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QUOTIENT RINGS AND FOUNTAIN-GOULD
LEFT ORDERS BY THE LOCAL APPROACH

M. GOMEZ LOZANO and M. SILES MOLINA (M4laga)*

Abstract. We study Fountain-Gould left orders in semiprime rings coincid-
ing with their socles by means of local rings at elements.

§1. Introduction

Based on ideas from semigroup theory, Fountain and Gould [3] intro-
duced a notion of order in a ring which need not have an identity and gave
[4] a Goldie-like characterization of two-sided orders in semiprime rings with
descending chain condition on principal one sided ideals (equivalently, coin-

ciding with their socles). Later Anh and Marki [1] extended this result to
one-sided orders and more recently the same authors developed a general
theory of Fountain-Gould left quotient rings [2].

In this paper we study Fountain—Gould left orders in semiprime rings
coinciding with their socles. On the one hand, we show that local rings at
elements are a useful tool for the study of left quotient rings. On the other
hand, as previously noticed by Anh and Méarki in [2], the maximal ring of
quotients give us an appropriate framework where to settle the different left
quotient rings we investigate (general, Fountain—-Gould and classical), al-
though we go further, proving, among other results, that if R is a semiprime
left local Goldie ring, then R is a Fountain—Gould left order in R(Q), where
@ denotes the maximal left quotient ring of R, and that RQ is a semiprime
ring which coincides with its socle (Theorem 4.9). Focusing attention on the
ring of quotients, we describe some equivalent conditions for a semiprime
ring coinciding with its socle ) to be a Fountain—-Gould left quotient ring of
a subring (Theorem 4.11).

Finally, we would like to stress Theorem 4.6, which provides a more al-
gebraic proof of the fact that semiprimeness and primeness are inherited by
Fountain—-Gould left orders ([4, Proposition 2.4]).
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Now, we recall the notion of singularity, due to R. E. Johnson for modules
(the reader is referred to the books [5, 7] for basic results on ring theory).
For a ring R, set

Z)(R) = {z € R| lan (z) is an essential left ideal of R},

which is an ideal of R (see [5, Corollary 7.4]) called the left singular ideal of
R. The ring R will be called left nonsingular if its left singular ideal Z;(R) is
zero. Right nonsingular rings are defined similarly, while nonsingular means
that R is both left and right nonsingular.

In [4, Proposition 2.3] the authors proved that every semiprime ring R
satisfying the ascending chain condition (acc) on the left annihilators of the
form lan (z), with € R, is left nonsingular. In fact, we will obtain in Corol-
lary 1.2 that R is nonsingular, since the left and the right singular ideal of a
semiprime ring have no pseudo-uniform elements. The proof of the following
result is straightforward.

LEMMA 1.1. For a nonzero element a in a ring R, the following condi-
tions are equivalent:

(i) lan (a) = lan (az) for every x € R such that az # 0.

(ii) ran (a) = ran (za) for every x € R such that xa # 0.

An element @ in a ring R satisfying the equivalent conditions in the pre-
vious proposition is said to be pseudo-uniform.

COROLLARY 1.2. Let R be a semiprime ring.

(1) Zi(R) and Z,(R) have no nonzero pseudo-uniform elements.

(ii) If R satisfies the acc on the left annihilators of the form lan (z) with
x € R, then it is nonsingular.

PROOF. (i) Suppose 0 # = € Z;(R) is a pseudo-uniform element. Since
R is semiprime, zrx # 0 for some r € R. Again by semiprimeness of R, Rxr
# 0 and since lan (z) is an essential left ideal of R, there exists 0 # txr €
lan (z), that is, tzrz = 0, which implies ¢ € lan(zrz) = lan (z) (by Lemma
1.1), a contradiction. The other assertion follows analogously by taking into
account Lemma 1.1.

(ii) Suppose Z;(R) (or Z,(R)) is nonzero and denote it by I. Choose a
nonzero element x € I with lan (z) maximal in the set { lan(y) : 0 £y € I'}.
By maximality of lan (x) we have lan () = lan (zr) for every nonzero zr € R,
which implies that z is a pseudo-uniform element in I, a contradiction by (i).
O

Acta Mathematica Hungarica 97, 2002



QUOTIENT RINGS AND FOUNTAIN-GOULD LEFT ORDERS 289

§2. The local ring at an element of a ring

This section is devoted to state the relationship among some properties
of a ring and the corresponding ones of its local rings at elements. Bearing
in mind this aim, we recall some definitions.

Usually, local rings at elements are presented as follows: for a ring R
and an element ¢ € R, the abelian group of R endowed with the a-homotope
product x Y = zay becomes a ring, the a-homotope ring, denoted by R,

which has as an ideal the set Ker (a) = {z € R|aza = 0}.

The local ring of R at a is defined as R®/ Ker (a) and is denoted by R,.
The product of two elements 7,7 € R, is denoted by .7 (:= Tay).

We notice that R, is isomorphic to the additive subgroup aRa of R
equipped with the multiplication azxa o aya := axaya. In particular, if a is
an idempotent then R, is a subring of R, which shows clearly the relevance
of the notion and explains its name.

A nonzero left ideal I of a ring R will be called uniform if for any nonzero
left ideals B and C of R inside I we have BNC # 0. An element a € R is said
to be l~uniform if the principal left ideal it generates is uniform. A nonzero
ideal I of R will be called uniform if the intersection of any two nonzero
ideals of R contained in [ is nonzero.

Let L be a left ideal of R which does not contain infinite direct sums of
nonzero left ideals. By [5, (6.1)] there exists a nonnegative integer n called
the left Goldie (or uniform) dimension of L, denoted by u-dimpg(L) or simply
by u-dim (L), such that L contains a direct sum of n nonzero left ideals and
any direct sum of nonzero left ideals contained in L has at most n summands.
Now a uniform nonzero left ideal is just a nonzero left ideal of left Goldie
dimension one. If no such integer n exists (i.e., if L contains an infinite direct
sum of nonzero submodules), we write u-dimp (L) = oc.

For an element a in a ring R we denote by (a] the principal left ideal of
R generated by a.

The left Goldie (or uniform) dimension of an element a € R, denoted by
u-dimp(a) or simply by u-dim (a), is the left Goldie dimension of (a]. If any
element of R has finite left Goldie dimension, we will say that R has finite
left local Goldie dimension.

PROPOSITION 2.1. Let R be a semiprime ring. Then:

(i) All the local rings of R at nonzero elements are semiprime.

(ii) R is prime if and only if all the local rings of R at nonzero elements
are prime.

(iii) If R is simple, then all the local rings of R at nonzero elements of
R are simple.

(iv) For any element a € R, u-dimp(a) = u-dim (Ry).

(v) For every a € R, T € Soc (Ry) if and only if axa € Soc (R). Hence R
coincides with its socle if and only if Rq is artinian for each a € R.
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(vi) If R coincides with its socle, then R has finite both left and right local
Goldie dimension.
(vii) If T € Z|(R,) then aza € Z|(R).
(viii) If a € Z/(R) then Z/(R,) = R,.
(ix) R is left nonsingular if and only if Ry, is left nonsingular for all a € R.
(x) A nonzero element a € R is pseudo-uniform if and only if R, has no
zero divisors.

PROOF. (i) Let a be an element in R and suppose T € R, such that
Z.y.z =0 for every j € R,. Then 0 = araRazra. By nondegeneracy of R
we have aza = 0, that is, z = 0.

(ii) Assume that R is prime. Take a € R and let Z,J be two ideals of
R, such that 7.7 = 0. If T and 7 were nonzero elements of Z and J respec-
tively, then for every r € R, 0 = 7.7 .7, which implies 0 = (aza)r(aya) and
since R is prime, aza = 0 or aya = 0, i.e., T=0or 5 = 0.

Conversely, let I and J be two nonzero ideals of R of zero product.
Choose nonzero elements x and y in I and J respectively. Then the ide-
als I and J of R,, are nonzero because (z +y)I(z +y) = zlz # 0, and
analogously for J. Moreover I.J =0, which contradicts the primeness of
Ryt

(yiii) Suppose R simple and let a be a nonzero element of R. Then R,
is a simple ring because if 0 # T, by simplicity of R, RazaR = R and hence
Ry, =Ry,.T.R,.

(iv) (1) By semiprimeness of R, for every nonzero left ideal L of R con-
tained in (a] we have L NaRa # 0. (2) Let {Ly} be a family of nonzero left
ideals of R contained in (a] and whose sum is direct. By (1), L, NaRa is
nonzero and it is clear that if we define L, = {7 € R, |aza € L}, then {L,}
is a family of nonzero left ideals of R, whose sum is direct, which proves that
u-dimp(a) < u-dim (R,).

Now, suppose that {L£;}] ; is a direct sum of nonzero left ideals of
R,. Choose 0 #1; € £;. Since the element t; := al;a is nonzero for every
i=1,...,n, and using the nondegeneracy of R we have that {R¢;};" | is a
family of nonzero left ideals of R contained in Ra. We claim that the sum of
these ideals is direct because if r1t1 + - - - + rpt, = 0 with, for example, 711
# 0, by nondegeneracy of R, there exists s € R such that asrial;a # 0, that
is,0£sm .l €> ,R.; €Y1, L;, which is a contradiction.

(v) An additive subgroup K of a ring R is said to be an inner ideal of
R if kRk C K for every k € K. In particular, every generalized bi-ideal of
R (an additive subgroup B of (R, +) such that BRB € B) is an inner ideal
(the notion of generalized bi-ideal was introduced by Szdsz [8]). Hence, by
[8, Theorem 6], the socle of a semiprime ring is the sum of all minimal inner
ideals of the ring. Since .y .T = Tayaz, Z is an inner ideal of R, if and only
if I = {aza|T € I} is an inner ideal of R, hence T € Soc (R,) if and only if
aza € Soc (R). Now, if a € Soc (R) then g has finite Goldie dimension and
it is von Neumann regular. This implies that R, is an artinian ring.
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Conversely if R, is artinian then R, has bounded length for the chains
of inner ideals of the form I with I an inner ideal of R contained in aRa,
hence for chains of principal inner ideals of the form bRb with b in the inner
ideal of R generated by a. Thus, a € Soc (R).

(vi) By (v) any local ring of R at an element of R is artinian and hence
it has finite both left and right Goldie dimension. Then, by (iv), R has finite
both left and right local Goldie dimension.

(vii) Take T € Z;(R,) and let L be a nonzero left ideal of R. If Laza =0
then L € lang(aza). Suppose Laza # 0. By semiprimeness of R, (Lawa)2
# 0, so L is a nonzero left ideal of R,. Since lang, (%) is an essential left ideal
of R, we can choose an element y € L such that 0 # 7 € lang, (Z) N L, that is,
yaz = 0 and we have 0 # ay € LNlang(aza). In any case lang(axa) N L # 0,
which implies that lang(aza) is an essential left ideal of R.

(viii) For a = 0 there is nothing to prove. Suppose a € Z;(R) and take
0 # T € R, and a nonzero left ideal £ of R,. If £.7 = 0 then £ C lang, (T).
If £L.T#0, take y € £ such that 5.7 # 0, that is, 0 # ayaza. Since R is
semiprime, Rayaza # 0 and hence Rayaz is a nonzero left ideal of R. Now
take 0 # rayax € lang(a). Then 0 # aRraya and aRrayaza =0, that is,
0# Rray = Rr.y Clang, ()N L.

(ix) R left nonsingular implies, by (vii), that for every a € R, R, is left
nonsingular too. Conversely, suppose Z;(R,;) = 0 for every a € R. By (viii),
a € Z;(R) would imply R, = Z;(R,) =0, so aRa =0 and hence a = 0 be-
cause R is semiprime.

(x) Suppose a is pseudo-uniform and let Z be a nonzero element of R,.
Then 7.7 = 0 for some § € R, would imply azaya = 0. By condition (ii) in
Lemma 1.1, ran (a) = ran (axa) and hence aya = 0, that is, ¥ = 0. Similarly
we prove that 7.Z = 0 implies 7 = 0.

Conversely, suppose lan (a) C lan (ax) for some z € R satisfying az # 0.
Then there exists an element r € R such that ra #0 and rax =0. By
semiprimeness of R, we can find s,t € R verifying axsa,atra # 0. Then
tr and Zs are nonzero elements of R, but tr.Zs = trazs = 0, a contradiction
since we are supposing that R, has not zero divisors. |

§3. Left quotient rings

In this section we recall the notion of left quotient ring of a ring, given by
Utumi in 1956 (see [9]), and we present some results that relate the structure
of R to that of any left quotient ring of it. We also establish the relationship
among the various types of rings of quotients.

Let R be a subring of a (not necessarily unital) ring Q. We will say that
Q is a left quotient ring of R if given p, q € Q, with p # 0, there exists r € R
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such that rp # 0 and rq € R. Notice that if R is a classical left order in a
(unital) ring @, then @ is a left quotient ring of R.

PROPOSITION 3.1. Let () be a ring which is a left quotient ring of a ring
R. Then:

(i) LN R # 0 for every nonzero left ideal L of Q.

(ii) Q is semiprime (prime) if R is semiprime (prime).

PROPOSITION 3.2. Let Q) be a ring which is a left quotient ring of a ring
R. Then:
(i) For X,Y & R we have lang(X) € lang(Y') if and only if lang(X)
€ lang(Y).
(i) Z(R) = Z(Q) N R.
(iii) R is left nonsingular if and only if Q is left nonsingular.
(iv) u-dim (R) = u-dim (Q). Moreover, for every element a € R,

u-dimp(a) = u-dimg(a).

(v) If R is semiprime, then for every nonzero element a € R the local
ring Qq of Q at a is a left quotient ring of R,.

PROOF. (i), (ii), (iii) and (iv) are straightforward.

(v) Let apa and aga be in aQa with apa # 0. Apply twice that @ is a
left quotient ring of R to find r € R satisfying 0 # rapa and rapa,raq € R.
Since R is semiprime, there exists s € R such that asrapa # 0. Then 57 € R,
satisfies s7.p = srap # 0 and 57 .q = asraqa € R,. O

Given a subring R of a ring ), and an element ¢ € () we define the set
(R:q) ={a € R|aq € R}, which, clearly, is a left ideal of R.
A left ideal L of a ring R is dense in R if R is a left quotient ring of L.

PROPOSITION 3.3. Let Q be o left quotient ring of o ring R. Then:

(i) (R: q) is a dense left ideal of R for every element q € Q. In partic-
ular, (R : q) is an essential left ideal of R.

If R is semiprime and Q is artinian, then:

(ii) For every element s € R we have lang(s) =0 if and only if s €

Inv (Q).
(iii) Every essential left ideal L of R is a classical left order in Q.

PROOF. (i) is [6, Lemma 4.3.2].

(ii) Take s € R such that lang(s) = 0. If lang(s) # 0, by Proposition
3.1(i), 0 # lang(s) N R = lang(s), a contradiction. Hence lang(s) =0 and
by [7, Lemma 1.10], s € Inv (Q).

(iii) Reg (L) € Inv (Q): Let y be in Reg (L). Then lang(y) N L = lany,(y)
= 0 implies, since L is essential, lang(y) = 0 and by (ii), y € Inv (Q).

Take g € Q). By conditions (i) and (iv) in Proposition 3.2, R satisfies
the acc for the left annihilators of the form lan (a) with ¢ € R and does not
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contain infinite direct sums of nonzero left ideals, so we can apply [5, Propo-
sition 11.14 (5)] to (R : ¢) N L, which by (i) is an essential left ideal of R, and
find 0 # s € LN(R: ¢) withlang(s) =0. By (ii), s € Inv (Q), and s =t € R
implies ¢ = s~'t. Now, given p € @, write p = ps~'s, with s € L N Inv (Q),
and ps~' = u~!v, with u € L and v € R (this is possible as we have proved
previously). Then p = v !(vs), with u,vs € L, which completes the proof.
[l

COROLLARY 3.4. Let Q be a (semiprime) artinian ring which is a left
quotient ring of a semiprime ring R. Then R is a classical left order in Q.

Every ring R which is left nonsingular and such that every element a
€ R has finite left Goldie dimension will be called a left local Goldie ring
(equivalently, by [5, (7.5)], R satisfies the ascending chain condition on the
left annihilators of the form lan (a), with a € R, and every element a € R
has finite left Goldie dimension). If additionally R has finite left (global)
dimension, then R will be called a left Goldie ring.

PROPOSITION 3.5. Let Q be a (semiprime) ring coinciding with its socle
which s a left quotient ring of a semiprime ring R. Then:

(1) R is left local Goldie.

(ii) For each nonzero element a € R the local ring R, of R at a is a
classical left order in the semiprime artinian ring Q.

Moreover,

(1) R is prime if and only if Q is simple.

(2) R has finite left Goldie dimension if and only if Q is artinian.

PRrROOF. (i) By [5, (7.13)], @ is nonsingular and by Proposition 3.2(iii), R
is left nonsingular. Proposition 2.1(vi) says that @ has finite left local Goldie
dimension. Hence and using condition (iv) in Proposition 3.2 we obtain that
R has finite left local Goldie dimension.

(ii) Let @ € R. By Proposition 2.1(i), R, and @, are semiprime and by
Proposition 2.1(v), @, is artinian. Finally, since @, is a left quotient ring
for R, (by Proposition 3.2(v)) we can apply Corollary 3.4 to obtain that R,
is a classical left order in Q.

(1) If R is prime then @ is simple by Proposition 3.1(ii) and by the
structure of the socle.

Conversely, ) simple implies (by condition (iii) in Proposition 2.1) @,
simple for every nonzero a € R. By (ii) and the classical Goldie Theorem,
R, is a prime ring, which implies (Proposition 2.1(ii)) that R is prime.

(2) Suppose @ artinian. Since @) satisfies the acc on all left ideals, from
condition (iv) in Proposition 3.2 it follows that R has finite left Goldie di-
mension. Conversely, if () were not artinian it would have infinite left Goldie
dimension, hence R would have infinite left Goldie dimension too (applying
again Proposition 3.2(iv)). O
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§4. On Fountain—Gould left orders in rings

Let a be an element of a ring R. We say that b in R is the group inverse
of a if the following conditions hold: aba = a, bab = b, ab = ba.

It is easy to see that a has a group inverse b in R if and only if there
exists a unique idempotent e (e = ab) in R such that a is invertible in the
ring eRe (with inverse b), hence the group inverse is unique and « is said to
be locally invertible. Denote by a* the group inverse of a.

An element a € R is left square cancellable if o’z = ay implies az = ay
for z,y € RU{1} (for x = 1 or y = 1 this means that a? = a?y or a*z = a?
implies a = ay or ax = a). Right square cancellable elements are defined anal-
ogously, and square cancellable means both left and right square cancellable.
We denote by S;(R), S;(R) and S(R) the sets of all left, right and two-sided
square cancellable elements of R, respectively.

LEMMA 4.1. If Q is a left quotient ring of a ring R, then S,(R) € S, (Q).

PROOF. Let s be in S, (R) and suppose p,q € QU {1} such that ps? = ¢s°.
If ps —qs # 0 then there would exist a € R satisfying a(ps — ¢s) # 0 and
ap,aq € R. Since s € S,(R), (ap — aq)s? = 0 with ap,aq € R implies (ap —
aq)s = 0, a contradiction. In consequence S,(R) € §,(Q). O

We recall that a subring R is a Fountain—Gould left order in a ring @Q if:

(1) every element of S(R) has a group inverse in () and

(2) every element g € Q can be written in the form ¢ = afz, where a €
S(R) and z € R.

We also say that @ is a ring of Fountain—Gould left quotients of R. In
a similar way Fountain—Gould right order and ring of Fountain—Gould right
quotients are defined. If R is both a Fountain—Gould left and right order
in @), then we say that R is a Fountain—Gould order in () and that @ is a
Fountain-Gould ring of quotients of R. When condition (2) is satisfied we
speak about weak Fountain—Gould left order.

Clearly, if R is a classical left order in a unital ring ), then R is a weak
Fountain—-Gould left order in ). The converse is not true in general, as it
was shown by Fountain and Gould in [3, Example 3.1]. It is not difficult to
see ([3, Lemma 2.1]) that if R is a weak Fountain—Gould left order in a ring
Q, then every element g € Q can be written as ¢ = a*b with « € S(R), b€ R
and aa®b = b. This result will often be used without mentioning it.

The following theorem was stated by Anh and Mérki for Fountain-Gould
left orders, although the same proof is valid for weak Fountain-Gould left
orders.

THEOREM 4.2 (common denominator property) [2, Theorem 5]. Let R
be a weak Fountain—Gould left order in Q. Then for any p,q € Q) there exist
u € S(R), v,w € R such that p = ulv, ¢ = ulw.
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LEMMA 4.3 [2, Theorem 1]. Let R be a subring of a ring Q. If Q is a
weak Fountain—Gould left quotient ring of R, then Q is a left quotient ring
of R.

Propositions 4.4 and 4.5 show the relationship between classical left quo-
tient rings and (weak) Fountain-Gould left quotient rings. Later, via the
local rings at elements, these results will allow us to show how close are
Fountain—Gould left orders and classical left orders.

PROPOSITION 4.4. Let R be a Fountain—Gould left order in a ring Q.
(i) If @Q is unital then R is a classical left order in Q.
(ii) If R has an element which is not a right zero divisor (in R), then R
is a classical left order in Q.
(iii) If Q has an element which is not a right zero divisor (in Q), then R
1s a classical left order in Q.

PROOF. (i) is [3, Theorem 3.4], (ii) is [2, Proposition 9] and (iii) is a
trivial consequence of (ii) because if afb is not a right zero divisor in @, then
@ is not a right zero divisor in R. U

PROPOSITION 4.5 [3, Theorems 3.4 and 3.11 and Proposition 2.10]. Let
R be a subring of a ring QQ and suppose () semiprime and coinciding with its
socle.

(i) If R is a weak Fountain—Gould left order in Q then R is a Fountain—
Gould left order in Q.

If Q is also artinian then

(ii) R is a classical left order in @Q if and only if R is a Fountain—Gould
left order in Q.

We would like to stress the following result. It was stated in [4, Proposi-
tion 2.4] and the proof given there used the geometric properties of the ring
. Now we give a more algebraic proof.

THEOREM 4.6. Let R be a ring which is a Fountain—-Gould left order
in a semiprime (prime) ring Q which coincides with its socle. Then R is
semiprime (prime).

PROOF. Let a be a nonzero element of R. Since () is semiprime, there is
an element g € @) satisfying aga # 0. Apply that R is a Fountain—Gould left
order in Q to get u € S(R), v € R such that ¢ = ufv, with v = uufv. Then
0 # aga = aufva. By semiprimeness of Q, aufva@Q # 0 and since Q = Soc (Q),
there exists ¢ contained in a minimal right ideal of Q, verifying aufvat # 0.

Consider the set T' = {u"ufvatQ : n =1,2,...}, of nonzero (ufvat # 0
and (@ is semiprime) right ideals of (). Since u-dim (Qq) < oo (by Proposi-
tion 2.1(vi)) the sum of the elements of I' cannot be direct, hence there exist
elements ai,...,q, € Q such that Y ;" uFutvatay, = 0, with some sum-
mand nonzero. We may suppose uufvata; # 0. This implies ufvata; # 0
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and
(4.1) utvatay + wutvatan + - - - + u™ tufvatay, = 0.

On the other hand, since ¢ belongs to a minimal right ideal of () then ¢ € tQ
= ta1@Q and so t = taya for some « € Q. Multiplying (4.1) by a on the left
side and by a on the right side we obtain: aufvatog o + avulvatosa + - - +
au™ Lutvatama = 0, ie., aufvat + avulvatosa + - - - + au™ utvata,a = 0,
with aufvat # 0. Then 0 # —aufvat = auufvatasa + - - - + au™ ubvato,o.
Since uufv = v, 0 # —aufvat = avataga + - - - + au™ 2vata,a, and some of
the summands of the right side is nonzero, that is, aufvatoy oa # 0 for
some k € N and, consequently, 0 # au*fva € aRa, which proves that R is
semiprime.
If @ were prime, the primeness of R would follow analogously. U

PROPOSITION 4.7. Let R be a ring which is a Fountain—Gould left order
i a semiprime 1ing Q equal to its socle. Then, for every a € R, the local
ring Rq of R at a is a classical left order in the semiprime artinian ring Qq.

PROOF. We notice that R is semiprime, by Theorem 4.6, and that Q is
a left quotient ring of R by Lemma 4.3. Apply condition (ii) in Proposition
3.5 to obtain the result. O

It is well known (Goldie’s Theorem) that a ring R is a classical left order
in a semiprime artinian ring @) if and only if satisfies the following condition:
A left ideal of R is essential if and only if it contains a regular element. The
following proposition plays an analogous role for Fountain—-Gould left orders
in semiprime rings which coincide with their socle.

PROPOSITION 4.8. Let R be a semiprime left local Goldie ring. Then,
given any finite subset X of R and any essential left ideal L of R, there
exists s € S(R) N L such that lang(s) = lang(X).

PROOF. (This proof follows partially the proof of [1, Proposition 7].) Let
K be a nonzero left ideal of R which is maximal with respect to the prop-
erty K Nlan(X) =0. Since L is essential, K can be taken contained in L
(otherwise K N L would suit). It is not difficult to see that R/lan (X) can be
embedded (as a left R-module) into the finite direct sum @,¢ x Rz. Every left
ideal Rz has finite Goldie dimension, so has K. By [4, Theorem 3.15], there
exists s € S(R) N K such that Rs is essential in K and lan (X) € lan (s). Here
lan (s) N Rs = 0 and K is maximal with respect to K Nlan (X) = 0, therefore
lan (X') must be essential in lan (s), which implies lan (s) = lan (X). O

THEOREM 4.9. Let R be a semiprime left local Goldie ring and put Q) =
| x(R). Then:

(i) R is a Fountain—Gould left order in the semiprime ring RQ which
coincides with its socle.
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(ii) For every finite subset Y S RQ), there exists s € S(R) such that
Y € sQs = sRQs and Ry is a classical left order in Qs.

PROOF. First we notice that under left nonsingularity, a ring has a max-
imal left quotient ring which is von Neumann regular (Johnson’s Theorem,
[5, (13.36))).

(i) (1) R € Soc(Q). Let a be a nonzero element of R. Apply conditions
(i), (iv) and (ix) in Proposition 2.1 to obtain that R, is a semiprime left
Goldie ring. On the other hand, @, is a semiprime (Proposition 3.1(ii)) left
Goldie ring (Proposition 3.2(iii) and (iv)). By the classical Goldie Theorem,
Q. is a classical left order in a semisimple artinian ring 7'. Since ) is von
Neumann regular, the ring ), is unital and von Neumann regular, therefore,
Reg (Q) = Inv (Qa).

Since T is generated by @, and the inverses of the elements of Reg (Q,),
we have T' = @),. Finally, T (= Q,) artinian implies, by Proposition 2.1(v),
a € Soc (Q).

(2) Now we prove R € R(Q and R(Q semiprime and coinciding with its
socle. By von Neumann regularity of @, R € RQ. We notice that RQ is a
left quotient ring of R, which implies, by Proposition 3.1(ii), that RQ is a
semiprime ring. Therefore, and since R(Q) is a right ideal of a semiprime ring
which coincides with its socle, R(Q) coincides with its socle.

(3) We see R is a Fountain-Gould left order in RQ. Take ¢ = Y " | rig;
for some r; € R, ¢; € Q, and denote X = {ry,...,r,}. Then, by Proposi-
tion 4.8, there exists s € S(R) N (R : q) such that lang(s) = lang(X). By
Lemma 4.1 and [3, Proposition 2.6], s has a group inverse st € RQ. Now we
prove ¢ = stsq. We notice that lang(s) = lang(X) implies (by Proposition
3.2(i)) langg(s) = langg(X). Hence langg(s) € langg(q). Since for every
p € RQ, psst —p e langg(s) we have 0 = (pss' — p)qg = p(sstq — ¢q) and by
semiprimeness of RQ, ss’q = ¢q. Finally, ¢ = s¥(sq) with sq € R shows that
R is a Fountain—Gould left order in RQ).

(ii) Let Y = {q1,...,qn}, write y; = agbi with a; € S(R) and b; € R and
define X = {ai,...,ap,b1,...,b,}. By [1, Proposition 7] there exist s € S(R)
and a left ideal L of R such that {s} UX C L and Rs is essential in L. Name
B = LNrang (lang(s)). We have that X € B. Moreover B Nlang(s) S

rang (lang(s)) Nlang(s) = 0 and B Nrang(s) C rang (lang(s)) Nrang(s)
= 0 by [1, Proposition 6]. Hence s is not a zero divisor in B.

(1) B Crang (lang(s)) Crang (lang(s)) = sQ. We prove the second
inclusion:

Take z € rang (lang(s)). If z & rang ( lang(s)), there would exist g €
lang(s) such that gz # 0. Since @ is a left quotient ring of R, there exists
a € R such that aq € R and aqx # 0.

Since 0 = ¢s, we have aq € lang(s), hence agz = 0, which is a contradic-
tion.
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(2) B € @Qs. We notice that by Lemma 4.1 and [3, Proposition 2.6], s
has a group inverse in @) (since the socle of a semiprime ring satisfies the dcc
on principal left ideals).

Let a be in B. By Proposition 3.5(ii), R is a classical left order in @,

so, given the element stasst® € Q, there exist w € S(Rs), U € Ry such that,

e . . 2 T 2
if w denotes the inverse of @ in Q;, sfass?” = w . v, which implies @ . stass!
_ . 2 . . . .
= 7, that is, suass? = susstass'”s = svs, and if we multiply on the right side
by s, suas = svs®. Since the elements sua and svs are in B and s is not a

zero divisor in B, sua = svs, so ¢ = swsvs € (s. [l

The following theorem is a Goldie-like characterization of Fountain-
Gould left orders in semiprime rings coinciding with their socles. Conditions
(i), (ii) and (iii) were established by Anh and Mérki in [1, Theorem 1] and
were proved by using different techniques. In our proof we bring out the role
played by the maximal ring of left quotients and by the local rings at ele-
ments (in particular their use to apply the well-known Goldie Theorem). In
Theorem 4.12 we pay attention to the ring (). We think this is the first time
(at least in the literature we know) this kind of result is established.

THEOREM 4.10. For a ring R the following conditions are equivalent:
(i) R is a Fountain—-Gould left order in a semiprime ring which coincides
with its socle,
(ii) R is semiprime, the set { lan(a): a € R} satisfies the mazimum con-
dition and R has finite left local Goldie dimension,
(iii) R is a semiprime left local Goldie ring,
(iv) R is semiprime and for each a € R the local ring R, is semiprime and
left Goldie,
(v) R is semiprime and has a left quotient ring Q) which is semiprime and
coincides with its socle.

PROOF. (i) = (v) follows by Theorem 4.6 and by Lemma 4.3.

(v) = (ii). Since @ satisfies the acc on lang(z) with = € @, by Propo-
sition 3.2(i) the set {lang(a): a € R} satisfies the maximum condition.
On the other hand, R has finite left local Goldie dimension by Proposition
3.2(iv).

(ii) = (iii) follows by Corollary 1.2(ii).

(iii) & (iv) follows by Proposition 2.1(i), (iv) and (ix).

(iii) = (i) follows by Theorem 4.9(i). O

We notice that condition (v) in the following theorem is a generalization
of the contents of condition (4) in Theorem 1 as well as Propositions 9 and
10 from [1]. In fact, if ¢ is a square cancellable element in R, then R, is
isomorphic to a?Ra® (@ — a?za® provides a ring isomorphism) and by con-
dition (v) in Theorem 4.12, a®?Ra? is a classical left order in the semisimple
artinian ring ¢?Qa® = afaQala.
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THEOREM 4.11. Let R be a subring of a semiprime ring Q which coin-
cides with its socle. The following conditions are equivalent:

(i) R is a weak Fountain—Gould left order in Q,

(ii) R is a Fountain—Gould left order in Q,

(iii) @ = RQR and for every nonzero element a € R we have that R, is a
classical left order in the semisimple artinion ring Qg,

(iv) R is semiprime, Q@ = RQ and Q is a left quotient ring of R,

(v) for every finite subset Y of Q there exists an element a € S(R) such
that Y € aQa and R, is a classical left order in the semisimple artinian ring
Qa-

PROOF. (ii) = (i) is trivial and (i) = (ii) follows from Proposition 4.5(i).

(ii) = (iii). By Proposition 4.7, for each nonzero a € R, R, is a classical
left order in the semisimple artinian ring Q,. Now, if ¢ € Q, write ¢ = a'b
with a € S(R), b € R. Then ¢ = a(aﬁ)zb € RQR.

(iii) = (iv). Since for every nonzero element a € R, R, is a classical left
order in )y, then R, # 0, which implies R semiprime. In what follows we
prove that @ is a left quotient ring of R.

(1) Let agc be a nonzero element, with a,c € R, g € Q). Then the follow-
ing is an essential left ideal of Ry: Agge := {b € R, | abagc € R} .

Clearly, Agqe is a left ideal of R,. Now, let 7 be a nonzero left ideal of
R,. If ayaqc =0 for every y € Z, then Z & Ayye. Let § € Z be such that
ayaqc # 0. Since () is semiprime, cpayage # 0 for some p € (). Apply that
R. is a classical left order in Q. and take u € Reg(R.), v € R, satisfying
pagag = U~ . 0. Then 0 £ ¥ = U . pagaq € R, implies 0 # cvc = cucpayaqc.

Now we will show aRcucpayaqc # 0.

First we have QQ = &Q, with the Q,’s as simple ideals of () coinciding
with their socles. Denote by m, : @ — @, the canonical projection. For
every z € R, m, induces a ring epimorphism fiq : Qz = Qr (2) = (Qa)m(m).
Since R, is a classical left order in @, for every « such that m,(x) # 0,
it is easy to see that mo(R), (,) is a classical left order in (Qa),, (p)- In
particular WQ(R)M(m) # 0, which implies that m,(R) is a semiprime ring.
Since @, is simple, by Proposition 2.1(iii), (Qa)m(m) is a simple ring, and
by the classical Goldie Theorem, WQ(R)M(m) is a prime ring, which im-
plies (Proposition 2.1(ii)) that m,(R) is prime. Now, let 8 be such that
0 # mg(cve) = mg(cucpayage). Then mg(a) # 0 and there exists € R such
that 0 # mg(a)mg(z)mg(cve) = mg(azcve). In particular azcve # 0.

Let 7 and 5 be in Reg(R,) and R,, respectively, such that Zcucp =
771.5.  Then 0 # arazcucpayaqc € araxcRc and Tazcucpay =35.7 is a
nonzero element in Ay NZ.

(2) Q is a left quotient ring of R. Let p,q be in @ with p # 0. Since Q
is semiprime, Qp # 0, and since () = RQR, there exists ¢ € R such that ap
# 0. Apply that p,q € Q = RQR and take p;,q; € ), ¢;,d; € R such that
ap =Y., apici and aq =Y, agjd; for some m,n € N. By (1), Agp,ec
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and Ay, q; are essential left ideals of R, and, consequently, A = (N Agp,c;)
N (ﬂ?zlAaqjdj) is an essential left ideal of R,. By the classical Goldie Theo-

rem, there exists @ € Reg (R,) NA. Then auap = > | auap;c; € R and auaq

= E?Zl auaq;d; € R. Moreover auap # 0 because ap # 0 and @ € Reg (R,).

(iv) = (v). Consider Y € Q). By Proposition 3.2(iii) and (iv), R is a left
local Goldie ring. Therefore Theorem 4.9 applies to obtain that there exists
s € S(R) such that Y C sQs. In particular for every y € Y, y = ssfysfs €
sQs since by Lemma 4.1 and [3, Proposition 2.6], every element of S(R) has
a group inverse in ). Finally, by Proposition 3.5(ii), R is a classical left
order in Q).

(v) = (i). (1) Q is a left quotient ring of R. Indeed, let p and ¢ be in
@ with p # 0. By the hypothesis, there exist a € S(R), p1,¢q1 € @ such that
p =ap1a, ¢ = aqia and R, is a classical left order in (),. By the common
denominator property, there exist @ € Reg(R,), U,w € R, such that p; =
w'.vand g, =w '.w, that is, . p1 = ¥ and W. g = w. Equivalently, Tapy
=7 # 0 and waq; = w, which implies aup = auapia # 0 and auq = avaqia
=awa € R.

(2) Take g € Q. By hypothesis there exists @ € S(R) such that ¢ € aQa
and R, is a classical left order in the semisimple artinian ring @,. By (1) we
can apply Lemma 4.1 and [3, Proposition 2.6] to obtain that a has a group
inverse in Q. Write ¢ = apa, a?2p=7'.5 for 7,5 € R, and 7! =1 € Q,.
We claim that afta! = (a’ra?)! and hence a’pa = atasa implies ¢ = apa =
a*tata’sa = (a’ra?)*a®sa, which proves our claim. O
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