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ABSTRACT

A notion of socle is introduced for 3-graded Lie algebras (over a ring of scalars F
containing 1

6 ) whose associated Jordan pairs are non-degenerate. The socle
turns out to be a 3-graded ideal and is the sum of minimal 3-graded inner ideals
each of which is a central extension of the TKK-algebra of a division Jordan pair.
Non-degenerate 3-graded Lie algebras having a large socle are essentially deter-

mined by TKK-algebras of simple Jordan pairs with minimal inner ideals and
their derivation algebras, which are also 3-graded. Classical Banach Lie algebras
of compact operators on an infinite dimensional Hilbert space provide a source of

examples of infinite dimensional strongly prime 3-graded Lie algebras with non-
zero socle. Other examples can be found within the class of finitary simple Lie
algebras
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1. INTRODUCTION

Let L ¼ L1 � L0 � L�1 be a 3-graded Lie algebra over a ring of scalars F. If
1
6 2 F, then V :¼ ðL1;L�1Þ becomes a Jordan pair for the triple product given by
fx; y; zg ¼ ½½x; y�; z� for x; z 2 Ls, y 2 L�s, s ¼ �1. Our purpose is to use the informa-
tion on V to study the structure of the whole L. Of course, some restrictions should
be imposed on the grading if one wants L to be essentially determined by V .

An example of this approach can be found in Neher’s description of Lie algebras
graded by 3-graded root systems (Neher, 1996, 1.2): A Lie algebra L is graded by a
3-graded root system R if and only if it is a central extension of the Tits–Kantor–
Koecher algebra of a Jordan pair V (TKK(V ) for short) covered by a grid whose
associated 3-graded root system is isomorphic to R. He gives the classification of
Jordan pairs covered by a grid and describes their Tits–Kantor–Koecher algebras.

In recent years, a very rich socle theory has been developed for non-degenerate
Jordan pairs (see Loos, 1989) and, following the pattern of the structure of prime
rings with minimal one-sided ideals (cf. Jacobson, 1968), strongly prime Jordan pairs
with non-zero socle have been classified (Fernández Lopéz and Tocón, 2003). We
note that any simple Jordan pair covered by a grid with division coordinate algebra
coincides with its socle, so in this case the socle theory and the grid theory agree.

The aim of this paper is to develop a similar socle theory for 3-graded Lie alge-
bras making use of their close relationship with Jordan pairs, and to describe non-
degenerate 3-graded Lie algebras with large socles and their central extensions
(see 5.4 and 5.7). Let L be a 3-graded Lie algebra such that its associated Jordan pair
V is non-degenerate. If V has socle SocðV Þ ¼ ðSocðV Þþ; SocðVÞ�Þ, then SocðVÞ� �
½SocðVÞþ; SocðVÞ�� � SocðVÞþ turns out to be an ideal of L (4.3) that we call the
socle of L and denote by SocðLÞ. In fact, the socle can be computed in terms of a
certain class of minimal 3-graded inner ideals (in Zelmanov’s sense) of the Lie alge-
bra L, each of which is a central extension of the Tits–Kantor–Koecher algebra of a
division Jordan pair (4.7). Moreover, if L itself is non-degenerate, then so is V ,
SocðLÞ is then isomorphic to TKKðSocðLÞÞ.

In general, the derivation algebra DerL of a 3-graded Lie algebra L is 5-graded.
We prove (3.3) that DerL is actually 3-graded when L’s associated Jordan pair is von
Neumann regular (the socle of any non-degenerate Jordan pair is regular). In (5.4)
we show that any strongly prime 3-graded Lie algebra with non-zero socle can be
trapped between

ad(TKKðVÞÞ / L � DerðTKKðVÞÞ;

where V is a simple Jordan pair coinciding with its socle and Der(TKK(V )) is itself a
strongly prime 3-graded Lie algebra with the same socle, adðTKKðSocðVÞÞÞ, as L

and without outer derivations. Non-degenerate 3-graded Lie algebras with essential
socle can be described this way too since they are essential subdirect products of
strongly prime ones with non-zero socle (5.4). Furthermore, we also characterize
3-graded Lie algebras which are central extensions of non-degenerate 3-graded Lie
algebras with essential socle (5.7).

Any simple finite-dimensional Lie algebra over an algebraically closed field of
characteristic 0 which is not of type E8;F4 or G2 has a (non-trivial) 3-grading and,

3808 López, Garcı́a, and Lozano



ORDER REPRINTS

relative to any of these gradings, coincides with its socle. Examples of infinite dimen-
sional strongly prime 3-graded Lie algebras with non-zero socle are the classical
Banach Lie algebras of compact operators on an infinite dimensional complex
Hilbert space (see De La Harpe, 1972 or Strasek and Zalar, 2002). Other examples
can be found within the class of finitary simple Lie algebras (see Baranov, 1999).

2. 3-GRADED LIE ALGEBRAS AND JORDAN PAIRS

2.1. Throughout this paper, we will be dealing with Lie algebras L and Jordan pairs
V ¼ ðVþ;V�Þ over a ring of scalars F containing 1

6. As usual, ½x; y� will denote the
Lie product and ad x the adjoint mapping determined by x. Jordan products will
be denoted by Qxy, for any x 2 V s; y 2 V�s; s ¼ �, with linearizations Qx;zy ¼
fx; y; zg ¼ Dx;yz. The reader is referred to (Jacobson, 1962; Loos, 1975; Neher,
1996) for basic results, notation and terminology. Nevertheless, we will stress some
notions and basic properties for both Jordan pairs and Lie algebras.

2.2. Recall that (dþ; d�Þ 2 EndFðVþÞ � EndFðV�Þ is a derivation of V if

dsðfx; y; zgÞ ¼ fdsðxÞ; y; zg þ fx; d�sðyÞ; zg þ fx; y; dsðzÞg
for any x; z 2 Vs; y 2 V�s; s ¼ � (Loos, 1975, 1.4). The set DerV of all derivations
of V is a Lie subalgebra of ðEndFðVþÞ � EndFðV�ÞÞð�Þ.

For x 2 Vþ; y 2 V�; dðx; yÞ :¼ ðDx;y;�Dy;xÞ, is a derivation of V (Loos, 1975,
JP12), called an inner derivation. It deserves to be mentioned that this fact, together
with the symmetry of the triple Jordan product, fx; y; zg ¼ fz; y; xg, are the defining
axioms of a Jordan pair, whenever 1

6 2 F (see Loos, 1975, p. 55). We denote by
IDerV the F-module spanned by all inner derivations of V . In fact, IDer V is an
ideal of DerV .

2.3. An element x 2 V s is called an absolute zero divisor if Qx ¼ 0. Then V is said
to be non-degenerate if it has no non-zero absolute zero divisors, semiprime if
QB�B� ¼ 0 implies B ¼ 0, and prime if QB�C� ¼ 0 implies B ¼ 0 or C ¼ 0, for
B ¼ ðBþ;B�Þ;C ¼ ðCþ;C�Þ ideals of V . Similarly, x 2 L is an absolute zero

divisor of L if ðad xÞ2 ¼ 0, and L is non-degenerate if it has no non-zero absolute
zero divisors, semiprime if ½I; I� ¼ 0 implies I ¼ 0, and prime if ½I; J � ¼ 0 implies
I ¼ 0 or J ¼ 0, for I; J ideals of L. A Jordan pair or Lie algebra is strongly prime
if it is prime and non-degenerate.

2.4. Non-zero ideals of non-degenerate (strongly prime) Jordan pairs inherit non-
degeneracy (strong primeness) (Loos, 1975, JP3; McCrimmon, 1984). The same is
true for Lie algebras: every non-zero ideal of a non-degenerate (strongly prime)
Lie algebra is non-degenerate (strongly prime) (Zelmanov, 1984, Lemma 4; Garcı́a,
2003a, 0.4, 1.5).

2.5. Given a subset S of L, the annihilator of S in L consists of the elements x 2 L

such that ½x; S� ¼ 0, and it is an ideal as soon as S is. We denote by AnnðIÞ the
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annihilator of an ideal I. Clearly, AnnðLÞ ¼ ZðLÞ, the center of L. If L is semiprime,
I \AnnðIÞ ¼ 0 for any ideal I of L, and then an ideal E is essential

ðE \ I 6¼ 0 for every non-zero ideal I of LÞ if and only if AnnðEÞ ¼ 0. Notice
also that L is prime if and only if the annihilator of every non-zero ideal of L is
zero.

2.6. We will denote by DerL the set of derivations of L. The Lie bracket of two
derivations ½d; m� ¼ dm� md is again a derivation, hence DerL � ðEndF LÞð�Þ.

IfM is an ideal of L with AnnðMÞ ¼ 0, then L can be embedded in DerM via the
adjoint mapping: L ffi adML � DerM.

2.7. If L ¼La Ia is a direct sum of simple ideals, then DerL ffiQa Der Ia. Indeed,
any derivation d of L stabilizes Ia : dðIaÞ ¼ dð½Ia; Ia�Þ 	 ½dðIaÞ; Ia� 	 Ia.

2.8. A ð2nþ 1Þ-grading of a Lie algebra L is a decomposition

L ¼ Ln � 
 
 
 � L1 � L0 � L�1 � 
 
 
 � L�n;

where each Li is a submodule of L satisfying ½Li;Lj� 	 Liþj, and where Liþj ¼ 0 if
iþ j 6¼ 0;�1; . . . ;� n. A Lie algebra is ð2nþ 1Þ-graded if it has a ð2nþ 1Þ-grading.

2.9. If L ¼ Ln � 
 
 
 � L1 � L0 � L�1 � 
 
 
 � L�n is ð2nþ 1Þ-graded, then V :¼
ðLn;L�nÞ is a Jordan pair for the triple products defined by fx; y; zg :¼ ½½x; y�; z�
for all x; z 2 Ls; y 2 L�s; s ¼ �n; and it is called the associated Jordan pair of L.
Moreover, if L is non-degenerate, so is V (Zelmanov, 1985, Lemma 1.8).

In this paper we are mainly interested in 3-graded Lie algebras. A standard
example of a 3-graded Lie algebra is that given by the TKK-algebra of a Jordan pair.

For x 2 Ln; y 2 L�n and z0 ¼ ½x; y�, we have that ðDx;y;�Dy;xÞ ¼ ðad z0; ad z0Þ is
a derivation on V ¼ ðLn;L�nÞ (2.2). See Zelmanov, 1985, p. 351:

2.10. For any Jordan pair V there exists a 3-graded Lie algebra TKKðVÞ ¼
L1 � L0 � L�1, the Tits–Kantor–Koecher algebra of V (Kantor, 1964, 1967, 1972;
Koecher, 1967, 1968; Tits, 1962), uniquely determined by the following conditions
(cf. Neher, 1996, 1.5(6)):

(TKK1) The associated Jordan pair ðL1;L�1Þ of L is isomorphic to V .
(TKK2) ½L1;L�1� ¼ L0.
(TKK3) ½x0;L1 � L�1� ¼ 0 implies x0 ¼ 0, for any x0 2 L0.

In general, by TKK-algebra we mean a Lie algebra of the form TKKðV Þ for
some Jordan pair V . In the literature, 3-graded Lie algebras satisfying (TKK2) have
been called Jordan 3-graded Lie algebras. Notice that Jordan 3-graded Lie algebras
are not far from the ones directly built out of Jordan pairs by the TKK construction.
Indeed, as soon as they satisfy (TKK3), for example when they are centerfree, they
are isomorphic to the TKK-algebras of their associated Jordan pairs.

3810 López, Garcı́a, and Lozano



ORDER REPRINTS

The transfer of regularity conditions between TKK-algebras and their associated
Jordan pairs, which has been studied in Garcı́a and Neher (2003, 1.6) and Garcı́a
(2003b, 1.6, 1.7), can be extended to 3-graded Lie algebras satisfying (TKK3) in most
cases.

2.11. Proposition. Let L be a 3-graded Lie algebra and denote by V its associated
Jordan pair.

(i) If L is non-degenerate so is its associated Jordan pair V ¼ ðL1;L�1Þ.
Moreover, L1 � ½L1;L�1� � L�1 ffi TKKðVÞ.
Moreover, if L satisfies (TKK3), then

(ii) V is non-degenerate if and only if L is non-degenerate. In this case,
TKKðV Þ is an essential ideal of L.

(iii) V is strongly prime if and only if L is strongly prime.

Proof. (i) Non-degeneracy of V follows from (2.9). Moreover, since the ideal
L1 � ½L1;L�1� � L�1 is non-degenerate (2.4), it is centerfree and hence isomorphic
to TKKðVÞ (2.10).

(ii) By (i) we only need to prove that non-degeneracy of V implies non-
degeneracy of L. Let x ¼ x1 þ x0 þ x�1 be an absolute zero divisor in L, i.e.,
½x; ½x;L�� ¼ 0. Then ½x; ½x;L�1�� ¼ 0 and, by grading decomposition properties,
½x1; ½x1;L�1�� ¼ 0, i.e., fx1;L�1; x1g ¼ 0, implying x1 ¼ 0 by non-degeneracy of V .
Similarly, x�1 ¼ 0, and thus x ¼ x0 2 L0. Set d0 :¼ ad x0. Then d20 ¼ 0 and hence
½d0; ½d0; adL�� ¼ ad d20ðLÞ ¼ 0. Expanding this expression we get that 0 ¼
d0ðd0adL� adLd0Þ� ðd0adL� adLd0Þd0 ¼ �2d0adLd0. Since L is 2-torsion free
by our initial assumption, ad x0ad yad x0 ¼ 0 for all y 2 L. Therefore, ½d0ðyÞ; d0ðzÞ� ¼
d0½y; d0ðzÞ� � ½y; d20ðzÞ� ¼ d0ad y d0ðzÞ ¼ 0 for all y; z 2 L, and ½d0ðLÞ; d0ðLÞ� ¼ 0.

Now, let us show that d0ðL1Þ ¼ 0. Indeed, for any y1 2 L1; y�1 2 L�1, we have

2Qd0ðy1Þy�1 ¼ fd0ðy1Þ; y�1; d0ðy1Þg ¼ ½½d0ðy1Þ; y�1�; d0ðy1Þ�
¼ ½d0½y1; y�1�; d0ðy1Þ� � ½½y1; d0ðy�1Þ�; d0ðy1Þ�
¼ �fy1; d0ðy�1Þ; d0ðy1Þg ¼ ½½d0ðy�1Þ; d0ðy1Þ�; y1� ¼ 0

since ½d0ðLÞ; d0ðLÞ� ¼ 0. Hence, d0ðL1Þ ¼ 0 by non-degeneracy of V , and similarly
d0ðL�1Þ ¼ 0. Then d0ðL1 � L�1Þ ¼ ½x0;L1 � L�1� ¼ 0 implies x0 ¼ 0 because L satis-
fies (TKK3).

As we have seen, TKKðVÞ is isomorphic to the ideal L1 � ½L1;L�1� � L�1, but
this ideal has zeroannihilator:x ¼ x1 þ x0 þ x�1 2 AnnLðL1 � ½L1;L�1� � L�1Þ implies
½x0;L1� ¼ ½x�1;L1� ¼ 0 because of the grading. Similarly, ½x0;L�1� ¼ ½x1;L�1� ¼ 0.
But ½x0;L1 � L1� ¼ 0 implies x0 ¼ 0 by (TKK3), and ½xs;L�s� ¼ 0 for s ¼ �1 gives
xs ¼ 0 by non-degenracy of V . Then TKKðVÞ is an essential ideal of L by (2.5).

(iii) That V strongly prime implies L strongly prime follows as in Garcı́a and
Neher (2003, 1.6) for TKK Lie (super)algebras and (ii). The converse can be
obtained taking into account that TKKðVÞ is strongly prime by (2.4) and hence V

is non-degenerate by (i) and prime by Garcı́a and Neher (2003, 1.6).
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3. DERIVATIONS OF 3-GRADED LIE ALGEBRAS

Graded derivations, which appear naturally when dealing with graded struc-
tures, generalize the adjoint mapping and are characterized by the way they act on
the homogeneous parts (see Martinez, 2001, p. 805).

3.1. Given a 3-graded Lie algebra L ¼ L1 � L0 � L�1, we say that a derivation
d : L ! L is m-graded ðm ¼ 0;�1;�2Þ if dðLsÞ 	 Lsþm for s ¼ 0;�1. In this case
we write d 2 Dm. Moreover, the set of all derivations of a 3-graded Lie algebra L

coincides with DerL ¼ D2 �D1 �D0 �D�1 �D�2, which is naturally 5-graded,
since any derivation d on L can be decomposed as the sum

d ¼E1dE�1 þ ðE1dE0 þ E0dE�1Þ
þ ðE1dE1 þ E0dE0 þ E�1dE�1Þ
þ ðE0dE1 þ E�1dE0Þ þ E�1dE1

2 D2 �D1 �D0 �D�1 �D�2;

where each Ei denotes the projection on Li.
We must accept the possibility that there may exist unpleasant �2-graded

derivations on a 3-graded Lie algebra. For example, take an abelian 3-graded algebra
L ¼ L1 � L0 � L�1. Then any linear mapping f : L�1 ! L1 can be extended to a 2-
graded derivation on L. However, under certain conditions, the algebra of deriva-
tions of a 3-graded Lie algebra is itself 3-graded. We begin with a lemma proving
that �2-graded derivations vanish on von Neumann regular elements. Recall that
x 2 Vs is called (von Neumann) regular if x ¼ Qxy for some y 2 V�s. A Jordan pair
is called (von Neumann) regular if all its elements are regular.

3.2. Lemma. Any �2-graded derivation of a 3-graded Lie algebra L annihilates
the regular elements of the associated Jordan pair of L.

Proof. Let d be a derivation in D�2 (a similar argument works for 2-graded
derivations), i.e., dðL1Þ 	 L�1 and dðL�1Þ ¼ dðL0Þ ¼ 0. Given a regular element x

in Vþ, take y 2 V� such that Qxy ¼ x. We clain that dðxÞ ¼ 0. Indeed,

2dðxÞ ¼ dðfx; y; xgÞ ¼ dð½½x; y�; x�Þ ¼ ½dð½x; y�Þ; x� þ ½½x; y�; dðxÞ�
¼ ½½x; y�; dðxÞ� ¼ �fy; x; dðxÞg ðbecause ½x; y� 2 L0Þ:

Therefore,

dðxÞ ¼ � 1

2
fy; x; dðxÞg ¼ 1

4
fy; x; fy; x; dðxÞgg

¼ 1

2
QyQxdðxÞ þ 1

4
fy;Qxy; dðxÞg ðusing Loos (1975, JP9)Þ

¼ 1

2
QyQxdðxÞ � 1

2
dðxÞ ðsince Qxy ¼ xÞ;
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whence

3

2
dðxÞ ¼ 1

2
QyQxdðxÞ and

dðxÞ ¼ 1

3
QyQxdðxÞ ¼ 1

9
QyQxQyQxdðxÞ

¼ 1

9
QyQQxydðxÞ ðby Loss (1975, JP3)Þ

¼ 1

9
QyQxdðxÞ ðsince Qxy¼ xÞ ¼ 1

3
dðxÞ;

implying dðxÞ ¼ 0, since 1
62F.

3.3. Corollary. Let L be a 3-graded Lie algebra whose associated Jordan pair is
regular. Then DerL ¼ D1 �D0 �D�1 is also 3-graded.

3.4. Corollary. Let L ¼ L1 � L0 � L�1 be a simple 3-graded Lie algebra whose
associated Jordan pair V ¼ ðL1;L�1Þ has a non-zero regular element. Then there
are no �2-graded derivations in DerL.

Proof. Let xs 2 Vs be regular. By Loos (1975, 5.2) there exists x�s 2 V�s such that
ðxþ; x�Þ is a Jordan pair idempotent of V , i.e., xs ¼ Qxsx

�s; s ¼ �. We know from
(3.2) that any s2-graded derivation d has dðx�sÞ ¼ 0; s ¼ �. It is easy then to check
by using the Jacobi identity that d vanishes on the ideal of L generated by x�s, and L

being simple implies dðLÞ ¼ 0, i.e., d ¼ 0.

4. THE SOCLE OF A 3-GRADED LIE ALGEBRA

The notion of socle for non-degenerate Jordan pairs (see Loos, 1989) is extended
here to 3-graded Lie algebras with non-degenerate associated Jordan pair. But before
dealing with Lie algebras, it will be useful to recall the form of the socle for some
standard examples of Jordan pairs.

4.1. Examples. (1) Let X1;X2 be vector spaces over a division F-algebra D. Denote
by LðXi;XjÞ the F-module of all D-linear mapping from Xi to Xj, and put
LðXÞ :¼ LðX;XÞ for any vector space X. Then ðLðX1;X2Þ;LðX2;X1ÞÞ is a Jordan
pair with Qab ¼ aba. It will be called the rectangular Jordan pair defined by
ðX1;X2Þ. Any rectangular Jordan pair ðLðX1;X2Þ;LðX2;X1ÞÞ is strongly prime with
socle equal to ðFðX1;X2Þ;FðX2;X1ÞÞ, whereFðXi;XjÞ is the set of all a 2 LðXi;XjÞ
having finite rank (see Fernández Lopéz and Tocón, 2003).

(2) Let X be a vector space over a field F , and let q : X ! F be a quadratic form
on X with associated bilinear form qðx; yÞ :¼ qðxþ yÞ � qðxÞ � qðyÞ. Then ðX;XÞ
becomes a Jordan pair for the product given by Qxy ¼ qðx; yÞx� qðxÞy. It will be
called the Clifford pair defined by q. If q is non-degenerate, then the Clifford pair
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ðX;XÞ is non-degenerate and coincides with its socle (see Loos, 1975, 12.8).
Moreover, it is simple if dimX 6¼ 2 (Jacobson, 1981, p. 14, Example 4).

(3) Let ðA; �Þ be an associative algebra with involution. Denote by
HðA; �Þ :¼ fa 2 Aja ¼ a�g the set of all hermitian elements. Then ðHðA; �Þ;
HðA; �ÞÞ is a subpair of ðA;AÞðþÞ. It will be called the hermitian pair defined by
ðA; �Þ. For instance, we have the hermitian Jordan pair ðHðLðXÞ; �Þ;HðLðXÞ; �ÞÞ,
where X is a vector space over a field F endowed with a non-degenerate symmetric
bilinear form g : X � X ! F , and where a 7! a� is the adjoint involution:
gðxa; yÞ ¼ gðx; ya�Þ. Any hermitian pair V ¼ ðHðLðXÞ; �Þ; HðLðXÞ; �ÞÞ is strongly
prime with SocðV Þ ¼ ðHðFðXÞ; �Þ;HðFðXÞ; �ÞÞ, where FðXÞ is the set of all
a 2 LðXÞ having finite rank (see Fernández Lopéz and Tocón, 2003).

Now we return to Lie algebras by proving the following lemma.

4.2. Lemma. Let L ¼ L1 � L0 � L�1 be a 3-graded Lie algebra, and let ðM1;M�1Þ
be an ideal of the associated Jordan pair ðL1;L�1Þ. If ðM1;M�1Þ is perfect, i.e.,
Ms ¼ fMs;M�s;Msg ¼ ½½Ms;M�s�;Ms�; s ¼ �1, then M :¼ M1 � ½M1;M�1� �M�1

is invariant under derivations of L, hence it is an ideal of L.

Proof. By perfection, the ideal ðM1;M�1Þ is invariant under derivations of the
Jordan pair ðL1;L�1Þ and, taking into account that 0-graded derivations of L define
Jordan pair derivations, we get

d0ðMiÞ ¼ d0ðfMi;M�i;MigÞ 	 Mi; i ¼ �1; ð1Þ
for any 0-graded derivation d0 2 DerL. From (1),

d0ð½M1;M�1�Þ 	 ½d0ðM1Þ;M�1� þ ½M1; d0ðM�1Þ� 	 ½M1;M�1�: ð2Þ
Now let us check that diðMÞ 	 M for every i-graded derivation di 2 DerL; i ¼ �1:

dið½M1;M�1�Þ 	 ½Mi; diðM�iÞ� 	 ½Mi;L0� 	 Mi;

diðMiÞ ¼ 0; and

diðM�iÞ ¼ di½½M�i;Mi�;M�i� 	 ½M1;M�1�:
ð3Þ

Finally, for 2i-graded derivations d2i 2 DerL; i ¼ �1, we have

d2iðMi � ½M1;M�1�Þ ¼ 0;

d2iðM�iÞ ¼ d2iðfM�i;Mi;M�igÞ
	 ½d2i½M�i;Mi�;M�i� þ ½½M�i;Mi�; d2iðM�iÞ�
	 ½½M1;M�1�;Li� 	 Mi:

ð4Þ

The proof is now complete altogether.

4.3. Let L ¼ L1 � L0 � L�1 be a 3-graded Lie algebra whose associated Jordan pair
V ¼ ðL1;L�1Þ is non-degenerate. From Loos, (1989, Theorem 1), SocðVÞ is regular
and hence a perfect ideal of V . Then, by (4.2), the ideal of L generated by SocðV Þ
coincides with SocðV Þþ � ½SocðV Þþ; SocðVÞ�� � SocðVÞ�. This ideal will be called
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the socle of L and denoted by SocðLÞ. We remark that this definition of socle does
not depend only on the Lie algebra L, but also on the chosen 3-grading on L.

4.4. According to Benkart’s definition (see Benkart, 1977), a submodule K of a Lie
algebra L is an inner ideal if ½K; ½K;L�� 	 K. Because of the grading, inner ideals
(minimal inner ideals) K 	 Ls ðs ¼ �1Þ of the associated Jordan pair V ¼
ðL1;L�1Þ of a 3-graded Lie algebra L are inner ideals (minimal inner ideals) of L.
In particular, any x 2 Ls ðs ¼ �1Þ generates the principal inner ideal ½x; ½x;L��
ðnotice thatðad xÞ3 ¼ 0Þ. If V is non-degenerate, then SocðLsÞ; s ¼ �1, is the sum
of all inner ideals of V contained in Ls (see Loos, 1989), so SocðLÞ is generated as
a Lie algebra by these minimal inner ideals.

4.5. Zelmanov (1985, Sec. 5) introduces a notion of inner ideals for Z-graded Lie
algebras which in the particular case of a 3-graded Lie algebra reads as follows
(cf. Garcı́a, to appear, 1.1).

Let L be a 3-graded Lie algebra. We say that a graded F-submodule
B ¼ B1 � B0 � B�1 of L is a 3-graded inner ideal if

(i) B is a subalgebra of L.
(ii) B1;B�1 are inner ideals of V ¼ ðL1;L�1Þ.
It is clear that if ðB1;B�1Þ	 ðL1;L�1Þ is a pair of inner ideals of V , then

B1 � ½B1;B�1� � B�1 is a 3-graded inner ideal of L. In particular, a Jordan pair idem-
potent e ¼ ðeþ; e�Þ of V determines the 3-graded inner ideal LðeÞ :¼ V2ðeÞþ �
½V2ðeÞþ;V2ðeÞ�� � V2ðeÞ� (see Loos, 1975, 5.5).

4.6. Let Ks 	 V s; s ¼ �, be two minimal inner ideals of a Jordan pair V . For the
Jordan subpair K :¼ ðKþ;K�Þ the following conditions are equivalent:

(i) K is a division Jordan pair,
(ii) K is non-degenerate, and
(iii) QKþK� 6¼ 0.

Moreover, in this case K ¼ V2ðeÞ is the Peirce 2-space of a division Jordan pair
idempotent e of V . Indeed, ðiÞ ) ðiiÞ and ðiiÞ ) ðiiiÞ are clear. To prove ðiiiÞ ) ðiÞ,
let xþ 2 Kþ be such that QxþK

� 6¼ 0. Then QxþK
� ¼ Kþ by minimality of Kþ and

hence there exists x� 2 K� such that Qxþx
� ¼ xþ. Then e :¼ ðxþ;Qx�x

þÞ is a division
Jordan pair idempotent (see Loos, 1975, 5.5) and K ¼ V2ðeÞ.

4.7. Proposition. Let L be a 3-graded Lie algebra with non-degenerate associated
Jordan pair V . Then SocðLÞ ¼Pe LðeÞ, where the sum is taken over all division
Jordan pair idempotents of V . Furthermore, LðeÞ is a central extension of the
TKK-algebra of the division Jordan pair V2ðeÞ.

Proof. The containments
P

e LðeÞ 	 SocðLÞ and SocðV Þþ � SocðV Þ� 	Pe LðeÞ
are clear. Thus, it is enough to show that ½SocðVÞþ; SocðV Þ�� is also contained in
the sum of all LðeÞ.
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We know that ½SocðV Þþ; SocðV Þ�� is generated as a F-module by elements of
the form ½aþ; b��, for division Jordan pair idempotents a ¼ ðaþ; b�Þ and b ¼ ðbþ; b�Þ
of V . Now

2½aþ; b�� ¼ ½½½aþ; a��; aþ�; b�� ¼ ½½½aþ; a��; b��; aþ� þ ½½aþ; a��; ½aþ; b���
¼ ½aþ; fb�; aþ; a�g� þ ½½aþ; ½aþ; b���; a�� þ ½aþ; ½a�; ½aþ; b����
¼ 2½aþ; fb�; aþ; a�g� � ½Qaþb

�; a��
¼ 2½aþ;Qðb�þa�Þaþ� � 2½aþ;Qb�a

þ� � 2½aþ; a�� � ½Qaþ ; b
�; a��:

Clearly, both ½aþ; a�� and ½Qaþb
�; a�� belong to LðaÞ, while ½aþ;Qb�a

þ� 2 LðeÞ for
somedivision Jordanpair idempotent e because ðQaþV

�;QQ
b�aþ V

þÞ is a pair ofminimal
inner ideals of V that satisfies (4.6)(iii) when ½aþQb�a

þ� 6¼ 0. Thus, we only need to con-
sider the first summand ½aþ;Qðb�þa�Þaþ�.

Without loss of generality we can assume that Qaþðb� þ a�Þ ¼ Qaþb
� þ aþ 6¼ 0

(in case Qaþðb� þ a�Þ ¼ 0 replace b� by �b� in the above formula and work
with 2½aþ;Qð�b�þa�Þaþ� þ 2½aþ;Qb�a

þ� � 2½aþ; a�� þ 2½Qaþb
�; a��, where now

Qaþð�b� þ a�Þ ¼ �Qaþb
� þ aþ ¼ 2aþ 6¼ 0Þ. In this case, the subpair K :¼

ðQaþV
�;Qðb�þa�ÞQaþV

�Þ satisfies (4.6)(iii) and hence ½aþ;Qðb�þa�Þaþ� 2 LðeÞ for
some division Jordan pair idempotent e, which completes the proof.

Recall that V is non-degenerate if L is so, by (2.11)(i). In this case SocðLÞ is
non-degenerate by (2.4) and hence it is isomorphic to TKKðSocðVÞÞ by (2.10).

4.8. Proposition. Let L ¼ L1 � L0 � L�1 be a non-degenerate 3-graded Lie algebra,
with associated Jordan pair V . Then

(1) SocðLÞ ¼La Ma, where each Ma is a 3-graded ideal of L. In fact,
Ma ¼ Vþ

a � ½Vþ
a ;V

�
a � � V�

a , with the Va ¼ ðVþ
a ;V

�
a Þ being the simple ideals

of SocðV Þ. Moreover, each Ma ffi TKKðVaÞ is a simple ideal of L.
(2) For any 3-graded ideal I of L, SocðIÞ ¼ I \ SocðLÞ.

Proof. By Loos (1989, Theorem, 2), SocðVÞ ¼LVa where the Va are the simple
ideals of SocðVÞ. Moreover, using that Vþ

a ¼ fVþ
a ;V

�
a ;V

þ
a g, we get that

½Vþ
a ;V

þ
b � ¼ 0 when a 6¼ b. Therefore

SocðLÞ ¼ SocðVÞþ � ½SocðVÞþ; SocðVÞ�� � SocðVÞ�

¼
M
a

ðVþ
a � ½Vþ

a ;V
�
a � � V�

a Þ ¼
M
a

Ma

and the Ma are ideals of L by (4.2). Since L is non-degenerate, each Ma is also
non-degenerate by (2.4), hence Ma ¼ TKKðVaÞ is simple by Garcı́a and Neher
(2003, 1.6).

For (2), denote by U ¼ ðI1; I�1Þ the Jordan pair associated to the 3-graded
ideal I. First notice that U is non-degenerate so it makes sense to consider SocðIÞ.
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By Jordan socle theory (cf. Loos, 1989, Proposition 3), SocðUÞ ¼ SocðVÞ \ U and the
simple ideals of SocðUÞ are precisely the simple ideals of V contained in U . Now (2)
follows from (1).

5. 3-GRADED LIE ALGEBRAS WITH ESSENTIAL SOCLE

A structure theorem is given for non-degenerate 3-graded Lie algebras with
essential socle. We begin by transferring regularity conditions from large 3-graded
ideals of a 3-graded Lie algebra to the whole algebra. Our approach will consist in
reducing the question to a Jordan pair one.

5.1. Let V be a Jordan pair. Given X	V s, denote by AnnðXÞ	V�s the annihilator
of X in V (cf. Loos, 1975, 10.3), and set AnnðIÞ :¼ ðAnnðI�Þ;AnnðIþÞÞ to denote
annihilator (ideal) of an ideal I of V . It is not difficult to see (Loos, 1975, JP21) that
if I is non-degenerate, then a 2 AnnðIsÞ if and only if fa; Is;V�sg ¼ 0 and
fIs; a;V�sg ¼ 0.

5.2. Lemma. Let I / V be a nondegenerate ideal of a Jordan pair V . If AnnðIÞ ¼ 0
then V is non-degenerate. Moreover, V is strongly prime if and only if I is strongly
prime.

Proof. Let v 2 V�s be an absolute zero divisor of V , and let y 2 I�s, and y 2 Is. By
Loos (1975, JP21), for any a 2 I�s we have

Qfv;y;zga ¼ QvQyQzaþQzQyQvaþDz;yQvDy;za�Qv;QzQyva

¼ �fv; a;QzQyvg

since v is an absolute zero divisor. Let b 2 I�s. By the above equality,

QQfv;y;zgab ¼ Qfv;a;QzQyvgb ¼ �fv; b;QQzQyvQavg
¼ �fv; b;QzQyQvQyQzQavg ¼ 0;

using again that v is an absolute zero divisor. Then, by non-degeneracy of I,
Qfv;y;zga ¼ 0 for every a 2 I�s, and

fv; I�s;Vsg ¼ 0: ð5Þ

Now let x 2 I�s and z 2 V�s. By Loos (1975, JP20), for any a 2 Is we have

Qfx;v;zga ¼ QxQvQzaþQzQvQxaþQx;zQvQx;za� fQxv; a;Qzvg
¼ �fQxv;a;Qzvg;
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since v is an absolute zero divisor. Hence, by Loos (1975, JP21), for b 2 Is we have

QQfx;v;zgab ¼ QfQxv;a;Qzvgb ¼ QQxvQaQQzvbþQQzvQaQQxvb

� fQzv; b;QQxvQaQzvg þ fQxv; a;QQzvfa;Qxv; bgg ¼ 0;

since v is an absolute zero divisor and hence so is any Qxv (Loos, 1975, JP3). Again,
by non-degeneracy of I, we get

fI�s; v;V�sg ¼ 0: ð6Þ

Therefore, from (5) and (6) we get that v 2 AnnðIÞ ¼ 0.
Finally, it is straightforward to see that every non-zero ideal of V has nonzero

intersection with I. Thus, V is prime if I is so, which together with (2.4) completes
the proof.

5.3. Theorem. Let M ¼ M1 �M0 �M�1 be a graded ideal of a 3-graded Lie
algebra L. Suppose that M0 ¼ ½M1;M�1� and AnnLðMÞ ¼ 0, and denote by U ¼
ðM1;M�1Þ / V ¼ ðL1;L�1Þ the associated Jordan pairs of M and L, respectively.
Then L is non-degenerate (strongly prime) if and only if U is so. Moreover, if U

is non-degenerate, then SocðLÞ ¼ SocðMÞ.

Proof. Clearly, AnnLðMÞ ¼ 0 implies both M and L satisfy (TKK3). Moreover,
AnnV ðUÞ ¼ 0: if as 2 AnnV ðM�sÞ ðs ¼ �1Þ, then

½½as;M�s�;Ls� ¼ fas;M�s;Lsg ¼ 0

and similarly,

½½M�s; as�;L�s� ¼ fM�s; as;L�sg ¼ 0:

Hence, ½as;M�s� ¼ 0 by (TKK3), and as 2 AnnLðMÞ ¼ 0.
In general, if L is non-degenerate (strongly prime) then so is U (2.4) and (2.11)(i)

and (iii). Suppose then that U is non-degenerate (strongly prime). Then V is non-
degenerate (strongly prime) by (5.2), and hence L is non-degenerate (strongly prime)
by (2.11)(iii). The equality SocðLÞ ¼ SocðMÞ follows from (4.8) since AnnLðMÞ ¼ 0.

Now everything is ready to prove the main result of this paper.

5.4. Theorem. For a 3-graded Lie algebra L, the following statements are
equivalent:

(i) L satisfies (TKK3) and its associated Jordan pair is non-degenerate with
essential socle.

(ii) L is non-degenerate with essential socle.
(iii) adðTKKðVÞÞ / L � DerðTKKðVÞÞ, where V is a non-degenerate Jordan

pair coinciding with its socle.
(iv)

L
adðTKKðVaÞÞ / L � QDerðTKKðVaÞÞ, where each Va is a simple Jor-

dan pair with minimal inner ideals.
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If L is as in ðiiiÞ, SocðLÞ ¼ adðTKKðVÞÞ and L is strongly prime if and only if
SocðLÞ is simple, if and only if V is simple. Moreover, in this case, DerðTKKðV ÞÞ is
the largest strongly prime 3-graded Lie algebra having socle equal to adðTKKðV ÞÞ,
and every derivation of DerðTKKðV ÞÞ is inner.

Proof. ðiÞ ) ðiiÞ. Set V ¼ ðL1;L�1Þ and M ¼ SocðLÞ. Then ðM1;M�1Þ ¼ SocðVÞ.
By (5.3), we only need to prove that AnnLðMÞ ¼ 0. Since AnnLðMÞ is a graded ideal
because so is M, it suffices to consider homogeneous elements. For as 2 AnnLðMÞ
ðs ¼ �1Þ, we have by (5.1) that as 2 AnnV ðM�sÞ ¼ 0, since V is non-degenerate.
For a0 2 AnnLðMÞ and s ¼ �1, ½a0;Ls� 	 AnnLðMÞ \ Ls ¼ 0, and hence a0 ¼ 0
by (TKK3).

(ii)) (iii). Set SocðLÞ ¼ TKKðV Þ, where V now denotes the socle of the Jordan
pair ðL1;L�1Þ. The adjoint representation defines then a 3-graded Lie algebra
isomorphism of L into DerðTKKðVÞÞ by (2.6):

adðTKKðVÞÞ / adL � DerðTKKðV ÞÞ:

(iii)) (iv). Let V be as in (iii). By Loos (1989, Theorem 2) V ¼LVa, with
each Va being a simple Jordan pair containing minimal inner ideals. Now the
implication follows since TKKðLVaÞ ffi

L
TKKðVaÞ, and DerðLTKKðVaÞÞ ffiQ

DerðTKKðVaÞÞ by (2.7) because TKKðV Þ is a direct sum of the ideals
TKKðVaÞ, which are simple by Garcı́a and Neher (2003, 1.6).

(iv)) (i). Let V ¼LVa be a non-degenerate Jordan pair coinciding with its
socle, and set M :¼L adðTKKðVaÞÞ ¼ adðLTKKðVaÞÞ ffi adðTKKðLVaÞÞ. Since
M / L �QDerðTKKðVaÞÞ, AnnLðMÞ ¼ 0 and hence L clearly satisfies (TKK3).
Moreover, SocðLÞ ¼ M is an essential ideal of L.

Finally, suppose that L is as in (iii). By (5.3) and (4.8), L is strongly prime if and
only if SocðLÞ is simple, equivalently, V is simple. In this case, puttingM ¼ TKKðV Þ,
we have that DerðMÞ is the largest strongly prime 3-graded Lie algebra having socle
equal to ad M. Now let L be a strongly prime 3-graded Lie algebra with non-zero
socle M. Then the mapping d 7! djM , associating to any deviation d on DerðLÞ its
restriction to M, is an isomorphism of DerðLÞ into DerðMÞ, and therefore DerðLÞ
is strongly prime with the same socle as L. Hence, taking L ¼ DerðMÞ, we have that
every derivation on DerðMÞ is inner.

5.5. Remarks. (1) Since, by (4.4), principal inner ideals of the Jordan pair of a
3-graded Lie algebra L are principal inner ideals of L, it follows from Loos (1989,
Corollary 1) that non-degenerate 3-graded Lie algebras satisfying the descending
chain condition on principal inner ideals have essential socle. Note also that, by
the von Neumann regularity of the Jordan socle, 3-graded Lie algebras with non-
zero socle are �-Lie algebras in the sense of Benkart (1977).

(2) A Lie algebra is called Artinian if it satisfies the descending chain condition
on all inner ideals. Since the associated Jordan pair of an Artinian 3-graded Lie is
also Artinian, we have by Loos (1975, 12.12) and (5.4) that non-degenerate Artinian
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3-graded Lie algebras L are of the form

Mn
1

adðTKKðViÞÞ / L �
Yn
1

DerðTKKðViÞÞ;

where the Vi are simple Artinian Jordan pairs.

If L is actually a semisimple 3-graded Lie algebra which is finite-dimensional
over a field F of characteristic zero, then L is non-degenerate (Benkart, 1977,
p. 64) and clearly Artinian. Moreover,

L ¼
Mn
1

adðTKKðViÞÞ ffi
Mn
1

TKKðViÞ;

since every derivation in a simple finite-dimensional Lie algebra over a field of
characteristic 0 is inner (Jacobson, 1962, Sec. 3 (6.6)).

5.6. By using the equivalence (i), (ii) of Theorem 5.4, central extensions of
non-degenerate 3-graded Lie algebras with essential socle can also be determined.
We will say that a 3-graded Lie algebra L satisfies weak-(TKK3) if

½x0;L1 � L�1� ¼ 0 ) x0 2 ZðLÞ

for x0 2 L0. Notice that any 3-graded Lie algebra L with (TKK2) or (TKK3) verifies
weak-(TKK3).

5.7. Corollary. Let L be a 3-graded Lie algebra with non-degenerate associated
Jordan pair V . The following conditions are equivalent:

(i) L=ZðLÞ is non-degenerate with essential socle.
(ii) V has essential socle and L satisfies weak-ðTKK3Þ.

Proof. First we claim that non-degeneracy of V implies that ZðLÞ 	 L0. Indeed, if
x ¼ x1 þ x0 þ x�1 2 ZðLÞ then ½x;L�s� ¼ 0, s ¼ �1, so ½xs;L�s� ¼ 0, which gives
xs ¼ 0 by nondegeneracy of V . Hence V is also the associated Jordan pair of L=ZðLÞ.

ðiÞ ) ðiiÞ Since L=ZðLÞ satisifies (TKK3) by (5.4)ðiiÞ ) ðiÞ, L has weak-
(TKK3). Moreover, being V the associated Jordan pair of both L and L=ZðLÞ, the
socle of V is essential by (5.4)ðiiÞ ) ðiÞ.

ðiiÞ ) ðiÞ We claim that L ¼ L=ZðLÞ has (TKK3). Indeed, if �xx0 2 L0 satisfies
½�xx0;L1 � L�1� ¼ 0, then ½x0;L1 � L�1� 	 ZðLÞ, so f½x0;Ls�;L�s;Lsg ¼ 0 implies by
non-degeneracy of V that ½x0;Ls� ¼ 0 for both s ¼ �1. Now, by weak-TKK(3),
x0 2 ZðLÞ, i.e., �xx0 ¼ 0. Since V has essential socle, L=ZðLÞ is non-degenerate with
essential socle by (5.4)ðiÞ ) ðiiÞ.

In our paper (see Fernández López, Garcı́a and Gómez Lozano, to appear) we
determine the TKK-algebras of the simple Jordan pairs with minimal inner ideals.
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These TKK-algebras provide examples of simple infinite-dimensional 3-graded
Lie algebras coinciding with their socle. Some of these examples will be nevertheless
treated below.

5.8. Examples. (1) Let X be a vector space over a division algebra D, decomposed
into the direct sum of two subspaces, X ¼ X1 � X2. Then

L ¼ LðX1 � X2Þð�Þ ¼ LðX1Þ LðX2;X1Þ
LðX1;X2Þ LðX2Þ

 !

is a 3-graded Lie algebra whose associated Jordan pair is the rectangular Jordan pair
V ¼ ðLðX1;X2Þ;LðX2;X1ÞÞ (cf. 4.1(1)). It is not difficult to see that L satisfies
weak-(TKK3), and since V is strongly prime with SocðVÞ ¼ ðFðX1;X2Þ;
FðX2;X1ÞÞ (4.1(1)), we have by (5.7) that L=ZðLÞ is (strongly prime) with essential
socle: SocðL=ZðLÞÞ ffi TKKðSocðVÞÞ (4.3). We also have that SocðLÞ coincides with
the derived ideal ½FðXÞ;FðXÞ� (take matrix representations of elements and argue as
in Neher (1996, 3.4.3) if dimðXÞ � 3; the two-dimensional case can be treated sepa-
rately), so SocðLÞ does not depend on the chosen decomposition X ¼ X1 � X2. If X
is infinite-dimensional, the SocðLÞ is centerfree and hence SocðLÞ ffi TKKðSocðVÞÞ
is simple. If additionally D is finite-dimensional over its center, then SocðLÞ is the
central finitary simple Lie algebra fslðXÞ (see Baranov, 1999, 6.19(i)).

(2) Let X be a vector space over a field F with a non-degenerate quadratic form
q : X ! F . The orthogonal Lie algebra (of q) is the following subalgebra of
LðXÞð�Þ : oðX; qÞ ¼ fa 2 LðXÞ j qðax; xÞ ¼ 0 for all x 2 Xg.

For x; y; z 2 X, let x� be the F-linear form on X given by x�ðzÞ ¼ qðx; zÞ, and
denote by yx� the linear mapping on X given by yx�ðzÞ ¼ yqðx; zÞ. Clearly,
yx� � xy� 2 oðX; qÞ.

Suppose that X contains a hyperbolic plane H (for instance, F is an algebraically
closed field and dim X > 1). Then X ¼ H � H? and the elements of oðX; qÞ can be
represented as 3� 3-matrices (see Neher, 1996, 5.1) in the following way:

a ¼
a �y� 0
x b y

0 �x� �a

0
@

1
A;

for all a 2 F ; x; y 2 H?, and b 2 oðH?; qÞ. This representation defines the following
3-grading on L ¼ oðX; qÞ:

L1 ¼
0 0 0

x 0 0

0 �x� 0

0
BB@

1
CCA

8>><
>>:

9>>=
>>;; L0 ¼

a 0 0

0 b 0

0 0 �a

0
BB@

1
CCA

8>><
>>:

9>>=
>>;;

L�1 ¼
0 �y� 0

0 0 y

0 0 0

0
BB@

1
CCA

8>><
>>:

9>>=
>>;
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whose associated Jordan pair V ¼ ðL1;L�1Þ is isomorphic to the Clifford pair
ðH?;H?Þ (with the Jordan product given in (4.1)(2)), and hence it is non-degenerate
and coincides with its socle. Since charðFÞ 6¼ 2, L satisfies (TKK3) and hence it is
non-degenerate with essential socle (5.4). In fact, SocðoðX; qÞÞ is the central finitary
simple Lie algebra foðX; qÞ (see Baranov, 1999) if dimX > 4.

(3) Let X be a vector space over a field F with a non-degenerate alternating
bilinear form h : X � X ! F . The symplectic Lie algebra (of h) is the following
subalgebra ofLðXÞ : spðX;hÞ ¼ fa 2 LðXÞ jhðax; yÞ þ hðx; ayÞ ¼ 0 for all x; y 2 Xg.

Suppose that X ¼Li2I Hi is an orthogonal sum of hyperbolic planes (for
instance, X is finite-dimensional or even is of countable dimension, Kaplansky,
1974, p. 45, example 2), Hi ¼ hxi; yii. Then the elements of spðX;hÞ can be repre-
sented as 2� 2 matrices (see Neher, 1996, 4.2)

a ¼ a11 a12
a21 �a�11

� �
;

where a11 2 LðY Þ and a12; a21 2 HðLðY Þ; �Þ, and where Y :¼Li2I Fyi is endowed
with the non-degenerate symmetric bilinear form given by gðyi; yjÞ ¼ dij. This repre-
sentation defines a 3-grading on L ¼ spðX;hÞ whose associated Jordan pair
V ¼ ðL1;L�1Þ is isomorphic to the hermitian pair ðHðLðY Þ; �Þ;HðLðY Þ; �ÞÞ. Thus
SocðVÞ ffi ðHðFðY Þ; �Þ;HðFðY Þ; �ÞÞ (cf. 4.1(3)). As above, it is not difficult to see
that L satisfies (TKK3) and hence L is strongly prime with non-zero socle. In fact,
SocðLÞ is isomorphic to the central finitary simple Lie algebra fspðX;hÞ (see Baranov,
1999).

5.9. Banach Lie algebras. (1) Following De La Harpe (1972) or Strasek and Zalar
(2002), we denote by glðH;C1Þ the classical Banach Lie algebra of compact opera-
tors on an infinite dimensional complex Hilbert space H. Any decomposition of H as
a Hilbert direct sum of closed subspaces, H ¼ X � Y , defines a 3-grading on
glðH;C1Þ with associated Jordan pair that given by the generalized Cartan factor
KLðX; Y Þ of compact operators from X into Y . The 3-graded Lie algebra
glðH;C1Þ is strongly prime with socle equal to ½FBLðHÞ;FBLðHÞ�, the derived ideal
of finite rank bounded linear operators.

(2) The analytic counterpart of foðX; qÞ is the classical orthogonal Banach Lie
algebra of compact operators on an infinite dimensional complex Hilbert space H

(see De La Harpe 1972 or Strasek and Zalar, 2002), given by

oðH; y;C1Þ ¼ fa 2 KLðHÞ j y�ay ¼ �ag;

where y is a conjugation on H, i.e., y : H ! H is an involutive conjugate linear map-
ping satisfying hyx; yi ¼ hyy; xi for all x; y 2 H. Then the formula qðx; yÞ :¼ hx; yyi
defines a non-degenerate symmetric bilinear form on the vector space H, and
oðH; y;C1Þ can be regarded as a 3-graded subalgebra of oðH; qÞ having the same
socle, SocðoðH; y;C1ÞÞ ¼ foðH; qÞ.
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(3) Suppose now that H is endowed with an anticonjugation y, i.e., y : H ! H

is a conjugate linear mapping satisfying hyx; yi ¼ �hyy; xi for all x; y 2 H, and
y2x ¼ �x for all x 2 H, and define the transpose of an operator a 2 BLðHÞ by
a# :¼ ya�y. Following De La Harpe (1972), the classical symplectic Banach Lie
algebra of bounded operators is defined by

spðH; y;C1Þ ¼ fa 2 BLðHÞ : a# ¼ ag:

Then y yields a Hilbert decomposition H ¼ X � Y such that Y ¼ yðXÞ. Hence a
3-grading can be defined on spðH; y;C1Þ with associated Jordan pair given by
V ¼ ðSymðBLðX; Y Þ;#Þ; SymðBLðY ;XÞ;#ÞÞ. This Jordan pair V is strongly prime
with socle ðSymðFBLðX; Y Þ;#Þ; SymðFBLðY ;XÞ;#ÞÞ, and spðH; y;C1Þ \ FBLðHÞ.
Moreover, the closure of SocðspðH; y;C1ÞÞ coincides with the classical symplectic
Banach Lie algebra of compact operators on H.
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