COMMUNICATIONS IN ALGEBRA®
Vol. 32, No. 7, pp. 2841-2862, 2004

Left Quotient Associative Pairs and Morita
Invariant Properties”

M. A. Gémez Lozano™® and M. Siles Molina

Departamento de Algebra, Geometria y Topologia, Universidad de Malaga,
Mailaga, Espaiia

ABSTRACT

In this paper, we prove that left nonsingularity and left nonsingularity plus finite
left local Goldie dimension are two Morita invariant properties for idempotent
rings without total left or right zero divisors. Moreover, two Morita equivalent
idempotent rings, semiprime and left local Goldie, have Fountain—-Gould left
quotient rings that are Morita equivalent too. These results can be obtained from
others concerning associative pairs. We introduce the notion of (general) left
quotient pair of an associative pair and show the existence of a maximal left
quotient pair for every semiprime or left nonsingular associative pair. Moreover,
we characterize those associative pairs for which their maximal left quotient pair
is von Neumann regular and give a Gabriel-like characterization of associative
pairs whose maximal left quotient pair is semiprime and artinian.
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2842 Gomez Lozano and Siles Molina
INTRODUCTION

Along the years, the study of the Morita invariance has been a present question.
In this paper, we study the Morita-invariance of properties closely related to the
rings of quotients such as left nonsingularity and left nonsingularity plus finite left
local Goldie dimension for idempotent rings without total left or right zero divisors
(Sec. 4). We will get these results ((4.3) and (4.7)) as an application of the theory of
associative pairs of quotients we develop.

Associative pairs and Morita contexts are closely related since every Morita
context (%, %, M, N) gives rise to an associative pair: (M, N) and, conversely, given
an associative pair A = (A", A7), there exists a unital ring & with an idempotent e
such thatif & = e€e ® (1 —e)E(1 — e) ® e6(1 — ) & (1 — e)&e is the Peirce decom-
position of & relative to e, then A is isomorphic to (e§(1 — e), (1 — e)&e) (and, of
course, (eSe, (1 —e)E(1 —e),eb(1 —e),(1 —e)ée) is a Morita context). This ring
& is called the standard imbedding of A. Associative pairs play also a fundamental
role in the new approach to Zelmanov’s classification of strongly prime Jordan pairs
(see D’ Amour, 1992), and have been already used by Loos in the classification of the
nondegenerate Jordan pairs of finite capacity (see Loos, 1975).

After a preliminary paragraph on associative pairs, in the first section we study
the left singular ideal of an associative pair: we prove that, in general, it is a pair
of two-sided ideals, and an ideal when the associative pair has no total right zero
divisors (this is the case, for example, if the pair is semiprime). Nonsingularity of an
associative pair A (i.e., Z;(A) = 0, where Z;(A) denotes the left singular ideal of A) is
equivalent to that of its standard imbedding.

In Sec. 2, we introduce the notion of left quotient pair of a pair, extending the
well-known definition of left quotient ring given by Utumi (1956). We connect prop-
erties of a pair with those of its left quotient pairs, and find the maximal left quotient
pair of every associative pair which has neither total left nor total right zero divisors,
or it is left nonsingular.

Section 3 is devoted to Johnson and Gabriel’s Theorems for associative pairs
(see Johnson’s Theorem for pairs and (3.3)). As a corollary we obtain the Gabriel’s
Theorem for associative pairs.

0. PRELIMINARIES

An associative pair over a unital commutative associative ring of scalars @ is a
couple (A*, A7) of ®-modules together with ®-trilinear maps

A X A7 x A° = A°
(x,y,2) = xyz

satisfying the following identities:
uv(xyz) = u(vxy)z = (uvx)yz (0.1)

for all u,x,z € A°, y,v € A~% and o = +. (See Fernandez Lépez et al., 1998 and
Loos, 1995 for definitions and results on associative pairs.)
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By Loos (1995, (2.3)) given an associative pair A = (A", A™), there exists a
unital associative algebra & with an idempotent e such that if &, & &1 B &21 © Ex»
is the Peirce decomposition of & relative to e, that is, &;; = w;éu;, with u; = e and
uy =1 — e, then A is isomorphic to the associative pair (12, 821), where &1 (resp.
&) 1s spanned by e and all products xjpyy; (resp. 1 — e and all products y»;x2)
for x1p € &12, y21 € 621, and has the following property:

x11512 = (9@21X11 =0 implies X111 = 07 and
xZ2§21 = (9@12x22 =0 implies X2 = 0. (02)

The pair (&, e) is called the standard imbedding of A.

Now let .o be the subalgebra of & generated by the elements x1, and x;;. It is
immediate that o7 is an ideal of &. We will call .o/ the envelope of the associative
pair A. Notice that .o/1; := e/(1 —e) = &1, and /5 := (1 — e)./e = &1, hence
the associative pair A is isomorphic to the associative pair (o7, %/5;). It is not diffi-
cult to see, by using (0.2), that .o/ is an essential ideal of &.

In what follows, an expression of the type xy, with x € A%, y € A~?, must be
understood by considering the associative pair A inside its envelope .. And
xy = 0 means A4(x,y) = 0 and p,(x,y) = 0, where A(x,y)z = p(y,z)x = xyz.

1. THE LEFT SINGULAR IDEAL OF AN ASSOCIATIVE PAIR

The notion of left singular ideal for semiprime associative pairs was introduced
by the authors jointly with Fernandez Lopez and Garcia Rus in Fernandez Lépez et al.
(1998), where it was used as a tool to study Fountain-Gould orders in associative
pairs. Here we analyze some properties of this left singular ideal without the semi-
primeness hypothesis.

We recall that a nonzero element a in a ring % is said to be a total right zero
divisor if #a = 0.

1.1. Definitions. Let A be an associative pair. We will say that an element a € A“ is
a total right zero divisor if a is nonzero and A°A~%a = 0. When AT and A~ have no
total right zero divisors we will say that the associative pair A has no total right zero
divisors.

These definitions are consistent with the classical ones because a right zero
divisor a in a ring Z is a right zero divisor in the associative pair (%, #). Moreover
2 has no total right zero divisors if and only if (%, %) has no total right zero
divisors.

If A is an associative pair which has no total right zero divisors then, for every
subset X of A,

lany(X) ={be€ A™° : A%bX = 0}. (1.2)

Indeed, if b € A satisfies Abx =0 for every x € X, then bxA~’ must be
zero. Otherwise, suppose bxd # 0 for some d € A~°. Since A has no total right zero
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2844 Gomez Lozano and Siles Molina

divisors, then there exist u € A%, v € A~° satisfying 0 # vubxd € vA°bxA™° =0, a
contradiction.

If moreover A has no total left zero divisors (for example, if it is a semiprime
pair),

langa(X) ={be€ A77 : bXA™° = 0}. (1.3)

1.4. Lemma. [If an associative pair A has no total right zero divisors, then (0.2) is
equivalent to:

,52%21)611 =0 1rnphes X11 = 07 and

<52/12XZ2 =0 implies X2 = 0.

Proof. Clearly, this conditions imply (0.2). Conversely, .«/5;x;; =0 and x;; #0
implies, by (0.2), xj1a;p # 0 for some aj; € o71;. Since A has no total right zero
divisors, then 0 # .7 15.9751x11a12, which is a contradiction. O

A left ideal # of a ring Z is dense in Z if for every x,y € #, with x # 0, there
exists an element a € # such that ay € ¥ and ax # 0. By Utumi (1956, (1.6)), this
condition is equivalent to say that # is a left quotient ring of ..

1.5. Lemma. Let A be an associative pair and write o/ and & to denote the
envelope and the standard imbedding, respectively, of A. Then, the following
conditions are equivalent:

(1) A has no total right zero divisors.
(it) o/ has no total right zero divisors.
(ill) o/ is a dense left ideal of &.

Proof. (1)=(iii) Let x and y be elements in & with x # 0. Suppose first that
x12 # 0. By the hypothesis there exists (a2, as1) € A such that ajpas xp # 0. Then
anx 75 0 (Othel‘WiSG 0= ar1 X = dr 1 X11 + a xp2 implies ar1 X1 = a1 Xy = 0, a con-
tradiction) and ayy € o since ./ is an ideal of &. The case x,; # 0 is analogue.
Now, suppose xjp = x31 = 0. In this case x;; (or x») must be nonzero and by
(1.4), by1x11 # 0 for some by € .7/5;. Then, as it is easy to show, byx # 0 and
b21y € ..

(iiii) = (ii) follows by Utumi (1956, (1.6)).

(i))= (i) Take 0 # aj; € /15. By the hypothesis, there exist b, ¢ € .o/ such that
bca12 ;é 0. This 1mphes &712,}2/21&12 ;é 0. ™

For an associative pair A, it is defined
Z;(A)’ ={z € A% : lan(z) C A™° is an essential left ideal of A}.

The “moreover’’ part of the following lemma can be obtained as a corollary of
(1.9). However we include here a direct proof of the result.
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1.6. Lemma. For an associative pair A we have that Z;(A) = (Z,(A)",Zi(A)7) is
a pair of two-sided ideals of A. Moreover, if A has no total right zero divisors,
then Z;(A) is an ideal of A. In particular, Z;(A) is an ideal of A if A is a semiprime
associative pair.

Proof. Being Z;(A) a pair of two-sided ideals of A follows the ideas of the proof of
Theorem 3.1 in Ferndndez Lépez et al. (1998). Now, suppose that A has no total
right zero divisors. Let x,y € A” and z € Z;(A) ?, and take a nonzero element / in a
nonzero left ideal L of A contained in A~7. If A%lx = 0, then A~°A®lxzy = 0 and since
A has no total right zero divisors, this implies 0 = A=Al C L N lan(xzy). If A%Ix # 0,
since lan(z) is an essential left ideal of A, there exists 0 # alx € A%lx N lan(z). Apply
that A has no total right zero divisors to find b € A%, ¢ € A~? such that bcalx # 0.
Then 0 # cal € L Nlan(xzy). In any case L N lan(xzy) # 0, so lan(xzy) is essential,
which completes the proof. ]

1.7. Definitions. Given an associative pair A, the pair Z;(A) = (Z,(A)", Z,(A)")
of two-sided ideals of A will be called the left singular (two — sided) ideal of A.
An associative pair A = (AT, A7) will be called left nonsingular if its left singular
ideal Z;(A) is zero. Right nonsingular associative pairs are defined similarly, while
nonsingular means that A is both left and right nonsingular.

1.8. Lemma. Let A be a left nonsingular associative pair. Then A has no total right
zero divisors.

Proof. We prove first the following property:

(1) For every nonzero x; € .«/; we have o7 jx;; # 0 (for i # j).

Suppose .7 jix;; =0 for some nonzero x; € ;. Then of ; = lana(x;i/;)).
Since x; # 0, by (0.2), x;.7;; # 0 and we have just proved that x;.;; C Z;(A)’,
for ¢ = + or ¢ = —, contrary to the hypothesis.

Now, let aj; be an element of .o/|; such that .o7,.9751a12 = 0; then, by (1),
/5 = lans(ayz), which implies aj; € Z;(A)* =0 and proves that A has no total
right zero divisors. |

1.9. Proposition. Let A be an associative pair without total right zero divisors and
denote by o/ and & its envelope and standard imbedding, respectively. Then

ZI(A)U = Z](g) NA° = Z](!,Q/) N A°,
and the following are equivalent conditions.

(1) A is left nonsingular.
(it) of is left nonsingular.
(iii) & is left nonsingular.

Proof. (1) Zi(&)NA° C Z,(A)°.
Suppose x € Z;(&) N /1, and take a nonzero left ideal L of A contained in .«75;.
If Lx =0 then L C lans(x). If Ir1x # 0 for some [ € L, since &l is a nonzero
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left ideal of & and lang(x) is an essential left ideal of &, there exists 0 # uly; €
Ely Nlang(x). Write uly; = upplyy + usnlyy. If uxnlyy #0, then we have a non-
zero element in L Nlana(x). If upploy #0, by (1.4), 0 # o/o1upploy € LN lana(x).
Anyway, lans(x) is an essential left ideal of A contained in A~, which implies
X € Z](A)Jr.

(2) Zi(A)° CZi(A)N A

Let x be in Z;(A)*. Take a nonzero left ideal £ of .. If ¥x=0 then
& Clany(x). Suppose Lx # 0 and take [ € ¥ such that Ix # 0. If I, # 0, then
&xly is a nonzero left ideal of A contained in A~; applying x € Z;(A)" we find
Uy € &» such that 0 75 unly € lanA(x) and this 1mphes Unlx = unlix =0, so
0 # upl € £ Nlany(x). If I} #0, by (1.5), /1) #0, so there exists ay € .7
such that 0 #£ a;/y;, and the element a,;/ satisfies the conditions of the previous
case.

3) Zi(A)=2Z/(&)NA.

This follows by Proposition 3.2(ii) of Gémez Lozano and Siles Molina (2002)
since by (1.5), <7 is a dense ideal of &.

By (1), (2) and (3), Z;(A)’ C Z)(A)NA° = Z;(§) N A° C Z;(A)’ and the first
statement has been proved.

(i)= (iii) Consider x € Z;(&). Then xp € Z)(&)NAT =Z;(A)T =0 and
analogously X21 = 0. If Xii 75 O, by (18) and (14), 0 7é JZ/ﬁXil‘ -
Z(&)N A ji = Z;(A)° =0, which is a contradiction.

(it) < (iii) follows by Proposition 3.2 (iii) of Gémez Lozano and Siles Molina
(2002), taking into account (1.5).

(il) = (1) follows since Z;(A)” = Z;(</) N A°. O

1.10. Proposition. Let A be an associative pair without total right zero divisors and
denote by </ and & its envelope and standard imbedding, respectively. Then

Z[(ini) = Z](é)) N JZ{,‘,' — Z](JZ{) N JZ/,‘,',
and the following are equivalent conditions.

(1) /11 and o/, are left nonsingular.
(1) & is left nonsingular.

Moreover, if A has no total left zero divisors, then
(ii1) .«71y is left nonsingular if and only if </ is left nonsingular.

Proof. Z[(éd) N/ C Z[(&/]])f Take xi; € Z[(g)) N.Z11. We will see that
lan,, (x11) is an essential left ideal of .«71;. Consider a nonzero element y in an ideal
I of o/1;. Then &y is a nonzero ideal of & and there exists 0 # uy € lang(x11) N Ey. If
0 # euy € lany, (x11) N I we have finished. Otherwise, 0 # uy = (1 — e)uy and since
A has no total right zero divisors, 0 # o7 ,uy C lan ., (x11) N 1.
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Z(L11) C Zi(/)N .o/ Consider x € Z;(o71;). We want to prove that
lan.(x11) is an essential left ideal of .o/. Take a nonzero left ideal I of .o7. If
Ie =0 then I C lan(x1;). If Ie # 0 we have ele # 0 (suppose (1 — e)le # 0; apply
that A has no total right zero divisors to obtain 0 # .o/ j2le N lany,, (x11), which
implies 0 # /121 Nlangy, (x11) C INlangy(x11)) and hence 0 # ele N lan,, (x11),
which implies 0 # el N lan(x11) C INlangy(xy).

Now, notice that Z;(.«/;;) C Z;(/) N .«/;; = (by Gomez Lozano and Siles Molina
(2002, 3.2(ii)) in the proof of (1.9)) Z;(&) N/, C Z;(;;), which proves the first
statement.

(i) & (i) If & is left nonsingular, by (1.9), A is left nonsingular. Then
Zi(o/11) = Z)(f ) = 0. Conversely, suppose Z;(.<7;;) = 0 for i, j=1,2,i # j. Since
Z,(&) is an ideal, x;; € Z;(&), and by the first statement, x; € Z;(7;;), for i =1,2.
Now, since A has no total right zero divisors, if x;; #0, o;x; # 0. Hence
0 # o jixij # ZiI(E) N A jj = Zi)( j;) = 0, a contradiction.

(iii) Suppose .o71; left nonsingular, and consider 0 # x» € Z;(<72;). By (1.4)
A 1pxpn #0 and since A has no total left zero divisors, 0 # .o/ 13x0.9721.91>.
This means 0 # o/ 1px0.921 C A 12Z1(2)/71 € (by the previous statement)
Z,(&YN /11 = Zi(/11) = 0, which is not possible. Hence Z;(.«/2,) = 0. |

2. LEFT QUOTIENT PAIRS

The notion of left quotient ring was introduced by Utumi (1956) and has proved
to be very useful in order to study Fountain—-Gould left orders in rings (see Gémez
Lozano and Siles Molina, 2002 and the related references therein). Let % be a
subring of a ring 2. We say that 2 is a (general) left quotient ring of # if for
every x,y € 2, with x # 0, there is an a € # such that ax # 0 and ay € #. Notice that
a ring is a left quotient ring of itself if and only if it has no total right zero divisors. If
2 has no total right zero divisors, then by Utumi (1956) it has a unique maximal left
quotient ring, which is unital, called the Utumi left quotient ring of Z.

2.1. Definition. Let A = (A", A™) be a subpair of an associative pair Q = (Q*,07).
We say that Q is a left quotient pair of A if given p,q € Q° with p # 0 (and ¢ = 4 or
g = —) there exist a € A%, b € A7? such that abp # 0 and abg € A°.

For example, the associative pair (#1x2(Q), #2x1(Q)) is a left quotient pair of
the associative pair (A |x2(4Z), #1x1(8Z)). Moreover, it is maximal among the left
quotient pairs of (M 1x2(4Z), 4.1 (8Z)). Every associative pair without total right
zero divisors is a left quotient pair of itself.

The notion of left quotient pair extends that of Utumi of left quotient ring since
given a subring # of an associative ring 2, 2 is a left quotient ring of Z if and only if
0 = (2,9) is a left quotient pair of the associative pair R = (%, Z).

The following lemma will be used in the sequel although without mentioning it.

2.2. Lemma. Let Q= (Q%,07) be a left quotient pair of an associative pair
A= (A%, A"). Then, given qi,...,q, € Q° with q1 # 0 (¢ = + or ¢ = —), there exist
a € A% be A such that abq) # 0 and abq; € A° forall i € {l,...,n}.

MaARCEL DEKKER, INC.
270 Madison Avenue, New York, New York 10016

Copyright © Marcel Dekker, Inc. All rights reserved.

1


pulsa aceptar


2848 Gomez Lozano and Siles Molina

Proof. The case n =1 follows from the definition. Suppose the result is true for
n — 1. By the induction assumption there exist x € A, y € A~? such that xyq; # 0
and xyg; € A° for i € {1,...,n— 1}. Given xyq; # 0 and xyg,, there exist z € A,
t € A7 such that ztxyq) # 0 and ztxyq, € A°. Take a=ztx € Aand b=y e A™°
to complete the proof. O

2.3. Let Q be an associative pair which is a left quotient pair of a subpair A. Then,
it is not difficult to see that for any finite family {(p;, ¢;)}—, in (Q?, Q" 7), we have
that (A% : >0, qipi) ={x € A7 |x>__, qipi € A’} is an essential left ideal of A.

2.4. Lemma. Let Q be an associative pair which is a left quotient pair of a subpair
A. If A has no total left zero divisors (for example, if it is semiprime) or it is left
nonsingular, then for any finite family {(p:,q:)}._, in (Q°,Q"°) and every nonzero
a € A% we have:

(Aa : Z f]iPi) a#0.
i=1

Proof. Suppose first A without total left zero divisors. Then, given the nonzero
element a, and applying that A has no total right zero divisors, there exist
b,c € A° satisfying cab # 0. Apply that Q is a left quotient pair of A to find
x € A%, y € A7 such that xycab # 0 and xyc) ., gip; € A”. Since the element xyc
is in (A : Y, ¢ipi) and xyca # 0, we have finished.
Now, suppose A left nonsingular. If (A7:> ", gpi)a=0, then (A”:
> i1 qipi) C lana(a), which implies, by (2.3), 0 # a € Z;(A)"°, a contradiction.
U

2.5. Proposition. Let A be a subpair of an associative pair Q, and write o/ and 2 to
denote the envelopes of A and Q, respectively.

(1) If Q is a left quotient pair of A, and (&,¢e) and (&',¢') are the standard
imbeddings of A and Q, then § C &', e=¢' and 15 = 1,.
(i1) If 2 is a left quotient ring of </, then Q is a left quotient pair of A.

Suppose that A has no total left zero divisors or it is left nonsingular.

(ii1) If Q is a left quotient pair of A, then 2 is a left quotient ring of <.

Proof. (i) By the construction of &, &, is the subalgebra of End(A) x Endg(A™)""
generated by {(Aa(x,y),p4(x,¥)) | x € AT,y € A~} and (Id s+, Id4-), where the index
A, AT or A~ under each operator means where it acts. Analogously we have that &/,
is the subalgebra of Endy(Q™)x, Ends(Q™)? generated by {(4o(x,y), po(x,¥)) [ x €
Q",y€ Q0 } and (Idg+,1dy-). Hence, to prove & C &', and since AT = &1, C &), =
Qt, it is enough to show that for every n€ NU{0}, x; € A*, y;€ A",
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the map from &; into &), which sends n(Ida+,Ids-) + (3 2a(xi, ¥i), > pa(xiy yi))
to n(ldg+,1dg-) + (3 Ao(xi, yi), > po(xi, yi)) is well-defined. Or, equivalently, that

n(Ida 1da-) + (Y 2a(xi,31), Y pa(xi, i) = 0 implies
n(Idg+,1dg-) + (O Ao(xi, i), Y po(xi, y1)) = 0. (+)

Suppose n(ldg+,1dg-) + (3 Ao(xi, i), > po(xi,¥i)) # 0. Then, for some element
(p.q) € Q. (np+ > xiyip,ng+ > qxiy;) #0, so either np+3 xyjp#0 or
ng+ > qx;y; # 0. In the first case, since Q is a left quotient pair of A, there exists
(a,b) € A satisfying 0 # nabp + Y abx;yip = a{[nlda- + > p4(xi,y:)|b}p. This
implies nlda- + > ps(xi,yi) #Z 0. If ng + > gxiy; # 0, apply that Q is a left quotient
pair of A to find (v,u) € (A~, A1) such that vug € A~ and 0 # nvug + >_ vugx;y; =
(nlda- + > pa(xi, yi))vug. Hence nld - + > p4(xi,y:) # 0, and (x) has been proved.
For &5, we can reasoning analogously. O

Notice that with this reasoning we have:

2.6. If p; is a nonzero element of 2;, then o/ ;p; # 0, for i # j, i, j € {1,2}.
Now we will see e = ¢'. Since «/5(e — €') = 0, by (2.6), e = ¢’. Analogously we
can prove lg — e = 1, — €/, which leads to 15 = 1.

(i1) Take p12,q12 € 212 with pj, # 0. By the hypothesis there exists b € .o/ such
that bp1; #0 and bpiy,bq2 € 7. This implies by1p1y # 0 or by pia # 0. Suppose
first 0 £ by p12 € /12. By (1.5), A has no total right zero divisors, hence there exists
(Clz, 621) €A satisfying cr2ea1biiprz 75 0. If we denote d> = cy1by11, then
ciadapra # 0 and ciadaiqin € A 1.

Now, consider 0 # by p12 € /2. By (1.5) and (1.4), there exists ¢ € /1> such
that c2b21 p12 # 0. Moreover ci2b21q12 = c12bq12 € 13-

(iii)) Let p and ¢ be in 2 with p # 0. We distinguish two cases. Suppose first
p11 # 0 (the case px» # 0 is analogue). By (2.6) there exists as; € «7»; such that
anpi #0. Apply the hypothesis to find by € ofn, by € o7 satisfying
byibipar pii #0 and bybiaazipii, bubiarqi € /2. Write ¢y = bybipaz. By
(24), (12 : canqiz)earpin # 0. Let ¢z be in (o713 : c21912) satisfying ciacaipir # 0.
Then the element d = cjpc € f verifies: dp = dpy + dpia # 0 (since dpy; # 0)
and dqg € /.

Now, suppose pi; = p»» = 0. In this case pj; or p;; must be nonzero. Consider,
for example, p1» # 0. Apply that Q is a left quotient pair of A to find a;; € o751 such
that az; p12 # 0. Then, given asp12 and az1 g, by the previous case there exists b € .of
such that bay; p = bas 1 p12 # 0 and bay g € o/, which concludes the proof. O

2.7. Example. There exist two associative pairs A and Q such that A C Q but there
is no ring monomorphisms f : o/ — 2 such that f(a) = a for every a € A%, where .o/
and 2 denote the envelopes of A and Q, respectively.

Proof. Consider a ring 2 such that #° # 0 but #° = 0 and define A = (%%, #%),
Q= (2,%). Itisclear that A C Q. If f: &/ — 2 is a ring monomorphism such that
f(a) = a for every a € A, then Js(a,b) =0 implies Ag(a,b) =0, with (a,b) € A.

MaARCEL DEKKER, INC.
270 Madison Avenue, New York, New York 10016

Copyright © Marcel Dekker, Inc. All rights reserved.

1


pulsa aceptar


2850 Gomez Lozano and Siles Molina

But this is not the case: Choose a,x,y,z,t € # such that axyzt #0 and define
b = xyz. Then A4(a,b)A° = ab#* C #° =0, and 0 # abt € Ly(a, b)Q°. O

2.8. Lemma. If Q is a left quotient pair of a subpair A, and (&',€') and (&,¢€)
are the standard imbeddings of Q and A, respectively, then &), := €&'¢ is a left
quotient ring of /1) := €' o/, where o/ denotes the envelope of A.

Proof. By (2.5) (i), & C &', s0 /11 C &),. Consider p, q € &}, with p # 0. By (2.6),
az p #0 for some ay € /5. By the hypothesis there exist b € 712, 31 € )
such that ¢;1bj2a21 p ;é 0 and ¢y b12a21p, cbnanqg € oAy Since A has no total I‘ight
zero divisors, there exists djp € o7, such that diycpibpparp #0. If we denote
x =dpebpyar € o711, then xp # 0 and xq € /1. O

2.9. Theorem. Let A be an associative pair, and denote by </ and (&,e) its
envelope and standard imbedding, respectively.

(1) If A has no total right zero divisors, then & is a left quotient ring of of
and, consequently, o/ and & have the same Utumi left quotient ring.
Denote it by 2.

(1) If A has neither total left zero divisors nor total right zero divisors, or it is
left nonsingular, then Q := (e2(1 — e), (1 — e)2e) is a left quotient pair of
A and given a left quotient pair T of A there exists a monomorphism of
associative pairs f : T — Q which is the identity on A.

Proof. (1) By (1.5), ./ is a dense ideal of & and by Exercise 13.21 of Lam (1999),
Q! . (/)= Q! (&).(ii) First of all we are going to see:

2.10. Forevery 0 #x € o/,e6x # 0 and (1 — e)éx # 0.

Indeed, let x be in ./ such that e§x = 0. Then 0 = ex = exe + ex(1 — ¢), which
implies x;; = x13 = 0. Now, .o/ 15x C eSx = 0 implies o7 1px31 = o/ 1px2 = 0; apply
that A is a left quotient pair of A and (2.6) to obtain x3; = x> = 0 and, hence x = 0.

Now, let p and g be in e2(1 — e) with p # 0. Apply that 2 is a left quotient ring
of o/ to take a € .o/ such that 0 # ap € o and aq € .«/. By (2.10) applied twice, there
exist x,y € & such that ey(l — e)xaep = ey(1 — e)xap # 0. Moreover the elements
ey(l —e) € o/ and (1 — e)xae € oy satisty ey(l — e)xaeq = ey(1 — e)xaq € o ,.

Finally, suppose that T is a left quotient pair of A and write (7, ¢) to denote the
standard imbedding of 7. By (2.5) (iii), &7 is a left quotient ring of .« and therefore
oA CT C2.50,(e7(1—e),(1—e)Te) C (e2(1 —e),(1 —e)2e). O

2.11. Definition. If A is an associative pair without total left zero divisors and
without total right zero divisors, or it is left nonsingular, then by (2.9)(ii), it has a
unique (up to isomorphisms) maximal left quotient associative pair which will be
called the maximal left quotient pair of A and if we denote it by Q' (A), then
(by 2.9(ii)),

0. (A) = (e2(1 = e), (1 — ) 2e),
where 2 = Q!

L () =0" (&), for o/ and (&,e) the envelope and the standard
imbedding of A, respectively.
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A natural question which arises is if the envelope of the maximal left quotient
pair of an associative pair A and the maximal left quotient ring of the envelope
coincide. The answer is negative, as it is shown with the following example.

2.12. Example. Let V be a left vector space over a field K of infinite dimension,
2 = Endg(V) and .o = Soc(2). Consider two idempotents e, f € 2 such that
e+f=1ec o, f ¢ o/ Then the associative pair A = (e/ f, f.o/¢) has the ring
o/ as an envelope, anax(A) = (e2f,f2¢), Q' ()= 2 and the envelope of

max

0 (A)is e2f @ f2e @ e2f2e @ f2e2f = oA # 2.
2.13. Lemma. If Q is a left quotient pair of an associative pair A, then:

(1) LNA°#0 for any nonzero left ideal L of Q contained in Q°, 0 = +.
(1) A semiprime (prime) implies Q semiprime (prime).

Proof. (i) follows from the definition.

(i) Suppose A prime. If I and J are two nonzero left ideals of Q, by (i), I N A
and J°N A are nonzero, hence (I°NA%)A™°(J°NA°)#0, which implies
1°07°J° # 0. The case A semiprime follows analogously by considering J = 1.

O

With the following proposition we show the relationship between some proper-
ties of an associative pair and the analogues of its left quotient pairs (see Ferndndez
Lopez et al., 1998 for the definitions).

We recall the notion of local ring at an element of an associative pair
(see Ferndndez Loépez et al., 1998): Let A= (AT,A”) be an associative pair
and a € A°. Then the submodule aA~%a equipped with the multiplication defined
by (axa) - (aya) = axaya is a ring called the local ring of A at a and denoted by
A,. Note that if a is von Neumann regular, i.e., a € aA °a, then A, is unital with
a as the unity.

A family of left ideals {L;},.- of an associative pair is said to be independent if
the sum of its ideals is direct.

2.14. Proposition. Let Q be a left quotient pair of an associative pair A. Then:

(1) lang(X) N A% =lans(X) for any subset X of A°.

(it) lang(X) Clang(Y) implies lans(X) C lana(Y) for any X, Y C A°.

(i) Z,(A) = Z,(Q) N A.

(iv) A is left nonsingular if and only if Q is so.

(v) If{Li}cr is a family of independent nonzero left ideals of A contained
in A% then for every i € I' there exist l; € L; and b; € A~° such that
{Qbili};cr is a family of independent nonzero left ideals of Q contained
in Q°.

(vi) If {Zi}ier is a family of independent nonzero left ideals of Q contained
in Q° then {Z, N A%}, is a family of independent nonzero left ideals of
A contained in A°.
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(vil)  Q has finite left Goldie dimension if and only if A has finite left Goldie
dimension. In fact, u-dim A = u-dim Q.

(viii) For any a € A°, u-dims(a) < u-dimg(a). Hence, if Q has finite left local
Goldie dimension then A has finite left local Goldie dimension too.

If A is semiprime, then:

(ix) For every element a € A°, the local ring of Q at a, Q, is a left quotient
ring of Ag.
If A has no total left zero divisors or it is left nonsingular, then:
(x) lang(X) Clang(Y) if and only if lana(X) C lans(Y) for any X, Y C A°.
(xi) For any a € A, u-dimy(a) = u-dimg(a).

Proof.

(i) Itis clear that for any X C A%, lang(X) N A~ C lana(X). Conversely, let z
be in lans(X). Then, for every x € X, 0 = zx € o725 C 29 (by (2.5) (i)). Therefore,
z € lang(X).

(ii) follows by (i).

(iii) Let z be in Z;(A)". We have to see that lany(z) is an essential left ideal of
Q. Let L be a nonzero left ideal of Q contained in Q~. By (2.13)(i), LN A is a non-
zero left ideal of A. Since lan,(z) is an essential left ideal of A, lana(z) NLN A~ # 0,
and by (i) lang(z) N L # 0.

Conversely, suppose z € Z;(Q) N A and let prove that lans(z) is an essential left
ideal of A. Given a nonzero left ideal L of A contained in A~, since A has no total
right zero divisors we have A~ ATL £ 0, which implies QO al # 0 for some a € A",
le L. Apply that lang(z) is an essential left ideal of QO to find 0 # pal €
O~ alNlangy(z). Since Q is a left quotient pair of A, given 0 # pal and p, there exist
ue At, ve A~ such that wupal#0 and wvup € AT™. Then 0 # vupal €
ATA"LNlang(z) C LNlana(z) (by (i)).

(iv) By (iii), Z;(Q) = 0 implies Z;(A) = 0. Conversely, if Z;(A) = 0 then Z,(Q)
must be zero by (2.13)(i).

(v) Let {L;},.r be as in the statement. For every i € I, choose a nonzero ele-
ment /; € L;. Since A has no total right zero divisors, there exist a; € A%, b; € A™°
such that 0 # a;b;l;. Then L= Q%b;l; is a nonzero left ideal of Q contained in Q°.
Now we see that the sum of the L;’s is direct.

Suppose  q1bili = qab2ly + - - + gubyl, for gq;bil; € Z,-f, with  ¢1bl; #0.
Apply that Q is a left quotient pair of A to find u € A%, v€ A~ such that
wvgibyly 0 and wvg; € A°. Then 0 wvqibily = ) uvgsbyly € Ly 0 (S, L),
a contradiction.

(vi) follows immediately by taking into account (2.13)(i).
(vii) is a direct consequence of (v) and (vi).

(viii) follows by (v).
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(ix) Take apa,aqa € Q,, with apa # 0. Apply that Q is a left quotient pair of
A to find x € A%, y € A7° satisfying 0 £ xyapa € A°. By (2.4), given xya € Q°,
g € Q77 and 0 # xyapa € A°, we have (A~ : xyaq)xyapa # 0. Let z be in A~? with
zxyaq € A~° and zxyapa # 0. By (1.4) and the semiprimeness of A, 0 # atuzxyapa
for some t € A%, u € A°. Then the element atuzxya, which is in A,, satisfies:
atuzxya.apa = atuzxyapa 7 0 and atuzxya.aga = atuzxyaqa € A,.

(x) By (ii), lang(X) C lang(Y) implies lans(X) C lana(Y). Now we prove the
converse. Suppose lans(X) C lans(Y) but lang(X) € lang(Y) and let g be in
lang(X) such that pgy # 0 for some y € Y, p € Q° (this is possible by virtue of
(1.4)). Since Q is a left quotient pair of A, there exist u € A%, v € A~ such that
uvpqy 20 and wuvpgy € A°. By (24), (A7° :uvpq) uvpqy #0, so there exists
b € A7 such that buvpg € A~? and 0 # buvpgy. Then buvpq € lan,(X) (because
q € lany(X)) but buvpg ¢ lan,(Y), which contradicts the initial hypothesis.

(xi) By (viii), u-dimy(a) < u-dimg(a). Now, let {Zi}iel" be a family of nonzero
left ideals of Q contained in Q°Q °a. We can take 0 # > pi.q,a € L;, with
DPki» Gk, € Q7°. By (2.4), (A7 : pr,qr,)a # 0, hence there exists y; in A~? such that
> yibkgr, € A7° and > yipr.qr,a 0. By (1.4) we can find x € A° such that
li == xy; Y pr,gr,a # 0. Since [; € A’A"%a N L., {A7A7%1;},.r is a family of nonzero
left ideals of A contained in A°A °a. Moreover its sum is direct (because
A°A~°l; C L; and the sum of the L;’s was direct), which proves our claim. 0

3. JOHNSON AND GABRIEL’S THEOREMS FOR
ASSOCIATIVE PAIRS

While Johnson’s Theorem characterizes those rings # for which Q! (%) is
von Neumann regular (Lam, 1999, 13.36), Gabriel’s Theorem (Lam, 1999,
13.40) specializes it further by asking for characterizations for those rings #
for which Q! , (%) is semisimple, i.e., isomorphic to a finite direct product of
rings of the form Enda (V) for a suitable finite left vector space V over a division
ring A. In this section we prove that every associative pair A for which Q' (A) is
von Neumann regular is left nonsingular (and conversely), and characterize those
associative pairs whose maximal left quotient pair is isomorphic to
Hyer (Homa,(Vy, Wy), Homa, (W, V,)), where for each o € I', V, and W, are left
vector spaces over the same division ring A,. In particular we get a characteriza-
tion of those associative pairs whose maximal left quotient pair is semisimple and

artinian.

3.1. Johnson’s Theorem for Associative Pairs. Lect A be an associative pair. Then A
is left nonsingular if and only if Q! , (A) is a von Neumann regular associative pair.
Proof. Suppose A is left nonsingular. By (1.9), & is left nonsingular. By Johnson’s
Theorem for rings (Lam, 1999, 13.36), the maximal left quotient ring of &, name it 2,
is von Neumann regular. By 2.9(ii), Q' . (A) = (e2(1 — e), (1 — €)2e), and it is easy
to prove that this is a von Neumann regular associative pair. Conversely, as every
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von Neumann regular associative pair is left nonsingular (by Proposition 3.4 of
Fernandez Loépez et al., 1998), 2.14(iv) completes the proof. O

Let # be an element in an arbitrary ring #. Recall that the local ring of #
at a is defined as the ring obtained from the abelian group (a%a, +) by consider-
ing the product given by axa-aya = axaya. Denote it by %,. The reader is
referred to Gémez Lozano and Siles Molina (2002) to see the relation among
some properties of a ring and the corresponding ones of its local rings at
elements.

Now, we will introduce some notation. Given a ring # and an element x € %,
the left Goldie (or uniform) dimension of x will be denoted by u-dim(x) (u-dimg(x)
to specify the ring). By u-dim(R) we understand the uniform dimension of gR. We
put I(#) = {x € #|u — dim(x) < oco}. Condition (iii) in the next Proposition was
proved by Anh and Marki (1996, Proposition 1). Here we give a different proof
by using Johnson’s Theorem for rings.

3.2. Proposition. Let # be a ring and denote by Soc(R) the socle of the ring X.

(1) If R is semiprime, then: 1(Z) = {a € Z|u — dim(R,) <oo} 2 Soc(X).
(i1) If R is von Neumann regular, then I(#) = Soc(R).
(i) If R is left nonsingular, then I(R) is an ideal of R.

Proof. (1) The equality holds by [6, Proposition 2.1 (iv)] of Gémez Lozano and
Siles Molina (2002). Now, let x be in Soc(#). Since Soc(#) is a von Neumann
regular ideal of 2, x%x = xSoc(#)x, which obviously implies u-dim(R,) =
u-dim(Soc(#),). By Proposition 2.1 (vi) of Gémez Lozano and Siles Molina
(2002), u-dim(Soc(£),) < oo and hence x € I(%).

(i) By (i) we only need to prove I(#) C Soc(#). Take a nonzero x € I(#). By
Proposition 2.1 (i), (iv) and (ix) of Gémez Lozano and Siles Molina (2002), £, is a
semiprime left Goldie ring. By the classical Goldie’s Theorem, %, is a classical left
order in a semisimple artinian ring 7. Since # is von Neumann regular, the ring
A, 18 unital and von Neumann regular. Therefore, Reg(%,)=Inv(#,), where
“Reg’” and “Inv’’ denote the set of regular and invertible elements, respectively.
Since 7 is generated by £, and the inverses of the elements of Reg(Z,), we have
I =R, and I (= A,) artinian implies, by Proposition 2.1 (v) of Gémez Lozano
and Siles Molina (2002), x € Soc(£).

(iii) By Johnson’s Theorem (Lam, 1999, 13.36), 2:= Q' (#) is a von
Neumann regular ring. Since, by (i), /(2) = Soc(2) is an ideal of 2, clearly 1(2) N %
is an ideal of #. We conclude the proof by applying Proposition 3.2 (iv) of Gémez
Lozano and Siles Molina (2002), which says I(#) = I(2) N &. O

Given an associative pair A, denote by I(A)? the set of the elements of A having
finite left Goldie dimension, and set I(A) = (I(A)",1(A)”). We denote by Soc(A)
the socle of A (the reader is referred to Loos, 1991 for the study of the socle of an
associative pair).
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3.3. Proposition. Let A be an associative pair and denote by o/ and (&,e) its
envelope and standard imbedding, respectively.

(i) If A is semiprime, then I(A)’ ={a € A’|u—dim(4,) < oo} = I(/)N
A% =1(&) N A% 2 Soc(A).
(i) If A is left nonsingular, then 1(A)° = I(/) N A° = I(&) N A°.
(iil) If A is von Neumann regular, then I(A) = Soc(A).
(iv) If A is left nonsingular, then 1(A) is an ideal of A.

Proof. (i) By Proposition 5.2 (iv) of Ferndandez Lopez et al. (1998), a € I1(A)? if
and only if u-dim(A,) < oo, and so the first equality holds.

Since A semiprime implies & and .o semiprime (by Proposition 4.2 of Fernandez
Loépez et al., 1998, & is semiprime, and .</ is semiprime because it is an ideal of &), by
condition (i) of (3.2) and taking into account that aA %a = a</a = a&a, for every
a € A% we have I(A)° = I(=/) N A7 = [(&) N A°.

Now, take an element a € Soc(A)” and let b be in A7 satisfying aba = a (which
is possible by virtue of Loos, 1989, Theorem 1). Then aA %a = abaA™°aba C
aSoc(A)’a (because Soc(A) is an ideal of A). Since, obviously, aSoc(A)’a C
a A %a, we have Soc(A), = A,. Finally, apply Proposition 5.2(v) of Fernandez
Lopez et al. (1998) to infer that u-dim(Soc(A)) < co. By Proposition 5.2(iv) of Fernandez
Lépez et al. (1998), u-dim(Soc(A),) <oo hence Soc(A) C I(A).

(ii) By Theorem 2.9, there exists 2 := Q' (/) = Q' (&) and Q := (212, 221)
is a left quotient pair of A. Moreover, since ./ is left nonsingular (by Proposition
1.9), 2 is von Neumann regular (Johnson’s Theorem). Take an element aj; € A™.
Then

u-dima(ar2) € u-dimp(a12) 2 u-dim(Qq,,) = u-dim(2,,)

9 u-dimy(ar2) 2 u-dim, (a12) £ u-dimg (ar2).

(a) Because Q is a left quotient pair of A and by 2.14(xi).

(b) By (i) and nondegeneracy of Q (which is von Neumann regular since 2 is).

(c) By condition (i) in Proposition 3.2, which can be applied since 2 is
nondegenerate.

(d) Because 2 is a left quotient ring of .7 and by Proposition 3.2 (iv) of Gémez
Lozano and Siles Molina (2002).

(e) Since 2 is a left quotient ring of .«7 and by Proposition 3.2 (iv) of Gémez
Lozano and Siles Molina (2002), u-dimy(a2) = u-dimg(a;2).

(i) Let a be in I(A). By Proposition 5.2(i), (iv) and Proposition 5.5
of Fernandez Loépez et al. (1998), A, is a semiprime left Goldie ring. Now we
follow the same reasoning as in the proof of condition (ii) in (3.2) (notice that A,
is von Neumann regular since A is so) to prove A, artinian. By (Fernandez Lépez
et al. (1998), Proposition 5.2 (v)) this implies a € Soc(A).

(iv) By (2.9) (i) and (2.9), 0 := O (A) = (e2(1 —e),(1 — €)2e) is a von

Neumann regular associative pair, so we can apply (iii) to obtain 1(Q)° = Soc(Q)’,
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which is an ideal of A. Since I1(A)° = I(Q)? N A, by (2.14) (xi), we have proved the
required statement. [l

3.4. Theorem. For an associative pair A the following conditions are equivalent:

() A is left nonsingular and I(A)* is an essential left ideal of A contained
in A*.

(i) Q:= Qfmx(A) = [,er(Homp,(Vy, Wy), Homa, (W, V,)), where for each
a eI, V, and W, are left vector spaces over the same division ring A,.

Proof. (i) = (ii) By Johnson’s Theorem for associative pairs, Q = Q' (A) is a
von Neumann regular associative pair and by 2.9 (ii), Q = (e2(1 — e), (1 — e)2e),
where 2 = Q! (/) and .7 is the envelope of A. Denote by % the subalgebra of

2 generated by Q, that is, & is the envelope of Q. It is not difficult to see that &
is an ideal of 2. Moreover,

(1) 2 is a von Neumann regular ring.
By 1.9, A left nonsingular implies .o/ left nonsingular, and by Johnson’s Theorem
for rings, 2 is a von Neumann regular ring.

(2) I(/) is dense in o/.

For every a € A?, u—dimy(a) =u—dimg(a) (by 2.14 (xi)). This implies
I1(A)" C I(Q)°. Since I(A)° is an essential left ideal of A, I(Q) is an essential ideal
of Q. By 3.2 (ii), I(Q)° = I(2) N Q°. We claim that I(2) is an essential ideal of 2:
Consider a nonzero ideal J of Q°. By Proposition 4.1 (i) of Ferndndez Ldpez et al.
(1998) J N Q° is a nonzero ideal of Q7. Hence 0 £ I(Q)’NJNQO° =1(2)NJNQ°.
This shows our claim.

Finally, being 2 a left quotient ring of .o/ implies /() = I1(2) N/ is an
essential ideal of .o/ and consequently it is a dense ideal of .o/ (apply that .o7 is left
nonsingular).

(3) The conclusion.

By Theorem 3.24 of Lam (1999), which can be applied taking into account (2)
and that .o/ is left nonsingular, 2 := Q' (/) = I12,, where each 2, is an ideal of
2 isomorphic (as a ring) to Enda,(U,) for a suitable left vector space U, over some
division ring A,.

Define V, := U,e,, W, = U,(1 —¢),, e, = my(e), (1 —e), = my(1 —€). Then we
have (e2(1 —e), (1 — e)2e) = II(Homp,(V,, W,), Homa,(W,, Vy)).

(i))= (i) Define U, =V, ® W,, 2 = I1,Enda,(U,), e = (e,) and f = (f,), where

e, U, — U, f,:U, — U,

Uy + Wy =V, Uy + Wy t— Wy

Then €+f: 1y and 0= (62(1 - 6)7(1 - 6)26) = Ha(HomAy(Vav Wx)a HomA;(Woz; VO())
This implies Q von Neumann regular and so by Ferniandez Lépez et al. (1998,
Proposition 3.4), Q is left nonsingular. By 2.14(iv), A is left nonsingular. Finally,
I(A) = 1(Q) N A’ (by 2.14 (xi)) = I(2) N A’ (by 3.3(i)) implies that /(A)” must be
an essential left ideal of A. O
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Notice that finiteness of left Goldie dimension of A implies that the direct
product in the previous theorem must be finite as well as the dimensions of the vector

spaces involved.

3.5. Gabriel’s Theorem for Associative Pairs. For an associative pair A the
following conditions are equivalent:

(1) A is left nonsingular and has finite left Goldie dimension.
(2) Q! .(A) =TI, (Homy,(V;, W), Hom,(W;, V;)), whereforeachi € {1,---,n},

max

V; and W; are finite left vector spaces over the same division ring A;.

4. APPLICATIONS TO MORITA CONTEXTS

Let R and S be two rings, g Ns and sMg two bimodules and (—,—) : N x M — R,
[—,—]: M x N — S two maps. Then the following conditions are equivalent:

M S
noon o n\ _ (nn4+(m,m)  rny+ns
my sp J\my s miry+simy  [my,m] + 515 )’

(i) [—,—] is S-bilinear and R-balanced, (—,—) is R-bilinear and S-balanced
and the following associativity conditions holds:

(1) ( R N> is a ring with componentwise sum and product given by:

(n,m)n’ =n[m,n'] and [m,nlm' = m(n,m’).

[—, —] being S-bilinear and R-balanced and (—,—) being R-bilinear and
S-balanced is equivalent to having bimodule maps ¢ : N ®s M — R and
Y : M®g N— S, given by

@(n®@m) = (n,m) and Y(m® n)=[m,n],
so that the associativity condition above reads
o(n@omn’ =ny(men) and Y(m @ n)m' = me(n,m’).

A Morita context is a sextuple (R, S, N, M, ¢, ) satisfying the conditions given
above. The associated ring is called the Morita ring of the context.

In classical Morita theory it is shown that two rings with identity R and S are
Morita equivalent (i.e., R- and S-mod are equivalent categories) if and only if there
exists a Morita context (R, S, N, M, ¢,y), with ¢ and y surjective. The approach to
Morita theory for rings without identity by means of Morita contexts appears in a
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number of papers (see Marin, 1998 and the references therein) in which many
consequences are obtained from the existence of a Morita context for two rings R and
S. In particular it is shown in Theorem of Kyuno (1974) that, if R and S are arbitrary
rings such that there is a surjective Morita context for these rings, then the categories
R-Mod and S-Mod are equivalent (and the rings R and S are said to be Morita-
equivalent). It is proved in Proposition 2.3 of Garcia and Simén (1991) that the
converse implication holds for idempotent rings.

Recall that an idempotent ring is a ring R such that R> = R. For an idempotent
ring R we denote by R-Mod the full subcategory of the category of all left R-modules
whose objects are the “unital’” nondegenerate modules. Here a left R-module is said
to be unital if M = RM, and is said to be nondegenerate if, for m € M, Rm =0
implies m = 0. Note that if R has an identity, then R-Mod is the usual category of
left R-modules.

The following result can be found in Garcia and Simén (1991) (see Proposition
2.5 and Theorem 2.7).

4.1. Theorem. Let R and S be two idempotent rings. Then R-Mod and S-Mod are
equivalent categories if and only if there exists a Morita context (R,S,M,N,p,V),
with M € R-Mod N Mod-S, N € S-Mod N Mod-R, and ¢ and \ surjective.

4.2. Remark. If (R,S,M,N,,}) is a Morita context for two idempotent rings R
and S, with M € R-Mod N Mod-S and N € S-Mod N Mod-R, and T is the Morita
ring of the context, then (M, N) is an associative pair and if R has no total left or
right zero divisors and § has no total left or right zero divisors, then T is the envelope
of the associative pair.

4.3. Theorem. Let R and S be two Morita-equivalent idempotent rings such that R
has no total left or right zero divisors and S has no total right zero divisors, and
let T=(R,S,M,N) be the Morita ring of the context. Then the following are
equivalent conditions:

(1) R is left nonsingular.

(i1) S is left nonsingular.
(i) A = (M,N) is a left nonsingular associative pair.
(iv) T is left nonsingular.

Proof. Notice that by 4.2, T is the envelope of the associative pair A. Since the
modules are left and right nondegenerate, and the rings are idempotent, we have that
A has neither total left right zero divisors nor total right zero divisors. Apply (1.10)
to obtain (i) & (ii) < (iii).

By 1.9, (iii) < (iv). O

The conditions over R and S in the previous theorem cannot be dropped, since
there exist two Morita equivalent idempotent rings R and S such that R is left
nonsingular while Z;(S) # 0 (consider R and S = R/J, with R and J as in the
following lemma).
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4.4. Lemma. Let R be a commutative idempotent ring, and consider an ideal
. o R R/J .

J of R such that JR =0 and R/J is semiprime. Then (R/J R/J)’ with product

given by

<r ﬁ1><a ﬁ) (m—i—my rn+mb>

X s y b xa+sy xn+sb

defines a surjective Morita context for the idempotent rings R and R/J. Hence the
rings R and R/J are Morita equivalent.

Proof. 1t is not difficult to prove that the product is well defined. By the idempo-
tency of R, (R/J)* = R/J. Moreover, given r € R = R, r = S miy;, with o € N
and m;,y; € R. Hence, (g 8) = <8 n(;,) (; 8) This proves the surjec-
tivity. The modules of the context are unital by the idempotency of R. Finally, we
will prove that the modules are nondegenerate. Indeed rx = 0 for every r € R implies
Rx = 0 and by the semiprimeness of R, X = 0. The semiprimeness of R implies too
that R/J is a nondegenerate R/J-module. O

We recall that a ring R is said to have finite left local Goldie dimension if any
element of R has finite left Goldie (or uniform) dimension. The left Goldie dimension
of an element a € R will be denoted by u-dim(a).

4.5. Theorem. Let R and S be two Morita-equivalent idempotent rings such that
R has no total left or right zero divisors and S has no total left or right zero
divisors, and suppose R left nonsingular (equivalently S left nonsingular). Let
T =(R,S,M,N) be the Morita ring of the context, and define A := (M,N). Then
the following are equivalent conditions:

(1) R has finite left local Goldie dimension.

(i1) S has finite left local Goldie dimension.
(ii1) Every element of M has finite left Goldie dimension in A.
(iv) Every element of N has finite left Goldie dimension in A.
(v) T has finite left local Goldie dimension.

Proof. Fix the following notation: (&, e) is the standard imbedding of the associative
pair A, 2 := Q!  (</), which exists by (1.8) and (2.9), «/1; = R, /5 = Sand .o/ = T.

(1) 2, is a left quotient ring of .o7;;.

Take, for example, p11,q11 € 211, with p;; # 0. Since 2 is a left quotient ring of
o/, we can choose a € ./ such that ap;; # 0 and aq; € /. If a;1p;) # 0, then we
have finished. Suppose ap1; # 0. The absence of total right zero divisors in A
implies bjpaz p1y # 0 for some by € o/15. Then the element ¢y := bjpaz € 1y
satisfies: ¢j1p11 # 0 and cq1q11 € .
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2) I(y)=1(L)NAy; =1(E)N oA}
For an element ay; € .«71; we have:

. a . b . .
u-dim,,, (a11) @ u-dimy,, (a;) & u-dim(211,,,) = u-dim(2,,,)

9 y-dims(ar) 2 u-dim, (a1,) 2 u-dimg (a11).

(a) Because by (1), 2y; is a left quotient ring of .27}, and by Proposition 3.2(iv)
of Gémez Lozano and Siles Molina (2002).

(b) By Proposition 2.1(iv) of Gémez Lozano and Siles Molina (2002), which
can be applied since 2 von Neumann regular implies 2;; nondegenerate.

(¢) Because 2 is nondegenerate and by Proposition 2.1(iv) of Gémez Lozano
and Siles Molina (2002).

(d) It is a consequence of Proposition 3.2(iv) of Gémez Lozano and Siles
Molina (2002).

(e) Since 2 is a left quotient ring of .« and by Proposition 3.2(iv) of Gémez
Lozano and Siles Molina (2002), u-dim(a;;) = u-dimg(ay).

(v)= (i), (ii), (iii), (iv) follows by 3.3(ii) and by (2).

(1), (i), (iil) or (iv)=(v) by 3.3(ii) and (2), I(«#/,;) = (/) N o;j, for i,j = 1,2,
i # j. Taking into account that I(.</) is an ideal of .o/ (by 3.2) and that .o/ is
generated, as an ideal of &, by .7;;, the result follows. O

Let o7, and .o75; be two Morita-equivalent idempotent rings, denote the Morita
ring of the context by .o/ = (<711, %2, 12,.%21), and suppose that there exists
Q' ..(</11) and Q! (/) (as under the hypothesis of 4.3 and 4.5). The natural
questions that arise are the following: are these two rings Morita-equivalent too?,
and, if 2:= Q! (</), do 2y, and 22 coincide with Q! (/1)) and Q! (/»),

respectively? The answer is negative in both cases.

4.6. Example. Consider a simple and non unital ring # which coincides with its

eRe eR
Re R

for the idempotent rings eZe and # which have no total right zero divisors. On
the one hand, by Proposition 4.3.7 of Lambek (1976), Q' . (#) = Enda(V), with
V a left vector space over a division ring A (which is isomorphic to eZe). On
the other hand, Q!  (eZe) = eZe (because eZe is a division ring). But Enda(V)
and A are not Morita equivalent rings because A is left nonsingular and has finite
left local Goldie dimension, while Enda(V), which is left nonsingular, has
not finite left local Goldie dimension, and this property is Morita invariant, by
virtue of 4.5.

Finally we prove that for semiprime left local Goldie rings, the Fountain—-Gould
left orders of two idempotent Morita equivalent rings are Morita equivalent too.
This contrasts with the previous example, which shows that under the same condi-
tions (semiprime and left local Goldie), the maximal left quotient rings of two Morita

equivalent rings are not Morita equivalent.

socle, and take a minimal idempotent e € #. Then < > is a Morita context
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4.7. Theorem. Let R and S be two Morita equivalent semiprime idempotent rings,
with R left local Goldie. Then:

(1) S isa left local Goldie ring.
(1) If Ty and T, denote the Fountain—-Gould left quotient rings of R and S,
respectively, then Ty and T, are Morita equivalent rings.

Proof. (i) follows by (4.3) and (4.5).

(i) Consider a surjective Morita context (R, S, M, N) for the rings R and S, and
let A= < R M) be the Morita ring of the context. Denote by Q; and Q, the max-

N S
imal left quotient rings of R and S, respectively.
1
Consider the unital ring B = 113\1 gl ) where R! and S!' denote the unitiza-
tions of R and S, respectively. This ring has two orthogonal idempotents

e= (131 8) and f:(g 1()) such that e+ f =13 and Ae+eA C A. By
Si

(2.7) of Aranda Pino et al. (To appear), there exist two orthogonal idempotents
u,v€ Q:= Q' (A) such that u+v =1y and R = udu, S = vAv, M = uAv, and
N = vAu are contained in Q. Moreover, Q) = Q' (R) = Q' . (uAu) = (by Lemma
1.8 of Aranda Pino et al. (To appear), which can be used because Au+ uA C A and
lans(Au) = ran,(uA)=0) uQ' , (A)u. And analogously 0, = Q' (S) = Q' (vAv) =
vam(A)v. This means that M, N, Q; and Q, can be considered inside Q as uQuv, vQu,
uQu and vQu, respectively. By 4.9 of Gémez Lozano and Siles Molina (2002),

ROy ROMQ,
SQ2NQ; SO
Morita context for the idempotent rings RQ; and SQ;.

RQO1RQ; = RQ; since every element g € T = RQ; can be written as g = aa#zab,
with a, b € R. The same argument for SQ, shows that it is an idempotent ring. More-
over, this implies RQRQ1MQ>, = RO\ MQ, and SQ>,SQ>NQ| = SQ>NQ;.

Now, RQ1MQ> = ROIMS*Q> C RQ1MQ,SQ> C RQMQ,. Hence RQ1MQ>5Q, =
RQMQ, and analogously SQ,NQ{RQ| = SQ>NQ;, which shows that the modules
are unital.

In what follows, we will show the surjectivity of the Morita context.

ROIMQ>2SO>NQ; € ROy = ROIROI\RQI1RQ1 =  RQIMNQIMNMNQMNQ, <
RQ]MstQzNQl. Hence RQlMQZSQZNQ]IRQl. Analogously, SQQNQlRQlMQZ =
S0,.

Finally, we have that the modules are nondegenerate:

Indeed, suppose 0 #1=>""_ rigim'qh € ROIMQ>. (M,N) C (RQ1MQ>, SO2NQ)
C (uQu,vQu)=0Q" . ((M,N)) by (2.9). This implies that (RQ;MQ,, SONQ;) is a left
quotient pair of (M, N). Hence, if t # 0, for some (m,n) € (M,N), 0 # mnt € M.
Since M is a nondegenerate right S-module and S is idempotent,
0 # mntS?> C MNtSQ-. This implies RQ; MQ, nondegenerate as a right SQ,-module
and as a left RQ;-module.

Now, changing the roles of R and S, the proof is complete. O

T: = RQ; and T> = SQ,. We claim that T = ( ) is a surjective
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