair Q. Then 

(i) L n A- # 0 for any noniero left ideals L of Q contained in Q-. 
.- 

(ii) Q is semiprime if A is semiprime. 

Proof. (i) follows from the deikition, and (ii) is an immediate consequence 
of (i). 

Proposition 8.9. Let A be a semiprime associative pair which is a left triple 
---_l . .-r  ---I-- :- -- ----- :-L:-.- --I- A mL-- 
p u u u ~ b  ur uc-l lu a u  c w a u L 1 a u v c  pau y .  LUCU 

(i) lanQ(X) n A- = lanA(X) for any subset X of A+. 
(ii) For X, Y C A+ we have that l a n ~ ( X )  C lanA(Y) if and only if 

lanQ(X) c lanQ(Y). 
(iii) Zr(A) = Z,(Q) n A. 
(iv) A is left nonsindar if and only if Q is so. 
(v) For any b E A- the local algebra Qb of Q at b is a tight left cover of 

Ab. 
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(vi) Any direct sum {L;} of nonzero left ideals of A gives rise to a direct 
sum {z;} of nonzero left ideals of Q. Moreover, if for.some d E A-, 
all the L; are contained in A-A+d, then all the z; are contained in 
Q-Q'd. 

(vii) If Q has finite left (locd) Goldie dimension, then A has finite left 
(locd) Goldie dimension as well. 

Proof. (i) Note that clearly lanQ(X) n A- is contained in lanA(X). Con- 
versely, let z E A- such that z does not belong to lanQ(X), we have by 
Lemma 2.1 that there exists x E X and q E Qf such that qzx is nonzero. By 
deibition of left triple product order, there exist b E A- and a E A+ such 
that baq E A- and baqzx # 0. Hence z $! l a n ~ ( X ) .  
(ii) By (i), IanQ(X) C lanQ(Y) implies l a n ~ ( X )  C l a n ~ ( Y ) .  Conversely, 
suppose that there exists q E lanQ(X) such that q $! lanQ(Y). Then, by 
Lemma 2.1, qYQ- # 0. Since A is a left triple product order in Q, we can 
h d  b E A- and a E A+ such that baq E A- and baqYQ- # 0. Hence 
baq E lanQ(X) n A- = l a n ~ ( X ) ,  by (i), with baq $! l an~(Y) .  
(iii) Let z E &(A)+ and L be a nonzero left ideal of Q contained in Q-. By 
Proposition 8.6(i), L n A- is a nonzero left ideal of A, and hence, by (i) 

which proves that z E ZI(&)+. Conversely, let z E Z,(Q)+ fl A+. Since A 
is semiprime, to prove that z belongs to Z,(A)+, we just need to verify that 
lanA(z) n A-A+d # 0 for any 0 # d E A-. Take 0 # c E A- such that 
Q-cd # 0, and let 0 # qcd E lanQ(z), where q E Q-, which there exists 
because z E Zr(Q)+. Since qcd # 0, we can find a E A+ and b E A- such 
that baq E A- with baqcd # 0. Hence, 0 # A-cdnlanQ(z) = A-cdnlanA(z) 
bx (i), which proves that z E Zl(A)+. 
(iv) It  follows from (iii) that if Q is left nonsingular then A is left nonsingular. 
Conversely, ZI(Q) n A = Zl(A) = 0 implies Zi(Q) = 0 by Proposition 8.6(i). 
(v) Let 0 # bqb E bQf b. Then there exist c E A- and d E A+ such 
that cdbqb is a nonzero element of A-. By semiprimeness of A, there exists 
t E A+ such that cdbqbtcdbqb # 0, so dbqbt is also nonzero. Again applying 
the definition of left triple product order, we h d  e E A' and f E A- such 
that e f dbq E A+ and e f dbqbt # 0. Use again the semiprimeness of A to 
get that e fdbqbtxe f dbqbt # 0 for some x E A+. Then 0 # b(txef d)bqb = 
btx(efdbq)b E Ab (bqb) n Ab. 
(vi) Let C L; be a direct sum of nonzero left ideals of A contained, say in A-. 
Without loss of generality we may assume, for each index i, that L; = Adaix i ,  

where a; E A+ and x; E L;. We claim that the left ideals Q-a;x; of Q form 
a direct sum. Suppose on the contrary that qlalxlf . . . +q,a,x, = 0 where 
some of the summands, say qlalxl is nonzero. Applying the definition of left 
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triple product order, we find cl E A+ and bl E A- such that blclql E A- 
and blclq~alxl  # 0. Hence 0 = blcl(q1alxl) + . . . 1- blcl(q,a,z,) with 
0 # blcl(qlalxl) E L1 implies that some of the remaining summands, say 
(b1clqz)a2xz, is nonzero. Repeat the above argument with ql replaced by 
(blclqz). After repeating the above argument at most n-times, we obtain 
a sum ll + . . . + 1, = 0 where each 1; E L; and at least one of them is 
nonzero, which is a contradiction. In the case that all the L; are contained 
in A-A+d for some d E A-, then the above consjruction provides now ideals - 
Li contained in Q-Qt'd. 
(vii) It is a direct consequence of (vi). 

While, as it will be seen later, orders in semiprime associative pairs with 
dcc on principal inner are semiprime, we don't know whether this remains 
true for left triple product orders. Nevertheless, with this additional require- 
ment, everything works as expected. 

Theorem 8.8. Let A be a semprime associative pair which is a left triple 
product order in a semiprime associative pair Q coinciding with its socle. 
Then 

(i) A is left local Goldie, 
(ii) for each b E A- the local algebra Ab of A at b is a left order in the 

semiprime artinian associative algebra Qb. 
Moreover, 

(1) A is prime if and only if Q is simple, and 
(2) A has finite left Goldie dimension if and only if Q is artinian. 

Proof. (i) Since & is nonsingular by Corollary 3.5, it follows from Proposi- 
tion 8.7(iv) that A is left nonsingular. We also have that Q has finite left 

.local Goldie dimension (~ ro~os i t i on  5.2(vi)), and hence A has finite left local 
Goldie dimension as well (Proposition 8.7(vii)). 
(ii) Let b E A-. Since, by Proposition 5.2(i)(v), Qb is a semiprime artinian 
associative algebra, by (i) together with Proposition 5.2(iv) and Proposition 
5.3, Ab is left local Goldie. Now, since Qb is a tight left cover of Ab (Propo- 
sition 8.7(v)), we can apply Proposition 7.4 to obtain that Ab is a left order 
in Q h .  
(1) If A is prime then Q is simple by Proposition 8.6(i) and by the structure of 
the socle (if Q is not simple then it contains two orthogonal nonzero ideals). 
Conversely, if Q is simple then all its local algebras Qa at nonzero elements 
are simple (Proposition 5.2(iii)). Since Ab is a left order in Qb by (ii), Ab 
is prime by the classical Goldie theorem, and hence A is prime by the local 
characterization of primeness (Proposition 5.2(ii)). 
(2) Since semiprime artinian associative pairs satisfy the acc on all left ideals 
(Theorem 2.5(3)), it follows from Proposition 8.7(-vii) that A has finite left 
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Goldie dimension whenever Q is artinian. Conversely, if Q is not artinian 
then it has infinite left Goldie dimension (Proposition 2.6), and hence A has 
also infinite left Goldie dimension (Proposition 8.6(i)). 

Let us return to orders in associative pairs. As announced, we next prove 
(together with other useful results) that orders in semiprime associative pairs 
with dcc on principal inner ideals are semiprime. 

Proposition 8.9. Let A be an associative pair which is an order in a 
semiprime associative pair Q equal to its socle.   hen 

(i) A is semiprime, 
(ii) for each q E Q-, there exists x E A- such that qQ+q = xQ+x, 

(iii) any essential ideal I of A is also an order in Q. 

Proof. (i) Let 0 # x E A-. Then there exists b E A- such that x E bQfb 
and the local algebra Ab of A at b is an order in the semiprime artinian 
algebra Qb (Proposition 5.2(v)). Hence Ab is a semiprime Goldie algebra by 
the classical Goldie theorem. In particular, Qb is a tight left cover of Ab, 
so Ab . x n Ab # 0. Take a nonzero element bab . x = bax E Ab . x n Ab. 
By semiprimeness of Ab, 0 # (bax) . Ab . (bax) = baxA+bax, which implies 
xA+x # 0, as required. 
(ii) Given q E Q- there exists b E A- such that q E bQ+b and Ab is an order 
in the semiprime artinian associative algebra Qb. Then, by Lemma 7.6(ii), 
q.Qb.q = x .Qb-x  forsomex E lib. H e n ~ e q & q = q . & ~ . q = x . Q ~ . x  =xQx. 
(iii) As above, given q E Q- we take b E A- such that q E bQ+b and Ab is an 
order in the semiprime artinian associative algebra Qb. It is easy to see that 
b I + b  is an essential ideal of Ab (if bab E annA,(bI+b), then bab E annA(I+) 
by Proposition 2.2(ii), and hence bab = 0 because I is an essential ideal of A). 
Now, by Proposition 7.5, the generalized local algebra B =: b I + b  = Ib of I 
a! b is also a left order in K =: Qb. Take a denominator bub E Inv(K), with 
ZL E I+, for q. By Lemma 7.l(ii), Bbub is an order in Kbub. Now, by Lemma 
5.l(ii), Bbub = (Ib)bub coincides with Ibub, and Kbub = (Bb)bub agrees with 
Qbub. Therefore, we have proved that given q E Q-, there exists bub E I- 
(von Neumann regular in Q) such that q € (bub)Q+(bub) and Ibub is an order 
in Qbub, as required. 

Everything is ready to prove the main result of this paper. 

Theorem 8.10. For an associative pair A the foflowing conditions are equiv- 
alent: 

(i) A is an order in a semiprime associative pair Q coinciding with its 
socle. . 

(ii) A is semiprime, satisfies the acc on lanA(x), x E A+, and has iinite 
both left and right local Goldie dimension, 

(iii) A is a semiprime local Goldie associative pair, 
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(iv) A is semiprime and d its local algebras are Goldie. 

In this case, 

(1) A is prime if and only i f &  is simple, and 
(2) A is Goldie if and only if Q is artinian. 

Proof. First we note that the equivalence (iii) (iv) follows from Propo- 
sition 5.2(iv) and Proposition 5.3, and that the implication (ii) j (iii) is a 
consequence of Proposition 3.6. 
(i) j (ii). By Proposition 8.9(i), A is semiprime. Moreover, since orders 
are left (and right) triple product orders (Proposition 8.5), it follows from 
Theorem 8.8(i) that A has h i t e  both left and right local Goldie dimensions, 
and from Proposition 8.7(ii) together Proposition 2.5(l)(ii) that A satisfies 
the acc on the left annihilators of a single element. 
(iii) =+ (i). By Theorem 6.5, A is an essential subdirect sum of prime local 
Goldie associative pairs. More precisely, 

where M, ranges over all maximal uniform ideals of A. This allows us to 
reduce the question to the case that A is prime. Indeed, if we prove that each 
A, := A/ann(M,) is an order in a (simple) associative pair Q, coinciding 
with its socle, then, by Proposition 8.9(iii), M, (regarded as an ideal of 
A,) is also an order in Q,. Since direct sums preserve orders, $M, is an 
order in the nondegenerate associative pair coinciding with its socle $Q,, 
and hence A is also an order in $Q,. Suppose then that A is a prime local 
Goldie associative pair. Let (A, e) be the standard imbedding of A. Then 
A is prime (Proposition 4.2), nonsingular (Proposition 4.5), and the ideal [4, 
Proposition 11 I(A) of the elements of A having finite both left and right 
Goldie dimension is nonzero. Iildeed, by Proposition 4.3, A+, A- c I(A). 
In particular, A has uniform left and right ideals, hence by [4, Th.1 and its 

A can be embedded in a prime associative algebra (indeed primitive) 
Q with nonzero socle Sac(&), such that I(A) is a Fountain-Gould order 
in the simple associative algebra coinciding with its socle Soc(&). Thus, 
Proposition 8.3(ii) implies that the associative pair (I(A), I(A)) is an order 
in the associative pair (Sac(&), Sac(&)). 

It is readily seen that Q = (eSoc(&)(l - e),(l - e)Soc(&)e) is a sim- 
ple associative pair equaling its socle (from the same properties satisfied by 
Sac(&) as an algebra). We claim that A = (A12, AZ1) is an order in Q: Let 
q12 E Q+ c SOC(&) (Soc(Q) is an ideal of &). Since (I(A), I(d)) is an order 
in (Soc(&), Soc(Q)), there exists, by Proposition 8.9(ii), x E I(A) such that 
q12Soc(&)q12 = xSoc(&)x. This implies that 
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and, since x E I(A) C Soc(Q) is von Neumann regular in Soc(Q), x E 
xSoc(Q)x c eQ(1 - e). Thus x = ex(1 - e), i.e., x E Alz = A+. On 
the other hand, qlz being von Neumann regular (as any other element) in 
Soc(Q) implies qlz E qlzSoc(Q)qlz = xSoc(Q)x = x(1-e)Soc(Q)ex, proving 
8.l(ii). Now 8.l(i) follows from von Neumann regularity of x in Soc(Q) 
(x E xSoc(&)x = x( l  - e)Soc(Q)ex, since x E A12) and we just need to 
establish B.l(iii), i.e., A, is an order in Q,. Indeed, notice that 

and 

with coincidence also in their products, so that we will finish as soon as we 
prove that I(A), is an order in Soc(Q),. But this follows from Proposi- 
tion 8.5 and Theorem 8.8(ii) applied to (I(A), I(A)) which is an order in 
( soc(e) ,  soc(e)) .  

Finally (1) and (2) were proved in Theorem 8.8, in view of Proposition 
8.5. 
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