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ABSTRACT

In this paper we relate Fountain-Gould left orders to Litoff’s Theorem. This
fact allows us to obtain a characterization of Fountain-Gould left orders which are
Fountain-Gould orders in terms of some type of idempotents.
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1. §1. Preliminaries

In 1990 J. Fountain and V. Gould [FG;]| introduced a notion of order in a
ring which need not have a unit, and gave [FGy] a Goldie-like characterization of
two-sided orders in semiprime rings with descending chain condition on principal
one-sided ideals (equivalently, coinciding with their socle). In 1991 P.N. Anh and
L. Marki [AM;] extended this result to one-sided orders. More recently the same

authors have developed a general theory of Fountain-Gould left quotient rings
(AMa)).

Let a be an element of a ring R. We say that b in R is a group inverse of a
if the following conditions hold: aba = a, bab=05b, ab = ba.

It is easy to see that a has a group inverse b in R if and only if there exists
a unique idempotent e (¢ = ab) in R such that a is invertible in the ring eRe
(with inverse b), hence the group inverse is unique and a is said to be locally

1 Partially supported by the MCYT, BFM2001-1938-C02-01, and by the “Plan Andaluz de
Investigacion y desarrollo Tecnolégico”, FQM-264.
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invertible. Denote by a* the group inverse of a and by LocInv(R) the set of all
locally invertible elements of R.

An element a € R is left semiregular (or left square cancellable) if
a’x = a’y implies ar = ay for x,y € RU{1}. A right semiregular (right
square cancellable) element is defined analogously, and semiregular (square
cancellable) means both left and right semiregular. We denote by SemiReg;(R),
SemiReg, (R) and SemiReg(R) the sets of all left, right and two-sided semiregular
elements of R, respectively.

We recall that a subring R of a ring ) is a Fountain-Gould left order in
Q if:
(i) Every element of SemiReg(R) has a group inverse in @) and

(ii) every element ¢ € @ can be written ¢ = afz, where a € SemiReg(R) and
r € R.

In a similar way, Fountain-Gould right orders are defined. If R is both
a Fountain-Gould left and right order in @, then we say that R is an Fountain-
Gould order in @). When (only) condition (2) is satisfied we say that R is a
weak Fountain-Gould left order in Q).

We recall the notion of left quotient ring, due to Utumi (see [U]), and the
notion of local ring at an element.

Let R be a subring of a ring Q). We say that @ is a left quotient ring of
R if given p,q € @Q, with p # 0, there exists » € R such that rp # 0 and rq € R.
Notice that if R is a Fountain-Gould left order in a ring @, by [AMs, Theorem 1],
Q is a left quotient ring of R.

Let R be a ring and let a € R. Then, the abelian group of R endowed with
the a-homotope product: z.y = xzay becomes a ring, the a-homotope ring,
denoted by R*, which has as an ideal the set Ker(a) = {z € R | ara = 0}. The
local ring of R at a is defined as R*/Ker(a) and it is denoted by R,.

2. §2. The Theorem

The following theorem [GS, Theorem 4.12] gives same equivalent conditions

for a subring R of a semiprime ring () coinciding with its socle to be a Fountain-
Gould left order in Q.
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2.1 THEOREM 2.1. Let R be a subring of a semiprime ring () which coincides
with its socle. The following conditions are equivalent:

7 (i)” R is a weak Fountain-Gould left order in @,
” (ii)” R is a Fountain-Gould left order in Q,

”

(ii)” Q@ = RQR and for every nonzero element a € R we have that R, is a
classical left order in the semisimple artinian ring Qg,
7 (iv)” R is semiprime, Q = RQ and Q is a left quotient ring of R,

" (v)” for every finite subset' Y of Q there exists an element a € S|J)R]}(R)
such that' Y C aQa and R, is a classical left order in the semisimple artinian

ring Qq.

-

Since for every semireqular element a in a ring R we have that the map
ara — T between aRa and R,2 is an isomorphism, we can add another equivalent
condition to the previous theorem:

7 (V)7 For every finite subset Y of Q there exists an element a € S1J)R|}HR)
such thatY C aQa and aRa is a classical left order in the semisimple artinian
ring eQe, with e = aal.

2.2 DEFINITION 2.2.  Let R be a Fountain-Gould left (or a classical left)
order in a ring Q. We say that an idempotent e € () is a fractional idempotent
if there exists a € SemiReg(R) such that e = aa’.

Note that the condition (V') provides a nice relationship between Fountain-
Gould left orders and Litoff’s Theorem. Namely, if R is a Fountain-Gould left
order in a semiprime ring () which coincides with its socle, then for every finite
subset Y of Q) there exists a fractional idempotent e € (Q such that Y C eQe.

The first question to be considered here is whether or not an idempotent is
fractional.

2.3 EXAMPLE 2.3. Let D be a classical left order in a division ring A which
is not a classical right order in A. Then R := M¢c(D) is a classical left order in
Q = Mc(+) and @ has idempotents which are not fractional.

Proof. It is well known that R and Q) are semiprime and Q) is artinian. On
the other hand, it is easy to prove that Q) is a left quotient ring of R. Then by
[GS, Corollary 3.4], R is a classical left order in Q. Now take A € A such that
AD N D = {0}, (such a X\ exists because D is not a classical right order in A).
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Then e = (;\ 8) € Q is a idempotent which is not fractional because, as it is

easy to see, eRNR={0}. m
The next proposition follows the ideas of [FGGS, Proposition 7.6].

2.4 PROPOSITION 2.4.  Let R be a semiprime associative ring which is a
weak Fountain-Gould order in a ring Q, and let 0 # q € Q. Then we have
” (i)” qRgN R # 0.
Moreover, if Q coincides with its socle and €? = e € Q, then
” (ii)” there exists b € SemiReg(R) such that eQe = bQb.
Proof.
(i) If we write ¢ = a*b = dc* with a*ab = b, dect = d then 0 # agc = bc =

ad € R (otherwise ¢ = a*aqcfc = 0), and by semiprimeness of R, aqcRaqc # 0,
which implies 0 # qcRaq = dRb C qRq N R.

(i) Note that by (i) Q is semiprime. Suppose now that @ coincides with
its socle. If e = 0 there is nothing to prove. suppose e # 0. Then, by [FGGS,
Proposition 5.2 (i) and (v)], eQe is semiprime and artinian and e is its unit
element. Write e = e1 + ...+ e, as a sum of orthogonal division idempotents in
eQe. By (i), for each 1 < i < n there exists 0 # b; € e;Re; N R. Since the e;
are mutually orthogonal in eQe, b := by + ...+ b, € Inv(eQe) and furthermore

eQe =bQb. m

Now we can formulate our main result.

2.5 THEOREM 2.5. Let R be a ring which is a Fountain-Gould left order in
a simple ring QQ which coincides with its socle. Suppose that Q) is not a division
ring. The following conditions are equivalent:

7 (i)” R is a Fountain-Gould order in Q.

” (ii)” Every idempotent of Q is fractional.
Proof.
By [GS, Theorem 4.7], R is a prime ring.

(i) = (i7). Let e be a nonzero idempotent. By condition (ii) of Proposition 2.4
there exists b € SemiReg(R) such that eQe = bQb. Now, since Q is von Neumann
reqular and e is the identity in eQe, b € eQe and e = bgb = ebeqebe. Therefore
b € Inv(eQe), what implies b € LocInv(Q) with e = bb*.
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(1) = (i). By hypothesis Q = QR. If we show that Q) is a right quotient ring
of R, we will have, by Theorem 2.1 (4), that R is a Fountain-Gould right order in
Q.

Let g € Q such that u-dimg(g) > 2 (such an element g exists because @Q is
not a division ring). Let p,q € Q, with p # 0, by (V') of Theorem 2.1, there exists
w € SemiReg(R) such that {g,p,q} C wQw and wRw is a classical left order in
eQe, where e = ww¥ (note that u-dimg(e) > 2). We know by [GS, Proposition 2.1
(i) and (v)] that eQe is simple and artinian, so there exists eq,ea,... e, (n > 2),
orthogonal division idempotents such that e = > e;. By assumption, for every e;
there exists x; € SemiReg(R) such that e; = xfxz Notice that x; € e;Qe; C eQe.
Write x = Y x;. It is easy to see that x € Inv(eQe) with z* = ZIL‘E

We finish the proof into several steps:
(1). For every0 # p;; € e;Qe;j, there existsy € x;Rx; such that 0 # p;;y € R.

(a). If i # j. We consider the idempotent e; + xgpijxj € (). By assumption,
there exists a € SemiReg(R) such that e; + :ngijxj = dfa, therefore a = (ej +

wgpijxj)a = a(e; + ,rgpijxj) which implies that (e; + e;)a = a = aej. Denote by

y=zxjarj € vjRx;. Then y # 0 because 0 # e; = ejaaji = ejaejatt = xg-xjamj:cg
and pijy = pij$ja.f17j = .fEi.ngpij%ja.ij = xi(ej + :ngijxj)aa:j = xiaaﬁaxj = .CL’iaiEj €
x;Rxj. Moreover, p;jy # 0, because y is a nonzero element in the division ring
eerj.

(b). If i = j. Let 0 # z;, € x;Rx C e;Qe. Since p; € e;Qe; (which
is a division ring), 0 # p;ix. By (a), there exists by, € xpRxy such that 0 #
piiTikber € R. Now, since R is a prime ring, there exists t € R such that 0 #
PiiTikbrrtr; € R. Furthermore y := x;ibgrtr; € x;Rx; is our element.

al

(2). Now since p,q € eQe, p =Y . _ eDes, ¢ = Y . erqes. Let i,j €
{1,2,...,n} such that e;pe; # 0. If we take eiqej, by (1), there exists 0 # Ty125 €
xzjRx; such that eyqe; xjy1x; € R. Again by (i), if we take eaqe;xjyix;, there
exists 0 # xjysx; € xjRx; such that eaqej xjy125 29225 € R. We continue in
this way to obtain z = xjylx‘?yng .. x?ynxj Therefore 0 # z € zjRx;, gz € R
and pz # 0 (because 0 # e;pe;z since z is a element of the division ring e;Qe; and
eipe; #0). m
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