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ABSTRACT
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mined by TKK-algebras of simple Jordan pairs with minimal inner ideals and
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zero socle. Other examples can be found within the class of finitary simple Lie
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3808 Lépez, Garcia, and Lozano
1. INTRODUCTION

Let L=Li®Ly® L_1 be a 3-graded Lie algebra over a ring of scalars @. If
ée ®, then V := (L;,L_;) becomes a Jordan pair for the triple product given by
{x,y,z} = [[x,y],z] for x,z € L;, y € L_,, 6 = 1. Our purpose is to use the informa-
tion on V to study the structure of the whole L. Of course, some restrictions should
be imposed on the grading if one wants L to be essentially determined by V.

An example of this approach can be found in Neher’s description of Lie algebras
graded by 3-graded root systems (Neher, 1996, 1.2): A Lie algebra L is graded by a
3-graded root system R if and only if it is a central extension of the Tits—Kantor—
Koecher algebra of a Jordan pair V (TKK(V) for short) covered by a grid whose
associated 3-graded root system is isomorphic to R. He gives the classification of
Jordan pairs covered by a grid and describes their Tits—Kantor—Koecher algebras.

In recent years, a very rich socle theory has been developed for non-degenerate
Jordan pairs (see Loos, 1989) and, following the pattern of the structure of prime
rings with minimal one-sided ideals (cf. Jacobson, 1968), strongly prime Jordan pairs
with non-zero socle have been classified (Fernandez Lopéz and Tocén, 2003). We
note that any simple Jordan pair covered by a grid with division coordinate algebra
coincides with its socle, so in this case the socle theory and the grid theory agree.

The aim of this paper is to develop a similar socle theory for 3-graded Lie alge-
bras making use of their close relationship with Jordan pairs, and to describe non-
degenerate 3-graded Lie algebras with large socles and their central extensions
(see 5.4 and 5.7). Let L be a 3-graded Lie algebra such that its associated Jordan pair
V is non-degenerate. If V has socle Soc(V) = (Soc(V)",Soc(V)™), then Soc(V)™ @
[Soc(V)",Soc(V)™] @ Soc(V)" turns out to be an ideal of L (4.3) that we call the
socle of L and denote by Soc(L). In fact, the socle can be computed in terms of a
certain class of minimal 3-graded inner ideals (in Zelmanov’s sense) of the Lie alge-
bra L, each of which is a central extension of the Tits—-Kantor-Koecher algebra of a
division Jordan pair (4.7). Moreover, if L itself is non-degenerate, then so is V,
Soc(L) is then isomorphic to TKK(Soc(L)).

In general, the derivation algebra Der L of a 3-graded Lie algebra L is 5-graded.
We prove (3.3) that Der L is actually 3-graded when L’s associated Jordan pair is von
Neumann regular (the socle of any non-degenerate Jordan pair is regular). In (5.4)
we show that any strongly prime 3-graded Lie algebra with non-zero socle can be
trapped between

ad(TKK(V)) < L < Der(TKK(V)),

where V is a simple Jordan pair coinciding with its socle and Der(TKK(V)) is itself a
strongly prime 3-graded Lie algebra with the same socle, ad(TKK(Soc(V))), as L
and without outer derivations. Non-degenerate 3-graded Lie algebras with essential
socle can be described this way too since they are essential subdirect products of
strongly prime ones with non-zero socle (5.4). Furthermore, we also characterize
3-graded Lie algebras which are central extensions of non-degenerate 3-graded Lie
algebras with essential socle (5.7).

Any simple finite-dimensional Lie algebra over an algebraically closed field of
characteristic 0 which is not of type Eg, F4 or G, has a (non-trivial) 3-grading and,
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3-Graded Lie Algebras 3809

relative to any of these gradings, coincides with its socle. Examples of infinite dimen-
sional strongly prime 3-graded Lie algebras with non-zero socle are the classical
Banach Lie algebras of compact operators on an infinite dimensional complex
Hilbert space (see De La Harpe, 1972 or Strasek and Zalar, 2002). Other examples
can be found within the class of finitary simple Lie algebras (see Baranov, 1999).

2. 3-GRADED LIE ALGEBRAS AND JORDAN PAIRS

2.1. Throughout this paper, we will be dealing with Lie algebras L and Jordan pairs
V = (V*, V") over a ring of scalars ® containing 1. As usual, [x,y] will denote the
Lie product and ad x the adjoint mapping determined by x. Jordan products will
be denoted by Q,y, for any x € V°,y € V7% 6 = £, with linearizations Q,.y =
{x,y,2} = D.yz. The reader is referred to (Jacobson, 1962; Loos, 1975; Neher,
1996) for basic results, notation and terminology. Nevertheless, we will stress some
notions and basic properties for both Jordan pairs and Lie algebras.

2.2. Recall that (67,67) € Ende(V") x Ende(V ™) is a derivation of V if
0"({x,3,2}) = {67(x), 3,2} +{x,67°(¥), 2} + {x,3,0°(2)}

for any x,z € V?, y € V7? g = £ (Loos, 1975, 1.4). The set Der V of all derivations
of V is a Lie subalgebra of (Endg(V ") x Ende (V™))"

For x € V*,y € V7,0(x,y) := (Dy,y, —Dyx), is a derivation of V (Loos, 1975,
JP12), called an inner derivation. It deserves to be mentioned that this fact, together
with the symmetry of the triple Jordan product, {x, y,z} = {z,y, x}, are the defining
axioms of a Jordan pair, whenever %6 ® (see Loos, 1975, p. 55). We denote by
IDer V the ®-module spanned by all inner derivations of V. In fact, IDer V is an
ideal of Der V.

2.3. An element x € V? is called an absolute zero divisor if Q, = 0. Then V is said
to be non-degenerate if it has no non-zero absolute zero divisors, semiprime if
Qp+BT =0 implies B=0, and prime if Qp.CT =0 implies B=0 or C =0, for
B=(B",B7),C=(Ct,C7) ideals of V. Similarly, x € L is an absolute zero
divisor of L if (ad x)2 =0, and L is non-degenerate if it has no non-zero absolute
zero divisors, semiprime if [I,I] =0 implies I = 0, and prime if [I,J] = 0 implies
I=0orJ=0, for 1,/ ideals of L. A Jordan pair or Lie algebra is strongly prime
if it is prime and non-degenerate.

2.4. Non-zero ideals of non-degenerate (strongly prime) Jordan pairs inherit non-
degeneracy (strong primeness) (Loos, 1975, JP3; McCrimmon, 1984). The same is
true for Lie algebras: every non-zero ideal of a non-degenerate (strongly prime)
Lie algebra is non-degenerate (strongly prime) (Zelmanov, 1984, Lemma 4; Garcia,
2003a, 0.4, 1.5).

2.5. Given a subset S of L, the annihilator of S in L consists of the elements x € L
such that [x,S] =0, and it is an ideal as soon as S is. We denote by Ann(/) the
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3810 Lépez, Garcia, and Lozano

annihilator of an ideal I. Clearly, Ann(L) = Z(L), the center of L. If L is semiprime,
INAnn(/) =0 for any ideal I of L, and then an ideal E is essential
(EN I # 0 for every non-zero ideal I of L) if and only if Ann(E) =0. Notice
also that L is prime if and only if the annihilator of every non-zero ideal of L is
Zero.

2.6. We will denote by Der L the set of derivations of L. The Lie bracket of two
derivations [5, u] = du — ud is again a derivation, hence Der L < (Endg L),

If M is an ideal of L with Ann(M) = 0, then L can be embedded in Der M via the
adjoint mapping: L =~ ady L < Der M.

27. If L = @“ I, is a direct sum of simple ideals, then Der L = H“ Der I,.. Indeed,
any derivation ¢ of L stabilizes I, : d(1,) = 6([1,, 1,]) C [6(1,), I,] C I,-

2.8. A (2n+ 1)-grading of a Lie algebra L is a decomposition
L=L, & DL OLo®L 1D DLy,

where each L; is a submodule of L satisfying [L;,L;] C L}, and where L;y; = 0 if
i+j#0,+1,...,£n. A Lie algebra is (2n + 1)-graded if it has a (2n + 1)-grading.

29. If L=L,® - L ®Ly®L1®---DL_, is (2n+ 1)-graded, then V :=
(Ln,L_,) is a Jordan pair for the triple products defined by {x,y,z} := [[x,)], 2]
for all x,z € L;,y € L_,,0 = +£n, and it is called the associated Jordan pair of L.
Moreover, if L is non-degenerate, so is V (Zelmanov, 1985, Lemma 1.8).

In this paper we are mainly interested in 3-graded Lie algebras. A standard
example of a 3-graded Lie algebra is that given by the TKK-algebra of a Jordan pair.

Forxe L,,y€ L_, and zy = [x,y], we have that (D, ,, —D,,) = (ad zg,ad z9) is
a derivation on V = (L,,L_,) (2.2). See Zelmanov, 1985, p. 351:

2.10. For any Jordan pair V there exists a 3-graded Lie algebra TKK(V) =
L ® Ly@® L_,, the Tits—Kantor-Koecher algebra of V (Kantor, 1964, 1967, 1972;
Koecher, 1967, 1968; Tits, 1962), uniquely determined by the following conditions
(cf. Neher, 1996, 1.5(6)):

(TKK1) The associated Jordan pair (L, L_;) of L is isomorphic to V.
(TKK2) [Ly,L_1] = Lo.
(TKK3) [x0,L; © L_;] =0 implies xo = 0, for any xo € Ly.

In general, by TKK-algebra we mean a Lie algebra of the form TKK(V) for
some Jordan pair V. In the literature, 3-graded Lie algebras satisfying (TKK?2) have
been called Jordan 3-graded Lie algebras. Notice that Jordan 3-graded Lic algebras
are not far from the ones directly built out of Jordan pairs by the TKK construction.
Indeed, as soon as they satisfy (TKK3), for example when they are centerfree, they
are isomorphic to the TKK-algebras of their associated Jordan pairs.
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The transfer of regularity conditions between TKK-algebras and their associated
Jordan pairs, which has been studied in Garcia and Neher (2003, 1.6) and Garcia
(2003b, 1.6, 1.7), can be extended to 3-graded Lie algebras satisfying (TKK3) in most
cases.

2.11. Proposition. Letr L be a 3-graded Lie algebra and denote by V its associated
Jordan pair.

(1) If L is non-degenerate so is its associated Jordan pair V = (L;,L_y).
Moreover, Ly ® [Ly,L_1] ® L_; = TKK(V).
Moreover, if L satisfies (TKK3), then
(i1)) V is non-degenerate if and only if L is non-degenerate. In this case,
TKK(V) is an essential ideal of L.
(iii) 'V is strongly prime if and only if L is strongly prime.

Proof. (1) Non-degeneracy of V follows from (2.9). Moreover, since the ideal
Ly @ [Li,L_1] & L_; is non-degenerate (2.4), it is centerfree and hence isomorphic
to TKK(V) (2.10).

(i) By (i) we only need to prove that non-degeneracy of V implies non-
degeneracy of L. Let x =x; +x9+x_; be an absolute zero divisor in L, i.e.,
[x,[x,L]] =0. Then [x,[x,L_1]]=0 and, by grading decomposition properties,
[x1, [x1,L_1]] =0, ie., {x;,L_1,x1} =0, implying x; =0 by non-degeneracy of V.
Similarly, x_; =0, and thus x = xy € Ly. Set dp := ad xyo. Then 53 =0 and hence
[0, [00,ad L]] = ad 63(L) = 0. Expanding this expression we get that 0=
oo(dpad L —ad Ldy) — (dpad L — ad Ldy)dy = —20pad Ldy. Since L is 2-torsion free
by our initial assumption, ad xpad yad xo = 0 for all y € L. Therefore, [0¢(y), do(z)] =
oLy, 80(2)] = [, 93(2)] = doad ydy(z) = 0 for all y,z € L, and [do(L), do(L)] = 0.

Now, let us show that dy(L;) = 0. Indeed, for any y; € L;,y_1 € L_;, we have

205,0m)Y-1 = {00(y1), y-1,60(y1) } = [[00(y1), y-1], d0(y1)]
= [0o[y1, y-1],60(y1)] = [[y1, 00(y-1)], do(31)]
= —{y1,00(y-1),60(y1)} = [[60(y-1), S0(y1)], y1] =0

since [do(L),do(L)] = 0. Hence, do(L;) = 0 by non-degeneracy of V, and similarly
00(L-1) = 0. Then do(L; & L_;) = [x0,L; ¢ L_;] = 0 implies xo = 0 because L satis-
fies (TKK3).

As we have seen, TKK (V) is isomorphic to the ideal L; & [L;,L_;] @ L_;, but
thisideal has zero annihilator: x = x; + xo + x_; € Anny(L; ® [L1,L_;] & L_;)implies
[x0,L1] = [x_1,L1] = 0 because of the grading. Similarly, [xo,L_1] = [x1,L_1] =0.
But [xo,L; & L;] = 0 implies xo = 0 by (TKK?3), and [x,,L_,] = 0 for ¢ = £1 gives
x, = 0 by non-degenracy of V. Then TKK(V) is an essential ideal of L by (2.5).

(iti) That V strongly prime implies L strongly prime follows as in Garcia and
Neher (2003, 1.6) for TKK Lie (super)algebras and (ii). The converse can be
obtained taking into account that TKK(V) is strongly prime by (2.4) and hence V
is non-degenerate by (i) and prime by Garcia and Neher (2003, 1.6).
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3812 Lépez, Garcia, and Lozano
3. DERIVATIONS OF 3-GRADED LIE ALGEBRAS

Graded derivations, which appear naturally when dealing with graded struc-
tures, generalize the adjoint mapping and are characterized by the way they act on
the homogeneous parts (see Martinez, 2001, p. 805).

3.1. Given a 3-graded Lie algebra L =L, & Ly ® L_;, we say that a derivation
0:L— L is p-graded (u=0,%+1,£2) if 6(L,;) C Ls1y for ¢ =0,%1. In this case
we write 6 € 9,,. Moreover, the set of all derivations of a 3-graded Lie algebra L
coincides with DerL = 92, ® 2, ® 9y D Z_1 & Y _,, which is naturally 5-graded,
since any derivation 6 on L can be decomposed as the sum

8 =E|8E_y + (E10Ey + EodE_))
+ (E10E| + Eo0Ey + E_|0E_})
+ (EodE| + E_|0Ey) + E_|SE|
EDr DY DDy DD B D2,

where each E; denotes the projection on L;.

We must accept the possibility that there may exist wunpleasant +2-graded
derivations on a 3-graded Lie algebra. For example, take an abelian 3-graded algebra
L=L,®Ly®L_,. Then any linear mapping f : L_; — L; can be extended to a 2-
graded derivation on L. However, under certain conditions, the algebra of deriva-
tions of a 3-graded Lie algebra is itself 3-graded. We begin with a lemma proving
that £2-graded derivations vanish on von Neumann regular elements. Recall that
x € V? is called (von Neumann) regular if x = Q,y for some y € V=?. A Jordan pair
is called (von Neumann) regular if all its elements are regular.

3.2. Lemma. Any +2-graded derivation of a 3-graded Lie algebra L annihilates
the regular elements of the associated Jordan pair of L.

Proof. Let 6 be a derivation in ¥ _, (a similar argument works for 2-graded

derivations), i.e., 6(L;) C L_; and 6(L_;) = 6(Lo) = 0. Given a regular element x
in VT, take y € V™ such that Q,y = x. We clain that 6(x) = 0. Indeed,

26(x) = o({x, y,x}) = 6([[x,y], x]) = [6([x,¥]), x] + [[, ¥], 6(x)]
= [[x,y],0(x)] = ={y,x,6(x)} (because [x,y] € Ly).

Therefore,
5(3) = —3 {2,000} = gl v 60}

= 30,0.0(x) + 1 (3. 0. 0(x)} (using Loos (1975, IP9))

1 1 .
= EQnyé(x) — Eé(x) (since Q,y = x),

Copyright © Marcel Dekker, Inc. All rights reserved.
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3-Graded Lie Algebras 3813
whence

%5(x) = %Q},Qxé(x) and

1 1
5()6) = § Qnyé(x) = §QnyQny5(x)
= éQyQQXyé(x) (by Loss (1975, JP3))
1 . 1
= §Q},QX5(x) (since Q,y=x) = 55()5),

implying 6(x) =0, since § € ®.

3.3. Corollary. Let L be a 3-graded Lie algebra whose associated Jordan pair is
regular. Then Der L = 91 ® Yy ® & is also 3-graded.

3.4. Corollary. Let L=L ®Lo® L_| be a simple 3-graded Lie algebra whose
associated Jordan pair V.= (L1,L_1) has a non-zero regular element. Then there
are no +2-graded derivations in Der L.

Proof. Let x” € V° be regular. By Loos (1975, 5.2) there exists x~° € V~7 such that
(xT,x7) is a Jordan pair idempotent of V, i.e., x° = Qy-x"%, 0 = £. We know from
(3.2) that any ¢2-graded derivation ¢ has 6(x~?) = 0,6 = =+. It is easy then to check
by using the Jacobi identity that § vanishes on the ideal of L generated by x~?, and L
being simple implies (L) = 0, i.e., d = 0.

4. THE SOCLE OF A 3-GRADED LIE ALGEBRA

The notion of socle for non-degenerate Jordan pairs (see Loos, 1989) is extended
here to 3-graded Lie algebras with non-degenerate associated Jordan pair. But before
dealing with Lie algebras, it will be useful to recall the form of the socle for some
standard examples of Jordan pairs.

4.1. Examples. (1) Let X, X; be vector spaces over a division ®-algebra A. Denote
by Z(X;,X;) the ®-module of all A-linear mapping from X; to X, and put
Z(X) .= £ (X, X) for any vector space X. Then (£ (X, X,), #(X»,X,)) is a Jordan
pair with Q,b = aba. It will be called the rectangular Jordan pair defined by
(X1, X3). Any rectangular Jordan pair (£ (X, X»), # (X2, X)) is strongly prime with
socle equal to (7 (X1, X2), # (X», X1)), where & (X;, X;) is the set of all « € L (X;, X)
having finite rank (see Fernandez Lopéz and Tocdn, 2003).

(2) Let X be a vector space over a field F, and let ¢ : X — F be a quadratic form
on X with associated bilinear form ¢(x,y) := g(x + y) — g(x) — g(y). Then (X, X)
becomes a Jordan pair for the product given by Q.y = g(x,y)x — g(x)y. It will be
called the Clifford pair defined by q. If ¢ is non-degenerate, then the Clifford pair
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3814 Lépez, Garcia, and Lozano

(X,X) is non-degenerate and coincides with its socle (see Loos, 1975, 12.8).
Moreover, it is simple if dim X # 2 (Jacobson, 1981, p. 14, Example 4).

(3) Let (A,*) be an associative algebra with involution. Denote by
H(A,x) :={a € Ala=a*} the set of all hermitian elements. Then (H(A,x),
H(A,x)) is a subpair of (A,A)<+). It will be called the hermitian pair defined by
(A, *). For instance, we have the hermitian Jordan pair (H(¥(X),*), H(Z(X), %)),
where X is a vector space over a field F endowed with a non-degenerate symmetric
bilinear form g:X x X — F, and where a—a* is the adjoint involution:
g(xa,y) = g(x,ya*). Any hermitian pair V = (H(L(X),*), H(ZL(X),*)) is strongly
prime with Soc(V) = (H(Z (X),*),H(# (X),*)), where Z(X) is the set of all
a € #(X) having finite rank (see Fernandez Lopéz and Tocén, 2003).

Now we return to Lie algebras by proving the following lemma.

42 . Lemma. Let L=L,®Ly® L_; be a 3-graded Lie algebra, and let (My,M_;)
be an ideal of the associated Jordan pair (L\,L_y). If (M, M_,) is perfect, i.e.,
M, = {M,,M_,,M,} = [[M,,M_,],M,],c = £1, then M:=M, & [M;,M_j]®M_,
is invariant under derivations of L, hence it is an ideal of L.

Proof. By perfection, the ideal (M;,M_;) is invariant under derivations of the
Jordan pair (L;,L_;) and, taking into account that 0-graded derivations of L define
Jordan pair derivations, we get

oo(M;) = oo({M;,M_;, M;}) C M;, i= =1, (1)
for any 0-graded derivation dy € Der L. From (1),

Oo([M1, M_1]) C [do(M1), M_1] + [My,00(M_1)] C [M1,M_,]. (2)
Now let us check that 6;(M) C M for every i-graded derivation J; € Der L,i = +1:

0:([My,M_y]) C [M;,0;(M_;)] C [M;, Lo] C M;,

0;(M;) =0, and (3)
5,'(M,,‘) = 5[[[M,i,M,'LM,[] - [M],M,d.

Finally, for 2i-graded derivations d,; € Der L,i = +1, we have

02i(M; ® [M,M_;]) =0,

02i(M_;) = 00i({M_;, M;, M_;})
C [62i[M_i, M}, M_i] + [[M_;, Mi], 02:(M_;)]
C [[My,M_1],L;] C M;.

The proof is now complete altogether.

43. LetL =L, ® Ly® L_; be a 3-graded Lie algebra whose associated Jordan pair
V = (L, L_) is non-degenerate. From Loos, (1989, Theorem 1), Soc(V) is regular
and hence a perfect ideal of V. Then, by (4.2), the ideal of L generated by Soc(V)
coincides with Soc(V)" @ [Soc(V)™,Soc(V)™] @ Soc(V) . This ideal will be called

Copyright © Marcel Dekker, Inc. All rights reserved.
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the socle of L and denoted by Soc(L). We remark that this definition of socle does
not depend only on the Lie algebra L, but also on the chosen 3-grading on L.

4.4. According to Benkart’s definition (see Benkart, 1977), a submodule K of a Lie
algebra L is an inner ideal if [K,[K,L]] C K. Because of the grading, inner ideals
(minimal inner ideals) K C L, (¢ = £1) of the associated Jordan pair V =
(Ly,L_;) of a 3-graded Lie algebra L are inner ideals (minimal inner ideals) of L.
In particular, any x € L, (¢ = £1) generates the principal inner ideal |x,[x,L]]
(notice that(ad x)* = 0). If V is non-degenerate, then Soc(L,), s = =1, is the sum
of all inner ideals of V contained in L, (see Loos, 1989), so Soc(L) is generated as
a Lie algebra by these minimal inner ideals.

4.5. Zelmanov (1985, Sec. 5) introduces a notion of inner ideals for Z-graded Lie
algebras which in the particular case of a 3-graded Lie algebra reads as follows
(cf. Garcia, to appear, 1.1).

Let L be a 3-graded Lie algebra. We say that a graded ®-submodule
B=B|®By®B_| of Lisa3-graded inner ideal if

(i) B is a subalgebra of L.
(il) B, B_; are inner ideals of V = (L;,L_;).

It is clear that if (By,B_1)C(Li,L_;) is a pair of inner ideals of V, then
B| & [B;,B_1] ® B_; is a 3-graded inner ideal of L. In particular, a Jordan pair idem-
potent e = (e*,e”) of V determines the 3-graded inner ideal L(e):= Va(e)™ @
[Va(e)", Va(e) ] @ Va(e)™ (see Loos, 1975, 5.5).

4.6. Let K° C V° 0 = 4, be two minimal inner ideals of a Jordan pair V. For the
Jordan subpair K := (K", K~) the following conditions are equivalent:

() K is a division Jordan pair,

(i) K is non-degenerate, and

(iii) Qg+K~ #0.

Moreover, in this case K = V»(e) is the Peirce 2-space of a division Jordan pair
idempotent e of V. Indeed, (i) = (ii) and (ii) = (iii) are clear. To prove (iii) = (i),
let x* € K* be such that Q,+K~ # 0. Then Q,+K~ = K™ by minimality of K™ and
hence there exists x~ € K~ such that Q,+x~ = xT. Then e := (x*, Q,-x") is a division
Jordan pair idempotent (see Loos, 1975, 5.5) and K = V,(e).

4.7. Proposition. Let L be a 3-graded Lie algebra with non-degenerate associated
Jordan pair V. Then Soc(L) = )", L(e), where the sum is taken over all division
Jordan pair idempotents of V. Furthermore, L(e) is a central extension of the
TKK-algebra of the division Jordan pair V,(e).

Proof. The containments Y, L(e) C Soc(L) and Soc(V)™ @ Soc(V)™ C >, L(e)
are clear. Thus, it is enough to show that [Soc(V)",Soc(V)7] is also contained in
the sum of all L(e).
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We know that [Soc(V)™,Soc(V)7] is generated as a ®-module by elements of
the form [a™, 7], for division Jordan pair idempotents ¢ = (a®,b~) and b = (b, b7)
of V. Now

2
=2[a", Q(bfﬂ,f)a*] —2[a",0p-a’]=2[a",a"] = [Qu, b ,a].

Clearly, both [a*,a"]| and [Q,-b™,a"] belong to L(a), while [a", Q,-a™] € L(e) for
some division Jordan pair idempotent e because (Q,+V~ Qo _, . V1) isa pair of minimal
inner ideals of V that satisfies (4.6)(iii) when [a* Op-a™] 75 0. Thus we only need to con-
sider the first summand [a*, Q14 )a™].

Without loss of generality we can assume that Q,+(b™ +a~) = Qu+b™ +at #0
(in case Qu+(b~ +a~) =0 replace b~ by —b~ in the above formula and work
with  2[a", Qpsaya’] 4+ 2[at, Qp-a™] = 2[a",a” ]+ 2[Qu+b,a”], where now
Qs (—b"+a)=—-Qupb +at =2a"#0). In this case, the subpair K :=
(@t V™, Q- 4+a)Qa+ V™) satisfies (4.6)(iii) and hence [a", Q4. ya™] € L(e) for
some division Jordan pair idempotent e, which completes the proof.

Recall that V is non-degenerate if L is so, by (2.11)(i). In this case Soc(L) is
non-degenerate by (2.4) and hence it is isomorphic to TKK(Soc(V)) by (2.10).

4.8. Proposition. Let L =L ® Ly P L_; be a non-degenerate 3-graded Lie algebra,
with associated Jordan pair V. Then

(1) Soc(L) =&, M, where each M, is a 3-graded ideal of L. In fact,
M, =V @[V, V. |®V,, with the V, = (V,,V.") being the simple ideals

of SOC( ). Moreover, cach M, = TKK(V,) is a simple ideal of L.
(2) For any 3-graded ideal I of L, Soc(I) = I N Soc(L).

Proof. By Loos (1989, Theorem, 2), Soc(V) = €V, where the V, are the simple
ideals of Soc(V). Moreover, using that V, ={V/ V_ VIl we get that
[V,\, V4] =0 when o # f. Therefore

Soc(L) = Soc(V)* @ [Soc(V)™, Soc( )] @ Soc(V)~

_@V+ 1’; @M

and the M, are ideals of L by (4.2). Since L is non-degenerate, each M, is also
non-degenerate by (2.4), hence M, = TKK(V,) is simple by Garcia and Neher
(2003, 1.6).

For (2), denote by U = (I;,1_) the Jordan pair associated to the 3-graded
ideal 7. First notice that U is non-degenerate so it makes sense to consider Soc([).

Copyright © Marcel Dekker, Inc. All rights reserved.
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By Jordan socle theory (cf. Loos, 1989, Proposition 3), Soc(U) = Soc(V) N U and the
simple ideals of Soc(U) are precisely the simple ideals of V contained in U. Now (2)
follows from (1).

5. 3-GRADED LIE ALGEBRAS WITH ESSENTIAL SOCLE

A structure theorem is given for non-degenerate 3-graded Lie algebras with
essential socle. We begin by transferring regularity conditions from large 3-graded
ideals of a 3-graded Lie algebra to the whole algebra. Our approach will consist in
reducing the question to a Jordan pair one.

5.1. Let V be a Jordan pair. Given X C V?, denote by Ann(X) C V™7 the annihilator
of X in V (cf. Loos, 1975, 10.3), and set Ann(I) := (Ann(/~), Ann(/*)) to denote
annihilator (ideal) of an ideal 7 of V. It is not difficult to see (Loos, 1975, JP21) that
if 7 is non-degenerate, then a € Ann(/?) if and only if {a,I°,V™°} =0 and
{I°,a,V°} =0.

5.2. Lemma. Ler 1<V be a nondegenerate ideal of a Jordan pair V. If Ann(I) =0
then V is non-degenerate. Moreover, V is strongly prime if and only if I is strongly

prime.

Proof. Letv € V77 be an absolute zero divisor of V,and let y € 177, and y € I°. By
Loos (1975, JP21), for any a € I"° we have

Q{u,y,z}a = QUQyQZa + QzQvaa + D:,vaDyﬁza - Qv,Q;Q_vua
= _{Uv a, QZQyU}

since v is an absolute zero divisor. Let b € I7°. By the above equality,

QQ(U_’\\’.}ab = Q{v,a,Q:va}b = 7{”7 b, QQ:Q,\‘UQ!IU}
= —{U, b7 QZQvaQyQZQav} = 07

using again that v is an absolute zero divisor. Then, by non-degeneracy of I,
Ofvy-ya = 0 for every a € I, and

{v,I7%,V°} =0. (5)
Now let x € I7? and z € V=7, By Loos (1975, JP20), for any a € I° we have

Q{xw,z}a = QvaQza + QszQxa + Qx,szQx,:a - {va7 a, sz}
= _{vaa a, sz}a

MaRCEL DEKKER, INC.
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since v is an absolute zero divisor. Hence, by Loos (1975, JP21), for b € I° we have

QQ{x.v;}ab = Q{va,ayQ:U}b - QQA‘UQaQQ:vb + QQ_-UQ(IQQ,\-Ub
- {QZU7 b, QQXan Q:U} + {vaa a, QQ:v{aa vaa b}} = 07

since v is an absolute zero divisor and hence so is any Qv (Loos, 1975, JP3). Again,
by non-degeneracy of I, we get

{I7°,v,V°} =0. (6)

Therefore, from (5) and (6) we get that v € Ann(/) = 0.

Finally, it is straightforward to see that every non-zero ideal of V has nonzero
intersection with 1. Thus, V is prime if [ is so, which together with (2.4) completes
the proof.

5.3. Theorem. Let M =M, ® My d M_, be a graded ideal of a 3-graded Lie
algebra L. Suppose that My = [M;,M_,] and Ann;(M) =0, and denote by U =
(My,M_1) « V= (Ly,L_1) the associated Jordan pairs of M and L, respectively.
Then L is non-degenerate (strongly prime) if and only if U is so. Moreover, if U
is non-degenerate, then Soc(L) = Soc(M).

Proof. Clearly, Anny (M) = 0 implies both M and L satisfy (TKK3). Moreover,
Anny(U) = 0: if a5 € Anny(M_,) (6 = %1), then

[[am M*U]) Lo’] - {Clm M*O’? Lo’} =0
and similarly,
(Mg, a5, L] ={M_;,a,,L 5} = 0.

Hence, [a;, M_,;] = 0 by (TKK3), and a, € Ann, (M) = 0.

In general, if L is non-degenerate (strongly prime) then so is U (2.4) and (2.11)(i)
and (iii). Suppose then that U is non-degenerate (strongly prime). Then V is non-
degenerate (strongly prime) by (5.2), and hence L is non-degenerate (strongly prime)
by (2.11)(iii). The equality Soc(L) = Soc(M) follows from (4.8) since Annz (M) = 0.

Now everything is ready to prove the main result of this paper.

5.4. Theorem. For a 3-graded Lie algebra L, the following statements are
equivalent:

(1) L satisfies (TKK3) and its associated Jordan pair is non-degenerate with
essential socle.
(ii) L is non-degenerate with essential socle.
(i) ad(TKK(V))<L < Der(TKK(V)), where V is a non-degenerate Jordan
pair coinciding with its socle.
(iv) @ad(TKK(V,)) <L < []Der(TKK(V,)), where each V, is a simple Jor-
dan pair with minimal inner ideals.
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If L is as in (iii), Soc(L) = ad(TKK(V)) and L is strongly prime if and only if
Soc(L) is simple, if and only if V is simple. Moreover, in this case, Der(TKK(V)) is
the largest strongly prime 3-graded Lie algebra having socle equal to ad(TKK(V)),
and every derivation of Der(TKK(V)) is inner.

Proof. (i) = (ii). Set V = (L;,L_;) and M = Soc(L). Then (M, M_;) = Soc(V).
By (5.3), we only need to prove that Ann, (M) = 0. Since Anny (M) is a graded ideal
because so is M, it suffices to consider homogeneous elements. For a, € Ann; (M)
(0 = +£1), we have by (5.1) that a, € Anny(M_,) = 0, since V is non-degenerate.
For ap € Anny (M) and o = %1, [a9,L,;] C Ann,(M)N L, =0, and hence ag =0
by (TKK3).

(if) = (iii). Set Soc(L) = TKK(V), where V now denotes the socle of the Jordan
pair (Li,L_;). The adjoint representation defines then a 3-graded Lie algebra
isomorphism of L into Der(TKK(V)) by (2.6):

ad(TKK(V))<ad L < Der(TKK(V)).

(ili)= (iv). Let V be as in (iii). By Loos (1989, Theorem 2) V = @ V,, with
each V, being a simple Jordan pair containing minimal inner ideals. Now the
implication follows since TKK(PV,) = @ TKK(V,), and Der(p TKK(V,)) =
[[Der(TKK(V,)) by (2.7) because TKK(V) is a direct sum of the ideals
TKK(V,), which are simple by Garcia and Neher (2003, 1.6).

(iv)= (). Let V=@V, be a non-degenerate Jordan pair coinciding with its
socle, and set M := @ ad(TKK(V,)) = ad(6p TKK(V,)) = ad(TKK( V,)). Since
M< L <][Der(TKK(V,)), Ann; (M) =0 and hence L clearly satisfies (TKK3).
Moreover, Soc(L) = M is an essential ideal of L.

Finally, suppose that L is as in (iii). By (5.3) and (4.8), L is strongly prime if and
only if Soc(L) is simple, equivalently, V is simple. In this case, putting M = TKK(V),
we have that Der(M) is the largest strongly prime 3-graded Lie algebra having socle
equal to ad M. Now let L be a strongly prime 3-graded Lie algebra with non-zero
socle M. Then the mapping 0 — dy, associating to any deviation 6 on Der(L) its
restriction to M, is an isomorphism of Der(L) into Der(M), and therefore Der(L)
is strongly prime with the same socle as L. Hence, taking L = Der(M), we have that
every derivation on Der(M) is inner.

5.5. Remarks. (1) Since, by (4.4), principal inner ideals of the Jordan pair of a
3-graded Lie algebra L are principal inner ideals of L, it follows from Loos (1989,
Corollary 1) that non-degenerate 3-graded Lie algebras satisfying the descending
chain condition on principal inner ideals have essential socle. Note also that, by
the von Neumann regularity of the Jordan socle, 3-graded Lie algebras with non-
zero socle are x-Lie algebras in the sense of Benkart (1977).

(2) A Lie algebra is called Artinian if it satisfies the descending chain condition
on all inner ideals. Since the associated Jordan pair of an Artinian 3-graded Lie is
also Artinian, we have by Loos (1975, 12.12) and (5.4) that non-degenerate Artinian
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3-graded Lie algebras L are of the form
P ad(TKK (Vi) < L < [ [ Der(TKK(V;)),
1 1

where the V; are simple Artinian Jordan pairs.

If L is actually a semisimple 3-graded Lie algebra which is finite-dimensional
over a field F of characteristic zero, then L is non-degenerate (Benkart, 1977,
p.- 64) and clearly Artinian. Moreover,

n

L = @) ad(TKK (V) = éTKK(m,
1

1

since every derivation in a simple finite-dimensional Lie algebra over a field of
characteristic 0 is inner (Jacobson, 1962, Sec. 3 (6.6)).

5.6. By using the equivalence (i) < (ii) of Theorem 5.4, central extensions of
non-degenerate 3-graded Lie algebras with essential socle can also be determined.
We will say that a 3-graded Lie algebra L satisfies weak-(TKK3) if

[x0,Li ®L_1]=0=x0 € Z(L)

for xo € Ly. Notice that any 3-graded Lie algebra L with (TKK2) or (TKK3) verifies
weak-(TKK3).

5.7. Corollary. Let L be a 3-graded Lie algebra with non-degenerate associated
Jordan pair V. The following conditions are equivalent:

(i) L/Z(L) is non-degenerate with essential socle.
(ii) 'V has essential socle and L satisfies weak-(TKK3).

Proof. First we claim that non-degeneracy of V implies that Z(L) C L. Indeed, if
x=x1+x0+x_1€Z(L) then [x,L_,] =0, 0 ==*1, so [x,,L_,] =0, which gives
x, = 0 by nondegeneracy of V. Hence V is also the associated Jordan pair of L/Z(L).

(i) = (i) Since L/Z(L) satisifies (TKK3) by (5.4)(ii) = (i), L has weak-
(TKK3). Moreover, being V the associated Jordan pair of both L and L/Z(L), the
socle of V is essential by (5.4)(ii) = (i).

(i) = (i) We claim that L = L/Z(L) has (TKK3). Indeed, if Xy € L, satisfies
[X0,L1 ®L_1] =0, then [xo,L; & L_1] C Z(L), so {[x0,L,],L_s,L,} = 0 implies by
non-degeneracy of V that [x¢,L,] =0 for both ¢ = +1. Now, by weak-TKK(3),
xo € Z(L), i.e., Xo = 0. Since V has essential socle, L/Z(L) is non-degenerate with
essential socle by (5.4)(i) = (ii).

In our paper (see Fernandez Lopez, Garcia and Gémez Lozano, to appear) we
determine the TKK-algebras of the simple Jordan pairs with minimal inner ideals.
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These TKK-algebras provide examples of simple infinite-dimensional 3-graded
Lie algebras coinciding with their socle. Some of these examples will be nevertheless
treated below.

5.8. Examples. (1) Let X be a vector space over a division algebra A, decomposed
into the direct sum of two subspaces, X = X; @ X,. Then

G G

L=2Xi®X)") = L) 20 X)
L(X1,X2) LX)

is a 3-graded Lie algebra whose associated Jordan pair is the rectangular Jordan pair
V= (2(X,X2), (X2, X1)) (cf. 4.1(1)). Tt is not difficult to see that L satisfies
weak-(TKK3), and since V is strongly prime with Soc(V)= (7 (X, X>),
F (X3, X1)) (4.1(1)), we have by (5.7) that L/Z(L) is (strongly prime) with essential
socle: Soc(L/Z(L)) = TKK(Soc(V)) (4.3). We also have that Soc(L) coincides with
the derived ideal [# (X), # (X)] (take matrix representations of elements and argue as
in Neher (1996, 3.4.3) if dim(X) > 3; the two-dimensional case can be treated sepa-
rately), so Soc(L) does not depend on the chosen decomposition X = X; & X,. If X
is infinite-dimensional, the Soc(L) is centerfree and hence Soc(L) = TKK (Soc(V))
is simple. If additionally A is finite-dimensional over its center, then Soc(L) is the
central finitary simple Lie algebra fsI(X) (see Baranov, 1999, 6.19(i)).

(2) Let X be a vector space over a field F with a non-degenerate quadratic form
q:X — F. The orthogonal Lie algebra (of q) is the following subalgebra of
2(X)7) :0(X, q) = {a € Z(X)| q(ax,x) = 0 for all x € X}.

For x,y,z € X, let x* be the F-linear form on X given by x*(z) = ¢(x,z), and
denote by yx* the linear mapping on X given by yx*(z) = yg(x,z). Clearly,
yx* —xy* € 0(X, q).

Suppose that X contains a hyperbolic plane H (for instance, F is an algebraically
closed field and dim X > 1). Then X = H & H* and the elements of o(X, ¢) can be
represented as 3 x 3-matrices (see Neher, 1996, 5.1) in the following way:

« —y* 0
a=\|x b y |,

0 —x* —u

for all o € F,x,y € H*, and b € o(H", q). This representation defines the following
3-grading on L = o(X, q):

0 0 O o 0 0
L = x 0 0 , Lo= 0 b O ,
—x* 0 0 0 —«
0 —y* 0
L= 0 O
0 O
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whose associated Jordan pair V = (L;,L_;) is isomorphic to the Clifford pair
(H*, H') (with the Jordan product given in (4.1)(2)), and hence it is non-degenerate
and coincides with its socle. Since char(F) # 2, L satisfies (TKK3) and hence it is
non-degenerate with essential socle (5.4). In fact, Soc(o(X, q)) is the central finitary
simple Lie algebra fo(X, q) (see Baranov, 1999) if dim X > 4.

(3) Let X be a vector space over a field F with a non-degenerate alternating
bilinear form 4 : X x X — F. The symplectic Lie algebra (of h) is the following
subalgebra of #(X) : sp(X, h) = {a € &(X) | h(ax,y) + h(x,ay) = 0 for all x,y € X}.

Suppose that X = ,, H; is an orthogonal sum of hyperbolic planes (for
instance, X is finite-dimensional or even is of countable dimension, Kaplansky,
1974, p. 45, example 2), H; = (x;,y;). Then the elements of sp(X, k) can be repre-
sented as 2 x 2 matrices (see Neher, 1996, 4.2)

_fan an
a - * )
az  —ay

where aj € Z(Y) and ayy,a € H(Z(Y), ), and where Y := @,_, Fy; is endowed
with the non-degenerate symmetric bilinear form given by g(y;,y;) = ¢;;. This repre-
sentation defines a 3-grading on L =sp(X,h) whose associated Jordan pair
V = (Ly,L_;) is isomorphic to the hermitian pair (H(ZL(Y),*), H(Z(Y),*)). Thus
Soc(V) = (H(F(Y),*), H(F(Y),*)) (cf. 4.1(3)). As above, it is not difficult to see
that L satisfies (TKK3) and hence L is strongly prime with non-zero socle. In fact,
Soc(L) is isomorphic to the central finitary simple Lie algebra fsp(X, /) (see Baranov,
1999).

5.9. Banach Lie algebras. (1) Following De La Harpe (1972) or Strasek and Zalar
(2002), we denote by gl(H, %) the classical Banach Lie algebra of compact opera-
tors on an infinite dimensional complex Hilbert space H. Any decomposition of H as
a Hilbert direct sum of closed subspaces, H= X & Y, defines a 3-grading on
al(H, %) with associated Jordan pair that given by the generalized Cartan factor
KL(X,Y) of compact operators from X into Y. The 3-graded Lie algebra
ol(H, %) is strongly prime with socle equal to [FBL(H), FBL(H)], the derived ideal
of finite rank bounded linear operators.

(2) The analytic counterpart of fo(X, ¢) is the classical orthogonal Banach Lie
algebra of compact operators on an infinite dimensional complex Hilbert space H
(see De La Harpe 1972 or Strasek and Zalar, 2002), given by

o(H,0,%.) = {a € KL(H)|0"a0 = —a},

where 0 is a conjugation on H, i.e., 6 : H — H is an involutive conjugate linear map-
ping satisfying (0.,y) = (0, x) for all x,y € H. Then the formula g(x,y) := (x, 0y)
defines a non-degenerate symmetric bilinear form on the vector space H, and
o(H,0,%) can be regarded as a 3-graded subalgebra of o(H, ¢) having the same
socle, Soc(o(H,0,%~)) = fo(H, q).
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(3) Suppose now that H is endowed with an anticonjugation 6, i.e., 0 : H — H
is a conjugate linear mapping satisfying (0.,y) = —(0,,x) for all x,y € H, and
0*x = —x for all x € H, and define the transpose of an operator a € BL(H) by
a” := 0a*0. Following De La Harpe (1972), the classical symplectic Banach Lie
algebra of bounded operators is defined by

sp(H,0,%+) = {a € BL(H) : a” = a}.

Then 0 yields a Hilbert decomposition H = X @ Y such that ¥ = 0(X). Hence a
3-grading can be defined on sp(H,0,%) with associated Jordan pair given by
V = (Sym(BL(X, Y),#),Sym(BL(Y, X),#)). This Jordan pair V is strongly prime
with socle (Sym(FBL(X,Y),#),Sym(FBL(Y, X),#)), and sp(H,0,%~) N FBL(H).
Moreover, the closure of Soc(sp(H, 0, %)) coincides with the classical symplectic
Banach Lie algebra of compact operators on H.
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