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ABSTRACT. We develop a Goldie theory for associative pairs and characterize
associative pairs which are orders in semiprime associative pairs coinciding
with their socle, and those which are orders in semiprime artinian associative
pairs.

§1. Introduction. Goldie’s Theorem is certainly one of the fundamental
results of the theory of (associative) rings. Today this theorem is usually
formulated as follows: A ring R is a classical left order in a semisimple
(equivalently, semiprime artinian) ring @ if and only if R is semiprime, left
nonsingular, and does not contain infinite direct sums of left ideals. Moreover,
R is prime if and only if Q is simple.

In 1990 J. Fountain and V. Gould [18] introduced a notion of order in a
ring which need not have a unit, and gave [19] a Goldie-like characterization
of two-sided orders in semiprime rings with descending chain condition (dcc)
on principal one-sided ideals (equivalently, coinciding with their socle). Later
P.N. Anh and L. Mérki [3] extended this result to one-sided orders.

The first two authors, jointly with E. Sénchez Campos, studied [16] a
notion of local order for associative algebras equivalent to that of Fountain-
Gould for orders in simple rings with minimal inner ideals, and proved an
extension of Posner’s theorem to prime algebras satisfying a generalized poly-
nomial identity (result revisited in [4]).
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*  Recall that an associative pair (of the first kind) is a pair (A%, A™) of
®-modules (@ is an arbitrary unital commutative ring of scalars) equipped
with trilinear maps (z,y,2) — zyz from A7 x A™ x A% in A” (0 = %)
satisfying the following identities

uv(zyz) = u(vzy)z = (vvz)yz.”

Every associative algebra A gives rise to an associative pair A = (A, A) un-
der the triple product abc, where juxtaposition denotes the product of A. A
more interesting example is given by B = (hom(M, N), homn(N, M)), where
M and N are left modules over a ®-algebra A, under the triple product abe
where juxtaposition now denotes the mapping composition. If M and N are
actually finite dimensional left vector spaces (of dimensions m and n respec-
tively) over a division ®-algebra A , then B = (Matnxm(A), Matmxn(A))
is a simple artinian associative pair, and conversely, every simple artinian
associative pair is isomorphic to one of these (see [24] for the corresponding
result for associative pairs of the second kind). Another step in the structure
theory of associative pairs was the classification of prime associative pairs
with minimal inner ideals [8,11].

Associative pairs play a fundamental role in the new approach (see [1])
to Zelmanov’s classification of strongly prime Jordan pairs, and had been
already used by O. Loos in the classification of the nondegenerate Jordan
pairs of finite capacity [24]. A

The purpose of this paper is to develop a Goldie theory for associative pairs
following the pattern of that for associative algebras (rings), but defining
orders in associative pairs in the unique way which seems to be possible,
namely, locally. Thus our definition of order in an associative pair is inspired
by that of local order in associative algebras already cited, and even by iis
Jordan version introduced in a Previous paper [12] by the first two authors.

There is a link between associative pairs and associative algebras. Let
A = (At ,A™) be an associative pair and b in A~. Then the submodule
bA*b equipped with the multiplication defined by (bzb) - (byb) = bzbyb is an
associative algebra called the local algebra of A at b (Section 5) and denoted
by Ap. Analogous definition is given if b is in A*. Note that if b € A% is von
Neumann regular, i.e., b € bATS, then A; is unital with b as the unit. By
using local algebras we can define orders in associative algebras.

Suppose now that A = (A%, A7) is a subpair of an associative pair Q =
(Q@*,Q7). We say (Section 8) that A is an order in Q if for each ¢ € QF
there exists b € A% such that (i) b is von Neumann regular in @, (i) ¢ €
bQFb, and (iii) the local algebra A of A at b is a two-sided order in the
unital associative algebra (};. This definition is consistent with the classical
one for orders in associative algebras: Let A be-a subalgebra of a unital
associative algebra @. Then the associative pair 4 = (A, .A) determined by
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"A is an order in the associative pair @ = (Q, Q) determined by Q if and
only if A is an order in Q. Moreover, it also extends the Fountain-Gould
notion of order in simple associative algebras with minimal one-sided ideals.
In a more purely pair context, if D is a two-sided order in an associative
division algebra A, and m and n are positive integers, then the associative
pair (Matnxm(D), Matnxn(D)) is an order in (Mabnxm(A), Matnxn(A)).

We also introduce the notion of left (right) singular ideal (Section 3), and
prove the following main result.

Theorem 8.10. For an associative pair A the following conditions are equiv-
alent:

(1) A is an order in a semiprime associative pair @ coinciding with its
socle,

(ii) A is semiprime, satisfles the ascending chain condition on the left
annihilators of single elements, lan(z) for € AT, and has finite
both left and right local Goldie dimension,

(iii) A is a semiprime local Goldie associative pair,

{(iv) A is semiprime and all its local algebras are Goldie.

In this case,

(1) A is prime if and only if () is simple, and
(2) A is Goldie if and only if () is artinian.

A key tool in the proof of this theorem is the notion of standard imbedding
(Section 4) of an associative pair (see {27]). This notion is used to prove the
implication (iii) = (i) of Theorem 8.10. We first show (Section 6) that a
semiprime local Goldie associative pair A is an essential subdirect product of
prime local Goldie associative pairs, which allows us to reduce the question
to the case that A is prime. Then the standard imbedding (A, e) of 4 is a
prime nonsingular algebra and such that the set I(\A) of those elements of A
baving finite both left and right Goldie dimension is a nonzero ideal. In this
situation, by a result of P. N. Anh and L. Mérki [4], A can be embedded in
a prime associative algebra @ with minimal one-sided ideals such that I(.A)
is a Fountain-Gould order in the socle Soc(Q) of Q. Hence we obtain that
A = (eI(A)1 - ¢),(1 — e)I(A)e) is an order in the simple associative pair
with minimal inner ideals @ = (eSoc(Q)(1 — €),(1 — €)Soc(Q)e).

Another important fact in the proof of this theorem is the local character-
ization of certain properties of associative pairs. Primeness, nonsingularity,
left (right) local Goldie dimension, and coincidence with the socle are prop-
erties of an associative pair which can be characterized in terms of its local
algebras. This technique of using local algebras to pass information back
and forth between pairs and algebras has been usefully used in the current
structure theory of Jordan systems (algebras, triples and pairs) [2, 5, 6, 7,
28].
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- §2. Basic notions and associative pairs with chain conditions on in-
ner ideals. Throughout this paper @ will denote a unital commutative as-
sociative ring of scalars. Let A = (A%, A™) be a pair of &-modules, equipped
with trilinear maps (z,y, z) — zyz from A" xA~? X A% in A° (0 = %). Then
A is called an associative pair if the identities

(1) uv(zyz) = u(vzy)z = (uvz)yz

ate satisfied. We define left, middle and right multiplications by

(2) Mz, y)z = p(z, 2)y = p(y, 2)z = zy=.

It follows from (1)

(3) A, v)A(z,9) = Muvz,y) = Mu, vay)
and similarly

(4) p(z,y)e(u,v) = p(uvz,y) = p(u, vey).

Hence it is clear that the linear span of all operators T : A — A7 of the form
T = Ma,b)or T = Ids- (a € A%, b € A™7)is a unital associative algebra de-
noted by A(A%, A™7) and A? is clearly a left A(A%, A™7)-module. Similarly
it is defined II{A~7, A?) as the linear span of all the right multiplications
plus the identity on A°. Then A” becomes a left II{A~7, A?)-module. This
allows us to apply results of modules to associative pairs. The left ideals
L C A% of A are precisely the left A(A%, A=7)-submodules of A7, and the
right ideals R C A7 are the left II(A™7, A”)-submodules, while a two-sided
ideal B C A” is a left and right ideal.

A left ideal U of A contained in A7 is uniform if it is so as A(4%, A™7)-
module, i.e., any nonzero left ideals I, M of A contained in U have nonzero in~
tersection. An element a € A” is l-uniform if the principal left ideal AA™7a
generated by a is uniform. Let I C A” be a left ideal of A which does not
contain infinite direct sums of nonzero left ideals. By [20, Prop. 3.19], there
exists a nonnegative integer n, called the left Goldie (or uniform) dimension
of L, such that L contains a direct sum of n donzero left ideals and any
direct sum of nonzero left ideals contained in L has at most n summands
(notice that any direct sum of n nonzero left ideals is essential in the sense
that it intersects any nonzero left ideal contained in L and its summands are
necessarily uniform). Now a uniform nonzero left ideal is just a nonzero left
ideal of left Goldie dimension one. If both A* and A~ have finite left Goldie
dimension then we will say that the whole pair A>has finite left Goldie (or
uniform) dimension. The left Goldie (or uniform) dimension of an element
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rqa € A7 is the left Goldie dimension of the principal left ideal generated by a.
If any element of A has finite left Goldie dimension, we will say that A has
finite left local Goldie dimension.

An ideal I of A is a pair I = (I't,I7) of two-sided ideals, I” C A7, such
that A°T=°A° C I° (c = £). B = (B*,B~)and C = (C*,C™) are ideals
of A, then

B+C:=(BTA CY +AtB AYC A*,B"AYC™ + A"BYA~C*A™)

is an ideal of A, and we have that the latiice £{A) of all ideals of A4 is an
algebraic lattice in the sense of [15].

An associative pair A is semiprime if and only if IA™7] =0, o = &,
implies I = 0 for I ideal of A, equivalently, I+ I = 0 implies I = 0, while A
is prime if and only if I7A77J° =0,0 =+, implies I =Qor J =0, for I
and J ideals of A, equivalently, I+ J = 0 implies ] =0 or J = 0.

Clearly an element a in A gives rise to an ideal I = (I*,I7) of A by
taking It := ®a + AtA"a+ad AT + AtA=aA"At and I~ := A~ad"~.
This allows us to obtain elemental characterizations of semiprimeness and
primeness (see [1, 1.18]): A is semiprime if and only if A is nondegenerate
(aA®a = 0 implies ¢ = 0), and A is prime if and only if A is elementally
prime (aA°b =0 impliess a=0o0r b=0,a,b € A77).

Each associative algebra 4 gives rise to an associative pair A = (4, A) un-
der the triple product abc where juxtaposition denotes the associative prod-
uct of A. Similarly, each associative pair A becomes a Jordan pair, denoted
by A7, with quadratic maps Q(z)y = zyz. This will allow us to apply
Jordan-theoric results to associative pairs. We can transfer the Jordan no-
tion of inner ideal to associative pairs. An inner ideal K of A contained in
A? is a ®-submodule of A% such that 2477z C K for any € K. Note
that if L is a left ideal and R is a right ideal of 4, both contained in the
same A%, then L N R is an inner ideal. Now, the elemental characterization
of semiprimeness reads: an associative pair A is semiprime if and only if the
Jordan pair A7 is nondegenerate.

Let X C A°. The left annithilator of X in A is defined to be the set
{be A7 : bXA™" =0=A"bX}

written lan(X) or lan 4(X) when it is necessary to emphasize the dependence
on A. Similarly, the right annihilator ran4(X) = ran(X) of X is defined by

(b A= : XbA® =0=A""Xb}

We also write ann4(X) = ann(X) := lan(X) N ran(X) to denote the anni-
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~ hilator of X . Clearly, lan(X) is a left ideal of 4, ran(X) is a right ideal, and

ann(X) is an inner ideal of A [1,1.15].

Lemma 2.1. Let A be a semiprime associative pair. Fora € A, be A~°

'the following conditions are equivalent:

(1) A(a,b) =0,
() Aa,b) =0,
(iii) a € lan(b),
(iv) b € ran(a).

Proof. Since (ili) < (iv) < (i) + (ii) is straightforward from the definitions of
lan(b) and ran(b), we just need to prove the equivalence (i) < (ii). Suppose
p(a,b) # 0. Then zab # 0 for some z € A~ implies, by nondegeneracy of A,
that zabczab # 0 for some ¢ € A7, Hence A(a,b)c # 0. Similarly, A(a, b) 5£ 0
implies p(a,b) #£ 0. O

Now we record some properties of annihilators in semiprime associative
pairs which will be used later. Note first that if I = (I, I7) is an ideal of
a semiprime (equivalently, nondegenerate) associative pair A, then I+ =
0 if and only if I~ = 0. Indeed, It = 0 = ATI" At c [T =0 =
(I"AYIT)AY(I-AYI™) = I (AYI"A%)[~A*I~ = 0, hence - A+~ = 0,
and I~ = 0, using twice the nondegeneracy of A.

Proposition 2.2. Let A be a semiprime associative pair, B C A% a two-
sided ideal of A, and I = (I*,I”) be an ideal of A. Then
(i) lan(B) = ran(B) = ann(B) is a two-sided ideal of A.
(ii) ann(B) = {z € A~ : 2Bz = 0}.
(1) I Nann(I~°) =0.
(iv) ann(I) := (ann(I7),ann(I*)) is an ideal of A called the annihilator
ideal of I.

(v) A/ann(I) is a semiprime associative pair.

Proof. (i) Let z € lan(B). For any a € A~ and b € B, we have
(abz)A™(abz) = abz(Atab)z C abzBAT = 0.

By nondegeneracy of A, A”Bz = 0, which implies z € ran(B) by Lemma

2.1. This shows lan(B) C ran(B). Similarly, ran(B) C lan(B).

(ii) 2Bz = 0 implies, forany e € A~ and b € B,
(zba)At(zba) = (2(baA)z)ba C (2Bz)ba = 0,

and zBA~ = 0 by nondegeneracy of A. Hence, z € lan(B) by Lemma 2.1

and lan(B) = ann(B) by (i).
Now (iii), (iv) and (v) follow from (ii) applied to the two-sided ideals I*. O
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As a direct consequence of the preceding proposition, we obtain that for
two ideals B and C of a semiprime associative pair A, the following are
equivalent: (a) BxC =0, (b) BNC =0, and (c) B C ann(C). Indeed,
the equivalence (a) ¢ (b) follows from [15, 2.1] applied to the semiprime
algebraic lattice (L(A),*). Moreover, (a) ¢ (c) shows that ann(C) coincides
with the annihilator C* defined in (L(4),«) (see [15, p.2]). Another useful
property of annihilators is the following.

Lemma 2.3. Let I be an ideal of a semiprime associative pair A.- For any

subset M of I't, lan;(M) = lana(M)NI~.

Proof. Clearly lana(M)N I~ is contained in lany(M). Let z € lan(M). By
Lemma 2.1, we just need to show that zMA~™ =0. fm e M anda€ 4™,
then zmaA*zma C zmI~ = 0, which implies zma = 0 by semiprimeness of
A, as required. O

Following [22, p.70], let (X, X', < .,. >) and (¥,Y’,< .,. >) be two dual
pairs of vector spaces over an associative division ®-algebra A. An operator
a:X — Y is adjointable if there exists a¥ : Y' — X', necessarily unique,
such that < za,y’ >=< z,a?y’ >. Notice that we write the mappings of
a left vector space on the right (thus composing them from left to right),
and the mappings of a right vector space on the left (thus composing them
from right to left). We denote by L£(X,Y) the set of all adjointable linear
operators of X to Y, and by F(X, Y) the subset of those operators having
finite rank.

Forz' e X',y € Y, write ' ® y to denote the adjointable linear operator
from X to Y deﬁned by z(z' @ y) =< z,5' > y for z € X with adjoint
(z' @ y)*y' = z' < y,y' >. Note that (z' ® y)b = z' ® yb for all operator
b from Y to X, and a(z’' ® y) = o™z’ ® y for all adjointable a € L(Y,X).
Everya € f(X Y) can be expressed as a = ) z} ®yi, where both {z}} C X'
and {y;} C Y are linearly independent, which just means that F(X,Y)is
isomorphic as ®-module to the tensor product X' ®a Y (see [22, Prop. 1,
p.74] and [14, p.3]). We have that

(FXY), F(Y, X)) =(X'®a Y, Y ®a X)

is an associative pair under the triple products abc with juxtaposition denot-
ing the mapping composition. Actually, by [8] or [11], an associative pair is
simple with minimal inner ideals if and only it is isomorphic to one of these.

Proposition 2.4. Let A = (F(X,Y),F(Y,X)) be the associative pair de-
fined by two dual pairs (X, X', < .,. >) and (Y Y', < .,.>) of vector spaces
over an associative division @- algebra A.

(i) For V' and W, subspaces of X' and Y respectively, we have that
V' ® W is an inner ideal of A, X' @ W is a left ideal, and V' QY is
a right ideal, all of them contained in AY. Conversely, for any inner
ideal T of A contained in A* = F(X,Y), we have that I*Y" and X1
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are subspaces of X' and Y respectively, and I = I*Y'®X I. Similarly,
left ideals I of A contained in A™ are of the form L = X' ® XL, and
right ideals R of A contained in At are of the form R = R¥Y' @Y.

(ii) If a left ideal L C A™ is principal, then X L is finite dimensional and
the converse, i.e., X L being finite dimensional implies L is principal,
holds when dimXL < dimX.

If a right ideal R C A" is principal, then R*Y" is finite dimensional,
and the converse is true when R#Y"' < dimY.

An inner ideal I C AY is principal if and only if XI and I*Y' have
the same finite dimension.

(iti) For a left ideal I C AT, ran(L) = (XL)* ® X, for a right ideal
R c A*, lan(R) = Y' ® (R*Y")*, and for an inner ideal I C A,
ann(l) = (XI)* @ (J#Y')*.

(iv) I L is a principal left ideal of 4, then lan{(ran(L)) = L. Similarly,
ran(lan(R)) = R for a principal right ideal R of A, while a principal
inner ideal I C A* coincides with its double annihilator if and only
ifann(I)# 0 or I = A%,

Moreover, the following conditions are equivalent:

(a) A satisfies the descending chain condition (dcc) on all inner ideals,
(b) A satisfies the ascending chain condition (acc) on all inner ideals,
(c) A satisfies the dcc on all left ideals,

(d) A satisfies the acc on all left ideals,

(e) A satisfies the dec on all right ideals,

(f) A satisfies the acc on all right ideals,

(g) both vector spaces X and Y are finite dimensional, and hence A is

isomorphic to (Mat,ym(A), Mat,«a(A)) for some positive integers
n and m. :

Proof. (i) Note first that V' ® W is an inner ideal of 4 for any V' and W
subspaces of X' and Y respectively. Conversely, let I be an inner ideal of A
contained in A = F(X,Y). As in [14, Theorem 3], we have that the sets

XI={za:z€X,a€l} and I*Y' = {a?y' : ¢ €Y', a eI}

are subspaces of Y and X' respectively, and I = I#Y' ® X 1. The assertions
concerning left and right ideals can be proved similarly.

(ii) can be shown as (17) of [14].

(i) Let I = I*Y’ ® XI be an inner ideal of A contained in At. We will
show ann(I) = (XI)* ® (I#Y")*, where as usual, V'" is the orthogonal
of the subspace V' of X' relative to the dual pair (X,X'), and W+ is the
orthogonal of the subspace W of Y relative to (¥,Y"): Since J = ann(l) is
an inner ideal of A, we have by the dual of (i) that ann(I) = J*X'QY J. We

100 v¥/00 16:60 138-12 29% %:)4
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"claim that J#X' C (XI)! and YJ C (J#Y")*. Without loss of generality,
we may assume that I is nonzero. Then

(XDt @ (I#Y"))IA™ = (XD)*" @ (IFY')y" W IFY' @ XI)(Y' @ X)
= (X' < (IFY), I*Y' >< XI,Y' > X =0

implies (XI)* ® (I#Y')! C lan(I) by Lemma 2.1. Analogously,
ATI(XDr e (IFY')YhH) =0
implies (XI)1 ® (I#Y"')* C ran(I). On the other hand,

0=(J*X' @Y NIA~ =(J*X' QY )(I?Y' @ XI)(Y' ® X)
=J*X'® <YVJ,I*Y' >< XIY' > X

implies Y'J C (I#Y"')* since I is nonzero. Similarly, J#X' C (XI)L.

The corresponding results for left and right ideals are easier.

(iv) follows from (iii), using the fact that any finite dimensional subspace
coincides with its double orthogonal.

Suppose now that I = IfY’ ®@XL and I, = IfY’ ® X I, are inner ideals
of A contained in A*. It is obvious, using (i), that I; C I, ; # I if and only
if *Y' ¢ I¥Y', XI, C XL, and either I*Y' 5 I¥Y" or XI, # XI,. Hence
A satisfies the dcc (equivalently, acc) on all inner ideals if and only if both
vector spaces X and Y are finite dimensional. This proves the equivalences
(a)&(b)<(g). Similarly, by using the geometrical representation given in
(i) of left (right) ideals of A contained in A%, and of left (right) ideals of A
contained in A~, we obtain the remaining equivalences. 0O

For a semiprime associative pair A the socle Soc(A) = (Soc(A4)*, Soc(4)™)
i5'by definition the socle of A7, i.e., Soc(A) is the sum of all minimal inner
ideals of A7, o = . By [9, Theorem 1] Soc(A) is a direct sum of simple ideals
of A each of which contains a minimal inner ideal. It follows from [25] that a
semiprime associative pair A coincides with its socle if and only if it satisfies
the dec on principal inner ideals. Moreover, Soc(A4) is a von Neumann regular
ideal. If A is a semiprime associative algebra, then Soc(A)t = Soc(A)~

Let A = ®M; be a semiprime associative pair coinciding with its socle,
where the M; are its simple components. By using the von Neumann reg-
ularity of A, it is easy to see that any inner (left, right) ideal K of A is a
direct sum K = ®K; of inner (left, right) ideals K; of the M;. Moreover, if
K is principal then only finitely many K; are nonzero.

The above results yield the following theorem we include for completeness.
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Theorem 2.5. Let () be a semiprime associative pair satisfying the dcc on
principal inner ideals (equivalently coinciding with its socle). Then

(1) Q satisfies the following chain conditions:

(i) the dcc on principal left ideals,

(ii) the dcc on principal left ideals,

(iii) the acc on ann(z), lan(z), and ran(z) forz € A7 (o0 = +).

(2) @ is a direct sum of simple ideals each of which is isomorphic to an
associative pair (F(X,Y), F(Y, X )) defined by two dual pairs of vector spaces
over a division ®-algebra A.

(3) The following conditions are equivalent for Q)

(i) @ satisfies the dcc on all inner ideals,
(ii) Q satisfies the dcc on all left ideals,
(1) Q satisfies the dcc on all right ideals,
(iv) @ satisfles the acc on all inner ideals.
(v) @ satisfles the acc on all left ideals,
(vi) @ satisfies the acc on all right ideals.

Moreover, any of the conditions of (3) is equivalent to

(4) @ is a direct sum of finitely many simple ideals each of which is iso-
morphic to (Mataxm(A), Matyxn(A)) where A is a division ®-algebra and
m,n are positive integers.

Associative pairs satisfying conditions (i)-(vi) of (3) are called artinian.

Proposition 2.6. Let ) be a semiprime associative pair with dcc on princi-
pal inner ideals (equivalently, coinciding with its socle). If @} is not artinian
then () has infinite both left and right Goldie dimension.

Proof. If @) is not artinian then @) contains infinitely many simple ideals or
Q contains a simple ideal M which is not artinian. In the first case it is
clear that @) has infinjte direct sums of left ideals and of right ideals. In the
second case, by Proposition 2.4, M = (F(X, V), F(Y, X)) where some of the
vector spaces X or Y is infinite dimensional. Hence, by Proposition 2.4(i)
and (ii), we can construct an infinite direct sum of left (right) ideals of M,
and therefore of 4 as well. 'O

§3. The singular ideal of a semiprime associative pair. The notion
of nonsingularity proved particularly useful in the general theory of quotient
rings initiated by Y. Utumi in 1956. Here we show the existence of a singu-
lar ideal in any semiprime associative pair A and study its properties. Set
Z)(A°) = {z € A” : lan(z) is an essential left ideal of A}.

Theorem 3.1. For a semiprime associative pair A, (Z;(A%), Z)(A7)) is an
ideal of A called the left singular ideal of A and denoted by Z;(4).

Proof. It is easy to see that Z;(A™) is a right ideal. Now let z € Z;(4T),
z € AT, and y € A~. We must show that lan(zyz) is an essential left
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ideal. Let L be a nonzero left ideal of A contained in A~. If Lzy = 0
then AYLzyz = 0 and hence L C lan(zyz) by Lemma 2.1. If Lzy # 0
then Lzy N lan(z) # 0. Taking 0 # lzy € lan(z), with | € L, we have
0 # I € lan(zyz) N L. We have shown zyz € Zi(A™). Therefore Z;(A*) is a
two-sided ideal. Similarly Z;(A7) is a two-sided ideal. It remains to prove
that the pair (Z;(A1), Zi{A™)) is invariant under middle multiplications. Let
2 € Z)(A") and y1,y2 € A™, and take a nonzero left ideal L of A contained
in AT. f A~Ly; = 0 then, by Lemma 2.1, L € lan(y1) C lan(yizy,). If
A~ ly; # 0 for some | € L, then A™ly; Nlan(z) # 0. Take 0 # aly; € lan(z),
where @ € A~. By semiprimeness of A, there exists b € At such that
bal # 0, but aly; € lan(z) implies bal € lan(y1zy2) N L. In both cases
Lnlan(yizyz) # 0, so lan(y, zy2) is essential, which completes the proof. O

A semiprime associative pair 4 = (A1, A7) will be called left nonsingular
if its left singular ideal Z;(A) = 0. Right nonsingular pairs are defined
similarly, while nonsingular means that 4 is both left and right nonsingular.

Proposition 3.2. Let I be an ideal of a semiprime associative pair A. Then
Zi(AN I = Z,(I).

Proof. We may assume [ # 0. Let z € Z;,(A)Y N I*. For any nonzero left

ideal L of I contained in I~, I"I*L is a left ideal of A containedin L C I~
which is nonzero by semiprimeness of A (otherwise (LAYL)AYT(LAYL) =
L(AYLAYLAT)L CI"I*L=0= LAYL =0= L =0). So, by Lemma 2.3,
0 # lana(z) N I7ITL C lang(z) N L, which implies z € Z;{I)*. Conversely,
let z € Zy(I)* and 0 # a € A~. We will show that ATA~aNlan,(z) # 0,
which obviously implies that any nonzero left ideal of A contained in AT
hits lana(z). If a € lans(z) we have finished. Suppose then a ¢ lan4(2).
By Lemma 2.1 ATaz # 0. Hence by semiprimeness of 4, 0 # azA~A%a C
I~ A%a which is a left ideal of I. Since z € Zi(I)*, we have 0 # I~ Atan
lanf(z) C A~ AtaNlans(z) by Lemma 2.3, which completes the proof. 13

" Anideal I = (I, I7) of an associative pair A is called essentialif INJ # 0
for any nonzero ideal J of A. If A is semiprime, we have by Proposition 2.2
that I is an essential ideal if and only if I1 and I~ are essential left ideals.

Corollary 3.3. Let A be a semiprime associative pair and I an essential
ideal of A. Then A is left nopsingular if and only if I is left nousingular.

Prosf. By Proposition 3.2, Z,(I) # § implies Z;{A4) # 0. Assume, conversely,
that I is left nonsingular. Now Z;(A) NI = 0 implies Z;(A4) = 0 since I is an
essential ideal of A. O

Proposition 3.4. Let A be a semiprime associative pair.and let 0 #£ a € AT
be von Neumann regular. Then a is not in Zi(4)*F.

Proof. Suppose, on the contrary, that ¢ € Z;(A)" and let b € A~ be such
that @ = aba. Thus A~ ab is a nonzero left ideal of A and hence 0 # zab €
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A~abn lan(a) for some z € A~ which leads to a contra.dlctlon since zab =
zabab = 0 because zab € lan(a). O

Corollary 3.5. Let A be a semiprime associative pair whose socle is essen-
tial. Then A is nonsingular.

Proof. Since Soc(A) is von Neumann regular [25, Theorem 1], Zi(Soc(V)) =
0 by Proposition 3.4, which implies Z;(A) = 0 by Corollary 3.3. O

Proposition 3.6. Let A be a semiprime assocjative pair satisfying the acc

* on left annihilators lan(a) (a € AT). Then A is nonsingular.

Proof. Let us first show that A is left nonsingular. Otherwise both Z;(4)*
and Z;(A)~ are nonzero by semiprimeness of A. Then we can take a nonzero
element z € Zi(A)* with lan(z) maximal in the set {lan(y) : 0 #£ y €
Zi(A)t}. Let a € A~ be such that zaz # 0. Then A"za # 0 and hence
there exists 0 # zza € lan(z) for some z € A™, which implies by Lemma
2.1 that 2 € lan(zaz), with z ¢ lan(z), which contradicts the maximality of
lan(z).

Suppose now Z.(A)T # 0 and take 0 # z € Z,.(4)" with lan(z) maximal
in the set {lan(y) : 0 #£ y € Z.(A)*}. By semiprimeness of A, there exist

“a,b € A such that zazbzaz 7% 0. Hence az A~ is a nonzero right ideal and

azA~ Nran(z) # 0. Let 0 # azz € ran(z) with z € A~ and take c € AT
such that ezzcazz # 0. Then bzazzcA™ = 0 implies (by Lemma 2.1 again)
bza € lan(zzc) = lan(z) since lan(z) is maximal, which is a contradiction
because zazbzaz # 0. O

§4. The standard imbedding of an associative pair. Let A be a uni-
tal associative algebra. Consider the Peirce decomposition A = A;; @ 432 ©
A2i:® Azz of A with respect to an idempotent e, and denote by m;; : 4 — A;;
the corresponding Peirce projections (see [24, p.92]). For any set X C A we
put X;; := m;;(X). Then (A;2,"41) is an associative pair with the usual as-
sociative triple product. Conversely, every associative pair 4 = (A%, A7) can
be obtained in this way (see [27, (2.3)]), i.e., there exists a unital associative
algebra A with an idempotent e such that A is isomorphic to the associative
pair (Aj2, As1) defined above, where A3 (Ag, respectively) is spanned by
e and all products z312y21 (1 — e and all products ya;z1, Tespectively) for
Ty € A1z, y21 € Ajz;, and has the property that

PN z11A12 = Apyz1; = 0 implies z;; =0, and
\J 1:22.421 = A12.'l:22 =0 implies gy = 0.

The pair (A, €) is called the standard imbedding of A. If A is semiprime then
(5) is equivalent to

11711./4.12 =90 implies I3 = 0, and

(6)

Ta9. 421 = 0 implies 499 =0,
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or to
(7

Asyz11 = 0 implies 3 =0, and
Ai2z22 = 0 implies 45 = 0.

Proposition 4.1. Let A = (A%, A™) be an associative pair with standard
imbedding (A, e).

(i) I T is a nonzero ideal of A, then (Ilz,Izl) =(INATINA)isa
nonzero ideal of A.
(i1) Let L be a left ideal of A contained in A+ Then L:=L® Ay Lisa
left ideal of A. Moreover, L = 0 if and only if L = 0, and for L; and
L, left ideals of A contained in A¥, L, is strictly contained in L, if
and only if £, is strictly contained in L.
Suppose now that A is semiprime.

(iii) IfL is aleft ideal of A then L3 and L7 are left ideals of A. Moreover,
E:Oﬁandonlyﬂ.'[,n:() and£21 = 0.

(iv) Let L be a nonzero left ideal of A contained in Ay; @ Aza. Then
L1z = LN Ay, is a nonzero left ideal of A.

(v) Let L and M be left ideals of A contained in At, and let £ and M
-be the corresponding left ideals of A. Then LN M =0 if and only if
LNM=0.

Proof. (i) First we note that TN At = I N A;, = T;; since 7 is an ideal
of A, and similarly TN A~ = Iy;. K Ij2 = I3; = 0 then for any z € Z,
T = 231 + Tog; but Apizyy = Az CIN Ay =I5y =0, and z114;2 =
zA12 C I N Ayz =iz = 0. Hence 17 = 0 by (5), and similarly 292 = 0.
(ii) Clearly, if L is a left ideal of A contained in At then £ :=L & Ay L is
theleft ideal of A generated by L.

Suppose now that A is semiprime.
(iii) Let £ be an ideal of A. It is easy to see that £y and L) are left ideals
of A. Indeed,

AYAT L1y C A11Lya = Anmia(L) = m1a( A L) C m12(L) = Lia.

Now, if £L12 = L31 = 0 then, for any = € £, £ = z1; + T22; but Ayz11 =
A1z C LN Az C Lo =0. Hence z1; = 0 by (7), and similarly 742 = 0.
(iv) Let £ be a nonzero left ideal of A contained in A;p @ Azy. Clearly
[:21 = 0 and hence £12 75 0 by (l) MOI‘EOVBI‘ Elg =eL CLN .A12 - [,12,
which implies L1 = £ N Ajs.

(v) Clearly, LN M D (LNM) & Az (LN M) for L and M left ideals of A
contained in AT. Hence, LN M = 0 implies L N M = 0. Suppose now that
LNM =0, and take a1z + a2 € LN M. By the Peirce decomposition,
a1z € LNM =0 and azg € A LN Ay M. Hence Aj2a90 € LNM = 0. Thus
aza =0 by (7), and LN M =0, as required. O
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‘ Proposition 4.2. Let A = (A%, A™) be an associative pair with standard
imbedding (A, e). Then A is semiprime (respectively prime) if and only if A
is semiprime (respectively prime).

Proof. 1t is easy to see that if A is semiprime then A is nondegenerate. If
z12A21212 = 0 then, by the Peirce relations, 12 Az12 = z12.49;713 = 0,
which implies z1; = 0 by semiprimeness of A. Similarly, z21. 452297 = 0
implies z9; = 0. Conversely, suppose that A is semiprime. Let T be an ideal
of A such that 72 = 0. Then (ZN A¥, TN A7) is an ideal of A satisfying
(ITNAE)TNAFHZINAY) C T2 = 0. Hence (ZNAT,ZNA™) =0 by
semiprimeness of A, which implies 7 = 0 by Proposition 4.1.

Let A be prime. As in the first part of the proof, if 12431312 = 0 then
z19.4y12 = 212421912 = 0, which implies 15 = 0 or y32 = 0 by primeness of
A and similarly z21.412y21 = 0 implies z9; = 0 or yg; = 0, showing that 4 is
prime. '

Finally, suppose that A is prime. Let 7 and J be ideals of A such that
IJ = 0. Then (TN AY,TNA") and (J N A+, T N A7) are ideals of 4
satisfying (T N AT)AF(J N A¥) CIJ = 0. Hence (TNAT,ITNA")=0or
(JNAT, 7N A") =0 by primeness of 4, which implies T =0 or J = 0 by
Proposition 4.1. O

Proposition 4.3. Let A = (A%, A™) be a semiprime associative pair with
standard imbedding (A,e). An element a € AT has left Goldie dimension
equal ton in A if and only if a has left Goldie dimension equal to n in A.

Proof. Let {£'} be a direct sum of nonzero left ideals of A contained in
Aa. Then each £ is contained in A;p B A2, and hence by Proposition
4.1(iv), £} N A; is nonzero and it is contained in Aa N A3 = Ajja =
®a4+ AT A~a. By semiprimeness of 4, 0 # Aja.da1 (£ N Ajp) C A= A%a,
and, since Aja Az (L1 0 Age) C LF, {A1pAn (LN Ai2)} is a direct sum of
left ideals of A. Conversely, wé must show that any direct sum of nonzero
left ideals of A contained in AT A~ a gives rise to a direct sum of left ideals
of A contained in 4a; but this follows from Proposition 4.1(ii) and (v). O

Proposition 4.4. Let A = (A%, A™) be a semiprime associative pair with
standard imbedding (A, e). For every subset X C A*, lans(X) = lana(X)N
A,
’Proof. Clearly, lana(X) N A~ C lani(X). Conversely, let z9; € lana(X).
Then
221X.A321X C 221XA21X = ZZIXA_X =0

implies 297X = 0 by semiprimeness of A (Proposition 4.2). O

As usual (see [20, p.31}) denote by Z;(A) the left singular ideal of an

associative algebra A4, i.e.,

Zi(A) = {z € A: lan(z) is an essential feft ideal of A}.
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. Singular ideals are compatible with standard imbeddings in the following
sense.

Proposition 4.5. Let A = (AT, A™) be a semiprime associative pair with
standard imbedding (A, e). Then Z;(A) N A* C Z;(A)*. Hence, if A is left
nonsingular, then A is left nonsingular.

Proof. Let 291 € Z;(A)NA™, and L be a nonzero left ideal of A contained in
A*. By Proposition 4.1(ii) the left ideal of .4 generated by L, £ = L@ .4, L,
is contained in" A2 ® Azs. Then £ N lan4(z1) is a nonzero left ideal of A
contained in A;z @ Aze. Hence by Proposition 4.1(iv), £ N lan4(z01) N A;2
is a nonzero left ideal of A equal to LN lans(z2;) by Proposition 4.4. We
have shown Zi(A) N A~ C Zi(A)™. Similarly Z;(A) 0 AT C Z;(A)*.

Suppose now that A is left nonsingular. Then Zi(A)* = 0 implies Z;(A)N
A% =0 and hence Zi(A) = 0 by Proposition 4.1(i). O

Now we compute the standard imbedding of a simple associative pair
coinciding with its socle.

Proposition 4.6. Let A= (F(X,Y),F(Y,X)) be a simple associative pair
with minimal inner ideals, where (X,X') and (¥,Y") are two dual pairs of
vector spaces over a division associative ®-algebra A. Then the standard
imbedding (A, e) of A is given by A = F(V,V) + &Idy relative to a dual
pair of vector spaces (V, V'), where

Vi=X0Y, V =X8Y, <zt+yz' +y >=<z,2'>+<y,y >,

and e is the projection of V onto X, ie., (z + y)e = z. In particular,
if A is artinian then A = .7-'(V V) = Enda(V) & Mat,xa(A) with n =
dimaX +dimpY. .

Proof. Tt follows from the construction of the standard imbedding (see [27])
and from the fact that F(X,Y)F(Y,X)=F(X,X) and F(Y,X)F(X,Y) =
Fy,y). O

Proposition 4.7. Let A = (A%, A™) be a semiprime associative pair with
standard imbedding (A,e). Then

(i) Soc(A)” Soc(A)N A?, (o = +), and

(i) A is artinian if and only if A is artinian.

Proof. (1) By Proposition 4.2, A4 is semiprime. Now let x5 € Ajp = AT,
Clearly z19 A3 = z12.A7 232. Hence the minimal inner ideals of A contained
in A% are precisely the minimal inner ideals of A contained in A4;3, which
implies, via the Jordan characterization of the associative socle {10, Prop.
2.6(i)] that Soc(A)* = Soc(A)N A*, and the same is true for Soc(4)~.
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" (ii) If A is artinian then it is a direct sum of finitely many ideals M; each of
which is a simple artinian associative pair. It is easy to see that the standard
imbedding (A, e) is the direct sum of the standard imbeddings (M;,e;) of
the M;. Hence A is artinian by Proposition 4.6. Conversely, if A is artinian
then A is artinian by Proposition 4.1(ii). O

§5. The local algebras of an associative pair. Let A be an associative
pair and let b € A~. Then the submodule bA*b under the multiplication
given by (bzb)-(byb) := bzbyb is an associative algebra called the local algebra
of A at b, and denoted Ay. Note that if b is von Neumann regular then A, is
unital with b as a unit element.

Local algebras, which were introduced by K. Meyberg [29] and which play
an important role in the current structure theory of Jordan systems [2, 5, 6, 7,
28), are usually presented in a different way [5, 0.4]. Recall that A+, endowed
with the b-homotope product z -3y y = zby, becomes an associative algebra
AE';) which has as an ideal the set Ker(Uy) := {z € A" : bzb = 0}. Moreover,
the mapping z + Ker(Uy) — bzb is an isomorphism from A?,;) /Ker(Us) onto
our local algebra A; (see [2, Example 1.6}).

However, our definition is more suitable for our purposes than the usual
one, for instance, if A is a subpair of an associative pair ¢ and bisin A~ then
the local algebra A is a subalgebra of @y with our definition. We will also
need an extension of the notion of local algebra which we define as follows.

Let A be a subpair of an associative pair @} and let b € @~ be such
that AT is a subalgebra of the homotope QE’Z). Then bATb can be regarded
as a subalgebra of the local algebra @ of @ at b which will be called the
generalized local algebra of A at b, and will also be denoted by Ap. If bis
actually in A~, then the definition of generalized local algebra agrees, of
course, with that given above.

Sometimes we will consider local algebras of associative algebras. This is
nothing new since, as pointed out above, every associative algebra gives rise
t6 an associative pair. With this in mind we state the following generalized
transitivity of local algebras.

Lemma 5.1. Let A be a subpair of an associative pair Q).

(i) fbe A~ and z € A~ NbQ*b, then bA™b is a subalgebra of the z-
homotope (Qp)(z) of the local algebra of ) at b, and the generalized
Iocal algebra (Ap); of Ay coincides with A;.

(ii) If ¢ € Q™ is such that A™ is a subalgebra of the g-homotope Q)(q)
then, for each y € A,;, A™ is a subalgebra of the y-homotope Q(y),
and the generalized local algebra A, of A at y agrees with the local
algebra (Aq)y of the generalized local algebra A,.

Proof. Straightforward., O
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Some of the results stated in the next proposition were previously proved
for Jordan pairs [2, 6, 7]. Nevertheless, they are included here for the sake
of completeness.

Proposition 5.2. Let A be a semiprime associative pair. Then

(i) All the local algebras of A are semiprime.

(i) A is prime if and only all the local algebras of A at nonzero elements
are prime.

(iii). If A is simple then all the local algebras of A at nonzero elements are
simple.

(iv) b € A~ has left Goldie dimension equal to m in A if and only if A,
has left Goldie dimension equal to m.

(v) Soc(Ap) = Soc{A)™ NbATb. Hence A coincides with its socle if and
only if Ay is artinian for each b € A™.

(vi) If A coincides with its socle, then A has finite both left and right
local Geldie dimension.

- Proof. (i) We just need to prove that Ay is semiprime for any nonzero b € A™.
Now 0 = bab - A - bab = babAT bab implies bab = 0 by semiprimeness of A.
(ii) If A is prime, we have as in (i), that 0 = bab- A, - beb = babA™bch
implies bab = 0 or behb = 0. Suppose conversely that A is prime for each
0#£be A™,andlet I = (I*T,I7) and J = (J*, J~) be ideals of A such that
I°A—°J° = 0. Then bItb and bJb are ideals of A, such that bI1h-bJTh =
bItbJ+b = 0. Hence, by primeness of Ay, bI1b = 0 or bJtb = 0, equivalently
b € ann(I*) or b € ann(J™) by Proposition 2.2(ii) since A is semiprime,
which implies A~ = ann(I*) U ann(J*) and therefore A~ is equal to one of
them, say ann(I*). In this case IT = 0 by Proposition 2.2(iii), hence I = 0
by semiprimeness of A.

(i) If A is simple and 0 % b.€ A™, then A, is simple. Indeed, given
0 5 bzb € A} we have, by simplicity of 4, that AT = A*bzbA™, and hence
Ay =bATb = Ay - bzb - As.

(iv) Let L be a nonzero left ideal of A contained in A~ A%b. By semiprimeness
of A, we have that bAT L is a nonzero left ideal of A; contained in L. Hence
every direct sum of n nonzero left ideals of A contained in A~ A% b provides
a direct sum of n nonzero left ideals of A;.

Conversely, let {£;}1<i<n be a direct sum of nonzero left ideals of A;. For
each 1 < 7 < n take a nonzero element y; € £;. Then {4~ A%y )i, is
a direct sum of nonzero left ideals of A contained in A~ A+b. Indeed, each
A~ A%y; is nonzero by semiprimeness of A, and if z; 4 ... + z, = 0 with
z; € A~ ATy; and, say z; # 0, then by semiprimeness again,

05 bAT 2y C bAYy N bATY) = bATbyin() " bATb-y) C Lin(D_ Ly),

i=2 i=3 i=2

1nn /00 tP=2n 170 17 7ns
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" which is a contradiction.

(v) Since the inner ideals of A} are precisely those inner ideals of A contained
in bATD, Soc(As) = Soc(A)” NbATE. Now it follows by [26, Prop.3(2)] that
if b € Soc(A)~ then b has finite rank and it is von Neumann regular. Hence
Ap is artinian with capacity equal to the rank of b (see Corollary 1 of [26]).
Conversely, if Ay is artinian then Aj has bounded length for the chains of
inner ideals, i.e, there is a bound for the lengths of chains of inner ideals
of AY contained in bA*b, hence for chains of principal inner ideals z A%z,
with z in the inner ideal of A7 generated by b.-.Thus b € Soc(A)~ by [26,
Prop.3(2)] again.

(vi) By (v), any local algebra of A is artinian and hence it has finite both left
and right Goldie dimension. Then, by (iv), A has finite both left and right
local Goldie dimension. [

Proposition 5.3. Let A be a semiprime associative pair, and b € A~. Then
(1) Zi(Ap) C Zi(A7),
(ii) ifbe Z[(A_) then ZI(Ab) = A;.

Hence A is left nonsingular if and only if Ay is left nonsingular forall b e A~.

Proof. (i) Let bab € Z;(A;) and L be a nonzero left ideal of A contained
in A*. We may consider two possibilities: If A~Lb = 0 then, by Lemma
2.1, L C lana(b) C lana(bab), so L N lana(bab) # 0. On the other hand,
if ATLb # 0 then, by semiprimeness of A4, 0 # bATA~Lb C bLb where bLb
is actually a left ideal of A;. Since bab € Z;(Ap), there exists 0 £ blb €
lan 4,(bab) with I € L, equivalently, blb # 0 with blbab = blb-bab = 0. Hence,
by semiprimeness of A, ATbl # 0 with A~ A%blbab = 0, which implies by
Lemma 2.1 again that A"’bl C lan4(bab) N L. In any case lan 4(babd) hits L,
hence lan 4(bab) is an essential left ideal of A and bab € Z;(A™), as required.
(i) Suppose now that b € Z;(A™). We must prove that lang,(bab) is an
essential left ideal of A} for any-bab € Ay. We may assume bab 3 0. Let 0 #
behb € Ap. Since Ay is semiprime (Proposition 5.2(1)), the left ideal Ay - beb of
A} generated by beb is nonzero. If beb € lan 4, (bab) then Ay-bcb C lan 4, (bab).
Thus we may assume bch ¢.lan g, (bab). Then bebab = beb - bab # 0 implies
Atbcba # 0. Since b € Z;(A™), there exists 0 # zbcba € At beba N lan4(b).
Hence, by semiprimeness of A, 0 # baA~zbch = baA™ b - bch C Ay - beb N
lan 4,(babd) since baA~ zbch - bab = baA~zbcbab = 0. We have shown that
lan 4, (babd) is an essential left ideal of A, for any bab € A4y, Le., Zi(4Ar) = As.

For the last part of the proof, if Z;(A™) = 0 then, by (i), Zi(4;) = 0 for
every b € A~. Conversely, suppose that Z;(A;) = 0 for every b € A~. Then,
by (ii), b € Zi(A™) implies 4y = Z;(A3) = 0, so bATb = 0, and hence b = 0
by semiprimeness of A. Since (Z;(At), Zi(A7)) is an ideal of A, Z;(A~) =0
implies Z;(A*) = 0 by semiprimeness of 4. [0

Every semiprime associative pair A which is left nonsingular and such that
every element = € A%, 0 = & has finite left Goldie dimension will be called
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a left local Goldie associative pair. If additionally A has finite left (global)
Goldie dimension then A will be called a left Goldie associative pair. Right
and two-sided corresponding notions are defined dually. It follows from [25,
Cor.1}, Proposition 5.2(vi) and Corollary 3.5 that semiprime associative pairs
with dcc on principal inner ideals are local Goldie.

Proposition 5.4. A semiprime associative pair A is a left local Goldie as-
soclative pair if and only if Ay is a left Goldie associative algebra for every
be A% "

Proof. Tt follows from Proposition 5.2(iv) and Proposition 5.3. [

Corollary 5.5. Every left local Goldie associative pair A having finite right
local Goldie dimension is local Goldie.

Proof. By Proposition 5.4 all the local algebras of A are left Goldie. Since
they have also finité right Goldie dimension by Proposition 5.2(iv), they are
also right Goldie [21, Lemma 7.2.2]. Hence A is local Goldie by the dual of
Proposition 5.4. O

§6. Local Goldie associative pairs. The study of semiprime local Goldie
associative pairs can be reduced to the prime case via the notions of uniform
ideal and essential subdirect product. We refer to the reader to [20,13] were
similar notions were considered for associative and Jordan algebras respec-
tively.

A nonzero ideal I of an associative pair A will be called uniform if for any

nonzero ideals B and C of A inside I, BNC # 0.

Proposition 6.1. Let A.be a semiprime associative pair. Then every I-
uniform element u € A" generates a uniform ideal.

Proof. Let I = I(u) be the ideal of A generated by u, and let B and C be
nonzero ideals of 4 contained in I. Then both left ideals AY B~ and ATC v
are nonzero. Otherwise AT B~ u = 0 would imply u € ran(B~) = ann(B™).
Hence BY C It C ann(B™) since ann(B) is an ideal of 4 by Proposition
2.2(iv), which is a contradiction by semiprimeness of A, using Proposition
2.2(ii1). Then, by l-uniformity of u, 0 # A*B~unN ATC~u C B¥ nC*.

Therefore I is uniform. [

As pointed out before, the lattice L{A) of all ideals of an associative pair
A is an algebraic lattice relative to the x-product. Hence, as a particular case
of [15, Prop. 3.1), using that £(A) is a modular lattice, we obtain:

Proposition 6.2. Let A be a semiprime associative pair. Then )
(i) anongzeroideal I = (I't,I™) of A is uniform if and only if the annihila-
tor ideal ann([I) is maximal among all annihilators ideals ann(B) with
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B = (B*,B™) being a nonzero ideal of A, equivalently, A/ann(I) is
a prime associative pair,

(ii) for each uniform ideal I = (I*,I7) of A there exists a unique max-
imal uniform ideal U = (U%,U~) of A containing I, actually U =
(ann(ann(It)), ann(ann(I7))),

(i) the sum of all maximal uniform ideals of A%is direct.

A subdirect product of associative pairs A < [][ Aq will be called an
essential subdirect product if A contains an essential ideal of the full product
1 Aa- If A is actually contained in the direct sum of the A,, then A will be
called an essential subdirect sum. An ideal [ of a semiprime associative 4 is
called a closed ideal if I = ann(ann(I)). Since the third annihilator coincides
with the first one, an ideal is closed if and only if it is the annihilator of an
ideal. Notice that by Proposition 6.2(i1) maximal uniform ideals are closed.

Theorem 6.3. For an associative pair A the following conditions are equiv-
alent:

(i) A is an essential subdirect product of prime associative pairs Aq,
(i1) A is semiprime and every nonzero ideal of A contains a uniform ideal,
(ii1) A is semiprime and every nonzero closed ideal of A contains a uniform

ideal.
Actually we can take A, = Afann(M,) where {My} is the family of all

maximal uniform ideals of A.

Proof. (i) = (ii). In general, any subdirect product A of a family {4,} of
semiprime associative pairs is also semiprime. Indeed, if B is an ideal of A
such that B «+ B = 0 then, for each index @, 7o(B) is an ideal of 4, with
To(B) *me(B) = 0 which implies no(B) = 0 by semiprimeness of the A4, so
B =10. Let M C A be an essential ideal of the full direct product [[ A4, and
set My := M N Aq, where we are regarding A, as an ideal of [| Ay. Then
M, is a nonzero ideal of A, contained in A since M is an essential ideal
of []Ae. Actually M, is a uniform ideal of A since M, is uniform in 4,
because A, is prime, and any ideal of A contained in M, is an ideal of A4,.
Now if I is a nonzero ideal of A then 74(I) is a nonzero ideal of 4, for some
index a. Hence, by primeness of Ay, 0 # mo(I) * M, C I N M,. Therefore I
contains the nonzero ideal I N M, which is uniform since it is contained in
M,.

(1) = (1) is trivial.

(i) = (i). Let > M, be the sum of all maximal uniform ideals of A, which
is direct by Proposition 6.2(iii). Since ann(}, M,) is a closed ideal, it must
be zero: otherwise ann(} | M) would contain a uniform ideal, and therefore
a maximal uniform ideal because it is closed, which leads to contradiction.
Hence, by a standard argument, Nann(My) = ann(d M,) = 0 implies that
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A is a subdirect product of the associative pairs Ay := A/ann(M,) each
of which is prime by Proposition 6.2(i). Finally, the homomorphic image of
@M, in [] A, is an essential ideal of [] A, since if B is an ideal of [] A4
such that

Bx(®My)=®(B+M,) = &(ro(B)*My)=0

then, for each @, mo(B)* My = 0, so my(B) = 0 by primeness of A,, and
hence B = 0, which completes the proof. O

Lemma 6.4. Let A be a semiprime associative pair and I an ideal of A.
Denote by A the quotient pair A/ann(I) = (A*/ann(I7), A~ [ann(IT)).
We have
(i) any direct sum of nonzero left ideals of A can be lifted to a direct
sum of nonzero left ideals of A. Hence if A has finite left Goldie
dimension, then A has also finite left Goldie dimension,
(ii) if a € AT has finite left Goldie dimension in A, then @ := a + ann(I)
has finite left Goldie dimension in A,
(iii) if A is left nonsingular and I is a uniform ideal, then 4 is a prime
left nonsingular associative pair.

Proof. (i) Let 3. L, be a direct sum of nonzero left ideals of A contained in

it Denoting by 7 : A — A the canonical projection of 4 onto 4, we have
that Ly := 771(Ls) N I is a nonzero left ideal of A, contained in At for
each index . Let us now show that the sum ) L, is direct. Indeed, since the
sum of the L, is direct, for each index B, the intersection Lg N (3 o La)
is contained in ann(I™), but this intersection is also contained in I*, so
Lg A (3 4p La) = 0 by Proposition 2.2(iii), as required.

(ii) Let 3" Lo be a direct sum of nonzero left ideals of A inside the principal
left ideal A4 @ By taking Ly = 7Y L4)NATAanI*, we can obtain as
above a direct sum Y L, of nonzero left ideals of 4, contained in NA+ A~ a.
(iti) Assume now that A is left nonsingular and I is uniform. By Proposition
6.2(i), A is a prime associative pair. Since A is left nonsingular, I is also
left nonsingular, using Proposition 3.2. But I can be regarded as an ideal
of 4 via the : isomorphism z — z + ann(I¥), for z € I *, and moreover, I is

essential in A sgince A is prime. Hence, Cerellary 2.2 apphes, showing that

A is left nonsingular. O

Theorem 6.5. Let A be a semiprime left local Goldie associative pair. Then
A is an essential subdirect sum of prime left local Goldie associative pairs.
More precisely,

OMy <A< BA/ann(M,),

where M, ranges over all maximal uniform ideals of A.
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If A is actually left Goldie then A is an essential subdirect sum of finitely
many prime left Goldie associative pairs.

Proof. Since A has finite left local Goldie dimension, any nonzero ideal of
A contains an [-uniform element, and hence a uniform ideal by Proposition
6.1. Then, by Proposition 6.3, A is an essential subdirect product of prime
associative pairs Ay = Afann(M,), with M, a maximal uniform ideal of
A, each of which is a prime left local Goldie associative pair by Proposition
6.4(i1)(ii1). Let us see that A C @4,: Otherwis’e, there exists z € A% such
that z ¢ ann(M,) for an infinite number of o’s. Say = ¢ ann(M,) for every
a € A, where A is an infinite subset of indexes. Then Mz # 0 for every
@ € A, which implies 0 3# AiM:F:L' =: Iy C My, where Ic,, is a left ideal of
A contained in AT ATz, for every @ € A, and the sum 2 aen Lo is direct.
This implies that z has infinite left Goldie dimension, hence A has infinite
left local Goldie dimension, which is impossible.

Suppose additionally that A has finite left Goldie dimension. Then it
follows from Proposition 6.2(iii) that A contains only a finite number of
maximal uniform ideals, arid hence A is an essential subdirect sum of a finite
number of A,. Moreover, each A, has now finite left Goldie dimension by
Lemma 6.4(1). O

§7. Orders in associative algebras. We record in this section some re-
sults on ordefs in associative algebras which will be used later. Recall that a
subalgebra A of a unital associative algebra Q is a lefi order in Q (relatively
to a multiplicatively closed set S of A) if (i) § C Inv(Q), and (ii) for every
g€ Q,qg=s5"'awhere s € S and a € A. Right orders and (two-sided) or-
ders are defined similarly. In the particular case that S coincides with the set
Reg(A) of those regular elements of A, the orders will be said classical. The
reader is referred to [20, 21, 30] for general results on orders in associative
algebras (rings).

Lemma 7.1. Let A be an associative algebra which is a lefi order in a
unital associative algebra @ re]atwe to a multiplicatively closed set S of A
and s € S. Then

(i) sAs is a left order in Q relative to sS's, and
(ii) the local algebra A, of A at s is a left order in the local algebra Q,

relative to sSs.

Proof. (i) Clearly sSs is contained in Inv(Q). Now let ¢ € Q and write
s5qgs™! = r~la for some r € S and a € A Then ¢ = s ir 157 sas =
(srs)lsas. '

(ii) Note that sts € s5's belongs to Inv(Q,) if and only if (st5)-Q,-(sts) = Q,;
but

(sts)- Q- (sts) = stsQsts = =35Qs = Q,
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because s, and hence also sts are invertible in Q. Now let sqgs € Q, and set
s¢=r"la for some r € S and a € A. Then (srs)- (sgs) = srsgs = sas. O

There is a natural geometric notion of order in a dual pair of vector spaces
which is compatible with the algebraic one as we next show.

Definition 7.2. Let (X,X', < .,.>) be a dual pair of vector spaces over A.
We shall say that (N, N',D) is a left (right) order in (X, X', < .,. >) if
(i) D is a left (right) order in the division associative algebra A,
(ii) N is aleft D-submodule of X such that Dz NN # 0, for each 0
ze X,
(iif) N' is a right D-submodule of X' such that z'D N N’ % 0 for each
0#z' €X', and
(iv) < N,N'>CD.
If (N,N', D) is both left and right order in (X, X', < .,. >), we will say that
(N,N',D) is an order in (X, X', < .,.>).

Proposition 7.3. Let (N,N', D) be a left order in the canonical dual pair
(X,X'") defined by a finite dimensional left vector space X over a division
associative algebra A. Then any subalgebra A of Enda(X) = X' @5 X
containing N' @ p N is a left order in Enda (X).

Proof. Let us first see that any e € Reg(A) is invertible in Enda(X). Since
a is invertible if and only if a is injective, we just need to show that the kernel
of a is zero; but ker(a) # 0 implies ker(a) N N # 0 by 7.2(ii), now taking
0#v€ker(a)NN and 0 # v € N', we obtain (v @ v)a = v’ @ va = 0 with
0#v ®v e N' ®@p N C A, which is a contradiction.

Let ¢ = 2] ® y1 + ... = ® y, where both {z!} C X' and {y;} C X
are linearly independent sets. We can write each z} @ y; = v} ® A7 'w;
for some v € N'Nz!D, w; € NNDy;, and \; € D. Let m = dimpX.
We construct a left denominator b € N' ® p N for ¢ as follows: Complete
{v{,...,vl} to abasis {v},...,v},} of X'. Then there exist {p1,...,pm} C D
and {v1,...,Vm} C N linearly independent such that, for each 1 < i < m,
< w;,v} >= p; and < v;,v; >= 0 for j # 1. Now, for each 1 < i < r, we have

vi(v} ® A7 'wi) =< vj,v) > AT w; = o frw;

for some @; and §; in D, @; # 0. Forr < j < m, let a; = §; = 1. By
multiplying the elements of a basis of X’ by suitable elements of D, we
obtain a basis {w}}1<j<m of X' contained in N'. Putting b =: w} ® ayv; +
vor + W, ® amvm € N' ®@p N, we have that b is invertible in Enda(X) and
y=wi®@Pwr+.. w.Q@f/w, e NN®QpN. O

Let A be a subalgebra of an associative algebra Q. We will say that Q is
a tight left cover of A if for each nonzero ¢ € @, AgN A 3 0. Clearly, if 4 is
a left order in @ then Q is a tight left cover of A..
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Proposition 7.4. Let A be a (semiprime) left Goldie algebra which is a
subalgebra of a semiprime artinian algebra Q. If Q is a tight left cover of A
then A is a left order in Q.

Proof. (1) Reg(A) C Inv(Q). Indeed, let r € Reg(A). By [30, Lemma 1.10,
p. 54, r € Inv(Q) if and only if lang(r) = 0. Now if lang(r) 5 0 then (by
tightness of A in @), 0 5 lang(r) N A C lan4(r), which is a contradiction
because r € Reg(A).

(2) Given 05 g € @, set (A:¢q):={z € A:zqc A}. We claim that (A : q)
is an essential left ideal of A. Let' £ be a nonzero left ideal of 4. If Lg =0
then £ C (A : ¢), so we may suppose Lg # 0. Then, by tightness of A in @
again, 0 # ALgN A C LgN A, s0 LN(A: q) # 0 which proves the claim.
Since any essential left ideal of A contains a regular element {21, Lemma
7.2.5), there exists r € Reg(.A) such that rg € A. Hence by (1) ¢ =r~'a for
some a € A, which completes the proof. O

Proposition 7.5. Let A be a left order in a semiprime artinian associative
algebra Q. Then every essential ideal T of A is also a left order in Q.

Proof. By the classical Goldie theorem, A is left nonsingular and has finite
left Goldie dimension. Hence T is also left nonsingular (see Corollary 3.3 for
the analogous result for associative pairs) and has finite left Goldie dimension.
Let 07 g € Q. Since T is essential in .4, and Q is a tight left cover of A, we
have TgN T D Z(Agn A) # 0, which proves that Q is a tight left cover of 7.
Hence by Proposition 7.4, T is a left order in Q, as required. O

We warn the reader that it is necessary to consider (two-sided) orders in
the next lemma. Merely left orders seem not to be enough.

Proposition 7.6. Let A be a semiprime associative algebra which is an
order in a unital associative algebra Q, and let 0 # g € Q. We have

(i) g¢4gnN A #0.
Moreover, if Q is artinian then
(i1) there exists b € A such that ¢Qgq = bQb.

Proof. (1) Writing ¢ = a™!b = da™! we have, by semiprimeness of A4, that
agaAaga 7 0, which implies 0 # gadag = dAb C gAgN A.

(ii) Note that by (i) Q is semiprime. Suppose now that Q is artinian. Then,
by Proposition 5.2(i) and (v), the local algebra @, of Q at g is also semiprime
and artinian (since inner ideals of @, are just those inner ideals of () contained
in ¢Qq) and g is its unit element (since g is von Neumann regular in Q). Write
¢ =q1+...+ ¢gn as a sum of orthogonal division idempotents in Q,. By
(i), for each 1 £ i < n there exists 0 # b; € ¢iAg; N A. Since any element
z € Q, generate the same principal inner ideal in @, as in @, and since



» GOLDIE THEOREMS FOR ASSOCIATIVE PAIRS 3011

the g; are mutually orthogonal in Q,, we have, for b:= b, +... + b,, that
qQq¢=105Qb. O

As pointed out in the introduction, there exists a notion of order in rings
which need not have a unit. We begin with some definitions. An element
a € A is called semireqular if

a’z=0=az=0, and za®=0=>za=0

for z € A’ (the unitization of A). ‘We denote by SemiReg(A) the set of all
semiregular elements of A. Certainly SemiReg(A4) D Reg(A). We remark
that if a € a*Q N Qa? for some over-algebra Q D A, then a € SemiReg(A).

Let LocInv(.A) denote the set of elements a € A which are locally invertible
in the sense that there exists an idempotent e € A such that a is invertible
in the unital algebra ede. Then the local inverse a¥ € ede is precisely the
group inverse of a, and it is characterized by the conditions:

ad® = a®a, a=ad"a, o =d¥ad¥.

The idempotent e is also unique, e = aa® = a¥a. Moreover, a is locally
invertible if and only if a € a®.Aa? (see [17]). Thus, by the above remark, if
a € A is locally invertible in some over-algebra @, then a is semiregular in
A.

A subalgebra A of a not necessazily unital associative algebra Q is said to
be a Fountain-Gould left (right) order in @ whenever

(1) SemiReg(A) C LocInu(@), and
(2) every element g € Q can be written in the form ¢ = a#b (¢ = dc#)
where a,c € SemiReg(A) and b,d € A.
Left and right Fountain-Gould orders will be simply called Fountain-Gould
orders. I condition (2) alone is satisfied, then A is a weak left (right) order
in Q. By [18, Proposition 2.6], weak left orders in semiprime associative
algebras coinciding with their socles are actually Fountain-Gould left orders.

§8. Orders in associative pairs. In this section we introduce a notion
of order in associative pairs and give a Goldie-like characterization of orders
in semiprime associative pairs with dcc on principal inner ideals, and in
semiprime artinian associative pairs.

Definition 8.1. Let A be a subpair of an associative pair Q. We will say
that A is a left (right) order in Q if for any q € Q° there exists z € A% such
that
(i) =z is von Neumann regular in @,
(ii) ¢ € zQ 7z, and
(iii) the local algebra A; of A at z is a left (right) order in the unital
associative algebra Q..
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As usual, order will mean left and right order. Next we will see that orders
in associative algebras can be characterized as orders in the pair sense. The
reason for this fact is that isotopy and isomorphism are equivalent notions
in unital associative algebras.

Proposition 8.2. Let A be a subalgebra of a unital associative algebra Q.
Then A is a left order in Q if and only if the associative pair A = (A, A) is
a left order in the associative pair @ = (9, Q).

Proof. Let A be a left order in @ relative to a multiplicatively closed set S
of A. Then given g € Q there exists s € .5 such that ¢ € @ = sQs, s is von
Neumann regular in @, and by Lemma 7.1(ii), A, is a left order in @, which
proves that the associative pair (A, A) is a left order in (Q, Q)

Suppose now that the associative pair 4 = (A, A) is a left order in Q@ =
(@, Q). Then given the unit element 1 of Q, there exists z € A such that
1 € zQz (so z is invertible in @), and A; is a left order in @, relative to a
multiplicatively closed set Sz of A;. We claim that =5 is a multiplicatively
closed set of A and that A is a left order in @ relative to 5. Indeed, (i)
given xs; and Ts; in 5, we have that (zs1z)-(zs22) = zs13537 € Sz, and
hence zs,zsy € z.5 since z is invertible in @, (ii) given zs € z5, we have
that zsz is invertible in @, with inverse zwz, so z = (zsz) - (zwz) = zsrwz
which implies zszw = 1, and similarly, zwzs = 1, i.e., zs is invertible in Q
with inverse zw, and (iii), given ¢ € Q, since ¢ € Q, there exists zsz € Sz
such that (zsz)- ¢ € Az, so sq € A, as claimed. O

There exists also a relationship between Fountain-Gould orders in asso-
ciative algebras and orders in associative pairs given by the next proposition.

Proposition 8.3. Let A be a subalgebra of an associative algebra Q.

(i) I the associative pair A = (A, A) is a left order in the associative
pair @ = (@, Q), then A is a weak left order in Q.

(ii) If Q is a simple associative algebra coinciding with its socle, then A

- is a Fountain-Gould order in Q if and only if A = (A, A) is an order

Proof. (i) Given ¢ € Q, there exists ¢ € A such that ¢ € tQz and A; is a
Ieft order in ;. Take zsz € Az N Inv(Q:) such that (zsz)-¢g € A;. Then
(1) zsq = (zsz)-g € Aand
(2) ¢ € Q; = (zsz) - Q; = zszQx C zsQ, with zs € LocInv(Q).
To see the last part note that z € (zsz)-(zsz)- Q- (z52) = zszszQzsz im-
plies s € (z5)2Q(zs)?. Now it follows from (1) and (2) that g = (zs)¥ (zsq)
with zsg € A, which proves that A is a weak left order in Q.
(ii) Suppose now that Q is a simple associative algebra coinciding with its
socle. If the associative pair A = (A4, A) is an order in @ = (Q,Q), then
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it follows from (i) and [18, Proposition 2.6] that 4 is a Fountain Gould
order in Q. Conversely, if A is a Fountain Gould order in Q, then, by (3,
Proposition 10] and its dual, for every s € SemiReg(.A), the algebra s.As
is a classical order in the (simple artinian) associative algebra eQe = sQs
with e = ss*. Hence, by Lemma 7.1(ii), the local algebra A, of A at s
is an order in @,. Thus we just need to prove that given ¢ € Q, there
exists s € SemiReg(A) such that ¢ € s@s. By Litoff’s theorem [22, p.90},
there exists an idempotent e € @ such that ¢ € eQe withe=¢; +... + e,
a sum of orthogonal division idempotents. By [18, Lemma 2.1}, we can
write each e;, 1 <1 < n, as e = al#b; = d,'c?;IE with b;,¢; € A, a;,¢ €
SemiReg(A), aia?&b,- = b; and dic}#c,— = d;. Since A is prime [19, Theorem
1.1] 0 74 d; Ab; = diC?CiAa,'a?bi = e;ciAa;e; C epde; N A, Hence any
0 +# s; € e;Qe; N A is semiregular in A (since ¢;Qe; is a division associative
algebra) and satisfies e; € €;Qe; = 5;Qs;. Finally, taking s = s1+...+5,, we
have that s € Inv(eQe) and hence s € SemiReg(A), with ¢ € eQe = 5Qs,
as required. O

Now we give an example of orders in associative pairs which has a Faith- -
Utumi flavour [23]. As it will be proved in a forthcoming paper, any order
in a simple associative pair coinciding with its socle is isomorphic to one of
these.

Proposition 8.4. Let (N,N',D) and (M, M', D) be left orders in dual pairs
of vector spaces (X, X', < .,. >) and (Y,Y’, < .,. >) respectively, over a divi-
sion ®-algebra A. Then any subpair A of @ = (F(X,Y), F(Y, X)) containing
(N'®p M, M' ®p N) is a left order in (F(X,Y), F(Y, X)).

Proof.- Without loss of generality we may assume A = (N'®p M, M'®@p N).
Let g =9y ® 1+ ... + ¢, ®z, € F(¥,X) where {z;} and {y!} are linearly
independent sets. We can write each y! ® z; = w! ® A\; 'v; with w! € M/,
v; € N,and A; € D. Taking b = w) ®v; +... +w. @ v, € A, we
have, by Proposition 2.4(i), that bQ¥b = ¢Q¥q since Im(b) = Im(q) and
Im(b#) = Im(q*). We needn’t worry about the von Neumann regularity of
b in Q because the whole pair @ is so. Let p € Q% be such that bpb = b. To
prove that Ay is a left order in )y we note that @ is isomorphic to the simple
artinian associative algebra b* X' ® Ybp under the mapping bsb — bsbp,
where (Ybp, b*¥X") is a r-dimensional dual subpair of (Y,Y”). Under this
isomorphism, Ay is isomorphic to (5# N' @ p Mbp) where (Mbp, b#N', D) is
a left order in (Ybp, b# X'). Indeed,

< Mbp,b*N' >=< Mbpb, N' >=< Mb,N' >C< N,N' >C D

and the remaining conditions can be verified easily. Hence A4; is a left order
in Q) by Proposition 7.3, which completes the proof. O
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Remarks. We note that Propositions 8.4 and 8.2 provide a generalization of
Proposition 7.3 to arbitrary simple algebras coinciding with their socle (i.e,
with nonzero socle).

In the particular case that the dual pairs (X, X') and (Y,Y") are finite di-

mensional Proposition 8.4 implies the following assertion: Let D be an order
in a division associative algebra A, and p, ¢ two positive integers. Then any
subpair A of @ = (Mp ¢(A), My (A°P)) containjng'(Mp,q(D),Mq,p(D"P))
is an order in Q.
" Orders in associative pairs satisfy a property that will be very useful
in what follows. We stress such a property by saying that an associa-
tive pair A = (A%, A7) is a left iriple product order in an associative pair
Q = (Q+,Q7) if for any ¢ € QF there exists a € AT and b € A¥ such
that bag € A* and bap # 0 for any nonzero p in the principal right ideal
0(Q¥, Q%)g.

Proposition 8.5. Let A be an associative pair which is a left order in an
associative pair (). Then A is a left triple product order in Q.

Proof. Let 0 # g € @ . Then there exists b € A~ such that b is von Neurnann
regularin @, ¢ € bQ b, and A is a left order in the unital algebra Q. Taking
bab € Ay a left denominator for g, we have bag = bab-q € Ay C A~. On the
other hand, if bwb is the inverse of bab in @}, we have bwbab = bwb - bab = b.
Hence, for p € II(Q*, Q7 )g, bap = 0 implies p =0. O

Let us see how far we can go with the definition of left triple product order
in associative pairs.

Proposition 8.6. Let A be an associative pair which is a left triple product
order in an associative pair Q. Then

(i) LN A~ # 0 for any nonzéro left ideals L of Q contained in Q.
" (i) @ is semiprime if A is semiprime.

Proof. (i) follows from the definition, and (ii) is an immediate consequence
of (). O

Proposition 8.7. Let A be a semiprime associative pair which is a left triple
product order in an associative pair . Then
(i) lang(X)N A~ =lana(X) for any subset X of AT.
(ii) For X,Y C A% we have that lana(X) C lana(Y) if and onIy if
lang(X) C lang(Y).
(iii) Z((A) = ZI(Q) nA.
(iv) A is left nonsingular if and only if Q) is so. :
(v) For any b € A~ the local algebra Qy of Q at b is a tight left cover of
Ap.
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(vi) ‘Any direct sum {L;} of nonzero left ideals of A gives rise to a direct
sum {E,} of nonzero left ideals of (). Moreover, if for some d € A—,
all the L; are contained in A~ Atd, then all the L; are contained in
Q™ Q*d. .

(vii) If Q has finite left (local) Goldie dimension, then A has finite left
(local) Goldie dimension as well.

Proof. (i) Note that clearly lang(X) N A~ is contained in lana(X). Con-
versely, let z € A~ such that z does not belong to lang(X), we have by
Lemma 2.1 that there exists z € X and ¢ € Q% such that gzz is nonzero. By
definition of left triple product order, there exist b € A~ and @ € AT such
that bag € A~ and bagzz £ 0. Hence z ¢ lana(X).

(ii) By (i), lang(X) C lang(Y) implies lan4(X) C lana(Y). Conversely,
suppose that there exists ¢ € lang(X) such that ¢ ¢ lang(Y). Then, by
Lemma 2.1, gY@~ # 0. Since A is a left triple product order in @), we can
find b € A~ and @ € A" such that bag € A~ and bagVYQ~ # 0. Hence
bag € lang(X) N A~ = lan4(X), by (i), with bag & lan4(Y).

(iii) Let z € Z;(A)* and L be a nonzero left ideal of Q contained in Q~. By
Proposition 8.6(i), L N A~ is a nonzero left ideal of A, and hence, by (i)

0#£ LNA™ nlang(z) C LN lang(z),

which proves that z € Z;(Q)T. Conversely, let z € Z;(@Q)* N A*. Since A
is semiprime, to prove that z belongs to Z;(4)*, we just need to verify that
lang(2) N AATd # 0 for any 0 # d € A™. Take 0 # ¢ € A~ such that
Q~cd # 0, and let 0 # ged € lang(z), where ¢ € @, which there exists
because z € Z;(Q)F. Since ged # 0, we can find a € AT and b € A~ such
that bag € A~ with baged # 0. Hence, 0 # A~ cdNlang(z) = A~ cdNlan(z)
by (i), which proves that z € ZAYT.

(iv) It follows from (iii) that if @ is left nonsingular then A is left nonsingular.
Conversely, 2)(Q) N A = Zi(4) = 0 implies Z}{@) = 0 by Proposition 8.6(i).
(v) Let 0 # bgh € bQ* b. Then there exist ¢ € A~ and d € At such
that cdbgb is a nonzero element of A~. By semiprimeness of A, there exists
t € At such that cdbgbtedbgb 7 0, so dbgbt is also nonzero. Again applying
the definition of left triple product order, we find e € AT and f € A~ such
that efdbg € A' and efdbgbt # 0. Use again the semiprimeness of 4 to
get that efdbgbtzefdbgbt # 0 for some z € AT. Then 0 # b(tzefd)bgh =
btz(efdbg)b € Ay - (bgh) N As.

(vi) Let Y L; be a direct sum of nonzero left ideals of A contained, say in A~
Without loss of generality we may assume, for each index 1, that L; = A”a;z;,
where a; € At and z; € L;. We claim that the left ideals Q™ a;z; of Q form
a direct sum. Suppose on the contrary that ¢ia;z1+ ... +¢nant, = 0 where
some of the summands, say g;a;z; is nonzero. Applying the definition of left
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triple product order, we find ¢; € A% and by € A~ such that byciq; € A~
and bjcigia;zy # 0. Hence 0 = bici(qraiz1) + ... + bici(granzs) with
0 # bici(graiz1) € Ly implies that some of the remaining summands, say
(byc192)aa2, is nonzero. Repeat the above argument with g; replaced by
(b1c1g2). After repeating the above argument at most n-times, we obtain
asum I + ... + 1, = 0 where each ; € L; and at least one of them is
nonzero, which is a contradiction. In the case that all the L; are contained
in A” AT d for some d € A~, then the above construction provides now ideals
L; contained in @~ Q%d.

(vii) It is a direct consequence of (vi). O

While, as it will be seen later, orders in semiprime associative pairs with
dcc on principal inner are semiprime, we don’t know whether this remains
true for left triple product orders. Nevertheless, with this additional require-
ment, everything works as expected.

Theorem 8.8. Let A be a semiprime associative pair which is a left triple
product order in a semiprime associative pair @ coinciding with its socle.
Then

(1) A is left local Goldie,

(ii) for each b € A~ the local algebra A, of A at b is a left order in the

semiprime artinian associative algebra Q.

Moreover,

(1) A is prime if and only if Q is simple, and

(2) A has finite left Goldie dimension if and only if Q is artinian.

Proof. (i) Since @ is nonsingular by Corollary 3.5, it follows from Proposi-
tion 8.7(iv) that A is left nonsingular. We also have that ) has finite lefi

.local Goldie dimension (Proposition 5.2(vi)), and hence A has finite left local

Goldie dimension as well (Proposition 8.7(vii)).

(1) Let b € A™. Since, by Proposition 5.2(1)(v), @ is a semiprime artinian
associative algebra, by (i) together with Proposition 5.2(iv) and Proposition
5.3, A; is left local Goldie. Now, since @ is a tight left cover of 4; (Propo-
sition 8.7(v)), we can apply Proposition 7.4 to obtain that A4; is a left order
n Q;.

(1) X A is prime then @ is simple by Proposition 8.6(i) and by the structure of
the socle (if Q) is not simple then it contains two orthogonal nonzero ideals).
Conversely, if Q) is simple then all its local algebras @} at nonzero elements
are simple (Proposition 5.2(iii)). Since Aj is a left order in @y by (ii), As
is prime by the classical Goldie theorem, and hence A is prime by the local
characterization of primeness (Proposition 5.2(ii)).

(2) Since semiprime artinian associative pairs satisfy the acc on all left ideals
(Theorem 2.5(3)), it follows from Proposition 8.7(vii) that A has finite left
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Goldie dimension whenever @ is artinian. Conversely, if @ is not artinian
then it has infinite left Goldie dimension (Proposition 2.6), and hence A has
also infinite left Goldie dimension (Proposition 8.6(1)). O

Let us return to orders in associative pairs. As announced, we next prove
(together with other useful results) that orders in semiprime associative pairs
with dcc on principal inner ideals are semiprime.

Proposition 8.9. Let A be an associative pair which is an order in a
semiprime associative pair () equal to its socle. Then
(i) A is semiprime, '
(ii) for each g € @™, there exists € A~ such that ¢Q*q = zQ%z,
(iii) any essential ideal I of A is also an order in Q).

Proof. (i) Let 0 # = € A~. Then there exists b € A~ such that z € bQ+b
and the local algebra A of A at b is an order in the semiprime artinian
algebra @ (Proposition 5.2(v)). Hence Ay is a semiprime Goldie algebra by
the classical Goldie theorem. In particular, @ is a tight left cover of A,
so Ay -z N Ay # 0. Take a nonzero element bab -z = baz € Ap -z N Ay.
By semiprimeness of A, 0 # (baz) - Ay - (baz) = baz At baz, which implies
zATz # 0, as required.

(ii) Given g € @~ there exists b € A™ such that g € bQTb and A, is an order
in the semiprime artinian associative algebra ;. Then, by Lemma 7.6(ii),
g Qpr-g==z-Qp-z for some z € Ay. Hence Qg =¢q-Qv-g=2-Qp-z = zQz.
(iii) As above, given ¢ € Q~ we take b € A~ such that ¢ € bQVband Ay isan
order in the semiprime artinian associative algebra (). It is easy to see that
bItb is an essential ideal of Ay (if bab € ann 4, (bI*b), then bab € ann 4(It)
by Proposition 2.2(i1), and hence bab = 0 because I is an essential ideal of A).
Now, by Proposition 7.5, the generalized local algebra B =: bI*b = I, of I
at b is also a left order in K =: Q. Take a denominator bub € Inv(K), with
u € It, for g. By Lemma 7.1(ii), Bpyp is an order in Kjpyp. Now, by Lemma
5.1(i1), Bpub = (Ip)pup coincides with Iyup, and Kpup = (Bp)pus agrees with
Qpup. Therefore, we have proved that given ¢ € @, there exists bub € I~
(von Neumann regular in Q) such that ¢ € (bub)Q*(bub) and Iy is an order
in Qpup, as required. 0O

Everything is ready to prove the main result of this paper.

Theorem 8.10. For an associative pair A the following conditions are equiv-
alent:
(i) A is an order in a semiprime associative pair @ coinciding with its
socle. .
(ii) A is semiprime, satisfles the acc on lan(z), z € A*, and has finite
both left and right local Goldie dimension,
(iii) A is a semiprime local Goldie associative pair,
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(iv) A is semiprime and all its local algebras are Goldle
In this case,

(1) A is prime if and only if Q) is simple, and
(2) A is Goldie if and only if () is artinian.

Proof. First we note that the equivalence (ii1) < (iv) follows from Propo-
sition 5.2(iv) and Proposition 5.3, and that the implication (i) = (iii) is a
consequence of Proposition 3.6.

(i) = (ii). By Proposition 8.9(i), 4 is sem_lprlme Moreover, since orders
are left (and right) triple product orders (Proposition 8.5), it follows from
Theorem 8.8(i) that A has finite both left and right local Goldie dimensions,
and from Proposition 8.7(ii) together Proposition 2.5(1)(ii) that A satisfies
the acc on the left annihilators of a single element.

(iii) = (i). By Theorem 6.5, A is an essential subdirect sum of prime local
Goldie associative pairs. More precisely,

BMy 1AL @A/ann(M,),

where M, ranges over all maximal uniform ideals of A. This allows us to
reduce the question to the case that 4 is prime. Indeed, if we prove that each
Ay = A/ann(M,) is an order in a (simple) associative pair @, coinciding
with its socle, then, by Proposition 8.9(iii), M. (regarded as an ideal of
Ag) is also an order in Q. Since direct sums preserve orders, @M, is an
order in the nondegenerate associative pair coinciding with its socle ®Q,
and hence A is also an order in ®Q,. Suppose then that A is a prime local
Goldie associative pair. Let (A4, e) be the standard imbedding of A. Then
A is'prime (Proposition 4.2), nonsingular (Proposition 4.5), and the ideal [4,
Proposition 1} I(A) of the elements of .4 having finite both left and right
Goldie dimension is nonzero. Indeed, by Proposition 4.3, A*, A~ C I(A).
In particular, .4 has uniform left and right ideals, hence by [4, Th.1 and its
proof], A can be embedded in a prime associative algebra (indeed primitive)
Q with nonzero socle Soc(Q), such that I(A) is a Fountain-Gould order
in the simple assoclative algebra coinciding with its socle Soc{@). Thus,
Proposition 8.3(ii) implies that the associative pair (I(A), I(.A4)) is an order
in the associative pair (Soc(Q), Soc(@}).

It is readily seen that Q@ = (eSoc(Q)(1 — e),(1 — e)Soc(Q)e) is a sim-
ple associative pair equaling its socle (from the same properties satisfied by
Soc(Q) as an algebra). We claim that A = (A;2,A21) is an order in Q: Let
gi2 € QF C Soc(Q) (Soc(Q) is an ideal of Q). Since (I(.A), I(A)) is an order
in (Soc(Q), Soc(Q)), there exists, by Proposition 8.9(ii), z € I(.A) such that
q1250¢{Q)q12 = zSo0c(Q)z. This implies that

zS0c(Q)z = q1250¢(Q)q12 = eq1250¢(Q)g12(1 ~ €) C eQ(1 — €)
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and, since z € I(A) C Soc(Q) is von Neumann regular in Soc(Q), z €
zSoc(Q)z C eQ(1l —e). Thus z = ex(l —e), e, z € A;3 = A¥. On
the other hand, ¢;2 being von Neumann regular (as any other element) in
Soc(Q) implies g1z € q1250c(Q)q12 = £So0c(Q)z = z(1—e)Soc(Q)ez, proving
8.1(ii). Now 8.1(i) follows from von Neumann regularity of z in Soc(Q)
(z € zS0c(Q)z = z(1 — €)Soc(Q)ez, since z € A;2) and we just need to
establish 8.1(iii), i.e., A; is an order in Q.. Indeed, notice that

Az =z(1 —e)Aez = ex(1 — e)Aez(L-e) = 2.4z D
zI(A)z =I{A); Dzd7z = A,

and

Q: = z(1 —€)Soc(Q)ex = ex(1 —e)Soc(Q)ex(l —e) = zSoc(Q)z = Soc(Q).

with coincidence also in their products, so that we will finish as soon as we
prove that I(A); is an order in Soc(Q),;. But this follows from Proposi-
tion 8.5 and Theorem 8.8(ii) applied to (I(A), I(A)) which is an order in
(Soc(Q), Soc( Q).

Finally (1) and (2) were proved in Theorem 8.8, in view of Proposition
8.5. O
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