FOUNTAIN-GOULD LEFT ORDERS AND "FRACTIONAL" IDEMPOTENTS

MIGUEL GÓMEZ LOZANO¹ Departamento de Álgebra, Geometría y Topología Universidad de Málaga 29071 Málaga (España) e-mail: miggl@ccuma.sci.uma.es

ABSTRACT

In this paper we relate Fountain-Gould left orders to Litoff's Theorem. This fact allows us to obtain a characterization of Fountain-Gould left orders which are Fountain-Gould orders in terms of some type of idempotents.

2000 Mathematical Subject Classification: 16S90.

1. §1. Preliminaries

In 1990 J. Fountain and V. Gould $[FG_1]$ introduced a notion of order in a ring which need not have a unit, and gave $[FG_2]$ a Goldie-like characterization of two-sided orders in semiprime rings with descending chain condition on principal one-sided ideals (equivalently, coinciding with their socle). In 1991 P.N. Ánh and L. Márki $[AM_1]$ extended this result to one-sided orders. More recently the same authors have developed a general theory of Fountain-Gould left quotient rings $(AM_2]$).

Let a be an element of a ring R. We say that b in R is a **group inverse** of a if the following conditions hold: aba = a, bab = b, ab = ba.

It is easy to see that a has a group inverse b in R if and only if there exists a unique idempotent e (e = ab) in R such that a is invertible in the ring eRe(with inverse b), hence the group inverse is unique and a is said to be **locally**

¹ Partially supported by the MCYT, BFM2001-1938-C02-01, and by the "Plan Andaluz de Investigación y desarrollo Tecnológico", FQM-264.

invertible. Denote by a^{\sharp} the group inverse of a and by LocInv(R) the set of all locally invertible elements of R.

An element $a \in R$ is left semiregular (or left square cancellable) if $a^2x = a^2y$ implies ax = ay for $x, y \in R \cup \{1\}$. A right semiregular (right square cancellable) element is defined analogously, and semiregular (square cancellable) means both left and right semiregular. We denote by $SemiReg_l(R)$, $SemiReg_r(R)$ and SemiReg(R) the sets of all left, right and two-sided semiregular elements of R, respectively.

We recall that a subring R of a ring Q is a **Fountain-Gould left order** in Q if:

- (i) Every element of SemiReg(R) has a group inverse in Q and
- (ii) every element $q \in Q$ can be written $q = a^{\sharp}x$, where $a \in SemiReg(R)$ and $x \in R$.

In a similar way, Fountain-Gould right orders are defined. If R is both a Fountain-Gould left and right order in Q, then we say that R is an Fountain-Gould order in Q. When (only) condition (2) is satisfied we say that R is a weak Fountain-Gould left order in Q.

We recall the notion of left quotient ring, due to Utumi (see [U]), and the notion of local ring at an element.

Let R be a subring of a ring Q. We say that Q is a **left quotient ring** of R if given $p, q \in Q$, with $p \neq 0$, there exists $r \in R$ such that $rp \neq 0$ and $rq \in R$. Notice that if R is a Fountain-Gould left order in a ring Q, by [AM₂, Theorem 1], Q is a left quotient ring of R.

Let R be a ring and let $a \in R$. Then, the abelian group of R endowed with the *a*-homotope product: x.y = xay becomes a ring, the *a*-homotope ring, denoted by R^a , which has as an ideal the set $Ker(a) = \{x \in R \mid axa = 0\}$. The local ring of R at a is defined as $R^a/Ker(a)$ and it is denoted by R_a .

2. §2. The Theorem

The following theorem [GS, Theorem 4.12] gives same equivalent conditions for a subring R of a semiprime ring Q coinciding with its socle to be a Fountain-Gould left order in Q. **2.1** THEOREM 2.1. Let R be a subring of a semiprime ring Q which coincides with its socle. The following conditions are equivalent:

- " (i)" R is a weak Fountain-Gould left order in Q,
- " (ii)" R is a Fountain-Gould left order in Q,
- " (iii)" Q = RQR and for every nonzero element $a \in R$ we have that R_a is a classical left order in the semisimple artinian ring Q_a ,
- " (iv)" R is semiprime, Q = RQ and Q is a left quotient ring of R,
- " (v)" for every finite subset Y of Q there exists an element $a \in S]$ Rsuch that $Y \subseteq aQa$ and R_a is a classical left order in the semisimple artinian ring Q_a .

Since for every semiregular element a in a ring R we have that the map $ara \mapsto \overline{r}$ between aRa and R_{a^2} is an isomorphism, we can add another equivalent condition to the previous theorem:

" (v')" For every finite subset Y of Q there exists an element $a \in S]$ $\mathbb{R}]$ such that $Y \subseteq aQa$ and aRa is a classical left order in the semisimple artinian ring eQe, with $e = aa^{\sharp}$.

2.2 DEFINITION 2.2. Let R be a Fountain-Gould left (or a classical left) order in a ring Q. We say that an idempotent $e \in Q$ is a fractional idempotent if there exists $a \in SemiReg(R)$ such that $e = aa^{\sharp}$.

Note that the condition (v') provides a nice relationship between Fountain-Gould left orders and Litoff's Theorem. Namely, if R is a Fountain-Gould left order in a semiprime ring Q which coincides with its socle, then for every finite subset Y of Q there exists a fractional idempotent $e \in Q$ such that $Y \subset eQe$.

The first question to be considered here is whether or not an idempotent is fractional.

2.3 EXAMPLE 2.3. Let D be a classical left order in a division ring Δ which is not a classical right order in Δ . Then $R := \mathcal{M}_{\in}(\mathcal{D})$ is a classical left order in $Q := \mathcal{M}_{\in}(\cdot)$ and Q has idempotents which are not fractional.

Proof. It is well known that R and Q are semiprime and Q is artinian. On the other hand, it is easy to prove that Q is a left quotient ring of R. Then by [GS, Corollary 3.4], R is a classical left order in Q. Now take $\lambda \in \Delta$ such that $\lambda D \cap D = \{0\}$, (such a λ exists because D is not a classical right order in Δ). Then $e = \begin{pmatrix} 1 & 0 \\ \lambda & 0 \end{pmatrix} \in Q$ is a idempotent which is not fractional because, as it is easy to see, $eR \cap R = \{0\}$.

The next proposition follows the ideas of [FGGS, Proposition 7.6].

2.4 PROPOSITION 2.4. Let R be a semiprime associative ring which is a weak Fountain-Gould order in a ring Q, and let $0 \neq q \in Q$. Then we have

" (i)" $qRq \cap R \neq 0$.

Moreover, if Q coincides with its socle and $e^2 = e \in Q$, then

" (ii)" there exists $b \in SemiReg(R)$ such that eQe = bQb.

Proof.

(i) If we write $q = a^{\sharp}b = dc^{\sharp}$ with $a^{\sharp}ab = b$, $dcc^{\sharp} = d$ then $0 \neq aqc = bc = ad \in R$ (otherwise $q = a^{\sharp}aqc^{\sharp}c = 0$), and by semiprimeness of R, $aqcRaqc \neq 0$, which implies $0 \neq qcRaq = dRb \subset qRq \cap R$.

(ii) Note that by (i) Q is semiprime. Suppose now that Q coincides with its socle. If e = 0 there is nothing to prove. suppose $e \neq 0$. Then, by [FGGS, Proposition 5.2 (i) and (v)], eQe is semiprime and artinian and e is its unit element. Write $e = e_1 + \ldots + e_n$ as a sum of orthogonal division idempotents in eQe. By (i), for each $1 \leq i \leq n$ there exists $0 \neq b_i \in e_i Re_i \cap R$. Since the e_i are mutually orthogonal in eQe, $b := b_1 + \ldots + b_n \in Inv(eQe)$ and furthermore eQe = bQb.

Now we can formulate our main result.

2.5 THEOREM 2.5. Let R be a ring which is a Fountain-Gould left order in a simple ring Q which coincides with its socle. Suppose that Q is not a division ring. The following conditions are equivalent:

" (i)" R is a Fountain-Gould order in Q.

" (ii)" Every idempotent of Q is fractional.

Proof.

By [GS, Theorem 4.7], R is a prime ring.

 $(i) \Rightarrow (ii)$. Let e be a nonzero idempotent. By condition (ii) of Proposition 2.4 there exists $b \in SemiReg(R)$ such that eQe = bQb. Now, since Q is von Neumann regular and e is the identity in eQe, $b \in eQe$ and e = bqb = ebeqebe. Therefore $b \in Inv(eQe)$, what implies $b \in LocInv(Q)$ with $e = bb^{\sharp}$.

5

 $(ii) \Rightarrow (i)$. By hypothesis Q = QR. If we show that Q is a right quotient ring of R, we will have, by Theorem 2.1 (4), that R is a Fountain-Gould right order in Q.

Let $g \in Q$ such that $u-\dim_Q(g) \ge 2$ (such an element g exists because Q is not a division ring). Let $p, q \in Q$, with $p \ne 0$, by (v') of Theorem 2.1, there exists $w \in SemiReg(R)$ such that $\{g, p, q\} \subset wQw$ and wRw is a classical left order in eQe, where $e = ww^{\sharp}$ (note that $u-\dim_Q(e) \ge 2$). We know by [GS, Proposition 2.1 (i) and (v)] that eQe is simple and artinian, so there exists e_1, e_2, \ldots, e_n $(n \ge 2)$, orthogonal division idempotents such that $e = \sum e_i$. By assumption, for every e_i there exists $x_i \in SemiReg(R)$ such that $e_i = x_i^{\sharp}x_i$. Notice that $x_i \in e_iQe_i \subset eQe$. Write $x = \sum x_i$. It is easy to see that $x \in Inv(eQe)$ with $x^{\sharp} = \sum x_i^{\sharp}$.

We finish the proof into several steps:

(1). For every $0 \neq p_{ij} \in e_i Q e_j$, there exists $y \in x_j R x_j$ such that $0 \neq p_{ij} y \in R$.

(a). If $i \neq j$. We consider the idempotent $e_j + x_i^{\sharp} p_{ij} x_j \in Q$. By assumption, there exists $a \in SemiReg(R)$ such that $e_j + x_i^{\sharp} p_{ij} x_j = a^{\sharp} a$, therefore $a = (e_j + x_i^{\sharp} p_{ij} x_j)a = a(e_j + x_i^{\sharp} p_{ij} x_j)$ which implies that $(e_j + e_i)a = a = ae_j$. Denote by $y = x_j a x_j \in x_j R x_j$. Then $y \neq 0$ because $0 \neq e_j = e_j a a^{\sharp} = e_j a e_j a^{\sharp} = x_j^{\sharp} x_j a x_j x_j^{\sharp} a^{\sharp}$ and $p_{ij} y = p_{ij} x_j a x_j = x_i x_i^{\sharp} p_{ij} x_j a x_j = x_i (e_j + x_i^{\sharp} p_{ij} x_j)a x_j = x_i a a^{\sharp} a x_j = x_i a x_j \in x_j R x_j$. Moreover, $p_{ij} y \neq 0$, because y is a nonzero element in the division ring $e_j Q e_j$.

(b). If i = j. Let $0 \neq x_{ik} \in x_i R x_k \subset e_i Q e_k$. Since $p_{ii} \in e_i Q e_i$ (which is a division ring), $0 \neq p_{ii} x_{ik}$. By (a), there exists $b_{kk} \in x_k R x_k$ such that $0 \neq p_{ii} x_{ik} b_{kk} \in R$. Now, since R is a prime ring, there exists $t \in R$ such that $0 \neq p_{ii} x_{ik} b_{kk} t x_i \in R$. Furthermore $y := x_{ik} b_{kk} t x_i \in x_i R x_i$ is our element.

(2). Now since $p, q \in eQe$, $p = \sum_{r,s=1}^{n} e_r pe_s$, $q = \sum_{r,s=1}^{n} e_r qe_s$. Let $i, j \in \{1, 2, \ldots, n\}$ such that $e_i pe_j \neq 0$. If we take $e_1 qe_j$, by (i), there exists $0 \neq x_j y_1 x_j \in x_j Rx_j$ such that $e_1 qe_j x_j y_1 x_j \in R$. Again by (i), if we take $e_2 qe_j x_j y_1 x_j$, there exists $0 \neq x_j y_2 x_j \in x_j Rx_j$ such that $e_2 qe_j x_j y_1 x_j x_j y_2 x_j \in R$. We continue in this way to obtain $z = x_j y_1 x_j^2 y_2 x_j \ldots x_j^2 y_n x_j$. Therefore $0 \neq z \in x_j Rx_j$, $qz \in R$ and $pz \neq 0$ (because $0 \neq e_i pe_j z$ since z is a element of the division ring $e_j Qe_j$ and $e_i pe_j \neq 0$).

Reference

 $[AM_1]$ P.N. Ánh and L. Márki "Left orders in regular rings with mini-

mum condition for principal one-sided ideals" Math. Proc. Camb. Phil. Soc. 109 (1991), 323–333.

 $[AM_2]$ **P.N. Ánh and L. Márki** "A general theory of Fountain-Gould quotient rings" Math. Slovaca44 (1994), 255–235.

[FG₁] **J. Fountain and V. Gould** "Orders in rings without identity" Comm. Algebra18 (1990), 3085–3110.

[FG₂] **J. Fountain and V. Gould** "Straight left orders in rings" Quart. J. Math (Oxford)43 (1992), 303–311..

[FGGS] A. Fernández López, E. García Rus, M. Gómez Lozano and M. Siles Molina "Goldie theorem for associative pairs" Commun. in Algebra26(9) (1998), 2987–3020.

[GS] M. Gómez and M. Siles "Quotient rings and Fountain-Gould left orders by the local approach (preprint).

[U] **Y. Utumi** "On Quotient rings" Osaka Mathematical Journal**8** (1956), 1-18.