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ABSTRACT

In this paper, we prove that left nonsingularity and left nonsingularity plus finite
left local Goldie dimension are two Morita invariant properties for idempotent

rings without total left or right zero divisors. Moreover, two Morita equivalent
idempotent rings, semiprime and left local Goldie, have Fountain–Gould left
quotient rings that are Morita equivalent too. These results can be obtained from

others concerning associative pairs. We introduce the notion of (general) left
quotient pair of an associative pair and show the existence of a maximal left
quotient pair for every semiprime or left nonsingular associative pair. Moreover,

we characterize those associative pairs for which their maximal left quotient pair
is von Neumann regular and give a Gabriel-like characterization of associative
pairs whose maximal left quotient pair is semiprime and artinian.
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INTRODUCTION

Along the years, the study of the Morita invariance has been a present question.
In this paper, we study the Morita-invariance of properties closely related to the
rings of quotients such as left nonsingularity and left nonsingularity plus finite left
local Goldie dimension for idempotent rings without total left or right zero divisors
(Sec. 4). We will get these results ((4.3) and (4.7)) as an application of the theory of
associative pairs of quotients we develop.

Associative pairs and Morita contexts are closely related since every Morita
context ðR;S;M;NÞ gives rise to an associative pair: ðM;NÞ and, conversely, given
an associative pair A ¼ ðAþ;A�Þ, there exists a unital ring E with an idempotent e
such that if E ¼ eEe� ð1� eÞEð1� eÞ � eEð1� eÞ � ð1� eÞEe is the Peirce decom-
position of E relative to e, then A is isomorphic to ðeEð1� eÞ; ð1� eÞEeÞ (and, of
course, ðeEe; ð1� eÞEð1� eÞ; eEð1� eÞ; ð1� eÞEeÞ is a Morita context). This ring
E is called the standard imbedding of A. Associative pairs play also a fundamental
role in the new approach to Zelmanov’s classification of strongly prime Jordan pairs
(see D’Amour, 1992), and have been already used by Loos in the classification of the
nondegenerate Jordan pairs of finite capacity (see Loos, 1975).

After a preliminary paragraph on associative pairs, in the first section we study
the left singular ideal of an associative pair: we prove that, in general, it is a pair
of two-sided ideals, and an ideal when the associative pair has no total right zero
divisors (this is the case, for example, if the pair is semiprime). Nonsingularity of an
associative pair A (i.e., ZlðAÞ ¼ 0, where ZlðAÞ denotes the left singular ideal of A) is
equivalent to that of its standard imbedding.

In Sec. 2, we introduce the notion of left quotient pair of a pair, extending the
well-known definition of left quotient ring given by Utumi (1956). We connect prop-
erties of a pair with those of its left quotient pairs, and find the maximal left quotient
pair of every associative pair which has neither total left nor total right zero divisors,
or it is left nonsingular.

Section 3 is devoted to Johnson and Gabriel’s Theorems for associative pairs
(see Johnson’s Theorem for pairs and (3.3)). As a corollary we obtain the Gabriel’s
Theorem for associative pairs.

0. PRELIMINARIES

An associative pair over a unital commutative associative ring of scalars F is a
couple ðAþ;A�Þ of F-modules together with F-trilinear maps

As � A�s � As ! As

ðx; y; zÞ 7! xyz

satisfying the following identities:

uvðxyzÞ ¼ uðvxyÞz ¼ ðuvxÞyz ð0:1Þ

for all u; x; z 2 As, y; v 2 A�s and s ¼ �. (See Fernández López et al., 1998 and
Loos, 1995 for definitions and results on associative pairs.)
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By Loos (1995, (2.3)) given an associative pair A ¼ ðAþ;A�Þ, there exists a
unital associative algebra E with an idempotent e such that if E11 � E12 � E21 � E22

is the Peirce decomposition of E relative to e, that is, Eij ¼ uiEuj, with u1 ¼ e and
u2 ¼ 1� e, then A is isomorphic to the associative pair ðE12;E21Þ, where E11 (resp.
E22) is spanned by e and all products x12y21 (resp. 1� e and all products y21x12)
for x12 2 E12, y21 2 E21, and has the following property:

x11E12 ¼ E21x11 ¼ 0 implies x11 ¼ 0; and

x22E21 ¼ E12x22 ¼ 0 implies x22 ¼ 0: ð0:2Þ
The pair ðE; eÞ is called the standard imbedding of A.

Now let A be the subalgebra of E generated by the elements x12 and x21. It is
immediate that A is an ideal of E. We will call A the envelope of the associative
pair A. Notice that A12 :¼ eAð1� eÞ ¼ E12 and A21 :¼ ð1� eÞAe ¼ E21, hence
the associative pair A is isomorphic to the associative pair ðA12;A21Þ. It is not diffi-
cult to see, by using (0.2), that A is an essential ideal of E.

In what follows, an expression of the type xy, with x 2 As, y 2 A�s, must be
understood by considering the associative pair A inside its envelope A. And
xy ¼ 0 means lAðx; yÞ ¼ 0 and rAðx; yÞ ¼ 0, where lðx; yÞz ¼ rðy; zÞx ¼ xyz.

1. THE LEFT SINGULAR IDEAL OF AN ASSOCIATIVE PAIR

The notion of left singular ideal for semiprime associative pairs was introduced
by the authors jointly with Fernández López and Garcı́a Rus in Fernández López et al.
(1998), where it was used as a tool to study Fountain–Gould orders in associative
pairs. Here we analyze some properties of this left singular ideal without the semi-
primeness hypothesis.

We recall that a nonzero element a in a ring R is said to be a total right zero
divisor if Ra ¼ 0.

1.1. Definitions. Let A be an associative pair. We will say that an element a 2 As is
a total right zero divisor if a is nonzero and AsA�sa ¼ 0. When Aþ and A� have no
total right zero divisors we will say that the associative pair A has no total right zero
divisors.

These definitions are consistent with the classical ones because a right zero
divisor a in a ring R is a right zero divisor in the associative pair ðR;RÞ. Moreover
R has no total right zero divisors if and only if ðR;RÞ has no total right zero
divisors.

If A is an associative pair which has no total right zero divisors then, for every
subset X of As,

lanAðXÞ ¼ fb 2 A�s : AsbX ¼ 0g: ð1:2Þ

Indeed, if b 2 A�s satisfies Asbx ¼ 0 for every x 2 X, then bxA�s must be
zero. Otherwise, suppose bxd 6¼ 0 for some d 2 A�s. Since A has no total right zero
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divisors, then there exist u 2 As, v 2 A�s satisfying 0 6¼ vubxd 2 vAsbxA�s ¼ 0, a
contradiction.

If moreover A has no total left zero divisors (for example, if it is a semiprime
pair),

lanAðXÞ ¼ fb 2 A�s : bXA�s ¼ 0g: ð1:3Þ

1.4. Lemma. If an associative pair A has no total right zero divisors, then (0.2) is
equivalent to:

A21x11 ¼ 0 implies x11 ¼ 0; and

A12x22 ¼ 0 implies x22 ¼ 0:

Proof. Clearly, this conditions imply (0.2). Conversely, A21x11 ¼ 0 and x11 6¼ 0
implies, by (0.2), x11a12 6¼ 0 for some a12 2 A12. Since A has no total right zero
divisors, then 0 6¼ A12A21x11a12, which is a contradiction. &

A left ideal L of a ring R is dense in R if for every x; y 2 R, with x 6¼ 0, there
exists an element a 2 R such that ay 2 L and ax 6¼ 0. By Utumi (1956, (1.6)), this
condition is equivalent to say that R is a left quotient ring of L.

1.5. Lemma. Let A be an associative pair and write A and E to denote the
envelope and the standard imbedding, respectively, of A. Then, the following
conditions are equivalent:

(i) A has no total right zero divisors.
(ii) A has no total right zero divisors.
(iii) A is a dense left ideal of E.

Proof. (i)) (iii) Let x and y be elements in E with x 6¼ 0. Suppose first that
x12 6¼ 0. By the hypothesis there exists ða12; a21Þ 2 A such that a12a21x12 6¼ 0. Then
a21x 6¼ 0 (otherwise 0 ¼ a21x ¼ a21x11 þ a21x12 implies a21x11 ¼ a21x12 ¼ 0, a con-
tradiction) and a21y 2 A since A is an ideal of E. The case x21 6¼ 0 is analogue.
Now, suppose x12 ¼ x21 ¼ 0. In this case x11 (or x22) must be nonzero and by
(1.4), b21x11 6¼ 0 for some b21 2 A21. Then, as it is easy to show, b21x 6¼ 0 and
b21y 2 A.

(iii)) (ii) follows by Utumi (1956, (1.6)).

(ii)) (i) Take 0 6¼ a12 2 A12. By the hypothesis, there exist b; c 2 A such that
bca12 6¼ 0. This implies A12A21a12 6¼ 0. &

For an associative pair A, it is defined

ZlðAÞs ¼ fz 2 As : lanðzÞ � A�s is an essential left ideal ofAg:

The ‘‘moreover’’ part of the following lemma can be obtained as a corollary of
(1.9). However we include here a direct proof of the result.
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1.6. Lemma. For an associative pair A we have that ZlðAÞ ¼ ðZlðAÞþ;ZlðAÞ�Þ is
a pair of two-sided ideals of A. Moreover, if A has no total right zero divisors,
then ZlðAÞ is an ideal of A. In particular, ZlðAÞ is an ideal of A if A is a semiprime
associative pair.

Proof. Being ZlðAÞ a pair of two-sided ideals of A follows the ideas of the proof of
Theorem 3.1 in Fernández López et al. (1998). Now, suppose that A has no total
right zero divisors. Let x; y 2 As and z 2 ZlðAÞ�s, and take a nonzero element l in a
nonzero left ideal L of A contained in A�s. If Aslx ¼ 0, then A�sAslxzy ¼ 0 and since
A has no total right zero divisors, this implies 0 6¼ A�sAsl � L \ lanðxzyÞ. If Aslx 6¼ 0,
since lanðzÞ is an essential left ideal of A, there exists 0 6¼ alx 2 Aslx \ lanðzÞ. Apply
that A has no total right zero divisors to find b 2 As; c 2 A�s such that bcalx 6¼ 0.
Then 0 6¼ cal 2 L \ lanðxzyÞ. In any case L \ lanðxzyÞ 6¼ 0, so lanðxzyÞ is essential,
which completes the proof. &

1.7. Definitions. Given an associative pair A, the pair ZlðAÞ ¼ ðZlðAÞþ;ZlðAÞ�Þ
of two-sided ideals of A will be called the left singular ðtwo� sidedÞ ideal of A.
An associative pair A ¼ ðAþ;A�Þ will be called left nonsingular if its left singular
ideal ZlðAÞ is zero. Right nonsingular associative pairs are defined similarly, while
nonsingular means that A is both left and right nonsingular.

1.8. Lemma. Let A be a left nonsingular associative pair. Then A has no total right
zero divisors.

Proof. We prove first the following property:

(1) For every nonzero xii 2 Aii we have Ajixii 6¼ 0 (for i 6¼ j).
Suppose Ajixii ¼ 0 for some nonzero xii 2 Aii. Then Aji ¼ lanA(xiiAij).

Since xii 6¼ 0, by (0.2), xiiAij 6¼ 0 and we have just proved that xiiAij � ZlðAÞs,
for s ¼ þ or s ¼ �, contrary to the hypothesis.

Now, let a12 be an element of A12 such that A12A21a12 ¼ 0; then, by (1),
A21 ¼ lanAða12Þ, which implies a12 2 ZlðAÞþ ¼ 0 and proves that A has no total
right zero divisors. &

1.9. Proposition. Let A be an associative pair without total right zero divisors and
denote by A and E its envelope and standard imbedding, respectively. Then

ZlðAÞs ¼ ZlðEÞ \ As ¼ ZlðAÞ \ As;

and the following are equivalent conditions.

(i) A is left nonsingular.
(ii) A is left nonsingular.
(iii) E is left nonsingular.

Proof. (1) ZlðEÞ \ As � ZlðAÞs.
Suppose x 2 ZlðEÞ \A12 and take a nonzero left ideal L of A contained in A21.

If Lx ¼ 0 then L � lanAðxÞ. If l21x 6¼ 0 for some l21 2 L, since El21 is a nonzero
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left ideal of E and lanEðxÞ is an essential left ideal of E, there exists 0 6¼ ul21 2
El21 \ lanEðxÞ. Write ul21 ¼ u12l21 þ u22l21. If u22l21 6¼ 0, then we have a non-
zero element in L \ lanAðxÞ. If u12l21 6¼ 0, by (1.4), 0 6¼ A21u12l21 � L \ lanAðxÞ.
Anyway, lanAðxÞ is an essential left ideal of A contained in A�, which implies
x 2 ZlðAÞþ.

(2) ZlðAÞs � ZlðAÞ \ As.
Let x be in ZlðAÞþ. Take a nonzero left ideal L of A. If Lx ¼ 0 then

L � lanAðxÞ. Suppose Lx 6¼ 0 and take l 2 L such that lx 6¼ 0. If l21 6¼ 0, then
E22l21 is a nonzero left ideal of A contained in A�; applying x 2 ZlðAÞþ we find
u22 2 E22 such that 0 6¼ u22l21 2 lanAðxÞ and this implies u22lx ¼ u22l21x ¼ 0, so
0 6¼ u22l 2 L \ lanAðxÞ. If l11 6¼ 0, by (1.5), Al11 6¼ 0, so there exists a21 2 A21

such that 0 6¼ a21l11, and the element a21l satisfies the conditions of the previous
case.

(3) ZlðAÞ ¼ ZlðEÞ \A.
This follows by Proposition 3.2(ii) of Gómez Lozano and Siles Molina (2002)

since by (1.5), A is a dense ideal of E.
By (1), (2) and (3), ZlðAÞs � ZlðAÞ \ As ¼ ZlðEÞ \ As � ZlðAÞs and the first

statement has been proved.

(i)) (iii) Consider x 2 ZlðEÞ. Then x12 2 ZlðEÞ \ Aþ ¼ ZlðAÞþ ¼ 0 and
analogously x21 ¼ 0. If xii 6¼ 0, by (1.8) and (1.4), 0 6¼ Ajixii �
ZlðEÞ \Aji ¼ ZlðAÞs ¼ 0, which is a contradiction.

(ii), (iii) follows by Proposition 3.2 (iii) of Gómez Lozano and Siles Molina
(2002), taking into account (1.5).

(ii)) (i) follows since ZlðAÞs ¼ ZlðAÞ \ As. &

1.10. Proposition. Let A be an associative pair without total right zero divisors and
denote by A and E its envelope and standard imbedding, respectively. Then

ZlðAiiÞ ¼ ZlðEÞ \Aii ¼ ZlðAÞ \Aii;

and the following are equivalent conditions.

(i) A11 and A22 are left nonsingular.
(ii) E is left nonsingular.

Moreover, if A has no total left zero divisors, then

(iii) A11 is left nonsingular if and only if A22 is left nonsingular.

Proof. ZlðEÞ \A11 � ZlðA11Þ: Take x11 2 ZlðEÞ \A11. We will see that
lanA11

ðx11Þ is an essential left ideal of A11. Consider a nonzero element y in an ideal
I of A11. Then Ey is a nonzero ideal of E and there exists 0 6¼ uy 2 lanEðx11Þ \ Ey. If
0 6¼ euy 2 lanA11

ðx11Þ \ I we have finished. Otherwise, 0 6¼ uy ¼ ð1� eÞuy and since
A has no total right zero divisors, 0 6¼ A12uy � lanA11

ðx11Þ \ I.
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ZlðA11Þ � ZlðAÞ \A11: Consider x 2 ZlðA11Þ. We want to prove that
lanAðx11Þ is an essential left ideal of A. Take a nonzero left ideal I of A. If
Ie ¼ 0 then I � lanAðx11Þ. If Ie 6¼ 0 we have eIe 6¼ 0 (suppose ð1� eÞIe 6¼ 0; apply
that A has no total right zero divisors to obtain 0 6¼ A12Ie \ lanA11

ðx11Þ, which
implies 0 6¼ A12I \ lanA11

ðx11Þ � I \ lanAðx11Þ) and hence 0 6¼ eIe \ lanA11
ðx11Þ,

which implies 0 6¼ eI \ lanAðx11Þ � I \ lanAðx11Þ.
Now, notice that ZlðAiiÞ � ZlðAÞ \Aii ¼ (by Gómez Lozano and Siles Molina

(2002, 3.2(ii)) in the proof of (1.9)) ZlðEÞ \Aii � ZlðAiiÞ, which proves the first
statement.

(i) , (ii) If E is left nonsingular, by (1.9), A is left nonsingular. Then
ZlðA11Þ ¼ ZlðA22Þ ¼ 0. Conversely, suppose ZlðAiiÞ ¼ 0 for i; j ¼ 1; 2; i 6¼ j. Since
ZlðEÞ is an ideal, xij 2 ZlðEÞ, and by the first statement, xii 2 ZlðAiiÞ, for i ¼ 1; 2.
Now, since A has no total right zero divisors, if xij 6¼ 0, Ajixij 6¼ 0. Hence
0 6¼ Ajixij 6¼ ZlðEÞ \Ajj ¼ ZlðAjjÞ ¼ 0, a contradiction.

(iii) Suppose A11 left nonsingular, and consider 0 6¼ x22 2 ZlðA22Þ. By (1.4)
A12x22 6¼ 0 and since A has no total left zero divisors, 0 6¼ A12x22A21A12.
This means 0 6¼ A12x22A21 � A12ZlðA22ÞA21 � (by the previous statement)
ZlðEÞ\ A11 ¼ ZlðA11Þ ¼ 0, which is not possible. Hence ZlðA22Þ ¼ 0. &

2. LEFT QUOTIENT PAIRS

The notion of left quotient ring was introduced by Utumi (1956) and has proved
to be very useful in order to study Fountain–Gould left orders in rings (see Gómez
Lozano and Siles Molina, 2002 and the related references therein). Let R be a
subring of a ring Q. We say that Q is a (general) left quotient ring of R if for
every x; y 2 Q, with x 6¼ 0, there is an a 2 R such that ax 6¼ 0 and ay 2 R. Notice that
a ring is a left quotient ring of itself if and only if it has no total right zero divisors. If
R has no total right zero divisors, then by Utumi (1956) it has a unique maximal left
quotient ring, which is unital, called the Utumi left quotient ring of R.

2.1. Definition. Let A ¼ ðAþ;A�Þ be a subpair of an associative pair Q ¼ ðQþ;Q�Þ.
We say that Q is a left quotient pair of A if given p; q 2 Qs with p 6¼ 0 (and s ¼ þ or
s ¼ �) there exist a 2 As, b 2 A�s such that abp 6¼ 0 and abq 2 As:

For example, the associative pair ðM1�2ðQÞ;M2�1ðQÞÞ is a left quotient pair of
the associative pair ðM1�2ð4ZÞ;M2�1ð8ZÞÞ. Moreover, it is maximal among the left
quotient pairs of ðM1�2ð4ZÞ;M2�1ð8ZÞÞ. Every associative pair without total right
zero divisors is a left quotient pair of itself.

The notion of left quotient pair extends that of Utumi of left quotient ring since
given a subring R of an associative ring Q, Q is a left quotient ring of R if and only if
Q ¼ ðQ;QÞ is a left quotient pair of the associative pair R ¼ ðR;RÞ.

The following lemma will be used in the sequel although without mentioning it.

2.2. Lemma. Let Q ¼ ðQþ;Q�Þ be a left quotient pair of an associative pair
A ¼ ðAþ;A�Þ. Then, given q1; . . . ; qn 2 Qs with q1 6¼ 0 (s ¼ þ or s ¼ �), there exist
a 2 As, b 2 A�s such that abq1 6¼ 0 and abqi 2 As for all i 2 f1; . . . ; ng.
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Proof. The case n ¼ 1 follows from the definition. Suppose the result is true for
n� 1. By the induction assumption there exist x 2 As, y 2 A�s such that xyq1 6¼ 0
and xyqi 2 As for i 2 f1; . . . ; n� 1g. Given xyq1 6¼ 0 and xyqn, there exist z 2 As,
t 2 A�s such that ztxyq1 6¼ 0 and ztxyqn 2 As. Take a ¼ ztx 2 As and b ¼ y 2 A�s

to complete the proof. &

2.3. Let Q be an associative pair which is a left quotient pair of a subpair A. Then,
it is not difficult to see that for any finite family fðpi; qiÞgni¼1 in ðQs;Q�sÞ, we have
that ðAs :

Pn
i¼1 qipiÞ ¼ fx 2 As j xPn

i¼1 qipi 2 Asg is an essential left ideal of A.

2.4. Lemma. Let Q be an associative pair which is a left quotient pair of a subpair
A. If A has no total left zero divisors (for example, if it is semiprime) or it is left
nonsingular, then for any finite family fðpi; qiÞgni¼1 in ðQs;Q�sÞ and every nonzero
a 2 A�s we have:

As :
Xn
i¼1

qipi

 !
a 6¼ 0:

Proof. Suppose first A without total left zero divisors. Then, given the nonzero
element a, and applying that A has no total right zero divisors, there exist
b; c 2 As satisfying cab 6¼ 0. Apply that Q is a left quotient pair of A to find
x 2 As, y 2 A�s such that xycab 6¼ 0 and xyc

Pn
i¼1 qipi 2 As. Since the element xyc

is in ðAs :
Pn

i¼1 qipiÞ and xyca 6¼ 0, we have finished.
Now, suppose A left nonsingular. If ðAs :

Pn
i¼1 qipiÞa ¼ 0, then ðAs :Pn

i¼1 qipiÞ � lanAðaÞ, which implies, by (2.3), 0 6¼ a 2 ZlðAÞ�s, a contradiction.
&

2.5. Proposition. Let A be a subpair of an associative pair Q, and writeA and Q to
denote the envelopes of A and Q, respectively.

(i) If Q is a left quotient pair of A, and ðE; eÞ and ðE0; e0Þ are the standard
imbeddings of A and Q, then E � E0, e ¼ e0 and 1E ¼ 1E0 .

(ii) If Q is a left quotient ring of A, then Q is a left quotient pair of A.

Suppose that A has no total left zero divisors or it is left nonsingular.

(iii) If Q is a left quotient pair of A, then Q is a left quotient ring of A.

Proof. (i) By the construction ofE,E11 is the subalgebra ofEndfðAÞ � EndfðA�Þop
generated by fðlAðx; yÞ; rAðx; yÞÞ j x 2 Aþ; y 2 A�g and ðIdAþ ; IdA�Þ, where the index
A, Aþ or A� under each operator means where it acts. Analogously we have that E0

11

is the subalgebra of EndfðQþÞ�;EndfðQ�Þop generated by fðlQðx; yÞ; rQðx; yÞÞ j x 2
Qþ; y 2 Q�g and ðIdQþ ; IdQ�Þ. Hence, to prove E � E0, and since Aþ ¼ E12 � E0

12 ¼
Qþ, it is enough to show that for every n 2 N [ f0g, xi 2 Aþ, yi 2 A�,

2848 Gómez Lozano and Siles Molina

pulsa aceptar



ORDER REPRINTS

the map from E11 into E0
11 which sends nðIdAþ ; IdA�Þ þ ðP lAðxi; yiÞ;

P
rAðxi; yiÞÞ

to nðIdQþ ; IdQ�Þ þ ðP lQðxi; yiÞ;
P

rQðxi; yiÞÞ is well-defined. Or, equivalently, that

nðIdAþ ; IdA�Þ þ ð
X

lAðxi; yiÞ;
X

rAðxi; yiÞÞ ¼ 0 implies

nðIdQþ ; IdQ�Þ þ ð
X

lQðxi; yiÞ;
X

rQðxi; yiÞÞ ¼ 0: ð�Þ

Suppose nðIdQþ ; IdQ�Þ þ ðP lQðxi; yiÞ;
P

rQðxi; yiÞÞ 6¼ 0. Then, for some element
ðp; qÞ 2 Q, ðnpþP xiyjp; nqþ

P
qxiyiÞ 6¼ 0, so either npþP xiyjp 6¼ 0 or

nqþP qxiyi 6¼ 0. In the first case, since Q is a left quotient pair of A, there exists
ða; bÞ 2 A satisfying 0 6¼ nabpþP abxiyip ¼ a

��
nIdA� þP rAðxi; yiÞ

�
b
�
p: This

implies nIdA� þP rAðxi; yiÞ 6¼ 0. If nqþP qxiyi 6¼ 0, apply that Q is a left quotient
pair of A to find ðv; uÞ 2 ðA�;AþÞ such that vuq 2 A� and 0 6¼ nvuqþP vuqxiyi ¼
ðnIdA� þP rAðxi; yiÞÞvuq: Hence nIdA� þP rAðxi; yiÞ 6¼ 0, and ð�Þ has been proved.
For E22 we can reasoning analogously. &

Notice that with this reasoning we have:

2.6. If pii is a nonzero element of Qii; then Ajipii 6¼ 0, for i 6¼ j, i; j 2 f1; 2g.
Now we will see e ¼ e0. Since A21ðe� e0Þ ¼ 0, by (2.6), e ¼ e0. Analogously we

can prove 1E � e ¼ 1E0 � e0, which leads to 1E ¼ 1E0 .

(ii) Take p12; q12 2 Q12 with p12 6¼ 0. By the hypothesis there exists b 2 A such
that bp12 6¼ 0 and bp12; bq12 2 A. This implies b11p12 6¼ 0 or b21p12 6¼ 0. Suppose
first 0 6¼ b11p12 2 A12. By (1.5), A has no total right zero divisors, hence there exists
ðc12; c21Þ 2 A satisfying c12c21b11p12 6¼ 0. If we denote d21 ¼ c21b11, then
c12d21p12 6¼ 0 and c12d21q12 2 A12.

Now, consider 0 6¼ b21p12 2 A22. By (1.5) and (1.4), there exists c12 2 A12 such
that c12b21p12 6¼ 0. Moreover c12b21q12 ¼ c12bq12 2 A12.

(iii) Let p and q be in Q with p 6¼ 0. We distinguish two cases. Suppose first
p11 6¼ 0 (the case p22 6¼ 0 is analogue). By (2.6) there exists a21 2 A21 such that
a21p11 6¼ 0. Apply the hypothesis to find b12 2 A12, b21 2 A21 satisfying
b21b12a21p11 6¼ 0 and b21b12a21p11; b21b12a21q11 2 A21. Write c21 ¼ b21b12a21. By
(2.4), ðA12 : c21q12Þc21p11 6¼ 0. Let c12 be in ðA12 : c21q12Þ satisfying c12c21p11 6¼ 0.
Then the element d ¼ c12c21 2 A verifies: dp ¼ dp11 þ dp12 6¼ 0 (since dp11 6¼ 0)
and dq 2 A.

Now, suppose p11 ¼ p22 ¼ 0. In this case p12 or p21 must be nonzero. Consider,
for example, p12 6¼ 0. Apply that Q is a left quotient pair of A to find a21 2 A21 such
that a21p12 6¼ 0. Then, given a21p12 and a21q, by the previous case there exists b 2 A
such that ba21p ¼ ba21p12 6¼ 0 and ba21q 2 A, which concludes the proof. &

2.7. Example. There exist two associative pairs A and Q such that A � Q but there
is no ring monomorphisms f : A ! Q such that fðaÞ ¼ a for every a 2 As, where A
and Q denote the envelopes of A and Q, respectively.

Proof. Consider a ring R such that R5 6¼ 0 but R6 ¼ 0 and define A ¼ ðR2;R2Þ,
Q ¼ ðR;RÞ. It is clear that A � Q. If f : A ! Q is a ring monomorphism such that
fðaÞ ¼ a for every a 2 As, then lAða; bÞ ¼ 0 implies lQða; bÞ ¼ 0, with ða; bÞ 2 A.
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But this is not the case: Choose a; x; y; z; t 2 R such that axyzt 6¼ 0 and define
b ¼ xyz. Then lAða; bÞAs ¼ abR2 � R6 ¼ 0, and 0 6¼ abt 2 lQða; bÞQs. &

2.8. Lemma. If Q is a left quotient pair of a subpair A, and ðE0; e0Þ and ðE; e0Þ
are the standard imbeddings of Q and A, respectively, then E0

11 :¼ e0E0e0 is a left
quotient ring of A11 :¼ e0Ae0, where A denotes the envelope of A.

Proof. By (2.5) (i), E � E0, so A11 � E0
11. Consider p; q 2 E0

11, with p 6¼ 0. By (2.6),
a21p 6¼ 0 for some a21 2 A21. By the hypothesis there exist b12 2 A12, c21 2 A21

such that c21b12a21p 6¼ 0 and c21b12a21p; c21b12a21q 2 A21. Since A has no total right
zero divisors, there exists d12 2 A12 such that d12c21b12a21p 6¼ 0. If we denote
x ¼ d12c21b12a21 2 A11, then xp 6¼ 0 and xq 2 A11. &

2.9. Theorem. Let A be an associative pair, and denote by A and ðE; eÞ its
envelope and standard imbedding, respectively.

(i) If A has no total right zero divisors, then E is a left quotient ring of A
and, consequently, A and E have the same Utumi left quotient ring.
Denote it by Q.

(ii) If A has neither total left zero divisors nor total right zero divisors, or it is
left nonsingular, then Q :¼ ðeQð1� eÞ; ð1� eÞQeÞ is a left quotient pair of
A and given a left quotient pair T of A there exists a monomorphism of
associative pairs f : T ! Q which is the identity on A.

Proof. (i) By (1.5), A is a dense ideal of E and by Exercise 13.21 of Lam (1999),
Ql

maxðAÞ ¼ Ql
maxðEÞ. (ii) First of all we are going to see:

2.10. For every 0 6¼ x 2 A; eEx 6¼ 0 and ð1� eÞEx 6¼ 0.
Indeed, let x be in A such that eEx ¼ 0. Then 0 ¼ ex ¼ exeþ exð1� eÞ, which

implies x11 ¼ x12 ¼ 0. Now, A12x � eEx ¼ 0 implies A12x21 ¼ A12x22 ¼ 0; apply
that A is a left quotient pair of A and (2.6) to obtain x21 ¼ x22 ¼ 0 and, hence x ¼ 0.

Now, let p and q be in eQð1� eÞ with p 6¼ 0. Apply that Q is a left quotient ring
ofA to take a 2 A such that 0 6¼ ap 2 A and aq 2 A. By (2.10) applied twice, there
exist x; y 2 E such that eyð1� eÞxaep ¼ eyð1� eÞxap 6¼ 0. Moreover the elements
eyð1� eÞ 2 A12 and ð1� eÞxae 2 A21 satisfy eyð1� eÞxaeq ¼ eyð1� eÞxaq 2 A12.

Finally, suppose that T is a left quotient pair of A and write ðET ; eÞ to denote the
standard imbedding of T . By (2.5) (iii), ET is a left quotient ring of A and therefore
A � T � Q. So, ðeTð1� eÞ; ð1� eÞTeÞ � ðeQð1� eÞ; ð1� eÞQeÞ. &

2.11. Definition. If A is an associative pair without total left zero divisors and
without total right zero divisors, or it is left nonsingular, then by (2.9)(ii), it has a
unique (up to isomorphisms) maximal left quotient associative pair which will be
called the maximal left quotient pair of A and if we denote it by Ql

maxðAÞ, then
(by 2.9(ii)),

Ql
maxðAÞ ¼ ðeQð1� eÞ; ð1� eÞQeÞ;

where Q ¼ Ql
maxðAÞ ¼ Ql

maxðEÞ, for A and ðE; eÞ the envelope and the standard
imbedding of A, respectively.
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A natural question which arises is if the envelope of the maximal left quotient
pair of an associative pair A and the maximal left quotient ring of the envelope
coincide. The answer is negative, as it is shown with the following example.

2.12. Example. Let V be a left vector space over a field K of infinite dimension,
Q ¼ EndKðV Þ and A ¼ SocðQÞ. Consider two idempotents e; f 2 Q such that
eþ f ¼ 1, e 2 A, f 62 A. Then the associative pair A ¼ ðeAf ; fAeÞ has the ring
A as an envelope, Ql

maxðAÞ ¼ ðeQf ; fQeÞ, Ql
maxðAÞ ¼ Q and the envelope of

Ql
maxðAÞ is eQf � fQe� eQfQe� fQeQf ¼ A 6¼ Q.

2.13. Lemma. If Q is a left quotient pair of an associative pair A, then:

(i) L \ As 6¼ 0 for any nonzero left ideal L of Q contained in Qs, s ¼ �.
(ii) A semiprime (prime) implies Q semiprime (prime).

Proof. (i) follows from the definition.

(ii) Suppose A prime. If I and J are two nonzero left ideals of Q, by (i), Is \ As

and Js \ As are nonzero, hence ðIs \ AsÞA�sðJs \ AsÞ 6¼ 0, which implies
IsQ�sJs 6¼ 0. The case A semiprime follows analogously by considering J ¼ I.

&

With the following proposition we show the relationship between some proper-
ties of an associative pair and the analogues of its left quotient pairs (see Fernández
López et al., 1998 for the definitions).

We recall the notion of local ring at an element of an associative pair
(see Fernández López et al., 1998): Let A ¼ ðAþ;A�Þ be an associative pair
and a 2 As. Then the submodule aA�sa equipped with the multiplication defined
by ðaxaÞ � ðayaÞ ¼ axaya is a ring called the local ring of A at a and denoted by
Aa: Note that if a is von Neumann regular, i.e., a 2 aA�sa, then Aa is unital with
a as the unity.

A family of left ideals fLigi2G of an associative pair is said to be independent if
the sum of its ideals is direct.

2.14. Proposition. Let Q be a left quotient pair of an associative pair A. Then:

(i) lanQðXÞ \ As ¼ lanAðXÞ for any subset X of As.
(ii) lanQðXÞ � lanQðY Þ implies lanAðXÞ � lanAðY Þ for any X; Y � As.
(iii) ZlðAÞ ¼ ZlðQÞ \ A.
(iv) A is left nonsingular if and only if Q is so.
(v) If fLigi2G is a family of independent nonzero left ideals of A contained

in As, then for every i 2 G there exist li 2 Li and bi 2 A�s such that
fQsbiligi2G is a family of independent nonzero left ideals of Q contained
in Qs.

(vi) If feLLigi2G is a family of independent nonzero left ideals of Q contained
in Qs, then feLLi \ Asgi2G is a family of independent nonzero left ideals of
A contained in As.
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(vii) Q has finite left Goldie dimension if and only if A has finite left Goldie
dimension. In fact, u-dimA ¼ u-dimQ.

(viii) For any a 2 As, u-dimAðaÞ � u-dimQðaÞ. Hence, if Q has finite left local
Goldie dimension then A has finite left local Goldie dimension too.

If A is semiprime, then:

(ix) For every element a 2 As, the local ring of Q at a, Qa, is a left quotient
ring of Aa.
If A has no total left zero divisors or it is left nonsingular, then:

(x) lanQðXÞ � lanQðY Þ if and only if lanAðXÞ � lanAðY Þ for any X; Y � As.
(xi) For any a 2 As, u-dimAðaÞ ¼ u-dimQðaÞ.

Proof.

(i) It is clear that for any X � Aþ, lanQðXÞ \ A� � lanAðXÞ. Conversely, let z
be in lanAðXÞ. Then, for every x 2 X, 0 ¼ zx 2 A22 � Q22 (by (2.5) (i)). Therefore,
z 2 lanQðXÞ.

(ii) follows by (i).

(iii) Let z be in ZlðAÞþ. We have to see that lanQðzÞ is an essential left ideal of
Q. Let L be a nonzero left ideal of Q contained in Q�. By (2.13)(i), L \ A� is a non-
zero left ideal of A. Since lanAðzÞ is an essential left ideal of A, lanAðzÞ \ L \ A� 6¼ 0,
and by (i) lanQðzÞ \ L 6¼ 0.

Conversely, suppose z 2 ZlðQÞ \ A and let prove that lanAðzÞ is an essential left
ideal of A. Given a nonzero left ideal L of A contained in A�, since A has no total
right zero divisors we have A�AþL 6¼ 0, which implies Q�al 6¼ 0 for some a 2 Aþ,
l 2 L. Apply that lanQðzÞ is an essential left ideal of Q to find 0 6¼ pal 2
Q�al \ lanQðzÞ. Since Q is a left quotient pair of A, given 0 6¼ pal and p, there exist
u 2 Aþ, v 2 A� such that vupal 6¼ 0 and vup 2 Aþ. Then 0 6¼ vupal 2
AþA�L \ lanQðzÞ � L \ lanAðzÞ (by (i)).

(iv) By (iii), ZlðQÞ ¼ 0 implies ZlðAÞ ¼ 0. Conversely, if ZlðAÞ ¼ 0 then ZlðQÞ
must be zero by (2.13)(i).

(v) Let fLigi2G be as in the statement. For every i 2 G, choose a nonzero ele-
ment li 2 Li. Since A has no total right zero divisors, there exist ai 2 As, bi 2 A�s

such that 0 6¼ aibili. Then eLLi ¼ Qsbili is a nonzero left ideal of Q contained in Qs.
Now we see that the sum of the eLLi’s is direct.

Suppose q1b1l1 ¼ q2b2l2 þ � � � þ qnbnln for qjbjlj 2 eLLij , with q1b1l1 6¼ 0.
Apply that Q is a left quotient pair of A to find u 2 As, v 2 A�s such that
uvq1b1l1 6¼ 0 and uvqi 2 As. Then 0 6¼ uvq1b1l1 ¼

Pn
j¼2 uvqjbjlj 2 Li1 \

P
j 6¼1 Lij

� �
,

a contradiction.

(vi) follows immediately by taking into account (2.13)(i).

(vii) is a direct consequence of (v) and (vi).

(viii) follows by (v).
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(ix) Take apa; aqa 2 Qa, with apa 6¼ 0. Apply that Q is a left quotient pair of
A to find x 2 As, y 2 A�s satisfying 0 6¼ xyapa 2 As. By (2.4), given xya 2 Qs,
q 2 Q�s and 0 6¼ xyapa 2 As, we have ðA�s : xyaqÞxyapa 6¼ 0. Let z be in A�s with
zxyaq 2 A�s and zxyapa 6¼ 0. By (1.4) and the semiprimeness of A, 0 6¼ atuzxyapa

for some t 2 A�s, u 2 As. Then the element atuzxya, which is in Aa, satisfies:
atuzxya:apa ¼ atuzxyapa 6¼ 0 and atuzxya:aqa ¼ atuzxyaqa 2 Aa.

(x) By (ii), lanQðXÞ � lanQðY Þ implies lanAðXÞ � lanAðY Þ. Now we prove the
converse. Suppose lanAðXÞ � lanAðY Þ but lanQðXÞ 6� lanQðY Þ and let q be in
lanQðXÞ such that pqy 6¼ 0 for some y 2 Y , p 2 Qs (this is possible by virtue of
(1.4)). Since Q is a left quotient pair of A, there exist u 2 As, v 2 A�s such that
uvpqy 6¼ 0 and uvpqy 2 As. By (2.4), ðA�s : uvpqÞ uvpqy 6¼ 0, so there exists
b 2 A�s such that buvpq 2 A�s and 0 6¼ buvpqy. Then buvpq 2 lanAðXÞ (because
q 2 lanQðXÞ) but buvpq 62 lanAðY Þ, which contradicts the initial hypothesis.

(xi) By (viii), u-dimAðaÞ � u-dimQðaÞ. Now, let feLLigi2G be a family of nonzero
left ideals of Q contained in QsQ�sa. We can take 0 6¼Ppkiqkia 2 eLLi, with
pki ; qki 2 Q�s. By (2.4), ðA�s : pkiqkiÞa 6¼ 0, hence there exists yi in A�s such thatP

yipkiqki 2 A�s and
P

yipkiqkia 6¼ 0. By (1.4) we can find x 2 As such that
li :¼ xyi

P
pkiqkia 6¼ 0. Since li 2 AsA�sa \ eLLi, fAsA�sligi2G is a family of nonzero

left ideals of A contained in AsA�sa. Moreover its sum is direct (because
AsA�sli � eLLi and the sum of the eLLi’s was direct), which proves our claim. &

3. JOHNSON AND GABRIEL’S THEOREMS FOR
ASSOCIATIVE PAIRS

While Johnson’s Theorem characterizes those rings R for which Ql
maxðRÞ is

von Neumann regular (Lam, 1999, 13.36), Gabriel’s Theorem (Lam, 1999,
13.40) specializes it further by asking for characterizations for those rings R
for which Ql

maxðRÞ is semisimple, i.e., isomorphic to a finite direct product of
rings of the form EndDðVÞ for a suitable finite left vector space V over a division
ring D. In this section we prove that every associative pair A for which Ql

maxðAÞ is
von Neumann regular is left nonsingular (and conversely), and characterize those
associative pairs whose maximal left quotient pair is isomorphic to
Pa2GðHomDaðVa;WaÞ;HomDaðWa;VaÞÞ, where for each a 2 G, Va and Wa are left
vector spaces over the same division ring Da. In particular we get a characteriza-
tion of those associative pairs whose maximal left quotient pair is semisimple and
artinian.

3.1. Johnson’s Theorem for Associative Pairs. Let A be an associative pair. Then A

is left nonsingular if and only if Ql
maxðAÞ is a von Neumann regular associative pair.

Proof. Suppose A is left nonsingular. By (1.9), E is left nonsingular. By Johnson’s
Theorem for rings (Lam, 1999, 13.36), the maximal left quotient ring of E, name it Q,
is von Neumann regular. By 2.9(ii), Ql

maxðAÞ ¼ ðeQð1� eÞ; ð1� eÞQeÞ, and it is easy
to prove that this is a von Neumann regular associative pair. Conversely, as every
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von Neumann regular associative pair is left nonsingular (by Proposition 3.4 of
Fernández López et al., 1998), 2.14(iv) completes the proof. &

Let R be an element in an arbitrary ring R. Recall that the local ring of R
at a is defined as the ring obtained from the abelian group ðaRa;þÞ by consider-
ing the product given by axa � aya ¼ axaya. Denote it by Ra. The reader is
referred to Gómez Lozano and Siles Molina (2002) to see the relation among
some properties of a ring and the corresponding ones of its local rings at
elements.

Now, we will introduce some notation. Given a ring R and an element x 2 R,
the left Goldie (or uniform) dimension of x will be denoted by u-dimðxÞ (u-dimRðxÞ
to specify the ring). By u-dim(R) we understand the uniform dimension of RR. We
put IðRÞ ¼ fx 2 R j u� dimðxÞ < 1g: Condition (iii) in the next Proposition was
proved by Ánh and Márki (1996, Proposition 1). Here we give a different proof
by using Johnson’s Theorem for rings.

3.2. Proposition. Let R be a ring and denote by SocðRÞ the socle of the ring R.

(i) If R is semiprime, then: IðRÞ ¼ fa 2 Rju� dimðRaÞ<1g 	 SocðRÞ:
(ii) If R is von Neumann regular, then IðRÞ ¼ SocðRÞ.
(iii) If R is left nonsingular, then IðRÞ is an ideal of R.

Proof. (i) The equality holds by [6, Proposition 2.1 (iv)] of Gómez Lozano and
Siles Molina (2002). Now, let x be in SocðRÞ. Since SocðRÞ is a von Neumann
regular ideal of R, xRx ¼ xSocðRÞx, which obviously implies u-dimðRxÞ ¼
u-dimðSocðRÞxÞ. By Proposition 2.1 (vi) of Gómez Lozano and Siles Molina
(2002), u-dimðSocðRÞxÞ<1 and hence x 2 IðRÞ.

(ii) By (i) we only need to prove IðRÞ � SocðRÞ. Take a nonzero x 2 IðRÞ. By
Proposition 2.1 (i), (iv) and (ix) of Gómez Lozano and Siles Molina (2002), Rx is a
semiprime left Goldie ring. By the classical Goldie’s Theorem, Rx is a classical left
order in a semisimple artinian ring T. Since R is von Neumann regular, the ring
Rx is unital and von Neumann regular. Therefore, Reg(Rx)= Inv(Rx), where
‘‘Reg’’ and ‘‘Inv’’ denote the set of regular and invertible elements, respectively.
Since T is generated by Rx and the inverses of the elements of Reg(Rx), we have
T ¼ Rx and T(¼ Rx) artinian implies, by Proposition 2.1 (v) of Gómez Lozano
and Siles Molina (2002), x 2 SocðRÞ.

(iii) By Johnson’s Theorem (Lam, 1999, 13.36), Q :¼ Ql
maxðRÞ is a von

Neumann regular ring. Since, by (ii), IðQÞ ¼ SocðQÞ is an ideal of Q, clearly IðQÞ \R
is an ideal of R. We conclude the proof by applying Proposition 3.2 (iv) of Gómez
Lozano and Siles Molina (2002), which says IðRÞ ¼ IðQÞ \R. &

Given an associative pair A, denote by IðAÞs the set of the elements of As having
finite left Goldie dimension, and set IðAÞ ¼ ðIðAÞþ; IðAÞ�Þ: We denote by SocðAÞ
the socle of A (the reader is referred to Loos, 1991 for the study of the socle of an
associative pair).
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3.3. Proposition. Let A be an associative pair and denote by A and ðE; eÞ its
envelope and standard imbedding, respectively.

(i) If A is semiprime, then IðAÞs ¼ fa 2 Asju� dimðAaÞ < 1g ¼ IðAÞ \
As ¼ IðEÞ \ As 	 SocðAÞ:

(ii) If A is left nonsingular, then IðAÞs ¼ IðAÞ \ As ¼ IðEÞ \ As.
(iii) If A is von Neumann regular, then IðAÞ ¼ SocðAÞ.
(iv) If A is left nonsingular, then IðAÞ is an ideal of A.

Proof. (i) By Proposition 5.2 (iv) of Fernández López et al. (1998), a 2 IðAÞs if
and only if u-dimðAaÞ<1, and so the first equality holds.

Since A semiprime implies E and A semiprime (by Proposition 4.2 of Fernández
López et al., 1998, E is semiprime, and A is semiprime because it is an ideal of E), by
condition (i) of (3.2) and taking into account that aA�sa ¼ aAa ¼ aEa, for every
a 2 As, we have IðAÞs ¼ IðAÞ \ As ¼ IðEÞ \ As.

Now, take an element a 2 SocðAÞs and let b be in A�s satisfying aba ¼ a (which
is possible by virtue of Loos, 1989, Theorem 1). Then aA�sa ¼ abaA�saba �
a SocðAÞsa (because SocðAÞ is an ideal of A). Since, obviously, a SocðAÞsa �
aA�sa, we have SocðAÞa ¼ Aa. Finally, apply Proposition 5.2(v) of Fernández
López et al. (1998) to infer that u-dimðSocðAÞÞ<1. By Proposition 5.2(iv) of Fernández
López et al. (1998), u-dimðSocðAÞaÞ<1 hence SocðAÞ � IðAÞ.

(ii) By Theorem 2.9, there exists Q :¼ Ql
maxðAÞ ¼ Ql

maxðEÞ and Q :¼ ðQ12;Q21Þ
is a left quotient pair of A. Moreover, since A is left nonsingular (by Proposition
1.9), Q is von Neumann regular (Johnson’s Theorem). Take an element a12 2 Aþ.
Then

u-dimAða12Þ ¼ðaÞu-dimQða12Þ ¼ðbÞ u-dimðQa12Þ ¼ u-dimðQa12Þ
¼ðcÞ u-dimQða12Þ ¼ðdÞu-dimAða12Þ ¼ðeÞ u-dimEða12Þ:

(a) Because Q is a left quotient pair of A and by 2.14(xi).
(b) By (i) and nondegeneracy of Q (which is von Neumann regular since Q is).
(c) By condition (i) in Proposition 3.2, which can be applied since Q is

nondegenerate.
(d) Because Q is a left quotient ring of A and by Proposition 3.2 (iv) of Gómez

Lozano and Siles Molina (2002).
(e) Since Q is a left quotient ring of A and by Proposition 3.2 (iv) of Gómez

Lozano and Siles Molina (2002), u-dimQða12Þ ¼ u-dimEða12Þ:

(iii) Let a be in IðAÞ. By Proposition 5.2(i), (iv) and Proposition 5.5
of Fernández López et al. (1998), Aa is a semiprime left Goldie ring. Now we
follow the same reasoning as in the proof of condition (ii) in (3.2) (notice that Aa

is von Neumann regular since A is so) to prove Aa artinian. By (Fernández López
et al. (1998), Proposition 5.2 (v)) this implies a 2 SocðAÞ.

(iv) By (2.9) (ii) and (2.9), Q :¼ Ql
maxðAÞ ¼ ðeQð1� eÞ; ð1� eÞQeÞ is a von

Neumann regular associative pair, so we can apply (iii) to obtain IðQÞs ¼ SocðQÞs,
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which is an ideal of A. Since IðAÞs ¼ IðQÞs \ As, by (2.14) (xi), we have proved the
required statement. &

3.4. Theorem. For an associative pair A the following conditions are equivalent:

(i) A is left nonsingular and IðAÞ� is an essential left ideal of A contained
in A�.

(ii) Q :¼ Ql
maxðAÞ ffi Pa2GðHomDaðVa;WaÞ;HomDaðWa;VaÞÞ, where for each

a 2 G, Va and Wa are left vector spaces over the same division ring Da.

Proof. (i) ) (ii) By Johnson’s Theorem for associative pairs, Q ¼ Ql
maxðAÞ is a

von Neumann regular associative pair and by 2.9 (ii), Q ¼ ðeQð1� eÞ; ð1� eÞQeÞ,
where Q ¼ Ql

maxðAÞ and A is the envelope of A. Denote by S the subalgebra of
Q generated by Q, that is, S is the envelope of Q. It is not difficult to see that S
is an ideal of Q. Moreover,

(1) Q is a von Neumann regular ring.
By 1.9, A left nonsingular impliesA left nonsingular, and by Johnson’s Theorem

for rings, Q is a von Neumann regular ring.

(2) IðAÞ is dense in A.
For every a 2 As, u� dimAðaÞ ¼ u� dimQðaÞ (by 2.14 (xi)). This implies

IðAÞs � IðQÞs. Since IðAÞs is an essential left ideal of A, IðQÞs is an essential ideal
of Q. By 3.2 (ii), IðQÞs ¼ IðQÞ \Qs. We claim that IðQÞ is an essential ideal of Q:
Consider a nonzero ideal J of Qs. By Proposition 4.1 (i) of Fernández López et al.
(1998) J \Qs is a nonzero ideal of Qs. Hence 0 6¼ IðQÞs \ J \Qs ¼ IðQÞ \ J \Qs.
This shows our claim.

Finally, being Q a left quotient ring of A implies IðAÞ ¼ IðQÞ \A is an
essential ideal of A and consequently it is a dense ideal of A (apply that A is left
nonsingular).

(3) The conclusion.
By Theorem 3.24 of Lam (1999), which can be applied taking into account (2)

and that A is left nonsingular, Q :¼ Ql
maxðAÞ ffi PQa, where each Qa is an ideal of

Q isomorphic (as a ring) to EndDaðUaÞ for a suitable left vector space Ua over some
division ring Da.

Define Va :¼ Uaea, Wa ¼ Uað1� eÞa, ea ¼ paðeÞ; ð1� eÞa ¼ pað1� eÞ. Then we
have ðeQð1� eÞ; ð1� eÞQeÞ ffi PðHomDaðVa;WaÞ;HomDaðWa;VaÞÞ:

(ii)) (i) Define Ua ¼ Va �Wa, Q ¼ PaEndDaðUaÞ, e ¼ ðeaÞ and f ¼ ðfaÞ, where

ea : Ua ! Ua fa : Ua ! Ua

va þ wa 7! va va þ wa 7!wa

Then eþf ¼ 1Q and Q¼ðeQð1�eÞ;ð1�eÞQeÞffiPaðHomDaðVa;WaÞ; HomDaðWa;VaÞÞ.
This implies Q von Neumann regular and so by Fernández López et al. (1998,
Proposition 3.4), Q is left nonsingular. By 2.14(iv), A is left nonsingular. Finally,
IðAÞs ¼ IðQÞ \ As (by 2.14 (xi)) ¼ IðQÞ \ As (by 3.3(i)) implies that IðAÞs must be
an essential left ideal of A. &
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Notice that finiteness of left Goldie dimension of A implies that the direct
product in the previous theorem must be finite as well as the dimensions of the vector
spaces involved.

3.5. Gabriel’s Theorem for Associative Pairs. For an associative pair A the
following conditions are equivalent:

(1) A is left nonsingular and has finite left Goldie dimension.
(2) Ql

maxðAÞ ¼Pn
i¼1ðHomDi

ðVi;WiÞ;HomDi
ðWi;ViÞÞ, where for each i 2 f1; � � � ;ng,

Vi andWi are finite left vector spaces over the same division ring Di.

4. APPLICATIONS TO MORITA CONTEXTS

Let R and S be two rings, RNS and SMR two bimodules and ð�;�Þ : N �M ! R,
½�;�� : M � N ! S two maps. Then the following conditions are equivalent:

(i)
R N

M S

� �
is a ring with componentwise sum and product given by:

r1 n1
m1 s1

� �
r2 n2
m2 s2

� �
¼ r1r2 þ ðn1;m2Þ r1n2 þ n1s2

m1r2 þ s1m2 ½m1; n2� þ s1s2

� �
;

(ii) ½�;�� is S-bilinear and R-balanced, ð�;�Þ is R-bilinear and S-balanced
and the following associativity conditions holds:

ðn;mÞn0 ¼ n½m; n0� and ½m; n�m0 ¼ mðn;m0Þ:

½�;�� being S-bilinear and R-balanced and ð�;�Þ being R-bilinear and
S-balanced is equivalent to having bimodule maps j : N �S M ! R and
c : M �R N ! S, given by

jðn�mÞ ¼ ðn;mÞ and cðm� nÞ ¼ ½m; n�;

so that the associativity condition above reads

jðn�mÞn0 ¼ ncðm� n0Þ and cðm� nÞm0 ¼ mjðn;m0Þ:

A Morita context is a sextuple ðR; S;N ;M;j;cÞ satisfying the conditions given
above. The associated ring is called the Morita ring of the context.

In classical Morita theory it is shown that two rings with identity R and S are
Morita equivalent (i.e., R- and S-mod are equivalent categories) if and only if there
exists a Morita context ðR; S;N ;M;j;cÞ, with j and c surjective. The approach to
Morita theory for rings without identity by means of Morita contexts appears in a

Left Quotient Associative Pairs and Morita Invariant Properties 2857

pulsa aceptar



ORDER REPRINTS

number of papers (see Marı́n, 1998 and the references therein) in which many
consequences are obtained from the existence of a Morita context for two rings R and
S. In particular it is shown in Theorem of Kyuno (1974) that, if R and S are arbitrary
rings such that there is a surjective Morita context for these rings, then the categories
R-Mod and S-Mod are equivalent (and the rings R and S are said to be Morita-
equivalent). It is proved in Proposition 2.3 of Garcı́a and Simón (1991) that the
converse implication holds for idempotent rings.

Recall that an idempotent ring is a ring R such that R2 ¼ R. For an idempotent
ring R we denote by R-Mod the full subcategory of the category of all left R-modules
whose objects are the ‘‘unital’’ nondegenerate modules. Here a left R-module is said
to be unital if M ¼ RM, and is said to be nondegenerate if, for m 2 M; Rm ¼ 0
implies m ¼ 0. Note that if R has an identity, then R-Mod is the usual category of
left R-modules.

The following result can be found in Garcı́a and Simón (1991) (see Proposition
2.5 and Theorem 2.7).

4.1. Theorem. Let R and S be two idempotent rings. Then R-Mod and S-Mod are
equivalent categories if and only if there exists a Morita context ðR;S;M;N ;j;cÞ,
with M 2 R-Mod \ Mod-S, N 2 S-Mod \ Mod-R, and j and c surjective.

4.2. Remark. If ðR; S;M;N ;j;cÞ is a Morita context for two idempotent rings R

and S, with M 2 R-Mod \ Mod-S and N 2 S-Mod \ Mod-R, and T is the Morita
ring of the context, then ðM;NÞ is an associative pair and if R has no total left or
right zero divisors and S has no total left or right zero divisors, then T is the envelope
of the associative pair.

4.3. Theorem. Let R and S be two Morita-equivalent idempotent rings such that R
has no total left or right zero divisors and S has no total right zero divisors, and
let T ¼ ðR; S;M;NÞ be the Morita ring of the context. Then the following are
equivalent conditions:

(i) R is left nonsingular.
(ii) S is left nonsingular.
(iii) A ¼ ðM;NÞ is a left nonsingular associative pair.
(iv) T is left nonsingular.

Proof. Notice that by 4.2, T is the envelope of the associative pair A. Since the
modules are left and right nondegenerate, and the rings are idempotent, we have that
A has neither total left right zero divisors nor total right zero divisors. Apply (1.10)
to obtain (i), (ii), (iii).

By 1.9, (iii), (iv). &

The conditions over R and S in the previous theorem cannot be dropped, since
there exist two Morita equivalent idempotent rings R and S such that R is left
nonsingular while ZlðSÞ 6¼ 0 (consider R and S ¼ R=J , with R and J as in the
following lemma).
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4.4. Lemma. Let R be a commutative idempotent ring, and consider an ideal

J of R such that JR ¼ 0 and R=J is semiprime. Then
R R=J

R=J R=J

� �
, with product

given by

r �mm

�xx �ss

 !
a �nn

�yy �bb

 !
¼

raþmy rnþmb

xaþ sy xnþ sb

 !

defines a surjective Morita context for the idempotent rings R and R=J . Hence the
rings R and R=J are Morita equivalent.

Proof. It is not difficult to prove that the product is well defined. By the idempo-
tency of R, ðR=JÞ2 ¼ R=J . Moreover, given r 2 R ¼ R2, r ¼Pa

i¼1 miyi, with a 2 N

and mi; yi 2 R. Hence,
a 0
0 0

� �
¼Pa

i¼1

0 mi

0 0

� �
0 0
yi 0

� �
. This proves the surjec-

tivity. The modules of the context are unital by the idempotency of R. Finally, we
will prove that the modules are nondegenerate. Indeed r�xx ¼ �00 for every r 2 R implies
R�xx ¼ �00 and by the semiprimeness of R, �xx ¼ �00. The semiprimeness of R implies too
that R=J is a nondegenerate R=J-module. &

We recall that a ring R is said to have finite left local Goldie dimension if any
element of R has finite left Goldie (or uniform) dimension. The left Goldie dimension
of an element a 2 R will be denoted by u-dimðaÞ.

4.5. Theorem. Let R and S be two Morita-equivalent idempotent rings such that
R has no total left or right zero divisors and S has no total left or right zero
divisors, and suppose R left nonsingular (equivalently S left nonsingular). Let
T ¼ ðR; S;M;NÞ be the Morita ring of the context, and define A :¼ ðM;NÞ. Then
the following are equivalent conditions:

(i) R has finite left local Goldie dimension.
(ii) S has finite left local Goldie dimension.
(iii) Every element of M has finite left Goldie dimension in A.
(iv) Every element of N has finite left Goldie dimension in A.
(v) T has finite left local Goldie dimension.

Proof. Fix the following notation: ðE; eÞ is the standard imbedding of the associative
pair A, Q :¼ Ql

maxðAÞ, which exists by (1.8) and (2.9),A11 ¼ R,A22 ¼ S andA ¼ T .

(1) Qii is a left quotient ring of Aii.
Take, for example, p11; q11 2 Q11, with p11 6¼ 0. Since Q is a left quotient ring of

A, we can choose a 2 A such that ap11 6¼ 0 and aq11 2 A. If a11p11 6¼ 0, then we
have finished. Suppose a21p11 6¼ 0. The absence of total right zero divisors in A

implies b12a21p11 6¼ 0 for some b12 2 A12. Then the element c11 :¼ b12a21 2 A11

satisfies: c11p11 6¼ 0 and c11q11 2 A.
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(2) IðAiiÞ ¼ IðAÞ \Aii ¼ IðEÞ \Aii.
For an element a11 2 A11 we have:

u-dimA11
ða11Þ ¼ðaÞ u-dimQ11

ða11Þ ¼ðbÞ u-dimðQ11a11Þ ¼ u-dimðQa11Þ
¼ðcÞu-dimQða11Þ¼ðdÞ u-dimAða11Þ ¼ðeÞ u-dimEða11Þ:

(a) Because by (1), Q11 is a left quotient ring of A11 and by Proposition 3.2(iv)
of Gómez Lozano and Siles Molina (2002).

(b) By Proposition 2.1(iv) of Gómez Lozano and Siles Molina (2002), which
can be applied since Q von Neumann regular implies Q11 nondegenerate.

(c) Because Q is nondegenerate and by Proposition 2.1(iv) of Gómez Lozano
and Siles Molina (2002).

(d) It is a consequence of Proposition 3.2(iv) of Gómez Lozano and Siles
Molina (2002).

(e) Since Q is a left quotient ring of A and by Proposition 3.2(iv) of Gómez
Lozano and Siles Molina (2002), u-dimQða11Þ ¼ u-dimEða11Þ:

(v)) (i), (ii), (iii), (iv) follows by 3.3(ii) and by (2).

(i), (ii), (iii) or (iv)) (v) by 3.3(ii) and (2), IðAijÞ ¼ IðAÞ \Aij, for i; j ¼ 1; 2;
i 6¼ j. Taking into account that IðAÞ is an ideal of A (by 3.2) and that A is
generated, as an ideal of E, by Aij, the result follows. &

Let A11 and A22 be two Morita-equivalent idempotent rings, denote the Morita
ring of the context by A ¼ ðA11;A22;A12;A21Þ, and suppose that there exists
Ql

maxðA11Þ and Ql
maxðA22Þ (as under the hypothesis of 4.3 and 4.5). The natural

questions that arise are the following: are these two rings Morita-equivalent too?,
and, if Q :¼ Ql

maxðAÞ, do Q11 and Q22 coincide with Ql
maxðA11Þ and Ql

maxðA22Þ,
respectively? The answer is negative in both cases.

4.6. Example. Consider a simple and non unital ring R which coincides with its

socle, and take a minimal idempotent e 2 R. Then
eRe eR
Re R

� �
is a Morita context

for the idempotent rings eRe and R which have no total right zero divisors. On
the one hand, by Proposition 4.3.7 of Lambek (1976), Ql

maxðRÞ ¼ EndDðV Þ, with
V a left vector space over a division ring D (which is isomorphic to eRe). On
the other hand, Ql

maxðeReÞ ¼ eRe (because eRe is a division ring). But EndDðV Þ
and D are not Morita equivalent rings because A is left nonsingular and has finite
left local Goldie dimension, while EndDðVÞ, which is left nonsingular, has
not finite left local Goldie dimension, and this property is Morita invariant, by
virtue of 4.5.

Finally we prove that for semiprime left local Goldie rings, the Fountain–Gould
left orders of two idempotent Morita equivalent rings are Morita equivalent too.
This contrasts with the previous example, which shows that under the same condi-
tions (semiprime and left local Goldie), the maximal left quotient rings of two Morita
equivalent rings are not Morita equivalent.

2860 Gómez Lozano and Siles Molina

pulsa aceptar



ORDER REPRINTS

4.7. Theorem. Let R and S be two Morita equivalent semiprime idempotent rings,
with R left local Goldie. Then:

(i) S is a left local Goldie ring.
(ii) If T1 and T2 denote the Fountain–Gould left quotient rings of R and S,

respectively, then T1 and T2 are Morita equivalent rings.

Proof. (i) follows by (4.3) and (4.5).

(ii) Consider a surjective Morita context ðR; S;M;NÞ for the rings R and S, and

let A ¼ R M

N S

� �
be the Morita ring of the context. Denote by Q1 and Q2 the max-

imal left quotient rings of R and S, respectively.

Consider the unital ring B ¼ R1 M

N S1

� �
, where R1 and S1 denote the unitiza-

tions of R and S, respectively. This ring has two orthogonal idempotents

e ¼ 1R1 0
0 0

� �
and f ¼ 0 0

0 1S1

� �
such that eþ f ¼ 1B and Aeþ eA � A. By

(2.7) of Aranda Pino et al. (To appear), there exist two orthogonal idempotents
u; v 2 Q :¼ Ql

maxðAÞ such that uþ v ¼ 1Q and R ¼ uAu, S ¼ vAv, M ¼ uAv, and
N ¼ vAu are contained in Q. Moreover, Q1 ¼ Ql

maxðRÞ ¼ Ql
maxðuAuÞ ffi (by Lemma

1.8 of Aranda Pino et al. (To appear), which can be used because Auþ uA � A and
lanAðAuÞ ¼ ranAðuAÞ¼0) uQl

maxðAÞu. And analogously Q2 ¼ Ql
maxðSÞ ¼ Ql

maxðvAvÞ ffi
vQl

maxðAÞv. This means that M, N , Q1 and Q2 can be considered inside Q as uQv, vQu,
uQu and vQv, respectively. By 4.9 of Gómez Lozano and Siles Molina (2002),

T1 ¼ RQ1 and T2 ¼ SQ2. We claim that T ¼ RQ1 RQ1MQ2

SQ2NQ1 SQ2

� �
is a surjective

Morita context for the idempotent rings RQ1 and SQ2.

RQ1RQ1 ¼ RQ1 since every element q 2 T ¼ RQ1 can be written as q ¼ aa#
2
ab,

with a; b 2 R. The same argument for SQ2 shows that it is an idempotent ring. More-
over, this implies RQ1RQ1MQ2 ¼ RQ1MQ2 and SQ2SQ2NQ1 ¼ SQ2NQ1.

Now, RQ1MQ2 ¼ RQ1MS2Q2 � RQ1MQ2SQ2 � RQ1MQ2. Hence RQ1MQ2SQ2 ¼
RQ1MQ2 and analogously SQ2NQ1RQ1 ¼ SQ2NQ1, which shows that the modules
are unital.

In what follows, we will show the surjectivity of the Morita context.
RQ1MQ2SQ2NQ1 � RQ1 ¼ RQ1RQ1RQ1RQ1 ¼ RQ1MNQ1MNMNQ1MNQ1 �

RQ1MQ2SQ2NQ1. Hence RQ1MQ2SQ2NQ1¼RQ1. Analogously, SQ2NQ1RQ1MQ2 ¼
SQ2.

Finally, we have that the modules are nondegenerate:
Indeed, suppose 0 6¼ t¼Pn

i¼1 r
iqi1m

iqi2 2RQ1MQ2. ðM;NÞ� ðRQ1MQ2; SQ2NQ1Þ
� ðuQv; vQuÞ¼Ql

maxððM;NÞÞ by (2.9). This implies that ðRQ1MQ2; SQ2NQ1Þ is a left
quotient pair of ðM;NÞ. Hence, if t 6¼ 0, for some ðm; nÞ 2 ðM;NÞ, 0 6¼ mnt 2 M.
Since M is a nondegenerate right S-module and S is idempotent,
0 6¼ mntS2 � MNtSQ2. This implies RQ1MQ2 nondegenerate as a right SQ2-module
and as a left RQ1-module.

Now, changing the roles of R and S, the proof is complete. &
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