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Abstract. We characterize the exchange property for non-unital
rings in terms of their local rings at elements, and we use this charac-
terization to show that the exchange property is Morita invariant for
idempotent rings. We also prove that every ring contains a greatest
exchange ideal (with respect to the inclusion).

Introduction.
Local algebras at elements were introduced by Meyberg [M], and

play a fundamental role in the structure theory of Jordan systems (see
[AMcC, ACM, McC]). They have also proved to be very useful in the
context of associative pairs, in order to develop a Goldie-like theory
[FGGS], and to study orders in semiprime (non-unital) rings with in-
volution which coincide with their socles [S]. We will see in the present
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paper that local rings are also a useful tool for the study of non-unital
exchange rings.

For an element x in a ring I we define the local ring of I at x as the
additive subgroup xIx, endowed with the product xyx ¦ xzx := xyxzx.
We denote it by Ix. If x is a von Neumann regular element, then Ix is
a unital ring and x is the unit (recall that an element x ∈ I is said to
be von Neumann regular if there exists y ∈ I such that x = xyx).
In particular, if e is an idempotent of I, then Ie is the subring eIe of
I.

The exchange property for modules was introduced by Crawley and
Jónsson in [CJ]. Roughly, the exchange property is what is needed to
have suitable versions of the Krull-Schmidt Theorem even when the
modules do not decompose as direct sums of indecomposables. Fol-
lowing Warfield [W2], we say that an associative unital ring R is an
exchange ring if RR has the exchange property. Warfield proved
that this property is left-right symmetric. A useful characterization
of exchange rings was obtained independently by Goodearl [GW] and
Nicholson [N]. This characterization was adapted by the first author in
[A1] to give the definition of an exchange ring without unit. Namely,
a ring without unit I is said to be an exchange ring if for each
x ∈ I there exist an idempotent e ∈ I and elements r, s ∈ I such
that e = rx = s + x− sx [ A1, Lemma 1.1]. As in the unital case, the
definition is left-right symmetric, and it gives exchange properties for
suitable module decompositions (see [A1, Theorem 1.2]).

We give in Section 1 a characterization of exchange rings in terms of
their local rings at elements: A ring I is an exchange ring if and only
if, for every x ∈ I, the ring Ix is an exchange ring. As a consequence,
I is an exchange ring if and only if every principal left (right) ideal of
I is an exchange ring.

In section 2 we establish that the exchange property for idempotent
rings (those I such that I2 = I) is Morita invariant in the sense that
if I and J are idempotent rings such that I−Mod and J−Mod are
equivalent categories, then I is an exchange ring if and only if J is an
exchange ring. Here I−Mod is the category of “unital” nondegenerate
right R-modules (see Section 2 for definitions).

Section 3 is devoted to show an equivalent condition for the exchange
property: a ring I is an exchange ring if and only if every local ring of I
at an idempotent is an exchange ring and I/I0 is a radical ring, where
I0 denotes the ideal of I generated by the idempotents of I. Note that



the local rings Ie, with e = e2 ∈ I, are the unital rings eIe, and so
our characterization allows to reduce the verification of the exchange
property for a non-unital ring almost entirely to unital rings. Moreover
we prove the existence of a maximum exchange ideal of every ring.

From now on, all our modules over unital rings will be unital (i.e.
m = m1R for all m ∈ MR or m = 1Rm for all m ∈ RM). If I is a ring,
we denote by I1 the unitization of I, that is, I1 = I ⊕ Z with addition
by componentwise and multiplication defined by (x, n)(y, m) = (xy +
ny + mx, nm) for all x, y ∈ I and n, m ∈ Z. Note that I is an ideal of
I1.

§1. Local rings of exchange rings.
In this section we prove that the exchange property for a ring is

equivalent to the exchange property for every local ring at an element
of the ring. As a consequence we obtain that a ring I is an exchange
ring if and only if every principal left ideal of I is an exchange ring.

A ring without unit I is an exchange ring if, for every element
x ∈ I, the equivalent conditions in next Lemma are satisfied. Other
characterizations of the exchange property for non necessarily unital
rings can be found in [A1].

Lemma 1.1. ( [A1, Lemma 1.1]) Let I be a ring without unit and let R
be a unital ring containing I as an ideal. Then the following conditions
are equivalent for an element x ∈ I :

(i) There exists e2 = e ∈ I with e− x ∈ R(x− x2).
(ii) There exist e2 = e ∈ Ix and c ∈ R such that (1−e)−c(1−x) ∈

J(R).
(iii) There exists e2 = e ∈ Ix such that R = Ie + R(1− x).
(iv) There exists e2 = e ∈ Ix such that 1− e ∈ R(1− x).
(v) There exist r, s ∈ I, e2 = e ∈ I such that e = rx = s + x− sx.

Radical rings and π-regular rings are examples of exchange rings.
Many other examples can be found in [N], [Sto], [AGOP], [A1]. Recall
that a ring I is said to be π-regular if for each x ∈ I there exist
a positive integer n and y ∈ I such that xn = xnyxn. Also, recall
that a radical ring is a ring of the form J(R) for some unital ring R,
where J(·) denotes the Jacobson radical. These rings are characterized
intrinsically by the following condition: I is a radical ring if and only
if for every x ∈ I there exists y ∈ I such that y + x− yx = 0 (see [J]).



It is apparent from this and Lemma 1.1(v) that the radical rings are
exactly the exchange rings without nonzero idempotents.

Usually we will consider a non-unital exchange ring I which is an
ideal of a unital ring R. We will shorten this situation saying that “I
is an exchange ideal of R”. We will make repeated use of the following
result, which we state here in a form which is more suited for the
present work.

Theorem 1.2. ( [A1, Theorem 2.2]) Let A and B be two (possibly non-
unital) rings and let f : A → B be a surjective ring homomorphism.
Then A is an exchange ring if and only if B and ker(f) are exchange
rings and idempotents of B lift to idempotents of A.

Proposition 1.3. A ring I is an exchange ring if and only if every
left ideal of I is an exchange ring.

Proof. Let L be a left ideal of I and suppose that I is an exchange ring.
Take x ∈ L. By Lemma 1.1(iv), there exists e2 = e ∈ Ix ⊆ L such that
1 − e ∈ I1(1 − x). Write 1 − e = (α − e)(1 − x) for some α ∈ I1. As
1−e = α(1−x)−e+ex, we have 1 = ex+α(1−x). By Lemma 1.1(iv)
there exist orthogonal idempotents e1, e2 in I1, with 1 = e1 + e2, such
that e1 ∈ Iex and e2 ∈ I1α(1− x). Note that e1 ∈ Iex ⊆ ILx ⊆ Lx.

Since e2 ∈ I1α(1−x), there exists β ∈ I1 such that e2 = (1−β)(1−
x), so e2 = 1−x−β +βx implies 1− e2 = x+β−βx. As 1− e2, x ∈ L,
it follows that β ∈ L, so e2 = (1− β)(1− x) ∈ L1(1− x).

We have proved that, given x ∈ L, there exists an idempotent e1 ∈
Lx such that 1 − e1 ∈ L1(1 − x), so L is an exchange ring by Lemma
1.1(iv). ¤

If I is a ring and x an element in I, we define the local ring of I
at x, and denote it by Ix, as the ring xIx with product

xyx ¦ xzx := xyxzx.

We are now ready to prove the main result of this Section, which
provides a characterization of the exchange property for a non-unital
ring in terms of its local rings at elements.

Theorem 1.4. A ring I is an exchange ring if and only if, for every
x ∈ I, the local ring of I at x is an exchange ring.



Proof. Suppose that I is an exchange ring and let x ∈ I. Consider the
map

ϕ : Ix → Ix

yx 7→ xyx

For y, z ∈ I, we have ϕ(yxzx) = xyxzx = xyx ¦xzx = ϕ(yx) ¦ϕ(zx),
where the dot denotes the product in Ix, so ϕ is a ring homomorphism.
By Proposition 1.3, Ix, which is a left ideal of I, is an exchange ring,
and by Theorem 1.2, Ix = ϕ(Ix) is an exchange ring.

Conversely, assume that all the local rings at elements of I are ex-
change rings. For every x ∈ I, denote by Ix the ring which coincides
with I as an abelian group, and whose product is given by r ◦ s = rxs.

Step 1: Ix is an exchange ring.
Consider the map

ϕ : Ix → Ix

y 7→ xyx

We have ϕ(y ◦ z) = ϕ(yxz) = xyxzx = xyx ¦ xzx = ϕ(y) ¦ ϕ(z), so
ϕ is a ring homomorphism. As ϕ is an epimorphism, Ix/Ker(ϕ) ∼= Ix,
which is an exchange ring. It is very easy to check that (Ker(ϕ))3 = 0
and so, by [A1, Corollary 2.4], Ix is an exchange ring.

Step 2: I is an exchange ring.
Take an element x in I. Denote by I1 and Ix1 the unitizations of I

and Ix respectively. Observe that (0, 1) is the unity of these two rings.
We denote also by ◦ the product in Ix1. Since Ix is an exchange ring
(step 1), it follows from Lemma 1.1(iv) that, given x ∈ I, there exist
e ◦ e = e ∈ Ix ◦ x such that 1 − e ∈ Ix1 ◦ (1 − x). Let (r, 1) be in Ix1

such that (−e, 1) = (r, 1) ◦ (−x, 1).
We have (r, 1) ◦ (−x, 1) = (−rx2 − x + r, 1) = (r + rx, 1)(−x, 1)

(this last product in the ring I1), so 1 − e = (r + rx + 1)(1 − x). As
1 = e + (1 − e) = e ◦ e + (1 − e) = exe + (r + rx + 1)(1 − x), then
I1 = Ixe + I1(1− x), with xe idempotent of I and xe ∈ Ix2 ⊆ Ix. By
Lemma 1.1(iii), I is an exchange ring. ¤

The last part of the following result was already proved in [A1,
Proposition 1.3].

Corollary 1.5. Let I be an exchange ideal of a unital ring R. Then
for every element x ∈ R, Ix is an exchange ring. In particular, if e is
an idempotent in R, then eIe and (1− e)I(1− e) are exchange rings.



Proof. Let x ∈ R. Note that as Ix is a left ideal of I, then Ix is an
exchange ring by Proposition 1.3. Since Ix is a homomorphic image of
Ix (see the proof of Theorem 1.4), we deduce from Theorem 1.2 that
Ix is an exchange ring. ¤

Corollary 1.6. A ring I is an exchange ring if and only if every
principal left ideal of I is an exchange ring.

Proof. For an exchange ring I we have seen that every left ideal of I is
an exchange ring (Proposition 1.3). For the converse, take an element
x ∈ I and consider the ring epimorphism

ϕ : Ix → Ix

rx 7→ xrx

As Ix/kerϕ ∼= Ix and Ix is an exchange ring, we get that Ix is an
exchange ring. Therefore, Ix is an exchange ring for all x ∈ I, and so
I is an exchange ring by Theorem 1.4. ¤

§2. Morita invariance of the exchange property.
In this section we obtain that the exchange property is Morita invari-

ant for idempotent rings. Our interest in this question was motivated
by the observation that, for any simple ring with identity R, every local
ring at a nonzero element of R is Morita equivalent to R (see Propo-
sition 2.5). First of all, we present our key result, without speaking
about Morita contexts or Morita equivalent rings. Recall that a ring R
is said to be an idempotent ring if R = R2, that is, every element of
R is a finite sum of elements of the form r1r2, with ri ∈ R for i ∈ {1, 2}.
Theorem 2.1. Let R be an idempotent exchange ring and let S be
any ring. Assume that there is a 6-tuple (R, S, P, Q, ϕ, ψ) with RPS ,

SQR bimodules such that P = RP, Q = QR, and ϕ : Q⊗RP → S,
ψ : P⊗SQ → R are S-bimodule and R-bimodule maps, respectively, sat-
isfying the compatibility relations: ϕ(q⊗p)q′ = qψ(p⊗q′), p′ϕ(q⊗p) =
ψ(p′ ⊗ q)p for every p, p′ ∈ P, q, q′ ∈ Q. Suppose that ϕ is surjective.
Then S is an exchange ring.

Proof. Let s ∈ S. There exist p1, . . . , pn ∈ P, q1, . . . , qn ∈ Q, r1, . . . , rn,
r′1, . . . , r

′
n ∈ R, such that s = ϕ(

∑n
i=1 qiri ⊗ r′ipi) (using that QR = Q,

RP = P and the surjectivity of ϕ).



Let nQ denote the S-Mn(R)-bimodule of n-rows with coefficients
in Q, and let Pn denote the Mn(R)-S-bimodule of n-columns with
coefficients in P. We have ϕ(n) : nQ⊗Mn(R) Pn → S defined by:

ϕ(n)


(q′1, . . . , q

′
n)⊗




p′1
...

p′n





 = ϕ(

n∑

i=1

q′i ⊗ p′i)

and ψ(n) : Pn ⊗S
nQ → Mn(R) given by:

ψ(n)







p′1
. . .
p′n


⊗ (q′1, . . . , q

′
n)


 =

(
ψ(p′i ⊗ q′j)

)
.

Taking into account that Mn(R) is an exchange ring ([A1, Theorem
1.4]), it is easily seen that (Mn(R), S, Pn,n Q,ϕ(n), ψ(n)) satisfies all
the same conditions as the original 6-tuple.

Consider P1 := Mn(R)(p1, . . . , pn)t ⊆ Pn, and Q1 := (q1, . . . , qn) ·
Mn(R) ⊆ nQ.

Let ϕ1 : Q1 ⊗Mn(R) P1 → S be the map induced by ϕ(n). Write
T = Q1 ⊗Mn(R) P1. Then T with the following product is a ring:

(q1 ⊗ p1)(q′1 ⊗ p′1) = q1ψ
(n)(p1 ⊗ q′1)⊗ p′1,

where p1, p
′
1 ∈ P1 and q1, q

′
1 ∈ Q1.

Write p = (p1, . . . , pn)t and q = (q1, . . . , qn). We shall see that T is
an exchange ring. Let t ∈ T. Put t =

∑
i qri ⊗ r′ip (ri, r

′
i ∈ Mn(R)).

Set a =
∑

i ψ(n)(p⊗ qri)ψ(n)(r′ip⊗ q) ∈ Mn(R).
Define α : Tt → Mn(R)a by

α(t′) = α(
∑

j

qr′′j ⊗ r′′′j p) =
∑

j

ψ(n)(p⊗ qr′′j )ψ(n)(r′′′j p⊗ q).

α is well-defined:
Assume

∑
j qr′′j ⊗ r′′′j p = 0 in Q1 ⊗Mn(R) P1.

Then ϕ(n)(
∑

j qr′′j ⊗ r′′′j p) = 0 and
∑

j

ψ(n)(p⊗ qr′′j )ψ(n)(r′′′j p⊗ q) =
∑

j

ψ(n)(p⊗ qr′′j ψ(n)(r′′′j p⊗ q))

=
∑

j

ψ(n)(p⊗ ϕ(n)(qr′′j ⊗ r′′′j p)q) = ψ(n)(p⊗ (
∑

j

ϕ(n)(qr′′j ⊗ r′′′j p))q)

= ψ(n)(p⊗ 0) = 0.



Now, if t′ = tt1t = (
∑

qri⊗ r′ip)(
∑

qr′′j ⊗ r′′′j p)(
∑

qrk⊗ r′kp), then

t′ = (
∑

qri ⊗ ψ(n)(r′ip⊗ qr′′j )r′′′j p)(
∑

qrk ⊗ r′kp)

=
∑

i,j,k

qri ⊗ ψ(n)(r′ip⊗ qr′′j )ψ(n)(r′′′j p⊗ qrk)r′kp,

so

α(t′) =
∑

i,j,k

ψ(n)(p⊗ qri)ψ(n)(r′ip⊗ qr′′j )ψ(n)(r′′′j p⊗ qrk)ψ(n)(r′kp⊗ q)

=
∑

i,j,k

ψ(n)(p⊗ qri)ψ(n)(r′ip⊗ q)r′′j r′′′j ψ(n)(p⊗ qrk)ψ(n)(r′kp⊗ q)

= a(
∑

j

r′′j r′′′j )a ∈ Mn(R)a.

α is surjective:
This is clear from the above expression and the fact that R = R2.

α is a ring homomorphism:

α((tt1t) ¦ (tt2t)) = α(tt1tt2t)

= α((
∑

qri ⊗ r′ip)(
∑

qr
(2)
j ⊗ r

(3)
j p)(

∑
qrk ⊗ r′kp)

(
∑

qr
(4)
l ⊗ r

(5)
l p)(

∑
qrm ⊗ r′mp))

= α(
∑

qri ⊗ ψ(n)(r′ip⊗ q)r(2)
j r

(3)
j ψ(n)(p⊗ qrk)

ψ(n)(r′kp⊗ q)r(4)
l r

(5)
l ψ(n)(p⊗ qrm)r′mp)

=
∑

ψ(n)(p⊗ qri)ψ(n)(r′ip⊗ q)r(2)
j r

(3)
j ψ(n)(p⊗ qrk)

ψ(n)(r′kp⊗ q)r(4)
l r

(5)
l ψ(n)(p⊗ qrm)ψ(n)(r′mp⊗ q)

= a(
∑

j

r
(2)
j r

(3)
j )a(

∑

l

r
(4)
l r

(5)
l )a,

while α(tt1t) = a(
∑

j r
(2)
j r

(3)
j )a and α(tt2t) = a(

∑
l r

(4)
l r

(5)
l )a. So we

obtain α(tt1t) ¦ α(tt2t) = α((tt1t) ¦ (tt2t)).

Therefore we have proved that α : Tt → Mn(R)a is a surjective ring
homomorphism.

Assume
∑

qr′′j ⊗ r′′′j p ∈ Ker(α). Then



∑
ψ(n)(p⊗ qr′′j )ψ(n)(r′′′j p⊗ q) = 0.

Now compute:

(
∑

qr′′j ⊗ r′′′j p)3 = (
∑

qr′′j ⊗ r′′′j p)(
∑

qr′′k ⊗ r′′′k p)(
∑

qr′′l ⊗ r′′′l p)

=
∑

qr′′j r′′′j ψ(n)(p⊗ qr′′k)ψ(n)(r′′′k p⊗ q)r′′l ⊗ r′′′l p

=
∑

j,l
qr′′j r′′′j (

∑
k
ψ(n)(p⊗ qr′′k)ψ(n)(r′′′k p⊗ q))r′′l ⊗ r′′′l p = 0.

It follows that every element of Ker(α) is nilpotent. Since Mn(R)a

is an exchange ring by [A1, Theorem 1.4] and Theorem 1.4, and Ker(α)
is a nilideal, we deduce from [A1, Corollary 2.4] that Tt is an exchange
ring. Since this holds for every t ∈ T , we see from Theorem 1.4 that T is
an exchange ring. Now ϕ1(T ) is an exchange ring, and since s ∈ ϕ1(T ),
we conclude that there exist e = e2 ∈ ϕ1(T ) and z, v ∈ ϕ1(T ) ⊆ S such
that e = zs = v + s − vs. Since s is an arbitrary element of S, we
obtain that S is an exchange ring. ¤

In the classical Morita theory it is shown that two rings with identity
R and S are Morita equivalent if and only if there is a Morita context
between R and S. The approach to the Morita theory for rings without
identity by means of Morita contexts appears in a number of papers
(see [GS] and the references therein), in which many consequences are
obtained from the existence of a Morita context between rings I and
J . In particular it is shown in [Ky, Theorem] that, if I and J are
arbitrary rings such that there is a Morita context for these rings, then
the categories I−Mod and J−Mod are equivalent. It is proved in [GS,
Proposition 2.3] that the converse implication holds for idempotent
rings.

For an idempotent ring I we denote by I−Mod the full subcategory
of the category of all left I-modules whose objects are the “unital”
nondegenerate modules. Here a left I-module M is said to be unital if
M = IM , and M is said to be nondegenerate if, for m ∈ M , Rm = 0
implies m = 0. Note that, if I has an identity, then I−Mod is the usual
category of left I−modules.

We will use the well-known definition of a Morita context in the case
where the rings I and J have not necessarily an identity. Let I and J
be idempotent rings. We say that (I, J,M, N, ϕ, ψ) is a Morita con-
text if IMJ and JNI are unital bimodules and ϕ : N⊗IM → J, ψ :



M⊗JN → I are surjective J-bimodule and I-bimodule maps, respec-
tively, satisfying the compatibility relations: ϕ(n⊗m)n′ = nψ(m⊗n′),
m′ϕ(n⊗m) = ψ(m′ ⊗ n)m for every m,m′ ∈ M, n, n′ ∈ N.

The following result can be found in [GS] (see Proposition 2.5 and
Theorem 2.7).

Theorem 2.2. Let I and J be two idempotent rings. Then I−Mod
and J−Mod are equivalent categories if and only if there exists a Morita
context (I, J,M,N, ϕ, ψ).

The following result follows from Theorem 2.1 and Theorem 2.2.

Theorem 2.3. Let I and J be two idempotent rings, and suppose
that the categories I−Mod and J−Mod are equivalent. Then I is an
exchange ring if and only if J is an exchange ring.

Given an idempotent ring I, consider the module M ∈ Mod − I
which is the direct sum of countably many copies of II . Clearly M∗M =
I. Choosing different submodules N of M∗ such that N = IN and
NM = I, we will get different rings which are Morita equivalent to
I, namely the rings J = MN , where MN is the subring of End(MI)
consisting of all finite sums of endomorphisms of the form θm,n, for
θm,n(m′) = m〈n, m′〉. If we choose N = ⊕II (countably many copies),
with the obvious action on M, we get J = FM(I), the ring of coun-
tably infinite matrices over I with only finitely many nonzero entries.
If R is unital and N = M∗, then we get the ring FR(R), which is the
ring of countably infinite matrices over R having only a finite num-
ber of nonzero rows (these constructions can be found in [A2]). So,
we see from Theorem 2.3 that, if I is an idempotent exchange ring,
then FM(I) is an exchange ring, and if R is a unital exchange ring,
then FR(R) is an exchange ring (of course, the fact that FM(I) is
an exchange ring when I is an exchange ring follows also from [A1,
Theorem1.4]).

It is clear from the proof of Theorem 2.1 that local rings at elements
are a useful tool in the study of Morita equivalence for non-unital rings.
In our next result we will establish a further connection between these
subjects.

Assume that I is embedded in a ring R, but not necessarily as an
ideal. Let x be an element of R such that IxI ⊆ I. This kind of



elements is related to the notion of approximation of non-unital rings by
unital rings, introduced in [AHR]. Then we can consider as in Section 1
the rings Ix and Ix. Namely Ix = xIx with the product (xyx) ¦(xzx) =
xyxzx, and Ix is I as abelian group, but the product is defined by
y ◦z = yxz. We have a surjective homomorphism with nilpotent kernel
α : Ix → Ix, defined by α(y) = xyx. It seems that the methods
of Section 1 are not powerful enough to give a proof of the following
result, which we will prove by using Theorem 2.1.

Theorem 2.4. Let I be an idempotent exchange ring and let R be a
ring containing I. Let x be an element of R satisfying IxI ⊆ I. Then
Ix and Ix are exchange rings.

Proof. We are going to define a 6-tuple (I, Ix, I(Ix)Ix
, Ix

(xI)I , ϕ, ψ).
To start, the actions I(Ix) and (xI)I are defined in the usual way. Now
for xyx ∈ Ix and z ∈ I, define (zx) ¦ (xyx) = zxyx, and (xyx) ¦ (xz) =
xyxz. Now define ϕ : xI ⊗I Ix → Ix by

ϕ(xy ⊗ zx) = xyzx (y, z ∈ I),

and define ψ : Ix⊗Ix xI → I by

ψ(yx⊗ xz) = yxz (y, z ∈ I).

It is easily checked that the 6-tuple just defined verifies all the con-
ditions in Theorem 2.1. It follows from Theorem 2.1 that Ix is an
exchange ring. By using the map α : Ix → Ix defined above, it follows
from [A1, Corollary 2.4] that Ix is an exchange ring. ¤

As a corollary of (the proof of) Theorem 2.4, we get the follow-
ing result, which motivated our study of the Morita invariance of the
exchange property for idempotent rings.

Proposition 2.5. Let R be a simple ring with identity. For every
x ∈ Rr{0} the local ring Rx of R at x is Morita equivalent to the ring
R.

Proof. Since R is a simple ring with identity, it is clear that the 6-tuple

(R, Rx, R(Rx)Rx
, Rx(xR)R, ϕ, ψ)

defined in the proof of Theorem 2.4 is a Morita context. ¤



§3. The maximum exchange ideal of a ring.
In this section we show that every ring contains a maximum ex-

change ideal. We first prove a characterization of exchange rings: A
ring I satisfies the exchange property if and only if every local ring at
an idempotent is an exchange ring and the quotient of I by the ideal
generated by its idempotents is a radical ring. To do this, we need a
preliminary result.

Lemma 3.1. Let I be any ring and let {eα}α∈Λ be a nonempty family
of idempotents in I. Then the ring T = [eαIeβ ] of Λ×Λ matrices with
only a finite number of nonzero entries, with entry (α, β) in eαIeβ , is
an exchange ring provided all eαIeα are exchange rings.

Proof. Obviously it suffices to check the case in which Λ is finite, so as-
sume that e1, . . . en are idempotents in I such that eiIei is an exchange
ring for every i ∈ {1, . . . , n}. Consider the ring

T =




e1Ie1 . . . e1Ien

. . . . . . . . .
enIe1 . . . enIen


 .

This ring is unital, with 1T =




e1

. . .
en


 , and as eiIei is an

exchange ring for every i ∈ {1, . . . , n}, [N, Corollary 2.6] says us that
T is an exchange ring. ¤

Theorem 3.2. Let I be any ring, and let {eα}α∈Λ be a nonempty
family of idempotents of I such that eαIeα is an exchange ring for all
α ∈ Λ. Let I ′ denote the ideal of I generated by {eα}α∈Λ. Then I ′ is
an exchange ring.

Proof. The ring J = [eαIeβ ]α,β∈Λ is a ring with local units (see [Ab],
[AM] ). If we consider P = ⊕eαI and Q = ⊕Ieα, we have natu-
ral bimodule structures JPI′ , I′QJ . Let ψ : P⊗I′Q → J be given
by ψ((eαxα) ⊗ (x′βeβ)) = (eαxαx′βeβ) and ϕ : Q⊗JP → I ′ given by
ϕ((x′βeβ)⊗(eαxα)) =

∑
α

x′αeαxα. Since all the rings eαIeα are exchange

rings by hypothesis, we obtain from Lemma 3.1 that J is an exchange
ring. Therefore we see that the 6-tuple (J, I ′, JP I′ , I′QJ , ϕ, ψ) satisfies
all the conditions of Theorem 2.1 (in fact it is a Morita context). It
follows from Theorem 2.1 that I ′ is an exchange ring. ¤



Theorem 3.3. Let I be any ring. Let I0 be the ideal of I generated
by the idempotents of I. Then the following conditions are equivalent:

(i) I is an exchange ring,
(ii) (a) I/I0 is a radical ring,

(b) eIe is an exchange ring for all e = e2 ∈ I.

Proof. (i) ⇒ (ii). By Theorem 1.2, I/I0 is an exchange ring without
nonzero idempotents, so I/I0 is a radical ring and (a) is proved. (b) is
contained in Corollary 1.5.

(ii)⇒ (i). By Theorem 1.2, it suffices to check that I0 is an exchange
ring, what is immediate from Theorem 3.2. ¤

Recall than an idempotent e in a ring I is said to be local if
eIe/J(eIe) is a division ring, where for an arbitrary ring I, J(I) de-
notes its Jacobson radical.

Corollary 3.4. Let I be any ring. Let L(I) be the ideal generated by
all the local idempotents of I. Then L(I) is an exchange ring.

Proof. It is clear from Theorem 3.2 because, for every local idempotent
e ∈ I, eIe is an exchange ring. ¤

Theorem 3.5. Every ring contains a greatest exchange ideal (with
respect to the inclusion).

Proof. Let I be a ring. Let I ′ be the ideal generated by all the idempo-
tents e ∈ I such that eIe is an exchange ring. Then I ′ is an exchange
ring by Theorem 3.2. Let ε(I) = π−1(J(I/I ′)), where π : I → I/I ′

is the canonical projection. Then ε(I) is an exchange ring, because
ε(I)0 = I ′ is an exchange ring and ε(I)/ε(I)0 = ε(I)/I ′ = J(I/I ′) is a
radical ring.

Now, assume that L is an ideal of I and that L is an exchange ring.
Then, for every e = e2 ∈ L, eLe = eIe is an exchange ring and so L0,
the ideal of L generated by its idempotents, is contained in I ′. So we
get the chain of ideals L0 ≤ L ∩ I ′ ≤ L. Moreover, L/L0 is a radical
ring.

Now π(L) = (L+I ′)/I ′ ∼= L/(L∩I ′) ∼= (L/L0)/(L∩I ′/L0) is radical,
so π(L) ⊆ J(I/I ′). It follows that L ⊆ π−1(J(I/I ′)) = ε(I). So ε(I) is
an exchange ideal of I containing all the exchange ideals of I. ¤

We close by computing the maximum exchange ideal ε(R) for a
semilocal ring R.



Example 3.6. Let R be a semilocal ring. Then ε(R) = J(R) + L(R),
where J(R) is the Jacobson radical of R and L(R) the ideal generated
by all the local idempotents of R. Moreover, no minimal idempotent in
R/ε(R) can be lifted to an idempotent of R.

Proof. Let e be a minimal exchange idempotent of R (if there is any).
Then eRR is indecomposable and satisfies the exchange property, so
eRe is local [W1, Proposition 1]. Since every idempotent in R is
an orthogonal finite sum of minimal idempotents, we conclude that
the ideal generated by all the exchange idempotents is L(R). Since
J(R/L(R)) = (J(R) + L(R))/L(R), we obtain from the proof of The-
orem 3.5 that ε(R) = J(R) + L(R).

Let e be a minimal idempotent of the semisimple ring R/ε(R), and
assume that e lifts to an idempotent f in R. Let ρ : R → R/ε(R) be the
canonical projection. Then (fRf)/(fε(R)f) ∼= ρ(f)(R/ε(R))ρ(f) is a
division ring, and so fRf is an exchange ring by using [A1, Proposition
1.3] and Theorem 1.2. By the definition of ε(R) in Theorem 3.5, we see
that f ∈ ε(R), and so e = ρ(f) = 0, which is a contradiction. It follows
that no minimal idempotent of R/ε(R) can be lifted to an idempotent
of R. ¤

Acknowledgments. It is a pleasure to thank Enric Pardo for his
useful suggestions.
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