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ABSTRACT

In this paper we relate Fountain-Gould left orders to Litoff’s Theorem. This
fact allows us to obtain a characterization of Fountain-Gould left orders which are
Fountain-Gould orders in terms of some type of idempotents.
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1. §1. Preliminaries

In 1990 J. Fountain and V. Gould [FG1] introduced a notion of order in a
ring which need not have a unit, and gave [FG2] a Goldie-like characterization of
two-sided orders in semiprime rings with descending chain condition on principal
one-sided ideals (equivalently, coinciding with their socle). In 1991 P.N. Ánh and
L. Márki [AM1] extended this result to one-sided orders. More recently the same
authors have developed a general theory of Fountain-Gould left quotient rings
(AM2]).

Let a be an element of a ring R. We say that b in R is a group inverse of a

if the following conditions hold: aba = a, bab = b, ab = ba.

It is easy to see that a has a group inverse b in R if and only if there exists
a unique idempotent e (e = ab) in R such that a is invertible in the ring eRe

(with inverse b), hence the group inverse is unique and a is said to be locally

1 Partially supported by the MCYT, BFM2001-1938-C02-01, and by the “Plan Andaluz de
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invertible. Denote by a] the group inverse of a and by LocInv(R) the set of all
locally invertible elements of R.

An element a ∈ R is left semiregular (or left square cancellable) if
a2x = a2y implies ax = ay for x, y ∈ R ∪ {1}. A right semiregular (right
square cancellable) element is defined analogously, and semiregular (square
cancellable) means both left and right semiregular. We denote by SemiRegl(R),
SemiRegr(R) and SemiReg(R) the sets of all left, right and two-sided semiregular
elements of R, respectively.

We recall that a subring R of a ring Q is a Fountain-Gould left order in
Q if:

(i) Every element of SemiReg(R) has a group inverse in Q and

(ii) every element q ∈ Q can be written q = a]x, where a ∈ SemiReg(R) and
x ∈ R.

In a similar way, Fountain-Gould right orders are defined. If R is both
a Fountain-Gould left and right order in Q, then we say that R is an Fountain-
Gould order in Q. When (only) condition (2) is satisfied we say that R is a
weak Fountain-Gould left order in Q.

We recall the notion of left quotient ring, due to Utumi (see [U]), and the
notion of local ring at an element.

Let R be a subring of a ring Q. We say that Q is a left quotient ring of
R if given p, q ∈ Q, with p 6= 0, there exists r ∈ R such that rp 6= 0 and rq ∈ R.
Notice that if R is a Fountain-Gould left order in a ring Q, by [AM2, Theorem 1],
Q is a left quotient ring of R.

Let R be a ring and let a ∈ R. Then, the abelian group of R endowed with
the a-homotope product: x.y = xay becomes a ring, the a-homotope ring,
denoted by Ra, which has as an ideal the set Ker(a) = {x ∈ R | axa = 0}. The
local ring of R at a is defined as Ra/Ker(a) and it is denoted by Ra.

2. §2. The Theorem

The following theorem [GS, Theorem 4.12] gives same equivalent conditions
for a subring R of a semiprime ring Q coinciding with its socle to be a Fountain-
Gould left order in Q.
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2.1 Theorem 2.1. Let R be a subring of a semiprime ring Q which coincides
with its socle. The following conditions are equivalent:

” (i)” R is a weak Fountain-Gould left order in Q,

” (ii)” R is a Fountain-Gould left order in Q,

” (iii)” Q = RQR and for every nonzero element a ∈ R we have that Ra is a
classical left order in the semisimple artinian ring Qa,

” (iv)” R is semiprime, Q = RQ and Q is a left quotient ring of R,

” (v)” for every finite subset Y of Q there exists an element a ∈ Sem〉Re}(R)
such that Y ⊆ aQa and Ra is a classical left order in the semisimple artinian
ring Qa.

Since for every semiregular element a in a ring R we have that the map
ara 7→ r between aRa and Ra2 is an isomorphism, we can add another equivalent
condition to the previous theorem:

” (v′)” For every finite subset Y of Q there exists an element a ∈ Sem〉Re}(R)
such that Y ⊆ aQa and aRa is a classical left order in the semisimple artinian
ring eQe, with e = aa].

2.2 Definition 2.2. Let R be a Fountain-Gould left (or a classical left)
order in a ring Q. We say that an idempotent e ∈ Q is a fractional idempotent
if there exists a ∈ SemiReg(R) such that e = aa].

Note that the condition (v′) provides a nice relationship between Fountain-
Gould left orders and Litoff’s Theorem. Namely, if R is a Fountain-Gould left
order in a semiprime ring Q which coincides with its socle, then for every finite
subset Y of Q there exists a fractional idempotent e ∈ Q such that Y ⊂ eQe.

The first question to be considered here is whether or not an idempotent is
fractional.

2.3 Example 2.3. Let D be a classical left order in a division ring ∆ which
is not a classical right order in ∆. Then R := M∈(D) is a classical left order in
Q := M∈(·) and Q has idempotents which are not fractional.

Proof. It is well known that R and Q are semiprime and Q is artinian. On
the other hand, it is easy to prove that Q is a left quotient ring of R. Then by
[GS, Corollary 3.4], R is a classical left order in Q. Now take λ ∈ ∆ such that
λD ∩ D = {0}, (such a λ exists because D is not a classical right order in ∆).
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Then e =
(

1 0
λ 0

)
∈ Q is a idempotent which is not fractional because, as it is

easy to see, eR ∩R = {0}.
The next proposition follows the ideas of [FGGS, Proposition 7.6].

2.4 Proposition 2.4. Let R be a semiprime associative ring which is a
weak Fountain-Gould order in a ring Q, and let 0 6= q ∈ Q. Then we have

” (i)” qRq ∩R 6= 0.

Moreover, if Q coincides with its socle and e2 = e ∈ Q, then

” (ii)” there exists b ∈ SemiReg(R) such that eQe = bQb.

Proof.

(i) If we write q = a]b = dc] with a]ab = b, dcc] = d then 0 6= aqc = bc =
ad ∈ R (otherwise q = a]aqc]c = 0), and by semiprimeness of R, aqcRaqc 6= 0,
which implies 0 6= qcRaq = dRb ⊂ qRq ∩R.

(ii) Note that by (i) Q is semiprime. Suppose now that Q coincides with
its socle. If e = 0 there is nothing to prove. suppose e 6= 0. Then, by [FGGS,
Proposition 5.2 (i) and (v)], eQe is semiprime and artinian and e is its unit
element. Write e = e1 + . . . + en as a sum of orthogonal division idempotents in
eQe. By (i), for each 1 ≤ i ≤ n there exists 0 6= bi ∈ eiRei ∩ R. Since the ei

are mutually orthogonal in eQe, b := b1 + . . . + bn ∈ Inv(eQe) and furthermore
eQe = bQb.

Now we can formulate our main result.

2.5 Theorem 2.5. Let R be a ring which is a Fountain-Gould left order in
a simple ring Q which coincides with its socle. Suppose that Q is not a division
ring. The following conditions are equivalent:

” (i)” R is a Fountain-Gould order in Q.

” (ii)” Every idempotent of Q is fractional.

Proof.

By [GS, Theorem 4.7], R is a prime ring.

(i) ⇒ (ii). Let e be a nonzero idempotent. By condition (ii) of Proposition 2.4
there exists b ∈ SemiReg(R) such that eQe = bQb. Now, since Q is von Neumann
regular and e is the identity in eQe, b ∈ eQe and e = bqb = ebeqebe. Therefore
b ∈ Inv(eQe), what implies b ∈ LocInv(Q) with e = bb].
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(ii) ⇒ (i). By hypothesis Q = QR. If we show that Q is a right quotient ring
of R, we will have, by Theorem 2.1 (4), that R is a Fountain-Gould right order in
Q.

Let g ∈ Q such that u–dimQ(g) ≥ 2 (such an element g exists because Q is
not a division ring). Let p, q ∈ Q, with p 6= 0, by (v′) of Theorem 2.1, there exists
w ∈ SemiReg(R) such that {g, p, q} ⊂ wQw and wRw is a classical left order in
eQe, where e = ww] (note that u–dimQ(e) ≥ 2). We know by [GS, Proposition 2.1
(i) and (v)] that eQe is simple and artinian, so there exists e1, e2, . . . , en (n ≥ 2),
orthogonal division idempotents such that e =

∑
ei. By assumption, for every ei

there exists xi ∈ SemiReg(R) such that ei = x]
ixi. Notice that xi ∈ eiQei ⊂ eQe.

Write x =
∑

xi. It is easy to see that x ∈ Inv(eQe) with x] =
∑

x]
i.

We finish the proof into several steps:

(1). For every 0 6= pij ∈ eiQej, there exists y ∈ xjRxj such that 0 6= pijy ∈ R.

(a). If i 6= j. We consider the idempotent ej + x]
ipijxj ∈ Q. By assumption,

there exists a ∈ SemiReg(R) such that ej + x]
ipijxj = a]a, therefore a = (ej +

x]
ipijxj)a = a(ej + x]

ipijxj) which implies that (ej + ei)a = a = aej. Denote by
y = xjaxj ∈ xjRxj. Then y 6= 0 because 0 6= ej = ejaa] = ejaeja

] = x]
jxjaxjx

]
ja

]

and pijy = pijxjaxj = xix
]
ipijxjaxj = xi(ej + x]

ipijxj)axj = xiaa]axj = xiaxj ∈
xjRxj. Moreover, pijy 6= 0, because y is a nonzero element in the division ring
ejQej.

(b). If i = j. Let 0 6= xik ∈ xiRxk ⊂ eiQek. Since pii ∈ eiQei (which
is a division ring), 0 6= piixik. By (a), there exists bkk ∈ xkRxk such that 0 6=
piixikbkk ∈ R. Now, since R is a prime ring, there exists t ∈ R such that 0 6=
piixikbkktxi ∈ R. Furthermore y := xikbkktxi ∈ xiRxi is our element.

(2). Now since p, q ∈ eQe, p =
∑n

r,s=1 erpes, q =
∑n

r,s=1 erqes. Let i, j ∈
{1, 2, . . . , n} such that eipej 6= 0. If we take e1qej, by (i), there exists 0 6= xjy1xj ∈
xjRxj such that e1qej xjy1xj ∈ R. Again by (i), if we take e2qejxjy1xj, there
exists 0 6= xjy2xj ∈ xjRxj such that e2qej xjy1xj xjy2xj ∈ R. We continue in
this way to obtain z = xjy1x

2
jy2xj . . . x2

jynxj. Therefore 0 6= z ∈ xjRxj, qz ∈ R

and pz 6= 0 (because 0 6= eipejz since z is a element of the division ring ejQej and
eipej 6= 0).
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