
Journal of Pure and Applied Algebra 194 (2004) 127–145

www.elsevier.com/locate/jpaa

Jordan systems of Martindale-like quotients

Esther Garc,-aa ;∗;1 , M. G,omez Lozanob;2
aDepartamento de �Algebra, Universidad Complutense de Madrid, 28040 Madrid, Spain

bDepartamento de �Algebra, Geometr��a y Topolog��a, Universidad de M�alaga, 29071 M�alaga, Spain

Received 14 July 2003; received in revised form 16 February 2004
Communicated by C.A. Weibel

Abstract

In this paper we introduce the notion of Jordan system (algebra, pair or triple system) of
Martindale-like quotients with respect to a 9lter of ideals as that whose elements are absorbed
into the original system by ideals of the 9lter, and prove that it inherits regularity conditions
such as (semi)primeness and nondegeneracy. When we consider power 9lters of sturdy ideals,
the notions of Jordan systems of Martindale-like quotients and Lie algebras of quotients are
related through the Tits–Kantor–Koecher construction, and that allows us to give constructions
of the maximal systems of quotients when the original systems are nondegenerate.
c© 2004 Elsevier B.V. All rights reserved.
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The theory of rings of quotients has its origins between 1930 and 1940, in the works
of Ore and Osano on the construction of the total ring of fractions. In that decade Ore
proved that a necessary and suAcient condition for a ring R to have a (left) classic
ring of quotients is that for any regular element a in R, and any b∈R there exist a
regular c∈R and d∈R such that cb = da (left Ore condition). At the end of 1950s,
Goldie, Lesieur and Goisot characterized the (associative) rings that are classic left
orders in semiprime and left artinian rings [19, Chapter IV] (result known as Goldie’s
Theorem).
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Later on in 1956, Utumi introduced the notion of general ring of quotients [34] and
proved that the rings without right zero divisors are precisely those which have left
maximal rings of quotients.
Martindale rings of quotients were introduced by Martindale in 1969 for prime rings

[21]. This concept was designed for applications to rings satisfying a generalized poly-
nomial identity (GPI for short). In his work, Martindale showed that every prime ring
satisfying a GPI is a subring of a primitive ring Q with nonzero socle and, moreover,
the division ring associated to the socle of Q is 9nite dimensional over its center (this
result generalizes both Amistur’s and Posner’s theorems).
In 1972, Amitsur generalized the construction of Martindale rings of quotients to the

setting of semiprime rings; see [1]. This notion has proven to be useful not only for
the theory of rings with identities, but also for Galois theory on noncommutative rings
and for the study of prime ideals under ring extensions in general.
In 1989, McCrimmon, when studying Jordan algebras and triple systems of symmet-

ric elements, generalized Martindale’s quotients (in the setting of associative and not
necessarily semiprime rings) introducing the notion of Martindale rings of quotients
relative to a 9lter of “denominators”; see [26].
It is natural to ask whether similar notions (and results) can be obtained for Jordan

algebras. The question of Goldie’s Theorems for Jordan algebras was posed by Jacobson
[12] and was studied in the case of the special Jordan algebras J =H (A; ∗) by Britten
and Montgomery; see [4–6,30]. A de9nitive answer was given by Zelmanov in [37,38]
making use of his fundamental result on structure theory of strongly prime Jordan
algebras. In [8], Fern,andez L,opez et al. showed that Zelmanov’s version of Goldie’s
conditions still characterize quadratic algebras having an artinian algebra of quotients
which is simple or nondegenerate, according to whether the original algebra is strongly
prime or nondegenerate.
In a recent paper (see [22]), Mart,-nez gave an Ore-type condition for a Jordan algebra

to have a classical algebra of fractions. Moreover, making use of the Tits–Kantor–
Koecher construction that relates Jordan and Lie structures, she built a maximal Jordan
algebra of quotients as a direct limit of derivations de9ned on certain inner ideals.
This idea of considering equivalence classes of derivations de9ned on ideals is the key
point of Siles Molina construction of maximal Lie algebras of quotients [32].
In this paper, we introduce the notion of Martindale-like systems of quotients of a

Jordan system J with respect to a 9lter as those whose elements are absorbed into J
by ideals of the 9lter. We have chosen the name “Martindale-like system of quotients”
since they behave like Martindale rings of quotients in the sense that the absorption
property involves ideals (and not inner ideals as in [22]).
Moreover, inspired by Mart,-nez’ idea of moving from a Jordan setting to a Lie

one through the Tits–Kantor–Koecher construction and using the construction of max-
imal Lie algebras of quotients of Siles Molina [32], we give explicit constructions of
maximal Jordan systems of Martindale-like quotients for nondegenerate Jordan pairs,
triple systems and algebras with respect to power 9lters of ideals. In order to re-
cover a Jordan system from the maximal Lie algebra of quotients of the Tits–Kan-
tor–Koecher algebra of a Jordan system, we will use the extra hypothesis of
having 1

6 in the ring of scalars, so we have decided to work in the “linear Jordan
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setting” even for the de9nitions and 9rst properties of Martindale-like systems of
quotients.

0. Preliminaries

0.1. We will deal with Lie algebras and with Jordan systems over a ring of scalars
� with 1

2 . The reader is referred to [11,12,20,27] for basic results, notation and termi-
nology, though we will stress some notions and basic properties.

• Given a Lie algebra L, its product will be denoted by [x; y], for x; y∈L. It satis9es
the Jacobi identity and [x; x] = 0 for any x∈L.

• For a Jordan pair V =(V+; V−) we will denote the products by Qxy, for any x∈V�,
y∈V−�, � =±, with linearizations denoted by Qx;zy = {x; y; z}= Dx;yz.

• A Jordan triple system T is given by its products Pxy, for any x; y∈T , with lin-
earizations denoted by Px;zy = {x; y; z}= Lx;yz.

• Given a Jordan algebra J , its products will be denoted x2, Uxy, for x; y∈ J . They
are quadratic in x and linear in y and have linearizations denoted x ◦ y, Ux;zy =
{x; y; z}= Vx;yz, respectively. Moreover, from [23, 0.4], for any x; y; z ∈ J

(x ◦ y) ◦ z = {x; y; z}+ {y; x; z}: (1)

If there exists an element 1∈ J such that U1x = x and Ux1 = x2 for every x∈ J , we
will say that J is a unital Jordan algebra.
In any case, since we will work under the assumption of 1

2 ∈�, we will consider
mainly linear products in all Jordan structures because they completely determine the
quadratic Jordan products of the system. In particular, in the algebra case, it suAces
to consider the linearization of the square ◦ because it is related with the linear triple
product by

2{x; y; z}= (x ◦ y) ◦ z − (x ◦ z) ◦ y + (y ◦ z) ◦ x (2)

(cf. [24, 1.4] linearized on the 9rst variable).
0.2. A Jordan algebra J gives rise to a Jordan triple system JT by simply forgetting

the squaring and letting P =U . Moreover, J is nondegenerate if and only if JT is so.
Conversely, if a Jordan triple system T has an element 1 with P1x= x for every x∈T ,
then it is really a unital Jordan algebra with product U = P and x2 = Px1 [28, 0.1].
By doubling any Jordan triple system T one obtains the double Jordan pair V (T )=

(T; T ) with products Qxy = Pxy, for any x; y∈T [20, 1.13]. Moreover, T is a
nondegenerate Jordan triple system if and only if V (T ) is nondegenerate.
0.3. We recall the notions of annihilators in Jordan systems when 1

2 ∈� [25, 1.2]:

• Let V be a Jordan pair and let X =(X+; X−) be a subset of V . Then the annihilator
of X in V is AnnV (X ) = (AnnV (X )+;AnnV (X )−) where, for � =±,

AnnV (X )� = {z ∈V� | {z; X−�; V �}= {z; V−�; X �}= {V−�; z; X−�}= 0}:



130 E. Garc��a, M.G. Lozano / Journal of Pure and Applied Algebra 194 (2004) 127–145

• Let T be a Jordan triple system and X be a subset of T . The annihilator of X in
T is

AnnT (X ) = {z ∈T | {z; T; X }= {z; X; T}= {X; z; T}= 0}:
• Let J be a Jordan algebra and let X be a subset of J . The annihilator of X in J is
de9ned as

AnnJ (X ) = {z ∈ J | z ◦ X = {z; X; J}= 0}:
It is not hard to prove that this de9nition coincides with the one given in [25] where

it is shown that the annihilator of an ideal in a Jordan system is always an ideal. An
ideal of a Jordan system J is called sturdy if it has zero annihilator in J .

0.4. Lemma. If J is a Jordan algebra and I is an ideal of J , then AnnJ (I) ⊆ AnnJT (I).
Moreover, the equality holds when J has zero annihilator.

Proof. By (0.1)(2) it is clear that AnnJ (I) ⊆ AnnJT (I). Moreover, if AnnJ (J )=0 and
z ∈AnnJT (I), then 0 = {z; y; x}+ {y; z; x}= (z ◦ y) ◦ x for every x∈ J , y∈ I by (0.1)
(1), so z ◦ I ∈AnnJ (J ) = 0, proving that z ∈AnnJ (I):

1. Derivations in 3-graded Lie algebras

1.1. A (2n+ 1)-grading of a Lie algebra L is a decomposition L=
⊕n

i=−n Li where
each Li is a submodule of L, satisfying [Li; Lj] ⊆ Li+j, where Li+j = 0 if |i + j|¿n.
In this paper we will focus mainly on 3-graded Lie algebras.
1.2. Given a 3-graded Lie algebra L, the formula {x; y; z}=[[x; y]; z] de9nes a Jordan

pair structure on (L1; L−1) as soon as 1
6 ∈� (cf. [20, 2.2(b); 32, 1.2]).

Conversely, from a Jordan pair V = (V+; V−) we can always build a 3-graded Lie
algebra through the Tits–Kantor–Koecher (TKK for short) construction [31, Section
1]. This type of Lie algebras was 9rst considered by Tits [33], Kantor [14–16] and
Koecher [17,18], which justi9es the notation TKK(V ).
1.3. Let L be a Lie algebra and I an ideal of L. Then for every isomorphism of Lie

algebras g :L → L, and every derivation with domain I , d : I → L, g−1dg is a derivation
of L de9ned on g−1(I) since g−1dg([a; b]) = g−1d([g(a); g(b)]) = g−1([dg(a); g(b)] +
[g(a); dg(b)]) = [g−1dg(a); b] + [a; g−1dg(b)] for all a; b∈ g−1(I).
1.4. If f :V → W is an isomorphism of Jordan pairs, then TKK(f) : TKK(V ) →

TKK(W ) de9ned by TKK(f) (x++d+y−)=f+(x+)+fdf−1+f−(y−) is an isomor-
phism of Lie algebras. Conversely, any isomorphism TKK(V ) → TKK(W ) respecting
the 3-gradings arises in this way [10, 2.2(6)].
1.5. In particular, for a Jordan triple system T the exchange isomorphism ex :V (T ) →

V (T ) de9ned as ex((x; y)) = (y; x) for any (x; y)∈V (T ) can be extended to a Lie al-
gebra isomorphism TKK(ex) of the Lie algebra TKK(V (T )) by (1.4). Therefore, for
every ideal I of TKK(V (T )) and every derivation d∈Der(I;TKK(V (T ))), we get
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another derivation

dex = TKK(ex)−1dTKK(ex) = TKK(ex)dTKK(ex)

de9ned on TKK(ex)(I) (cf. (1.3)).
1.6. Given a 3-graded ideal I=I1⊕I0⊕I−1 of a 3-graded Lie algebra L=L1⊕L0⊕L−1

and a derivation d : I → L, we say that d has degree i if d(Ij) ⊆ Lj+i, for all j=0;±1.

1.7. Proposition. Let I be a nondegenerate 3-graded ideal of a 6-torsion free Lie
algebra L and let d : I → L be a derivation on I of degree 2 or −2. Then d is zero
on Ĩ d = {x∈ I |d(x)∈ I}, which is a 3-graded ideal of I containing [I; I ].

Proof. First notice that Ĩ d is a 3-graded ideal of I and that it is nondegenerate because
I is [36, Lemma 4].
Suppose that d is a derivation of degree 2 on I . Since d2 = 0 on Ĩ d and L has no

2-torsion, for any a∈ Ĩ d, 0 = ad(d2(a))= [d; ad(d(a))] = [d; [d; ad a]] =−2d(ad a)d on
Ĩ d, which implies

d(ad a)d= 0 on Ĩ d: (3)

Moreover, if for any a, b∈ Ĩ d we denote A := ad a and B := ad b and use (3),
0 = d[A; [A; [B; [B; d]]]]d= 4dABdBAd+ dA2dB2d+ dB2dA2d on Ĩ d: (4)

Putting a=b in formula (4), we obtain 6dA2dA2d=0 on Ĩ d, so L being 6-torsion free
implies

dA2dA2d= 0 on Ĩ d: (5)

Now assume that a∈ (Ĩ d)−1. In this case, it is clear that A3 = 0, hence
[[d; A]; [[d; A]; A]] = [(dA− Ad); (dA2 + A2d− 2AdA)] =−3dA2dA− 3AdA2d

on Ĩ d, which implies

[[d; A]; [[d; A]; A]]2 = 9dA2dA2dA2d= 0 on Ĩ d;

taking into account (3) and (5). We have just shown that the inner derivation [[d; A];
[[d; A]; A]] = ad([d(a); [d(a); a]]) has zero square in Ĩ d, so by nondegeneracy of Ĩ d it
is zero itself, giving −3dA2dA− 3AdA2d= 0 on Ĩ d, hence

dA2dA=−AdA2d on Ĩ d: (6)

Moreover, multiplying (4) on the right by A2d and using (3) and (6) we get,

0 = 4dABdBAdA2d+ dA2dB2dA2d+ dB2dA2dA2d

=−4dABdBdA2dA+ dA2dB2dA2d− dB2dAdA2dA

= dA2dB2dA2d on Ĩ d: (7)
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Finally, for any b∈ Ĩ d and a∈ (Ĩ d)−1
[[d; A]; [[d; A]; B]] = [(dA− Ad); (dAB+ BAd− AdB− BdA)]

= dABAd− dA2dB− dABdA− AdBAd− dABdA

+dABAd− AdBAd− BdA2d

on Ĩ d, hence its square is

[[d; A]; [[d; A]; B]]2 = 2dA2dBAdBAd+ 4dABdA2dBAd+ 2dABdABdA2d

= 2dA2dABdBAd+ 4dABdA2dABd+ 2dABdBAdA2d

=−2AdA2dBdBAd− 4dABAdA2dBd− 2dABdBdA2dA
= 0 on Ĩ d

by (3), (6) and (7), and taking into account that dABd= dBAd since d[A; B]d= 0 by
(3). Then the inner derivation [[d; A]; [[d; A]; B]] has zero square on Ĩ d, so it is zero
itself, giving [[d; A]; [[d; A]; B]]=0 on Ĩ d for any b∈ Ĩ d. And using again nondegeneracy
of Ĩ d we get [d; A] = ad d(a) = 0 on Ĩ d for any a∈ (Ĩ d)−1, so d acts trivially on the
only graded part of Ĩ d on which it could be nonzero, i.e. d= 0 on Ĩ d.

1.8. Given a 3-graded ideal I = I1 ⊕ I0 ⊕ I−1 of a 3-graded Lie algebra L, it is easy
to check by considering the canonical projections onto the subspaces Ii, i=0;±1, that

Der(I; L) =
⊕

i=0;±1;±2
(Der(I; L))i ;

where each (Der(I; L))i consists of derivations on I of degree i.
In particular, the derivation algebra Der L of a 3-graded Lie algebra L is 5-graded.

From Proposition (1.7) and taking into account that for any derivation d on L, L̃d=L,
we get that Der L is in fact 3-graded when L is nondegenerate.

1.9. Corollary. The derivation algebra of any nondegenerate 6-torsion free 3-graded
Lie algebra is 3-graded itself.

2. Lie algebras and Jordan pairs of M-quotients

2.1. A 9lter F on a Jordan system or a Lie algebra is a nonempty family of nonzero
ideals such that

(F1) for any I1; I2 ∈F there exists I ∈F such that I ⊆ I1 ∩ I2.

Moreover, F is a power 9lter if

(F2) for any I ∈F there exists K ∈F such that K ⊆ I #,

where I # = [I; I ] for Lie algebras, I # = (QI+ I−; QI− I+) for Jordan pairs, I # = PI I for
Jordan triple systems, and I # = I 2 for Jordan algebras. We highlight the 9lter Fe of
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all essential ideals in V . When V is semiprime it is easy to show that Fe is a power
9lter, and that it coincides with the set Fs of all sturdy ideals in V (the proof of [32,
Lemma 1.2] applies here with the obvious changes).
2.2. The notion of Lie algebra of quotients Q for a Lie algebra L is introduced in

[32], and shown to be equivalent to Q being Fs-absorbed into L [32, 2.15], i.e. for
every nonzero element q∈Q there exists a sturdy ideal Iq such that 0 �= [q; Iq] ⊆ L.
This notion can be easily generalized to Lie algebras of quotients with respect to a
9lter just by requiring that the absorbing ideals belong to the 9lter.
In her work, Siles Molina builds the maximal Lie algebra of quotients of a semiprime

Lie algebra as a direct limit of derivations on all the ideals of Fs. Her construction can
be generalized to the nonsemiprime case by considering power 9lters of sturdy ideals:
The maximal Lie algebra of quotients QF(L) of L with respect to a power 9lter of
sturdy ideals F can be then built as the direct limit of derivations on ideals of F (cf.
[32, 3.1–3.4]),

QF(L) = lim→ Der(I; L); I ∈F:

Notice that powers of ideals in F are involved in the de9nition of a Lie product in
QF(L) (cf. [32, 3.4]), and that is the reason why we require that F be a power 9lter.
Moreover, as in [32, 3.6] the map x �→ [ad x; L] is a monomorphism of L into QF(L)
(we need sturdiness of the ideals of F to get injectivity), and QF(L) is maximal
among all Lie algebras of quotients of L with respect to F: for any nonzero element
s in a Lie algebra of quotients S of L with respect to F there exists Is ∈F such
that 0 �= [s; Is] ⊆ L, which implies (by sturdiness of the ideals in F) that the map
s �→ [ad s; Is] is a monomorphism of S into QF(L).

2.3. Arguing as in [26, p. 160], when 1
2 ∈� any power 9lter F on a 3-graded Lie

algebra L is co9nal [26, 0.5] with the power 9lter F̃={&1(I)⊕&0(I)⊕&−1(I) | I ∈F},
where &j denote the projections onto Lj, j = 0;±1. Therefore, QF(L) = QF̃(L), i.e.
when dealing with 3-graded Lie algebras we can assume that the 9lters we take consist
only of 3-graded ideals.

2.4. Proposition. For any nondegenerate 6-torsion free 3-graded Lie algebra and any
power 9lter of sturdy ideals F, the maximal Lie algebra of quotients QF(L) is
3-graded.

Proof. As mentioned in (2.3), we can assume without loss of generality that every
ideal in F is 3-graded.
Given an element q∈QF(L), we say q has degree i if there exists a graded ideal

I ∈F and a derivation d∈Der(I; L) of degree i in the equivalence class of q. Note
that this de9nition does not depend on the graded ideal I and the derivation d chosen
in q since we can always 9nd a common domain for two derivations in q.
Now, by (1.8), QF(L) is 5-graded. Moreover, there are no elements of degree ±2

in QF(L) because by (1.7) every derivation d∈Der(I; L) of degree ±2 (note that I
is nondegenerate by [36, Lemma 4]) can be restricted to an ideal of F contained in
[I; I ] on which d is zero.
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Following this notion for Lie algebras and the ideal absorption properties of Mar-
tindale systems of quotients in the associative setting (cf. [26, 1.3, 3.20]), we will
introduce a similar notion for Jordan pairs.
2.5. Let V be a Jordan pair and consider a 9lter F on V . We say that a Jordan

pair W is a pair of Martindale-like quotients (pair of M-quotients, for short) of V
with respect to F if W is F-absorbed into V , i.e. for each 0 �= q∈W� there exists
an ideal Iq ∈F such that

{q; I−�
q ; V �}+ {q; V−�; I �q } ⊆ V�

{I−�
q ; q; V−�} ⊆ V−�;

with {q; I−�
q ; V �}+ {q; V−�; I �q } �= 0 or {I−�

q ; q; V−�} �= 0.

2.6. Lemma. Let W be a Jordan pair of M-quotients for a Jordan pair V with
respect to a 9lter F. Then {q; I−�; V �}+{q; V−�; I �}+{I−�; q; V−�} �= 0 for any 0 �=
q∈W� and any sturdy ideal I in F. Moreover, if F is a power 9lter, {q; I−�; I �}+
{I−�; q; I−�} �= 0.

Proof. Let 0 �= q∈W� be F-absorbed into V by some Iq ∈F, and suppose that I is
a sturdy ideal of V such that {q; I−�; V �}+ {q; V−�; I �}+ {I−�; q; V−�}=0. Then, by
[20, JP14], for any a; b; u; v∈V

{v; u; {q; a; b}}= {q; a; {v; u; b}}+ {{v; u; q}; a; b} − {q; {u; v; a}; b};
so {v; u; {q; a; b}}=0 whenever u or v belong to I . Similarly, {v; {q; a; b}; u}=0 when u
or v are in I using again JP14, so {q; a; b} ∈AnnV (I)=0 when the element {q; a; b} is
in V (for example, when a or b belong to Iq). Therefore, {q; I−�

q ; V �}+{q; V−�; I �q }=0.
Analogously, one can also show that {I−�

q ; q; V−�}=0, leading to a contradiction with
q being F-absorbed by Iq into V .
Moreover, if F is a power 9lter, we can consider an ideal K of F contained in

QI I . Now [K+; V−] + [V+; K−] ⊆ [{I+; I−; I+}; V−] + [V+; {I−; I+; I−}] ⊆ [I+; I−]
using the Jacobi identity, hence

{q; K−�; V �}+ {q; V−�; K�} ⊆ {q; I−�; I �}
and by [20, JP16]

{K−�; q; V−�} ⊆ {V−�; {I�; I−�; q}; I−�}+ {V−�; I �; {I−�; q; I−�}}:
In particular, {q; I−�; I �} + {I−�; q; I−�} �= 0 since {q; K−�; V �} + {q; V−�; K�} +
{K−�; q; V−�} �= 0.

As a consequence of this lemma, when dealing with 9lters of sturdy ideals one can
9nd “common absorbing ideals” for any 9nite set of nonzero elements in a pair of
M-quotients.

2.7. Corollary. Let W be a Jordan pair of M-quotients for a Jordan pair V with
respect to a 9lter of sturdy ideals F. Then for every 0 �= q1; : : : ; qn ∈W there exists
an ideal I in F that absorbs all the qi, i = 1; : : : ; n.
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Proof. It is enough to consider an ideal I ∈F contained in
⋂n
i=1 Iqi ∈F and use (2.6)

to show that it absorbs all the elements q1; : : : ; qn into V in a nontrivial way.

Now we show that regularity conditions such as semiprimeness, primeness and non-
degeneracy are inherited by Jordan pairs of M-quotients.

2.8. Proposition. Let V 6W be Jordan pairs such that W is a pair of M-quotients
of V with respect to a 9lter F. If V is nondegenerate (semiprime, prime), then W
is nondegenerate (semiprime, prime) as well.

Proof. It is straightforward to see that every nonzero ideal of W has nonzero intersec-
tion with V . Thus, if V is semiprime (prime) then so is W . Let w∈W� be an absolute
zero divisor of W , and let y∈V−�, z ∈V� be such that {w; y; z} ∈V�. By [20, JP21],
for any a∈V−�, we have

Q{w;y; z}a=QwQyQza+ QzQyQwa+ Dz;yQwDy;za− Qw;QzQywa

=−{w; a; QzQyw}
since w is an absolute zero divisor. Let b∈V−�. By the above equality,

QQ{w; y; z}ab=Q{w;a;QzQyw}b=−{w; b; QQzQywQaw}
=−{w; b; QzQyQwQyQzQaw}= 0;

using again that w is an absolute zero divisor. Then, by the nondegeneracy of V ,
Q{w;y; z}a= 0 for every a∈V−�, and

{w; y; z}= 0 whenever {w; y; z} ∈V�: (8)

Let w∈W� be a nonzero absolute zero divisor of W as before, and now let x; z ∈V−�

be such that {x; w; z} ∈V−�. By [20, JP20], for any a∈V� we have

Q{x;w; z}a=QxQwQza+ QzQwQxa+ Qx;zQwQx;za− {Qxw; a; Qzw}
= {Qxw; a; Qzw};

since w is an absolute zero divisor. Hence, by [20, JP21], for b∈V� we have

QQ{x; w; z}ab=Q{Qxw;a;Qzw}b= QQxwQaQQzwb+ QQzwQaQQxwb

−{Qzw; b; QQxwQaQzw}+ {Qxw; a; QQzw{a; Qxw; b}}= 0;
since w is an absolute zero divisor, so is any Qxw [20, JP3]. Again, by nondegeneracy
of V , we get

{x; w; z}= 0 whenever {x; w; z} ∈V−�: (9)

Therefore, from (8) and (9) and taking into account that W is F-absorbed into V , we
get w = 0, which completes the proof.

In the following proposition we show how the notions of Jordan pairs of M-quotients
and Lie algebras of quotients are related. The connection of Jordan pairs with Lie
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algebras goes through the TKK construction. Before dealing with systems of quotients,
let us relate 9lters on Jordan pairs and their TKK Lie algebras.

2.9. Lemma. Let F be a 9lter on a Jordan pair V , and consider

FTKK = {K = idTKK(V )((K+; K−)) | (K+; K−)∈F};
where idTKK(V )((K+; K−))=K+⊕([K+; V−]+[V+; K−])⊕K− is the ideal of TKK(V )
generated by K+ ∪ K−. Then,

(i) FTKK is a 9lter on TKK(V ), and it is a power 9lter if F is so.
(ii) The ideal K generated in TKK(V ) by an ideal (K+; K−) of V is sturdy in

TKK(V ) if and only if (K+; K−) is sturdy in V .

Proof. (i) It is straightforward to check that the intersection of two ideals in FTKK

contains again an ideal in the 9lter. Moreover, the Lie square of the ideal K generated
in TKK(V ) by (K+; K−) contains the ideal generated in TKK(V ) by any ideal of V
contained in (QK+K−; QK−K+).
(ii) Let K be the ideal of TKK(V ) generated by a sturdy ideal (K+; K−) of V . If

x = x+ + x0 + x− ∈AnnTKK(V )(K), then both x+ and x− belong to AnnV ((K+; K−)):
{x�; K−�; V �} + {x�; V−�; K�} ⊆ [x�; K0] and the latter is zero because it is the
�-projection of [x; K0]=0 onto V�, and similarly, {K−�; x�; V−�} is the −�-projection
of [[K−�; x]; V−�] = 0 onto V−�. Hence x= x0 and for any y∈V�, [x; y]∈V�. Using
the Jacobi identity several times, we can show that [x; y]∈AnnV ((K+; K−)) = 0, so
[x; y] = 0 for any y∈V�, � = ±, which by de9nition of TKK(V ) gives x = 0. The
converse is straightforward.

2.10. Theorem. For any Jordan pair of M-quotients W of V with respect to a 9lter
of sturdy ideals F, TKK(V ) ⊆ TKK(W ). Moreover, if we consider a power 9lter
F of sturdy ideals on V , TKK(W ) is a Lie algebra of quotients for TKK(V ) with
respect to the power 9lter of sturdy ideals FTKK.

Proof. Recall [31, 1.5(6)] that

TKK(V ) ∼= (V+ ⊕ [V+; V−]⊕ V−)=CV ;

TKK(W ) ∼= (W+ ⊕ [W+; W−]⊕W−)=CW ;

where the Lie brackets are taken in any Lie algebra L containing V and W as subpairs,
and CV ={x∈ [V+; V−] | [x; V �]=0; �=±}, CW ={x∈ [W+; W−] | [x;W�]=0; �=±}.
To show that TKK(V ) ⊆ TKK(W ) it is enough to prove that

CW = {q∈ [W+; W−] | [q; V+] = 0 = [q; V−]}:
Set q∈ [W+; W−] with [q; V+]=0=[q; V−] and suppose that there exists 0 �= p∈W�

such that [q; p] �= 0. Since 0 �= p; [q; p]∈W� (by 2.7) there exist an ideal I in F that
absorbs both p and [q; p] into V in a nontrivial way. Then for all v∈V−� and all
y∈ I−�, 0=[q; {v; p; y}]=[q; [[v; p]; y]]=[[q; [v; p]]; y]+[[v; p]; [q; y]]=[[[q; v]; p]; y]+
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[[v; [q; p]]; y]={v; [q; p]; y}, hence {V−�; [q; p]; I−�}=0. Similarly, {[q; p]; V−�; I �}+
{[q; p]; I−�; V �}= 0, giving a contradiction.
Now suppose that F is a power 9lter of sturdy ideals and let 0 �= q∈TKK(W ). Then

there exist q+i ∈W+ and q−
i ∈W−, i=0; 1; : : : ; n, such that q=q+0 +

∑n
i=1 [q

+
i ; q

−
i ]+q

−
0 .

By (2.7) let I be a sturdy ideal in F which absorbs all the q�i , n= 0; 1; : : : ; n, �=±.
Now let us consider an ideal K ∈F contained in QI I (which exists because F is a
power 9lter). Let us denote by K̃ the ideal of TKK(V ) generated by K ,

K̃ = K+ ⊕ ([K+; V−] + [V+; K−])⊕ K−;

which belongs to FTKK. We claim that [x; [K̃ ; K̃]] ⊆ TKK(V ), which is a consequence
of the Jacobi identity and the following facts:

(1) [q�i ; K
−�] ⊆ [V+; I−] + [I+; V−]; i = 0; : : : ; n; � =±,

(2) [q�i ; ([K
+; V−] + [V+; K−])] ⊆ V�; i = 0; : : : ; n; � =±,

(3) [[q+i ; q
−
i ]; K̃] ⊆ V+ ⊕ ([q+i ; V−] + [V+; q−

i ])⊕ V−; i = 1; : : : ; n,
(4) [[[q+i ; q

−
i ]; K̃]; K̃] ⊆ K̃ + TKK(V ); i = 1; : : : ; n.

Indeed, (1) follows from [q�i ; K
−�] ⊆ [q�i ; {I−�; I �; I−�}] ⊆ [{q�i ; I−�; I �}; I−�] +

[{I−�; q�i ; I
−�}; I �] + [I−�; {q�i ; I−�; I �}] ⊆ [V+; I−] + [I+; V−], (2) holds directly, and

(3) and (4) are consequences of the previous containments.
By (2.9), FTKK is a power 9lter of sturdy ideals so there exists a sturdy ideal

M ∈FTKK which is contained in [K̃ ; K̃] and such that [q;M ] ⊆ TKK(V ). To show
that [q;M ] �= 0, let us 9rst suppose that q�0 �= 0 for some � = ±. Then, by (2.6),
either 0 �= {q�0 ; M−�; V �} + {q�0 ; V−�;M�} = [q; ([M−�; V �] + [V−�;M�])] ⊆ [q;M ]
or 0 �= {V−�; q�0 ; M

−�} = [V−�; [q;M−�]], which gives again [q;M ] �= 0. If 0 �= q
=

∑
[q+i ; q

−
i ]∈TKK(W ), there exists y∈W� for some �=± such that [q; y] �= 0. We

can then 9nd an ideal N ∈FTKK that absorbs both y and [q; y] into TKK(V ) and any
P ∈FTKK contained in [M∩N;M∩N ] satis9es 0 �= [[q; y]; P] ⊆ [q; [y; P]]+[[q; P]; y] ⊆
[q; [[y; N ]; M ]]+ [[q;M ]; y] ⊆ [q;M ]+ [[q;M ]; y] just by repeating the argument above
for nonzero elements in W+ ⊕W−.
Therefore, we have shown that any 0 �= q∈TKK(W ) can be absorbed into TKK(V )

in a nontrivial way by ideals in FTKK.

2.11. Example. In Zelmanov’s classi9cation of strongly prime Jordan pairs we 9nd
examples of M-quotients. Recall [2, 5.4] that a strongly prime hermitian Jordan pair
V has the form

H (R; ∗) / V 6H (Q(R); ∗)
for a ∗-prime associative pair R and its associative Martindale pair of symmetric quo-
tients Q(R). We claim that H (Q(R); ∗) is a Jordan pair of M-quotients of H (R; ∗). For
any q∈H (Q(R); ∗)� there exists a ∗-ideal I of R that absorbs q into R in an associative
way (cf. [26, 3.20; 9, 2.5(i)]), hence all the triple products {H (I; ∗)�; H (R; ∗)−�; q},
{H (R; ∗)�; H (I; ∗)−�; q} and {H (I; ∗)−�; q; H (R; ∗)−�} belong to H (R; ∗). Moreover, for
any 0 �= q∈H (R; ∗)� and any nonzero ∗-ideal I of R, we have that either {q; H (I; ∗)−�;
H (I; ∗)�} or {H (I; ∗)−�, q; H (I; ∗)−�} are nonzero. Indeed, we can consider the Jordan
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ideal H (I; ∗), which is nonzero by [3, 2.1], and a nonzero ideal K of H (R; ∗) contained
in the Jordan cube QH (I;∗)H (I; ∗) of H (I; ∗) (notice that the cube of H (I; ∗) is a nonzero
semi-ideal of H (R; ∗) by semiprimeness of H (R; ∗) and K can be taken as the intersec-
tion of the two ideals of H (R; ∗) determined by the + and − parts of QH (I;∗)H (I; ∗)).
Then, by [9, 3.2] 0 �= QqK−�= {q; K−�; q} ⊆ {q; {H (I; ∗)−�; H (I; ∗)�; H (I; ∗)−�}; q} ⊆
{{q; H (I; ∗)−�; H (I; ∗)�}; H (I; ∗)−�; q} + {H (I; ∗)�; {H (I; ∗)−�; q; H (I; ∗)−�}; q}, so in
particular either {q; H (I; ∗)−�; H (I; ∗)�} or {H (I; ∗)−�; q; H (I; ∗)−�} must be nonzero.

2.12. Example. In the literature of Jordan systems we 9nd analogues of concepts that
in the associative setting are tied to Martindale rings of symmetric quotients. In that
sense, extended centroids and extended central closures were de9ned by Montaner (cf.
[29]) in order to give Martindale and Posner type theorems for Jordan systems, and
are also related with systems of M-quotients.
Given a nondegenerate Jordan pair V , it is trivial that any element q=

∑
[0i ⊗xi] in

the extended central closure C(V )V of V can be absorbed into V by an essential ideal.
Indeed, it suAces to consider the intersection I of all the domains Ii of the 0i, which
is again an essential ideal and absorbs the element q into V . Therefore, the extended
central closure of a nondegenerate Jordan pair is a pair of M-quotients of the original
Jordan pair with respect to the 9lter of all essential ideals.

2.13. Example. Jordan systems of M-quotients allow a uni9ed study of Jordan struc-
tures, without the usual distinction of PI and non-PI cases. A combination of the two
examples above is also described in terms of systems of M-quotients.
Let V be a vector space over a 9eld � of dimension �= 2, and let q :V → �

be a nondegenerate quadratic form on V with associated bilinear form q(x; y) :=
q(x + y)− q(x)− q(y), for x; y∈V . Then V1 = (V; V ) becomes a Jordan pair for the
product given by Qxy = q(x; y)x − q(x)y. It is called the CliVord pair de9ned by q,
and it is simple [13, p. 14, ex. 4]. By (2.12), C(V1)V1 is a Jordan pair of M-quotients
of V1 with respect to the 9lter F1 = {V1}. On the other hand, if we consider the set
of symmetric elements V2 =H (R; ∗) of a �-associative pair R with involution ∗ which
is ∗-prime, we know from (2.11) that H (Q(R); ∗) is a Jordan pair of M-quotients of
V2 with respect to the 9lter F2 of all nonzero ideals of V2. Then, the Jordan pair
C(V1)V1 ⊕ H (Q(R); ∗) is a Jordan pair of M-quotients of V1 ⊕ V2 with respect to the
9lter F= {V1 ⊕ I | I ∈F2}.

2.14. Example. Jordan systems of M-quotients include relevant scalar extensions. In-
deed, if J is a strongly prime unital Jordan algebra over a domain � acting on J
without torsion (for example, � = 1(J ), the centroid of J ), then V (J ) is a strongly
prime Jordan pair and V (J ) ⊗� �−1� is a Jordan pair of M-quotients of V (J ) with
respect to the 9lter of all nonzero ideals of V (J ).

3. The maximal Jordan pair of M-quotients

In this paragraph we build the maximal Jordan pair of M-quotients for any given
nondegenerate Jordan pair V with respect to a power 9lter of sturdy ideals F. Our
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construction is based on the fact that the maximal Lie algebra of quotients of a non-
degenerate 3-graded Lie algebra is again 3-graded. From now on we will assume that
1
6 ∈�.

3.1. Construction of the maximal Jordan pair of M-quotients. If V is a nondegenerate
Jordan pair, then TKK(V ) is a nondegenerate 3-graded Lie algebra (by [9, 1.6]). Let
us consider a power 9lter F of sturdy ideals on V and the power 9lter again of sturdy
ideals FTKK , and let us build the maximal Lie algebra of quotients QFTKK (TKK(V ))
with respect to FTKK, which is 3-graded by (2.4). Notice that (QFTKK (TKK(V ))1;
QFTKK (TKK(V ))−1) is a Jordan pair itself since

1
6 ∈� (1.2), and it will be called the

maximal Jordan pair of M-quotients of V with respect to the 9lter F, and will be
denoted by QF(V ).

3.2. Theorem. Given a nondegenerate Jordan pair V and a power 9lter of sturdy
ideals F, the map v �→ [ad v; TKK(V )] de9nes a monomorphism of V into QF(V ).
Moreover, QF(V ) is a pair of M-quotients of V with respect to F, and it is the
maximal Jordan pair satisfying this property.

Proof. To show that V can be seen as a subpair of QF(V ) it is enough to consider
the composition of maps

V� ,→ TKK(V ) ,→ QFTKK (TKK(V )) → QF(V )�;

where the 9rst map above is just the inclusion of V into its TKK Lie algebra, the
second one is the imbedding through the adjoint map of the Lie algebra TKK(V ) into
its maximal Lie algebra of quotients with respect to FTKK [32, 3.6], and the third
map is the projection of the 3-graded Lie algebra Q(TKK(V )) onto its 1 and −1
parts.
By construction, every nonzero element q in QF(V )� (�=±) can be FTKK-absorbed

into TKK(V ) by an ideal of the form K+⊕([K+; V−]+[V+; K−])⊕K−, for (K+; K−)∈
F. Therefore, if 0 �= [q; K−�]∈ IDer(V ), then 0 �= {q; K−�; V �} + {K−�; q; V−�} ⊆
V+ ⊕ V−, and, otherwise, 0 �= [q; ([K+; V−] + [V+; K−])] = {q; V−�; K�} + {q; K−�;
V �} ⊆ V�, i.e. QF(V ) is a Jordan pair of M-quotients of V with respect to F.
Finally, maximality of QF(V ) follows by (2.10) from the maximality of the Lie

algebra QFTKK (TKK(V )) with respect to FTKK . Indeed, QF(V ) coincides with the 1
and −1 parts of the maximal Lie algebra of quotients of TKK(V ) with respect to
FTKK.

4. Jordan triple systems of M-quotients

In this paragraph we introduce the notion of Jordan triple system of quotients with
respect to a 9lter and study some of its properties. The connection of pairs and triple
systems through the functor V ( ) is the key point for our construction of a maximal
triple system of M-quotients with respect to a 9xed 9lter.
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4.1. Let T be a Jordan triple system and let F be a 9lter on T . We say that the
Jordan triple system Q is a Jordan triple system of M-quotients of T with respect
to F if Q is F-absorbed into T , i.e. for each 0 �= q∈Q there exists an ideal Iq ∈F
such that

0 �= {q; Iq; T}+ {q; T; Iq}+ {Iq; q; T} ⊆ T:

Notice that this notion is compatible with the de9nition of Jordan pair of M-quotients.
Indeed, Q¿T is a Jordan triple system of M-quotients of T with respect to a 9lter
F if and only if V (Q) is a Jordan pair of M-quotients of V (T ) with respect to the
9lter V (F) = {(I; I) | I ∈F}.
Furthermore, F is a power 9lter on a Jordan triple system T if and only if V (F)

is a power 9lter on V (T ), and any ideal I in T is sturdy if and only if (I; I) is a
sturdy ideal of V (T ), hence F is a 9lter of sturdy ideals on T if and only if V (F)
is a 9lter of sturdy ideals on V (T ).
Therefore, going through the functor V ( ), we can rephrase (2.6)–(2.8) in terms of

Jordan triple systems.

4.2. Lemma. Let Q be a Jordan triple system of M-quotients for a Jordan triple
system T with respect to a 9lter F. Then {q; I; T} + {q; T; I} + {I; q; T} �= 0 for
any 0 �= q∈Q and any sturdy ideal I in F. Moreover, if F is a power 9lter,
{q; I; I}+ {I; q; I} �= 0.

4.3. Corollary. Let Q be a Jordan triple system of M-quotients for a Jordan triple
system T with respect to a 9lter of sturdy ideals F. Then for every 0 �= q1; : : : ; qn ∈Q
there exists an ideal I in F that absorbs all the qi, i = 1; : : : ; n.

4.4. Proposition. Let T6Q be Jordan triple systems such that Q is a triple system
of M-quotients of T with respect to a 9lter F. If T is nondegenerate (semiprime,
prime), then Q is nondegenerate (semiprime, prime) as well.

Proof. For (semi)primeness, just notice that any nonzero ideal of Q has nonzero inter-
section with T . And for the inheritance of nondegeneracy, use (2.8) together with the
fact that any Jordan triple system is nondegenerate if and only its associated double
pair is nondegenerate.

4.5. Construction of the maximal Jordan triple system of M-quotients. Let T be a
nondegenerate Jordan triple system and F a power 9lter of sturdy ideals on T .
Let V (T ) be the double Jordan pair associated to T and V (F) the power 9lter of

sturdy ideals on V (T ) induced by F. Recall that the maximal Jordan pair QV (F)(V (T ))
of M-quotients of V (T ) arises as the 1 and −1 parts of the 3-graded Lie algebra

QV (F)TKK (TKK(V (T ))) = {[d; I ]‖I ∈V (F)TKK
and d∈Der(I;TKK(V (T )))}:

Let us prove that Jordan pair QV (F)(V (T )) = (Q+;Q−) is isomorphic to the double
pair of a triple system.
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Let us denote by 3 :QV (F)(V (T )) → QV (F)(V (T ))op the map de9ned by 3([d; I ])=
[dex; I ] (cf. (1.5)), which is clearly a Jordan pair isomorphism (the isomorphism 3
can be seen to act as the exchange map on V (T )). Therefore, we can de9ne a triple
product in Q+ by {x; y; z}={x;3(y); z}. This triple system will be called the maximal
Jordan triple system of M-quotients of T with respect to F, and will be denoted by
QF(T ).

4.6. Theorem. Given a nondegenerate Jordan triple system T and a power 9lter of
sturdy ideals F, T imbeds into QF(T ). Moreover, QF(T ) is a triple system of
M-quotients of T with respect to F, and it is the maximal Jordan triple system
satisfying this property.

Proof. Since 3 is the exchange map on V (T ), it implies that T can be seen as a triple
subsystem of QF(T ). Moreover, QF(T ) is a Jordan triple system of M-quotients of T
with respect to F since, by construction, the double pair V (QF(T )) is a Jordan pair
of M-quotients of V (T ) with respect to V (F) (see (4.1)).
Finally, given any Jordan triple system S of M-quotients of T , V (S) imbeds into

QV (F)(V (T )), and 3 acts again as the exchange map on V (S): for every s∈ S,
and any x; y∈T such that {x; y;3(s)} ∈T and {x; y; s} ∈T (resp. {x;3(s); y} ∈T
and {x; s; y} ∈T ) we have that {x; y; (3(s) − s)} = {3(x); 3(y); 3(s)} − {x; y; s} =
3({x; y; s})−{x; y; s}=0 (resp. {x; (3(s)− s); y}=0), so s=3(s) since S is a Jordan
triple system of M-quotients of T . Therefore, S can be seen as a triple subsystem of
QF(T ), hence QF(T ) is maximal.

5. Jordan algebras of M-quotients

5.1. Let J be a Jordan algebra and F a 9lter on J . We will say that a Jordan algebra
Q is a Jordan algebra of M-quotients of J with respect to F if Q is F-absorbed
into J , i.e. for each 0 �= q∈Q there exists an ideal Iq ∈F such that

0 �= q ◦ Iq ⊆ J:

Let us relate the notions of algebra and triple system of M-quotients. Notice that
every (power) 9lter F of ideals on a Jordan algebra J is also a (power) 9lter of ideals
on the underlying triple system JT .

5.2. Proposition. Let J be a Jordan algebra and let F be a power 9lter of sturdy
ideals on J . Then Q is a Jordan algebra of M-quotients of J with respect to F if
and only if QT is a Jordan triple system of M-quotients of JT with respect to F.

Proof. First notice that J is sturdy because it contains some sturdy ideals. Therefore,
by (0.4) F is a power 9lter of sturdy ideals on the underlying triple system JT .
Now suppose that Q is a Jordan algebra of M-quotients of J with respect to F,

and let q be a nonzero element of Q. If Iq is an ideal of F such that 0 �= q ◦ Iq ⊆ J ,
let us see that any ideal K of F contained in PIq Iq F-absorbs q into JT .
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For every x1; x2; x3 ∈ Iq and every z ∈ J , by [20, JP16] and (0.1)(2),
{q; {x1; x2; x3}; z}= {q; x3; {x2; x1; z}}+ {q; x1; {z; x3; x2}}

−{q; {x1; z; x3}; x2} ⊆ {q; Iq; Iq} ⊆ J;

i.e. {q; K; J} ⊆ J , and similarly {q; J; K}+ {J; q; K} ⊆ J .
Moreover, if we take y∈ Iq such that q ◦ y �= 0, then {q ◦ y; K; J}+ {q ◦ y; J; K}+

{J; q ◦ y; K} �= 0 since K is a sturdy ideal of JT . Now it suAces to use the formula
(which is [23, 0.7] linearized on the second variable)

t ◦ {x; y; z}= {t ◦ x; y; z} − {x; t ◦ y; z}+ {x; y; t ◦ z} (10)

to get that {q; J; K} + {J; q; K} + {q; K; J} �= 0. Indeed, if {q ◦ y; K; J} �= 0, then 0 �=
{y ◦ q; K; J} ⊆ y ◦ {q; K; J}+ {q; y ◦ K; J}+ {q; K; y ◦ J} ⊆ y ◦ {q; K; J}+ {q; K; J}+
{q; K; J}, giving {q; J; K} + {J; q; K} + {q; K; J} �= 0. Use a similar argument if {q ◦
y; J; K} �= 0 or if {J; q ◦ y; K} �= 0.
Conversely, if QT is a Jordan triple system of M-quotients of JT with respect to

F and q is a nonzero element of Q, there exists an ideal I ∈F such that 0 �=
{q; I; J}+ {q; J; I}+ {I; q; J} ⊆ J . If we consider an ideal K ∈F contained in I 2, then

q ◦ K ⊆ q ◦ (I ◦ I) ⊆ {q; I; I} ⊆ J

because 2q ◦ (y1 ◦y2)= {y1; y2; q}+ {y2; y1; q}. Moreover, the product q ◦K �= 0 since
otherwise {q; K; K}+{K; q; K} ⊆ (q◦K)◦K+q◦K2=0, and that contradicts (4.2).

5.3. Proposition. Let Q be a Jordan algebra of M-quotients of a Jordan algebra J
with respect to a power 9lter of sturdy ideals F on J . Then there exists a unital
Jordan algebra Q̃, extension of Q, such that Q̃ is a Jordan algebra of M-quotients
of J with respect to F.

Proof. Let us denote by Q1 the unital hull of Q and consider

K = {q∈Q1 | ∃I ∈F with q ◦ I = 0}:
We claim that K is an ideal of Q1: On the one hand, if p; q∈K and we denote by Ip
and Iq two ideals in F such that p ◦ Ip and q ◦ Iq are zero, then (p+ q) ◦ (Ip ∩ Iq)=0,
hence there exists an ideal Ip;q ∈F contained in Ip ∩ Iq such that (p + q) ◦ Ip;q = 0,
i.e. p+ q∈K . On the other hand, for any q∈K and x = p+ 01∈Q1,

(q ◦ (p+ 01)) ◦ t = (q ◦ p) ◦ t + 20(q ◦ t)
= (q ◦ t) ◦ p− (p ◦ t) ◦ q+ 2{q; p; t}+ 20(q ◦ t) (11)

for any t ∈Q by (0.1)(2). Let Iq be an ideal in F such that q ◦ Iq = 0 and let I ′ ∈F
be an absorbing ideal for p (i.e. p◦ I ′ ⊆ J ). Then for any t1; t2; t3 ∈ Iq∩ I ′ by (5.2)(10)
we have

p ◦ {t1; t2; t3}= {p ◦ t1; t2; t3} − {t1; p ◦ t2; t3}+ {t1; t2; p ◦ t3} ∈ Iq; (12)

hence

(p ◦ {t1; t2; t3}) ◦ q∈ Iq ◦ q= 0: (13)
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Moreover, if each t1; t2; t3 ∈ (Iq ∩ I ′)3, by [20, JP16],

{q; p; {t1; t2; t3}}= {q; {t2; t1; p}; t3} − {q; t2; {t3; p; t1}}
+{q; {t2; t3; p}; t1} ⊆ {q; Iq; Iq} (by (0:1)(2) and (12))

= 0: (14)

Therefore, if we take an ideal Iq;x of F contained in ((Iq ∩ I ′)3)3 and use (11), (13)
and (14) we get (q ◦ x) ◦ Iq;x = 0, i.e. q ◦ x∈K .
Moreover, since F is a power 9lter of sturdy ideals on J , K∩Q=0: If 0 �= x∈K∩Q,

then there exists an absorbing ideal I ′ ∈F such that 0 �= x ◦ I ′ ⊆ J ∩K (since K is an
ideal of Q1). Since x ◦ I ′ is contained into K , for any y∈ I ′ there exists Ix;y ∈F such
that (x◦y)◦Ix;y=0, hence x◦y∈AnnJ (I 2x;y) by [7, 2.5, 2.9], but AnnJ (I 2x;y)=0 because
I 2x;y contains a sturdy ideal of the 9lter, thus x ◦ I ′ = 0, leading to a contradiction.
Finally, the quotient Q̃=Q1=K is a Jordan algebra of M-quotients of J with respect

to F: Let (p+ 01) be a nonzero element of Q̃ and consider an ideal I of F such
that I ◦ p ⊆ J . Then, by construction of Q̃, I ◦ (p+ 01) is nonzero and it is clearly
contained in J .

5.4. Construction of the maximal Jordan algebra of M-quotients. Let J be a non-
degenerate Jordan algebra, let F be a power 9lter of sturdy ideals on J , and con-
sider QF(JT ) the maximal Jordan triple system of M-quotients of JT with respect
to F (4.6). Since there exists a unital Jordan algebra J̃ of M-quotients of J with
respect to F by (5.3), J̃ T ⊆ QF(JT ) by (5.2) (notice that J is a Jordan algebra of
M-quotients of itself).
Let us check that QF(JT ) has a Jordan algebra structure. If we denote the unit

of J̃ by 1, we claim that P1q = q for every q∈QF(JT ). Indeed, if P1q − q �= 0 we
could always 9nd x; y∈ J such that 0 �= {(P1q − q); x; y} + {x; (P1q − q); y} ∈ J and
at the same time {q; x; y} + {x; P1q; y} ∈ J using (4.3) because QF(JT ) is a Jordan
triple system of M-quotients of JT . But using that 1 is the unit of J̃ and [20, JP3],
{P1q; x; y}= {P1q; x; P1y}= P1{q; P1x; y}= {q; x; y} and {x; P1q; y}= P1{x; P1q; y}=
{P1x; q; P1y}= {x; q; y}, leading to a contradiction.
Therefore, by (0.2) QF(JT ) is a unital Jordan algebra with product p◦q={p; 1; q}.

This Jordan algebra will be called the maximal Jordan algebra of M-quotients of J
with respect to F and denoted by QF(J ).

5.5. Theorem. Given a nondegenerate Jordan algebra J and a power 9lter of sturdy
ideals F, J imbeds into QF(J ). Moreover, QF(J ) is a unital Jordan algebra of
M-quotients of J with respect to F, and it is the maximal Jordan algebra satisfying
this property.

Proof. It is clear that J is a subalgebra of QF(J ). Moreover, since the underlying
triple system of QF(J ) is a Jordan triple system of M-quotients of JT , QF(J ) is a
Jordan algebra of M-quotients of J with respect to F by (5.2).
Furthermore, if S is a Jordan algebra of M-quotients of J , we can consider by (5.3)

a unital Jordan algebra S̃ of M-quotients of J such that S is a subalgebra of S̃. So its
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underlying triple system S̃T is a Jordan triple system of M-quotients of JT by (5.2)
and S ⊆ S̃T ⊆ QF(J ) = QF(JT ). Now, arguing as in (5.4), the unit 1̃S̃ of S̃ satis9es
that x ◦S̃ y= {x; 1̃S̃ ; y} and x ◦S̃ y coincides with the algebra product x ◦Q y in QF(J ).
Finally, S is a subalgebra of S̃ and S̃ is a subalgebra of QF(J ), so S is a subalgebra
of QF(J ), i.e. QF(J ) is maximal among all Jordan algebras of M-quotients of J .

5.6. Final remark. In a forthcoming work it will be shown that Zelmanov’s classi9ca-
tion of strongly prime Jordan algebras [35] can be expressed in terms of algebras of
M-quotients, unifying both PI and non-PI cases (see (2.11)–(2.13)).

Acknowledgements

The authors would like to thank Prof. J.A. Anquela for his careful reading of this
manuscript and his valuable suggestions and comments, and the referee for his/her
interesting remarks and suggestions.

References

[1] A. Amitsur, On rings of quotients, Sympos. Math. 8 (1972) 149–164.
[2] A. D’Amour, Quadratic Jordan Systems of Hermitian type, J. Algebra 149 (1992) 197–233.
[3] J.A. Anquela, T. Cort,es, K. McCrimmon, F. Montaner, Strong primeness of hermitian Jordan systems,
J. Algebra 198 (1997) 311–326.

[4] D.J. Britten, On prime Jordan rings H (R) with chain condition, J. Algebra 27 (1973) 414–421.
[5] D.J. Britten, Goldie-like conditions on Jordan matrix rings, Trans. Amer. Math. Soc. 190 (1974)
87–98.

[6] D.J. Britten, On semiprime Jordan rings H (R) with ACC, Proc. Amer. Math. Soc. 45 (1974) 175–178.
[7] A. Fern,andez L,opez, On annihilators in Jordan algebras, Publ. Mat. 36 (2A) (1992) 569–589.
[8] A. Fern,andez L,opez, E. Garc,-a Rus, F. Montaner, Goldie theory for Jordan algebras, J. Algebra 248
(2) (2002) 397–471.

[9] E. Garc,-a, Tits–Kantor–Koecher algebras of strongly prime Hermitian Jordan pairs. J. Algebra, to appear.
[10] E. Garc,-a, E. Neher, Tits–Kantor–Koecher superalgebras of Jordan superpairs covered by grids, Comm.

Algebra 31 (2003) 3335–3375.
[11] N. Jacobson, Lie Algebras, Interscience Publishers, New York, 1962.
[12] N. Jacobson, Structure and Representations of Jordan Algebras, American Mathematical Society

Colloquium Publications, Vol. 39, American Mathematical Society, Providence, RI, 1968.
[13] N. Jacobson, Structure Theory of Jordan Algebras, University of Arkansas Lecture Notes in Mathematics,

Vol. 5, The University of Arkansas., Falletteville, Ark, 1981.
[14] I.L. Kantor, Classi9cation of irreducible transitive diVerential groups, Dokl. Akad. Nauk SSSR 158

(1964) 1271–1274.
[15] I.L. Kantor, Non-linear transformation groups de9ned by general norms of Jordan algebras, Dokl. Akad.

Nauk SSSR 172 (1967) 176–180.
[16] I.L. Kantor, Some generalizations of Jordan algebras, Trudy Sem. Vektor. Tenzor. Anal. 16 (1972)

407–499.
[17] M. Koecher, Imbedding of Jordan algebras into Lie algebras I, Amer. J. Math. 89 (1967) 787–816.
[18] M. Koecher, Imbedding of Jordan algebras into Lie algebras II, Amer. J. Math. 90 (1968) 476–510.
[19] T.Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, Vol. 198. Springer, New

York, 1998.
[20] O. Loos, Jordan Pairs, Lecture Notes in Mathematics, Vol. 460, Springer, New York, 1975.



E. Garc��a, M.G. Lozano / Journal of Pure and Applied Algebra 194 (2004) 127–145 145

[21] W.S. Martindale, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969)
576–584.

[22] C. Mart,-nez, The ring of fractions of a Jordan algebra, J. Algebra 237 (2) (2001) 798–812.
[23] K. McCrimmon, The Zelmanov nilpotence theorem for quadratic Jordan algebras, J. Algebra 63 (1980)

76–97.
[24] K. McCrimmon, Zelmanov’s prime theorem for quadratic Jordan algebras, J. Algebra 76 (1982)

297–326.
[25] K. McCrimmon, Strong prime inheritance in Jordan systems, Algebras Groups Geom. 1 (1984)

217–234.
[26] K. McCrimmon, Martindale systems of symmetric quotients, Algebras Groups Geom. 6 (1989)

153–237.
[27] K. McCrimmon, E. Zelmanov, The structure of strongly prime quadratic Jordan algebras, Adv. in Math.

69 (2) (1988) 133–222.
[28] F. Montaner, Local PI theory of Jordan system I, J. Algebra. 216 (1999) 302–327.
[29] F. Montaner, Local PI theory of Jordan system II, J. Algebra. 241 (2001) 473–514.
[30] S. Montgomery, Rings of quotients for a class of special Jordan rings, J. Algebra 31 (1974) 154–165.
[31] E. Neher, Lie algebras graded by 3-graded root systems and Jordan pairs covered by grids, Amer.

J. Math. 118 (2) (1996) 439–491.
[32] M. Siles Molina, Algebras of quotients of Lie algebras, J. Pure Appl. Algebra 188 (2004) 175–188.
[33] J. Tits, Une classe d’algWebres de Lie en relation avec les algWebres de Jordan, Indag. Math. 24 (1962)

530–535.
[34] Y. Utumi, On quotient rings, Osaka Math. J. 8 (1956) 1–18.
[35] E.I. Zelmanov, Prime Jordan algebras II, Siberian Math. J. 24 (1983) 73–85.
[36] E.I. Zelmanov, Lie algebras with an algebraic adjoint representation, Math. USSR Sb. 49 (2) (1984)

537–552.
[37] E.I. Zelmanov, Goldie theorems for Jordan algebras, Sibirsk. Mat. Zh. 28 (6) (1987), 44–52,

(in Russian).
[38] E.I. Zelmanov, Goldie theorems for Jordan algebras II, Sibirsk. Mat. Zh. 29 (4) (1988) 68–74 (in

Russian).


	Jordan systems of Martindale-like quotients
	Preliminaries
	Derivations in 3-graded Lie algebras
	Lie algebras and Jordan pairs of M-quotients
	The maximal Jordan pair of M-quotients
	Jordan triple systems of M-quotients
	Jordan algebras of M-quotients
	Acknowledgements
	References


