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LEFT, RIGHT, AND INNER SOCLES
OF ASSOCIATIVE SYSTEMS

J. A. ANQUELA!, T. CORTES' (Oviedo), M. GOMEZ-LOZANO?
and M. SILES-MOLINA? (Mélaga)

Abstract. We investigate the basic properties of the different socles that
can be considered in not necessarily semiprime associative systems. Among other
things, we show that the socle defined as the sum of minimal (or minimal and
trivial) inner ideals is always an ideal. When trivial inner ideals are included, this
inner socle contains the socles defined in terms of minimal left or right ideals.

Introduction

The socle of an associative algebra is a widely present notion in the
mathematical literature (see [4]; [10, §1.1], [11, §IV.3], [17, §7.1], for exam-
ple). Recent papers on associative pairs and triple systems make use of pair
and triple versions of the algebra socle (cf. [3, 5, 6, 8]). Surprisingly, in some
of these papers, the definition of the socle [5] is given in terms of inner ideals
rather than one-sided ideals. The idea comes from the theory of Jordan sys-
tems and the definition of (Jordan) socle of Fernandez-Lépez, Garcia-Rus,
and Sanchez-Campos [7], and Loos [13]. Most of the time, only semiprime
associative systems are considered and, under this restriction, the equality
between the different definitions of the socle is part of the mathematical folk-
lore. However, for not necessarily semiprime systems, it is not clear whether
the same coincidence holds, or if properties of a particular version of the
socle apply to other versions.

Our aim is to study the different versions of associative socles and their
relations for arbitrary, not necessarily semiprime, associative systems. For an
associative system A, we will consider Soc,’ 4, Soc,’ A and Soc;,’ A, defined
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as the sums of all minimal left, right, and inner ideals of A, respectively, and
also the left, right, and inner socles Soc; A, Soc, A and Soci, A, where the
sums of all trivial left, right, and inner ideals, respectively are included. In
our definition we follow the idea of Loos in [13], where a satisfactory notion
of socle is given for Jordan systems over an arbitrary ring of scalars.

After the preliminaries, containing basic definitions, notation and prop-
erties of associative systems, in Section 1 we study the relations between
minimal left, right, and inner ideals. Section 2 is devoted to studying in-
ner socles. Following [13], structural transformations allow us to obtain that
Socip A is always an ideal of A. The special properties of one-sided multipli-
cations as structural transformations, are also used to establish that Soc;,’ A
is also an ideal. In Section 3, we study one-sided socles. Applying elementary
arguments of the theory of modules, we prove that Soc,’ A, Soc,’ A, Soc A4,
and Soc; A are left and right ideals of A, but not necessarily ideals in the
cases of pairs and triple systems. Using the results obtained in the first sec-
tion, we show that Soc; A and Soc; A are always contained in Soc;, A, while
the corresponding assertion for Soc;’ A, Soc,’ A and Soc;,’ A is false. When
A is semiprime we prove that the six notions coincide. Finally, the fourth
section deals with the interaction between socles and direct sums and the
natural functors relating the categories of algebras, pairs and triple systems.

0. Preliminaries

0.1. We will deal with associative systems (algebras, pairs, and triple
systems) over an arbitrary ring of scalars ®. Recall that an associative pair
over @ is a pair of ®-modules (A1, A™) together with a pair of trilinear maps

(,,) A X A7 x A7 = A7, o=d,
satisfying
<<:L,7y7z>0"u’,u>0' = <$’ <yjz7u>*0",u>(7 = <x,y, <Z’u’,u>0'>0"

for any z,z,v € A7, y,u € A77, 0 = £. If A is an associative pair, it is clear
that A® = (A, A"), with obvious products, is an associative pair too. We
can also consider the associative pair A°°? = (A", A™) obtained by reversing
the products of A ((z,y,2)g, = (z,¥,2)7).

Similarly, an associative triple system A over ® is a ®-module equipped
with a trilinear map

(,,): AxAxXA—= A,
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satisfying

<(x,y,z>,u,u> = <$, (y,z,u),v> = <x,y, (z,u,v>>,

for any z,y,z,u,v € A. As for pairs, one can consider the opposite triple
system A°P of A. Due to associativity, there is no risk of ambiguity when
deleting the brackets “()”, thus, the products above will be usually denoted
by juxtaposition, just like in the associative algebra case.

0.2. An associative algebra A gives rise to the associative triple sys-
tem A7 by simply restricting to odd length products. By doubling any
associative triple system A one obtains the double associative pair V(A)
= (A, A) with obvious products. From an associative pair A = (A", A~) one
can get a (polarized) associative triple system T'(A) = AT @ A~ by defining
(zt@z )yt @y )t dzT)=aty 2t @z yt 2.

0.3. Given an associative algebra, pair, or triple system A, A(T) denotes
its symmetrization: Over the ®-module A we consider the Jordan products
U,y, Quy or Pyy equal to the associative products zyz and, in the algebra
case, the Jordan squares 22, which are just the associative squares zz [1, 2.4,
5.1], [14, 0.7].

0.4. The wellknown notions of left and right ideals of an associative
algebra have the following analogues for pairs and triple systems: Given an
associative pair A, a ®-submodule I of A? is called a left or right ideal of A
if AA T C T or TA"7A° C I, respectively. An ideal I of A is a pair of
®-submodules I = (I1,17), I° € A%, 0 = 4, such that I and I~ are both
left and right ideals of A and A1 7A% C I?, o0 = +. For an associative
triple system A, left and right ideals of A are simply those of the pair V(A),
while an ideal I of A is a left and right ideal also satisfying AIA C I, i.e., a
®-submodule I of A such that (I, ) is an ideal of V(A).

Notice that, if I is a left or right ideal of an associative algebra A, then
it is a left or right ideal, respectively, of the associative triple system Ar.
Similarly, an ideal of A is always an ideal of Ap.

0.5. For an associative algebra A, a ®-submodule I will be called an
inner ideal of A if it is an inner ideal of AP ie., if it satisfies T Az C [ for
any x € I, where A denotes the usual unitization of A, equivalently, z? € I,
zAz C I for any z € I (cf. [14, 0.13]).

Analogously, given an associative pair A, a ®-submodule I of A?, 0 = &+,
is said to be an inner ideal of A if it is an inner ideal of AH), which means
A %2z € I for any z € I [12, 10.1]. An inner ideal of an associative triple
system A is just an inner ideal of the pair V(A).
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0.6. An associative algebra or triple system A is said to be nondegen-
erate if, for any x € A, rAx = 0 =z = 0. An associative pair A is called
nondegenerate if, for any z € A% and any 0 € {+,—}, 242 =0= 2 = 0.
Notice that nondegeneracy of an associative system A is just nondegeneracy
of the Jordan system A() [12, 4.5].

0.7. An associative system is said to be semiprime if 0 is the only nilpo-
tent ideal of A. Instead of going through the different notions of nilpotency
of ideals for algebras, pairs, and triple systems [1, 1.6, 1.16], we recall the
equivalence between semiprimeness and nondegeneracy [1, 1.18], which will
be used in the sequel.

0.8. Semiprimeness (indeed, nondegeneracy) is preserved by the func-
tors of (0.2): An associative algebra is semiprime if and only its underlying
triple system is semiprime. An associative triple system A is semiprime if
and only if V(A) is semiprime. An associative pair A is semiprime if and
only if T'(A) is semiprime.

0.9. Given an associative pair A, an element z € A? is called von Neu-
mann reqular if there exists y € A~% such that z = zyz. A pair of elements
(e,f) € A7 x A~ is called a pair of idempotents if efe = e and fef = f. No-
tice that any von Neumann regular element « can be completed to a pair of
idempotents (e, f): e = z, f = yxy for any y such that z = zyz.

Von Neumann regular elements and pairs of idempotents of an associative
algebra or triple system A are simply those of the pair V(A).

Notice that a usual idempotent element e of an algebra (e? = e) is von
Neumann regular and (e, e) is a pair of idempotents.

0.10. Local algebras, introduced in [15], are one of the ways to connect
the categories of algebras and pairs and triple systems:

Given an associative pair A = (AT, A7) and ¢ € A7, the ®-module A”
becomes an associative algebra, denoted A%(@) and called the a-homotope
of A, with product z -, y := zay, for any x,y € A?. The set

Kerpa =Kera :={z € A? | aza = 0}

is an ideal of A°(®) and the quotient AJ := A°(®)/Kera is an associative
algebra called the local algebra of A at a.

Homotopes and local algebras of an associative algebra or triple system
A at an element a are simply those of the associative pair V(A).

The above notions are compatible with the functors V(') and T'( ) as well
as with symmetrizations (cf. [2, 0.5]).

We finally remark that, when (e, f) is a pair of idempotents of A, the

local algebra of A at e is unital with unit element f := f + Kere.
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1. Minimal left, right, and inner ideals

This section is devoted to describing minimal left, right, and inner ideals
of associative algebras, pairs, and triple systems. Versions of these results
under more restrictive conditions or for a particular kind of system can be
found in the literature (cf. [5, 4.1], [8, I11.2.1.1, I11.2.1.2, 111.2.1.3], [9, Lemma
1.3.1], [10, Lemma 1.2.2], [17, §7.1]). However, since we are dealing with not
necessarily semiprime systems, most of the known results cannot be applied.
Nevertheless, going deeper into their proofs reveals that semiprimeness is not
always strictly needed, which allows us to obtain more general and precise
descriptions with rather elementary arguments.

As noticed by Loos in the Jordan setting, when not necessarily semiprime
systems are considered, trivial inner ideals (minimal or not) play an impor-
tant role in the definition of the socle (cf. [13, p. 111]). Therefore, we will
consider this notion in the associative atmosphere too, and extend it to left
and right ideals.

1.1. A left (right or inner) ideal I of an associative algebra A will be

called trivial if AT =0 (IA=0or zAz =0, forallz € I, respectively). A left
(right or inner) ideal I € A%, o = 4, of an associative pair A will be called
trivial if A7A7°1 =0 ([A77A? =0orzA~ %2z =0, for all x € I, respectively).
A trivial left (right or inner) ideal of an associative triple system A is just a
trivial left (right or inner, respectively) ideal of V(A).

Minimal nontrivial left, right, and inner ideals can be described as fol-
lows.

1.2. LEMMA. (i) Let A be an associative algebra and I be a nonzero
left (right or inner) ideal of A. Then, I is minimal nontrivial if and only if
Az =1 (xA =1 or xAzx = I, respectively) for any 0 # z € I.

(ii) Let A be an associative pair and I S A% a nonzero left (right or inner)
ideal of A, 0 = £. Then I is minimal nontrivial if and only if APA %z =1
(A7 A% =1 or xA~%x = I, respectively) for any 0 # x € I.

(iii) Let A be an associative triple system and I a nonzero left (right or
inner) ideal of A. Then I is minimal nontrivial if and only if AAz =1
(xAA =1 or xAx = I, respectively) for any 0 # z € 1.

PROOF. (i) Let I be a minimal nontrivial left ideal of A, and let 0 # =
€ I. It is obvious that Az is a left ideal of A contained in I. By minimality
of I, either Az =1 or Az = 0. If Az =0 for some 0 # z € A, then the lin-
ear span ®x of x is a nonzero left ideal of A contained in I, hence I = ®x
and [ is trivial (Al = Az =0), which is a contradiction. The converse is
straightforward. This argument holds for right ideals with obvious changes.

Consider now a minimal nontrivial inner ideal I of A. Similarly, either
xAx =1 or zAxz =0 for each 0 # x € I (notice that x Az is always an inner
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ideal of A, even when A is not unital). Assume zAxz =0 for some 0 # x
€ A. If 22 =0, then ®z is a nonzero inner ideal of A contained in I, so
that I = ®z. Otherwise 22 # 0 and ®? is a nonzero inner ideal of A, hence
I = ®z?, similarly. In both cases, I is trivial, contradicting our assumption.
The converse is clear.

(ii) and (iii) The proof of (i) applies here with straightforward changes.

With a slightly stronger condition than nontriviality, we can even find
regular elements inside left and right minimal ideals.

1.3. LEMMA. (i) Let A be an associative algebra and I a minimal left or
right ideal of A. If II # 0 (for example, when IAI #0), then there exists
a nonzero idempotent e € I such that I = Ae or I = eA, respectively.

(ii) Let A be an associative pair and I S A% a minimal left or right ideal
of A, o ==x. If IA791 #0, then there exists a pair of nonzero idempotents
ecl, fe A% such that = A°A %e=A%fe or  =ecA %A% =efA?, re-
spectively.

(iii) Let A be an associative triple system and I a minimal left or right ideal
of A. If TAI #0, then there exists a pair of nonzero idempotents e € I,
f € A such that = AAe = Afe or I = eAA = ef A, respectively.

PrROOF. We will deal only with pairs since the result for a triple system
A follows by applying (ii) to V' (A), while the proof for algebras can be found
in [9, Lemma 1.3.1], or obtained by simply replacing a by a formal unit 1 in
the following argument.

Let A be an associative pair and I € A a minimal left ideal of A, for
some o € {+,—}. By the hypothesis, there exists 0 Z#z € I and 0 #a € A™°
such that the left ideal lax is nonzero. Since it is obviously contained in
I, Iax = I by minimality. Choose y € I such that z = yax (so that y # 0)
and consider the set L := {z — zay | z € I}, which is obviously a left ideal of
A contained in I. If L = I, then lax = Lax = 0, since (z — zay)az = zax —
za(yazr) = zax — zax = 0, which is not possible. Hence L = 0 by minimality
of I and, in particular, y = yay is a nonzero von Neumann regular element
in I. By (0.9), e:=y can be completed to a pair of nonzero idempotents
(e, f) of A. Moreover, since [ is obviously nontrivial, we get I = AZA~%¢ by
(1.2). But AA %e=AA %efe C A%fe & A"A “e.

A similar proof holds for right ideals. O

To obtain an analogue of (1.3) for minimal inner ideals, nontriviality is
a sufficiently strong condition.

1.4. LEMMA. Let A be an associative algebra, triple system, or pair, and
I a minimal nontrivial inner ideal of A (I S A%, 0 = %, in the pair case).
Then every nonzero element e € I is von Neumann reqular and I = eAe =
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efAfe (I =eA %e=efA° fe in the pair case) for any f € A (f € A~7 in
the pair case) completing e to a pair of idempotents of A.

PROOF. By (1.2), I = eAe (I = eA ?e in the pair case) for every nonzero
element e € I, hence e is von Neumann regular. Now, if (e, f) is a pair of
idempotents of A, eAde = efedefe CefAfeC ede (eA%e=efeA %efe C
efA% fe C eA™%¢ in the pair case). O

1.5. REMARK. A minimal nontrivial inner ideal I of an associative alge-
bra A does not necessarily contain algebra idempotents: consider for example
the algebra of 2 x 2 matrices A = My(®) over a field ® and take I = Peys.

We will finally show that, when generated by regular elements, minimal
left, right, and inner ideals are deeply related. Local algebras are the suitable
tool to connect these notions.

1.6. LEMMA. Let A be an associative algebra, triple system, or pair, and
ec A (e€ A%, 0 = =, in the pair case). Then the inner ideal eAe (eA™%¢ in
the pair case) is minimal nontrivial if and only if the local algebra A, (A7°
in the pair case) of A at e is a division algebra.

In particular, if e is a nonzero von Neumann regqular element, then eAe
(eA™%¢ in the pair case) is minimal if and only if A (A7 in the pair case)
1s a division algebra.

PrOOF. We will deal just with pairs, since the proof is valid for an algebra
or a triple system just deleting the superscripts.

Suppose first that the inner ideal eA™%¢ is minimal nontrivial. We claim
that for any @ := a + Kere, b:=b+ Kere € A7° with 0 # b, there are ele-
ments ¢,d € A7 such that @ = b¢ = d b, which readily implies that A7 is a
division algebra.

Indeed, b # 0 means ebe # 0, so that eA~%¢ = ebeA~¢be by (1.2). Now
eae € eA™%¢ implies the existence of some u € A7 such that eae = ebeuebe,
i.e., @ = bueb = beub.

Conversely, assume that A7 is a division algebra, so that eA™%¢ is a
nonzero inner ideal. Let 0 # z € eA™%¢, so that z = exe for some z € A77,
and, in particular, Z is a nonzero element of A_?. Let § be the inverse
of Z. Hence, for any a« € A7?, we have @ =TyayT, which means eae
= exeyeaeyexe = zyeaeyz € zA %z, so that eA %¢ = zA7%z. This shows
that eA~%¢ is minimal nontrivial by (1.2). O

1.7. LEMMA. Let A be an associative algebra, triple system, or pair, and
(e, f) a pair of idempotents of A (e € A%, f € A~7, 0 = =, in the pair case).
(i) If Afe (A° fe in the pair case) is a minimal left ideal of A or ef A
(efA? in the pair case) is a minimal right ideal of A then eAe (eA %e in
the pair case) is a minimal inner ideal of A.
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(ii) If A is semiprime and eAe (eA %e in the pair case) is a minimal
inner ideal of A, then Afe (A fe in the pair case) is a minimal left ideal of
A and ef A (ef A7 in the pair case) is a minimal right ideal of A.

PrOOF. We will consider just the case of pairs, since the proof for alge-
bras and triple systems is obtained by deleting the superscripts.

(i) Assume, for example, that A% fe is a minimal left ideal of A. By (1.6)
we just need to show that A, 7 is a division algebra.

Let 0 #7 :=xz + Kere € A, 7, so that z:=exe #0. Now, 0 # z = eze
= efexe = efz implies that the left ideal A fz is nonzero, whereas z = exe
= exefe forces A% fz C A% fe, so that A fe = A% fz by minimality. Thus
e =-¢efe € A? fz and there exists y € A? such that e =y fz, and efe =efyfz
= efyfexre, which means that 1y-0 = f = fyfT. We have shown that any

nonzero element in A_ 7 is left invertible, which implies that A_ 7 is a division
algebra.

(ii) Let us assume that eA™%e is minimal and let us prove, for example,
that A” fe is minimal. For a nonzero left ideal I of A contained in A? fe,
take a nonzero element z € I. It is immediate that eA~%z is an inner ideal of
Aand eA772C eA 1 C eA77A% fe C eA™%e. Moreover, since zA7%z # 0
by semiprimeness, and z = yfe for some y € A%, we must have eA~7z # 0.
Therefore, eA=%2z = eA~%¢ by minimality of eA™%e. In particular, e = efe
€ceA ™ %z2€ AA %z € I,sothat AfeC 1. O

1.8. REMARK. The assumptions of (1.7) can be weakened to obtain a
stronger result, closer to (1.6). Indeed, it can be proved that minimality
flows between one-sided ideals and inner ideals, as soon as they are gener-
ated by an element and the inner ideal is nontrivial. The result holds with
similar proofs for algebras, pairs, and triple systems and for both left and
right ideals, but we just state it for left ideals of an associative pair for the
sake of simplicity:

Let A be an associative pair, and e € A?, ¢ = 4, be such that the inner
ideal eA™%¢ is nontrivial.

(i) If A2A ¢ is a minimal left ideal of A, then there exists a pair of

idempotents (¢, f) of A such that AA %¢ = A°A~7¢ = A° fé and eA “e
=eA77%¢, so that (1.7)(i) applies, and eA™¢ is minimal too.

(ii) If A is semiprime and eA™ ¢ is a minimal inner ideal of A, then e is
von Neumann regular, so that (1.7)(ii) applies and A A~ %¢ is a minimal left
ideal of A.

Indeed, nontriviality of eA~%e implies that eueA™%eue # 0 for some
u € A7%. If I denotes the left ideal AZA~%¢, then TA771 # 0 since eue € [
and, in particular, I is nontrivial.

(i) Assume that I is minimal. By (1.3), there exists a pair of idempotents

e el, fe A7 such that [ = AA 7 = A7 fe'.

Acta Mathematica Hungarica 103, 200/



ASSOCIATIVE SYSTEMS 185

We claim that the local algebra A_ 7 is semiprime: if 0 #7 € A_? sat-
isfies TA_ T = 0, then ezeA %exe =0 with 0 # eze € I. We then have
I =A%A"%zxe by (1.2), and IA™7] = A°A"%exeA"7 A° A= %eze = 0, which
is a contradiction.

Let us show that A7 is unital: efe’ € efI = efAA % C eA %€, thus
efe! = eze for some z € A~7. For any © € A7, exeze = exefe = exe, since
exe € I = A7fe and €'fe’ =¢/. ThusTzZz=7T in A_7, i.e,, Z is a right unit
element for AZ7. Hence A7 is unital with unit element Z, by semiprimeness.

Now, zZZ =T, i.e., ezexeze = exe for any x € A7 implies that € :=
eze = ezezeze is von Neumann regular and eA™%¢ = éA~?¢. Moreover, I =
AA=7¢ by (1.2) since 0 # é € I, and I = A° fé for any f completing ¢ to a
pair of idempotents.

(ii) Suppose that A is semiprime and eA~ e is minimal. By (1.4), we can
take a pair of idempotents (¢, f), €' € eA %e, such that eA %e =€’ A" 7¢.

We claim that e = efe’: For any z € A77, (e —efe')z(e —efe') = exe —
evefe' —efe'ze +efe'vefe = exe —exe —efe'ze + efe’ve =0, since ewe,
efelze € eA %¢ = €' A7%¢ and € fe/ = ¢€'. The claim follows by semiprime-
ness.

Finally, e = efe’ € efeA~%¢ € eA~%¢ implies that e is von Neumann reg-
ular.

1.9. REMARK. Semiprimeness is needed in (1.7)(ii) (consequently in
(1.8)(ii)). Let A denote the subalgebra of M3(®) spanned by ej1, €19, €31, €32,
where @ is a field. It is immediate that e;1 Aeqq is a minimal inner ideal of A,
while neither the left ideal Ae;; = AAei; nor the right ideal e;1 A = e AA
is minimal.

2. The inner socle

2.1. Let A be an associative algebra or triple system. The sum of all
minimal or trivial inner ideals of A will be called the inner socle of A and
denoted Soci, A. The sum of all minimal inner ideals of A will be denoted
Soci,” A (Soci,” A = 0 if A does not have minimal inner ideals).

The inner socle Soci, A of an associative pair A is the pair of ®-
submodules (Soci, ™ A, Soci, ™ A), where Soci,” A is the sum of all minimal or
trivial inner ideals of A contained in A%, o = 4. Similarly, we define Soc;,’ A
= (Sociy'* A, Soci,'~ A), where Soci,'” A is the sum of all minimal inner ideals
of A contained in A%, 0 = + (Sociy'” A =0 if A” does not contain minimal
inner ideals of A). For an associative triple system A, it is obvious by defini-
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tion that Sociy A = Sociy ™ V(A) = Socin~ V(A) and Soci,” A = Socy,'* V(A)
= Sociy'~ V(A).

2.2. REMARK. In general, the containment Soci,’ A € Soci, A is strict:
Let A =Zzx be a free Z-module with basis {z}, ® = Z. Let us consider the
zero algebra or triple product on A (zz = 0 or zzz = 0). Thus, inner ideals
(in both the algebra and the triple sense) are exactly the Z-submodules of
A (all trivial as inner ideals) and A does not have any minimal inner ideal.
Thus, Soci,’ A =0 and Socy, A = A. Taking V(A) provides a pair example
of this situation.

However, the equality Soci,’ A = Soci, A holds if either A is semiprime
or ® is a field: If A is semiprime, zero is the only trivial inner ideal; if ® is
a field then any trivial inner ideal is the sum of its 1-dimensional subspaces,
which are obviously minimal inner ideals.

2.3. Given A and B, two associative pairs over @, a (Jordan) structural
transformation from A to B is a pair of ®-linear maps (f,g), f: AT — BT,
g: B~ — A~ such that

f@yf(x) = f(zg)z),  gWzgly) = g(yf(x)y),

for any x € AT, y € B, i.e., (f,g) is a structural transformation from A
to B [13, p. 112].

Notice that if (f, g) is a structural transformation from A to B then (g, f)
is a structural transformation from B®* to A®*.

2.4. We can easily find structural transformations in the multiplication
algebra of an associative system:
(i) Let A be an associative pair. For z,z € A% and y,u € A7, 0 = +, we
define the left, right, and middle multiplications

Lyy: A7 — A7, Ryy: A7 = A, M,: A7 = A%,

by
Ly y(a) = zya, R, ,(b) = by, M, . (b) = zbz,

forany a € A%, b € A7, respectively. Taking o = +, it can be readily checked
that:

i ( ,ya ), (Rya:,Ly, ) (IdA++L$y,IdA +ny) and (IdA++
Ry ., Idy- + Ly x) are structural transformations from A to A, hence

— (Rays Lay), (LyzsRyg), (Ida- + Ryy, Ida+ + Ly y), and (Idg- +
Ly, 1ds+ + Ry ;) are structural transformations from A®* to A®*.

On the other hand,

— (Mg, szm) is a structural transformation from A®* to A, and
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— (Myy, My ) is a structural transformation from A to A%,

(ii) Let A be an associative algebra and let L, and R, denote the left and
right multiplications by an element & € A, respectively. Then it is straightfor-
ward that (L, Ry), (Rz, L), (Ida+ Ly, Ids+ Ry), and (Idag+ Ry, Ida+ Ly)
are structural transformations from V' (A) to V(A), for any z € A.

As in the Jordan setting [13, Lemma 2], structural transformations pre-
serve minimal inner ideals in the following sense, which is a version of [5,
Lemma 4.2] for not necessarily semiprime associative pairs.

2.5. LEMMA. Let A and B be associative pairs and (f,g) a structural
transformation from A to B. If I € A" is an inner ideal of A, then f(I)
C BT is an inner ideal of B. Moreover,

(i) if I is trivial, then f(I) is trivial;
(ii) if I is minimal, then f(I) is either minimal or trivial;
(iii) if I is minimal trivial, then either f(I) is minimal trivial or f(I) = 0.

PROOF. For any z € I, we have that f(z)B™ f(z)= f(2zg(B™)z) C
f(xA~z) C f(I), which shows that f(I) is an inner ideal of B. This contain-
ment also shows that f(I) is trivial when [ is trivial, i.e., (i).

(i) We can assume f(I) # 0 and, by (i), we can restrict to the case when
I is minimal nontrivial. We distinguish two cases:

— x2g(B™)x # 0 for all 0 # x € I. Notice that, for any z € AT, zg(B ")«
C AT is always an inner ideal of A [for any b€ B~, zg(b)zA zg(b)x =
zg(bf(zA™z)b)z C zg(B™)z]. In our case, if 0 # z € I, then zg(B™)z is
a nonzero inner ideal contained in I, hence I = zg(B~ )z by minimality. Let
us prove that then f(I) is minimal too: Let 0 #y € f(I), y = f(x) for some
0#z€l. Thus, I=xg(B )z, and f(I)= f(zg9(B)z) = f(z)B™ f(z)
=yBy.

— zg(B7)x =0 for some 0 #x € I. By (1.2), I =xA xz, hence for
any z € I, z=zaz for some a € A~, and f(2)B™ f(2) = f(29(B")z) =
f(zazg(B™)zaz) = f(xa(xg(B_)x) aw) = 0. We have proved that f([) is

trivial.

(iii) For a minimal trivial I, we know from (i) that f(I) is trivial. On the
other hand, it is clear that a trivial inner ideal is minimal if and only if it is an
irreducible ®-module. Since the restriction of f from I to f(I) is a surjective
homomorphism of ®-modules, that restriction is either an isomorphism or
zero, by irreducibility of I. Therefore, either f(I) is also an irreducible ®-
module or f(I)=0. O

For the particular case of structural transformations given by left and
right multiplications, something else can be said.
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2.6. LEMMA. Let A be an associative pair, and (f,g) a structural trans-
formation from A to A such that (Ida+ + f,Ids- + g) is also a structural
transformation from A to A. If I S A" is a minimal nontrivial inner ideal
of A, then either f(I) is a minimal inner ideal of Aor (Idy++ f)(L {x

+ f(z) | z € I} is a minimal inner ideal of A.

PROOF. By (2.5), we know that f(I) and (Ids+ + f)(I) are inner ideals
of A. The result is clear if f(I) =0, so that we will assume f(I) # 0.

Following the proof of (2.5) for B = A, we have that either xg(A™ )z # 0
for all 0 # z € I, and hence f(I) is minimal, or there exists 0 # = € I such
that zg(A )z =0. In this latter case, I =zA z by (1.2), and for any
0 # z € I, we can write z = zax for some a € A™, so that, again by (1.2),
I =2A72 =zazA"zax = zax(Iday- + g) (A7 )zaz = z(Idy- + g)(A7)z. In
particular z(Id - + g)(A7)z # 0 for any 0 # z € I, and, again by the proof
of (2.5) with B = A and the structural transformation (Ids+ + f,Id4— + g),
we obtain that (Ids+ + f)(I) is minimal in this case. O

2.7. THEOREM. Let A and B be associative pairs.
(i) If (f, g) is a structural transformation from A to B, then f(Socy,t A)
Soci, T B.

(ii) If (f, ) is a structural transformation from A to A such that (Id+ +
,Id4- +g) is also a structural transformation from A to A then f(Socy,'t A)
Soci,' T A.

N

IIQ*h

PROOF. (i) By (2.5)(i, ii), if I € A" is a minimal or trivial inner ideal of
A, then f(I) is a minimal or trivial inner ideal of B, so that f(I) € Soc;, ™ A4,
which shows the assertion.

(ii) Let I € A" be a minimal inner ideal of A. By (2.5)(iii), if I is trivial,
then f(I) is either zero or minimal trivial, hence f(I) € Soc;,’" A. But if T
is nontrivial, then either f(I) or (Ids+ + f)(I) is minimal by (2.6). In the
first case, f(I) € Sociy't A; in the second case, (Idy+ + f)(I) S Soci,' A,
which, together with I € Soc;,'" A, implies f(I) € Soci,'™ 4. O

2.8. THEOREM. Let A be an associative pair or triple system. Then,
Socin A and Soci,’ A are ideals of A.

PrOOF. We will prove our assertion just for associative pairs since the
result for a triple system A will follow by applying it to V (A).

The fact that Soci, A is an ideal of A follows from (2.7)(i) and (2.4)(i),
since Soci,? A = Soci, 7 (A%).

In a similar way, Soci,’” A is a left and a right ideal of A for any
o € {+,—} by (2.4)(i), (2.7)(ii), and the equality Soc;,'” A = Soci,'~7 (A%).
Hence, we just need to prove that Iy € Soci,'~7 A for any minimal ideal
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I of A contained in A%, and any z,y € A~?. If such an ideal I is trivial,
then xly = M, () is either minimal trivial or zero by (2.5)(iii) and (2.4)(i),
hence zIy € Soci,'~7 A. Otherwise, I is nontrivial, and I =eA e, for a
nonzero pair of idempotents (e, f) by (1.4), and e € I. Using (2.5)(ii) with
the structural transformation (My ¢, My ), we get that fIf = My (I) is
either a minimal or trivial inner ideal of A. But f = fef € fIf and 0 # f
= fef € fA° f imply nontriviality of fIf, so that fIf C Socy,' 7 A, and
f = fef € Sociy,' "7 A. Finally,

wly = zeA ey = vefeA ey = ReyR, p-o Ly o(f)
g Re,yRe,A—ULx,e(SOCinl_a A) g Socin/—a A

since Soci,'~7 A is a left and right ideal of A. O

2.9. Next, we will show analogous results for algebras. They cannot be
directly derived from the above work for pairs, since the inner socles and ide-
als of the double associative pair V(A) of an algebra A are not exactly those
of A, unlike the triple system situation. As an example, let A be the quo-
tient algebra ®[X]/I, where ®[X] is the commutative associative nonunital
algebra of polynomials on the variable X, I is the ideal of ®[X] generated
by X3, and @ is a field. Taking a = X + I, A is the linear span of {a,a?},
and a® = 0. It is readily seen that the only proper inner ideal of A is ®a?,
which means that Sociy, A = Soci,’ A = ®a?. However, V(A) has zero prod-
uct, so that any 1-dimensional subspace of A is a trivial and minimal inner
ideal of V (A), hence Soc;, V(A) = Soci,' V(A) = V(A).

To overcome this difficulty, rather than adapting the former proofs to
the algebra setting, we will use unitizations since pair and algebra notions
coincide for unital algebras. Namely, we will need the following assertions
for an associative algebra A and its underlying triple system Ar:

(i) If A is unital, inner ideals of A are exactly inner ideals of Az, hence
minimal (respectively, trivial) inner ideals of A are exactly minimal (respec-
tively, trivial) inner ideals of Ay.

(ii) Inner ideals of A are exactly inner ideals of A contained in A. As
a consequence, minimal (respectively, trivial) inner ideals of A are exactly

minimal (respectively, trivial) inner ideals of A contained in A.

2.10. COROLLARY. Let A be an associative algebra.
(i) Sociy A and Socy," A are ideals of A.
(ii) Sociy (A7) and Sociy'(Ar) are ideals of A.

PROOF. (i) Any minimal or trivial inner ideal I of A is a minimal or
trivial inner ideal of A by (2.9)(ii), hence a minimal or trivial inner ideal of
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Az by (2.9)(i), i.e., a minimal or trivial inner ideal of V(A7) = V(A4). By

(2.4)(ii), (Lg, R;) and (R, Ly) are structural transformations from V(A) to

-~

V(A) for any x € A, so that (2.5)(i, ii) implies that I and Iz are minimal
or trivial inner ideals of V((A) = V(Ay), i.e., minimal or trivial inner ideals
of Ap. Therefore, they are minimal or trivial inner ideals of A, by (2.9). We
have shown that 21, Iz € Socj, A for any minimal or trivial inner ideal I of

A and any z € A, hence Socj, A is an ideal of A.
Let I be a minimal inner ideal of A. As above, I is a minimal inner ideal

-~

of V(A). For any x € A, and (f,g) = (Lg, Ry) or (f,9) = (Rg, Ly), (2.4)(ii),

~

(2.5)(iii), and (2.6) yield that, either f([) is a minimal inner ideal of V'(A), or
f(I) =0, o0r (Id;+ f)(I) is a minimal inner ideal of V(A). Again as above,
this means that either f(I) is a minimal inner ideal of A, or f(I) =0, or
(Idz + f)(I) is a minimal inner ideal of A. We obtain that, either f(I) or
(Id 3+ f)(I) is contained in Soci," A. Since I € Sociy' A, f(I) € Sociy' A in
either case, proving that Soc;,’ A is an ideal of A.

(ii) By definition (2.1), Sociy V(A) = (Socin (A7), Socin (A7)).  Using
(2.7)(i) and (2.4)(ii), for any z € A we have that

z(Socin (A7), (Socin (A7) 2 € Sociy (Ar),

proving that Soci, (A7) is an algebra ideal of A.
The former argument holds for Socy,’( ) after replacing (2.7)(i) by
27)G). O

3. The left and right socles

3.1. Let A be an associative algebra or triple system. The sum of all
minimal or trivial left (right) ideals of A will called the left (right) socle of
A and denoted Soc; A (Soc; A). The sum of all minimal left (right) ideals of
A will be denoted Soc,” A (Soc,’ A) (Soc;’ A =0 or Soc,’ A =0 if A does not
have minimal left or right ideals, respectively).

The left socle Soc; A of an associative pair A is the pair (Soc; ™ A, Soc;™ A),
where Soc;? A is the sum of all minimal or trivial left ideals of A contained in
A% o = £. Similarly, we define Soc’ A = (Soc/" A, Soc/” A), where Soc|” A
is the sum of all minimal left ideals of A contained in A%, o = £+ (Soc¢/'” A
=0 if A” does not contain minimal left ideals of A). For an associative triple
system A, it is obvious by definition that Soc; A = Soc;™ V/(A) = Soc;™ V(A)
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and Soc)’ A = Soc)t V(A) = Soc)’” V(A). We have analogous notions, nota-
tions, and relations for right ideals.

3.2. REMARKS. (i) The example given in (2.2) illustrates the situation
when the containments Soc)’ A € Soc; A and Soc,” A € Soc; A are strict. We
also have the equalities Soc;’ A = Soc; A and Soc,’ A = Soc, A if either A is
semiprime or ® is a field.

(ii) In general, left and right socles do not coincide. As an example, take
the subalgebra A of Ms(®) spanned by the matrix units e;; and ey, for
a field ®. The only proper left ideal of A is ®esq, so that Soc; A = Soc)’ A
= Peg1, whereas it is immediate that any ®-submodule of A is a right ideal,
and therefore Soc; A = Soc,’ A = A. The situation remains the same when
we consider the underlying triple system of A and the double pair V(A).

3.3. THEOREM. (i) If A is an associative pair, then Soc|” A, Soc,” A,
Soci'” A, Soc,'” A are left and right ideals of A, o = +.
(ii) If A is an associative triple system, then Soc; A, Soc; A, Soc/' A,
Soc,’ A are left and right ideals of A.
(iii) If A is an associative algebra, then Soc; A, Soc, A, Soc)’ A, Soc,” A are
ideals of A.

PROOF. (i) Put o = +, for example. Left ideals of A contained in A™ are
simply the submodules of AT over the ®-algebra B € Endg(A™) spanned by
the set of all left multiplications Ly, for € AT, y € A~. For fixed z € A"
and y € A=, Ry, : AT — AT is a B-module homomorphism. Any minimal
left ideal I € A™ of A is a minimal B-submodule of AT, hence Iyz = Ry I is
a minimal B-submodule or zero. Alsoif I € A" is a trivial left ideal of A, Iyx
is a trivial left ideal of A. The above implies that (Soct A)yz C Soc/t A
and (Soc;™ A)yx € Soc;™ A. We then have that Soc/™ A and Soc™ A are
right ideals of A, but they are left ideals by definition. This proof applies to
the right side with obvious changes.

(ii) follows from (i) when applied to V (A).
(iii) The proof of (i) is valid for algebras deleting the superscripts and re-
placing y by a formal unit. O

3.4. REMARK. For an associative pair or triple system A, one-sided socles
are not in general ideals of A. Consider A = (AT, A7) = (Peyy, Pery + Peyy),
as a subpair of V(Mz(@)), where @ is a field. It can be readily seen that
the only proper left ideal of A contained in A~ is ®es;, thus Soc; A = Soc’ A
= ((1)611, <I>621), which is not an ideal of A: e;1 = ej1e11e11 € A" e11 A7, but
e11 € Pear. The opposite pair A°P is an example where the right socle is not
an ideal. The reader is referred to the last section of the paper for a triple
system example of this situation.
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An analogue of (2.10)(ii) for one-sided socles also holds.

3.5. PROPOSITION. Let A be an associative algebra. Then Soc; (Ar),
Soc, (A7), Soc)'(Ar), and Soc,'(Ar) are ideals of A.

PROOF. Let I be a left ideal of Ay, x € A. We claim that
(i) if I is trivial then, then zI and Iz are trivial left ideals of Arp.

Indeed, AAI =0 implies AAzI = 0 and AAIx = 0, showing that xI and

Iz are both left ideals and trivial. We also claim that
(ii) if 7 is minimal then, zI, Iz € Soc/(Ar).

Indeed, I is an irreducible B-module, for the ®-algebra B € Endg(A)
spanned by the set of all L, , = L, Ly, for x,y € A. Hence Iz = R, () is also
an irreducible B-module or zero since R; : A — A is a B-module homomor-
phism, i.e., Iz is either a minimal left ideal or zero, thus Iz C Soc)'(4). If
I is minimal trivial, then I is an irreducible ®-module, and zI = L,(I) is
either an irreducible ®-module or zero since L, : A — A is a ®-module ho-
momorphism. If I is minimal nontrivial, then I = AAI by (1.2)(iii), which
implies that I is an algebra left ideal of A (Al = AAAI € AAI = 1), and
zI C 1. In all cases we have shown that zI C Soc/'(Ar).

Now (ii) says that Soc)’(Ar) is an ideal of A, which implies that Soc, (A7)
is an ideal of A using (i).

The above assertion applied to the opposite algebra A°P yields that
Soc, (Ar) and Soc,'(Ar) are also ideals of A. O

Next we study the relationship between one-sided socles and the inner
socle.

3.6. LEMMA. Let A be an associative system and I a minimal left, right,
or inner ideal of A. Then I S L (I C L? if I € A° in the pair case) for any
ideal L of A hitting I, INL #0 (INL° #0 in the pair case).

PROOF. Just notice that I N L (I N L7 in the pair case) is a left, right,
or inner ideal of A contained in 1. O

3.7. THEOREM. Let A be an associative system. Then Socy A, Soc, A
are contained in Sociy A. If A is semiprime, then Soc; A = Soc; A = Socin A.

PROOF. After replacing A by A°P, we just need to deal with Soc; A and
Soc;, A.

Let I be a minimal or trivial left ideal of A (I € A7 in the pair case). If
ITAI =0 (IA °I =0 in the pair case), then I is a trivial inner ideal of A,
hence I € Sociy, A (I € Socip? A in the pair case). Otherwise I is necessarily
minimal nontrivial, and there exists a pair of nonzero idempotents (e, f) such
that I = Afe (I = A? fe in the pair case), by (1.3) (take f = e in the algebra
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case). By (1.7)(i), eAe (eA %¢ in the pair case) is a minimal inner ideal of
A, hence

e=efecInNede S INSocpyA
(e=efeeIneA e S INSoci,” A in the pair case),

and I € Sociy A (I € Socip” A in the pair case) by (3.6) since Soci, A is an
ideal of A by (2.8) and (2.10). This shows Soc; A € Soci, A.

If A is semiprime, Soci, A is just the sum of minimal (necessarily non-
trivial) inner ideals of A. Thus, we only need to show that any minimal
nontrivial inner ideal I of A (I € A“ in the pair case) is contained in Soc; A.
By (1.4) there exists a pair of nonzero idempotents (e, f) such that I = eAe
(I =eA %e in the pair case), so that we can apply (1.7)(ii) to get that Afe
(A? fe in the pair case) is a minimal left ideal of A. Thus

I =edAe=ceAefe C Afe C Soc A

(I=eA %e=eA %efe S A% fe € Soc;” A in the pair case). O

3.8. REMARKS. (i) The examples given in (3.2)(ii) and their opposites
show that the containments Soc; A € Socj, A and Soc; A € Socj, A may be
strict when A is not semiprime.

(ii) An analogue of the first assertion of (3.7) for Soc/' A, Soc,’ A and
Sociy’ A is false: Consider the quotient algebra A = Q[X]/I, where Q[X]
is the commutative associative unital Q-algebra of polynomials on the vari-
able X with rational coefficients, and I is the ideal of Q[X] generated by
X?2. Though A is a Q-algebra, we take ® = Z. Denoting a = X + 1, A is the
linear span on Q of {1,a}, and a? = 0. It is easy to check that Qa is a min-
imal left ideal of A, so that Soc;’ A # 0 and Soc,” A # 0 by commutativity.
However, there are no minimal inner ideals of A. Indeed, if 0 # al + Ba € L,
an inner ideal of A, then either o # 0 and a = (al + fa)a2a(al + Ba) € L,
or =0, f#0 and fa € L. In either case, L contains ZBa for some 0 # 3
€ Q, and its infinitely many proper Z-submodules, which are all (trivial)
inner ideals of A. Notice that, since A is unital, A7 and V(A) are triple
system and pair examples of the same situation.

4. Further comments

In this section we study the action of the functors introduced in (0.2) on
the different socles as well as the interaction of direct sums and socles.
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In the following Soc stands for Soc;,, Soci, Socy, Sociy’, Soc)’, and Soc,’.

4.1. PROPOSITION. Let {A; |i € I} be a family of associative systems
indexed by a set I, and let A=), ; A; be the direct sum of the family. Then
SocA =), ;Soc A;.

PROOF. For any i € I, let m; : A — A; denote the canonical projection
and 7; : A; = A the canonical injection, which are homomorphisms of as-
sociative systems. Then, our assertion can be readily obtained from the
following straightforward facts for any ¢ € I:

(i) If L is a minimal left, right, or inner ideal of A, then 7;(L) is a minimal
left, right, or inner ideal of A;, respectively, or zero.

(ii) If L is a trivial left, right, or inner ideal of A, then m;(L) is a trivial
left, right, or inner ideal of A;, respectively.

(iii) If L is a minimal left, right, or inner ideal of A;, then 7;(L) is a minimal
left, right, or inner ideal of A, respectively.

(iv) If L is a trivial left, right, or inner ideal of A;, then 7;(L) is a trivial
left, right, or inner ideal of A, respectively. O

In (2.9) we exhibited an algebra A such that Soci, V(A) # V(Sociy A),
equivalently, Soci, A # Sociy (Ar). The same argument shows that A has an
analogous behaviour with respect to Soc A. However, some relations between
Soc A and Soc (A7) can be found in general.

4.2. PROPOSITION. Let A be an associative algebra. Then, Soc A
C Soc (Ayp). If A is semiprime, then Soc A = Soc (Ar).

PROOF. The first assertion follows from:

(i) A trivial left, right, or inner ideal of A is a trivial left, right, or inner
ideal of Ar, respectively (cf. (1.1)).

(ii) A minimal trivial left, right, or inner ideal of A is a minimal trivial
left, right, or inner ideal of Ap, respectively. Indeed, for a trivial left, right
or inner ideal being minimal is just not having proper ®-submodules, so that
(ii) is implied by (i).

(iii) A minimal nontrivial left, right, or inner ideal of A is a minimal non-
trivial left, right, or inner ideal of A, respectively: If I is, for example, a
minimal nontrivial left ideal of A, we know from (1.2) that I = Ax for any
0#z el Itis clear that I is a left ideal of Ap. Moreover, since I = Az
# 0, there exists y, € A such that 0 # y,z € I. Again by (1.2), I = Ay,=x,
hence AAz # 0 and I is a nontrivial left ideal of Ap. If L is a nonzero
left ideal of Ap contained in I, we can take 0 # x € L so that in particular,
I = Ay,z € L, which shows the desired minimality.

If A is semiprime, there are no nonzero trivial left, right, or inner ideals
in A, thus to get Soc A = Soc (A7), we just need to prove the converse of (iii).
Indeed, (1.2)(iii) shows that a minimal nontrivial left, right, or inner ideal of
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Ar is a left, right, or inner ideal of A, respectively, whereas its minimality
in A is obvious. O

We have already mentioned in the very definitions (2.1), (3.1) that
SocV(A) = V(Soc A) for any associative triple system A. Next we show
that the functor T'( ) behaves equally well.

4.3. PROPOSITION. Let A be an associative pair. Then SocT(A)
=T (Soc A).

PROOF. Let 77 : T(A) — A be the natural projection, and 77 : A7 —
T(A) the natural injection, o = . The following straightforward assertions
readily imply the result.

(i) If L is a minimal left, right, or inner ideal of T'(A), then 77 (L) € A°
is a minimal left, right, or inner ideal of A, respectively, or zero.

(ii) If L is a trivial left, right, or inner ideal of T'(A), then 7 (L) € A” is
a trivial left, right, or inner ideal of A, respectively.

(iii) If L € A? is a minimal left, right, or inner ideal of A, then 77(L) is a
minimal left, right, or inner ideal of T'(A), respectively.

(iv) If L € A7 is a trivial left, right, or inner ideal of A, then 779(L) is a
trivial left, right, or inner ideal of T'(A), respectively. O

The above results can be used to build examples. For instance, (4.3) pro-
vides a triple analogue of the situation described in (3.4). Also (4.1) can be
used to obtain associative systems compiling the “evils” of several examples
(e.g., for the direct sum of the algebra A of (3.2)(ii) and its opposite, left,
right, and inner socles are pairwise different).
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