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Abstract

In this paper we prove the existence and give precise descriptions of maximal algebras of
dale like quotients for arbitrary strongly prime linear Jordan algebras. As a consequence, w
that Zelmanov’s classification of strongly prime Jordan algebras can be viewed exactly as
scription of their maximal algebras of Martindale-like quotients. As a side result, we show th
Martindale associative algebra of symmetric quotients can be expressed in terms of the symm
product, i.e., in purely Jordan terms.
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Introduction

The structure theories of important types of associative algebras involve differe
tions of algebras of quotients. Indeed, certain classes of algebras are too broad t
a full description of their objects, while their algebras of quotients can be more pre
characterized. The choice of the notion of algebra of quotients is given by the nature
the class of algebras under study. Goldie Theory [19, Chapter 3] is an example o
a situation: though there is not an explicit description of semiprime noetherian ring
have a precise description of their classical rings of quotients and, on the other ha
information on the ring of quotientsQ(R) of a noetherian ringR reverts toR itself.

Martindale rings of quotients were introduced by Martindale in 1969 [10] to study p
rings satisfying a generalized polynomial identity. In 1989, McCrimmon [14] modifie
Martindale’s construction to obtain what he called the Martindale ring of symmetric qu
tients and also its triple system version. These objects play a central role in McCrim
Zelmanov’s classification of strongly prime Jordan algebras [16].

In [6], definitions of linear Jordan systems of Martindale-like quotients are given. W
1/3 and 1/2 are assumed to be in the ring of scalars, the existence of maximal syste
quotients is obtained by using Lie algebras of quotients [20] through the Tits–Ka
Koecher construction. The notions of Jordan system of quotients in [6] follow the pa
of McCrimmon [14], and are given with respect to filters of ideals, so that some ge
properties are obtained when the filters are sufficiently regular.

A different notion of Jordan algebra of quotients in which the denominators are
ideals instead of ideals has been recently given by Montaner and Paniello in [18]. Indee
they go through the list of strongly prime Jordan algebras [16, 15.2], showing the exis
and giving precise descriptions of the maximal algebras of quotients in each case. We
low some of their ideas to obtain analogous results for Martindale-like quotients i
linear case (indeed, some of the arguments given in [18, Chapter 4] apply almost ve
in our setting).

The main result of our paper establishes the existence and gives precise descrip
the maximal algebras of Martindale-like quotients of strongly prime linear Jordan alg
with respect to the filter of all nonzero ideals.As a consequence, we show that Zelmano
classification [21, Theorem 3] of strongly prime Jordan algebras can be viewed exa
the description of their maximal algebras of Martindale-like quotients.

The paper is divided into four sections. After listing some basic facts, mainly a
Jordan algebras, we recall in Section 1 the basic definitions of algebras of quotients, a
establish their universal properties in order to be able to identify them later on in the
In Section 2, we study the interaction of the notions of algebra of quotients and asso
envelope when dealing with special Jordan algebras. As a consequence, we show
tion 3 that the symmetrizationQ(R)(+) of the Martindale associative algebra of quotie
Q(R) given in [14] is just the maximal Jordan algebra of quotients ofR(+), whenR is
a prime associative algebra such thatR(+) is not PI. A similar description is obtained fo
Jordan algebras of symmetric elementsH(R,∗) of an associative algebra with involutio
In the final section we obtain the description of the maximal algebra of Martindale
quotients of a strongly prime PI Jordan algebra, as well as study the interaction of J
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algebras of quotients and ideals. These together with the results of the previous
yield our main result mentioned above.

0. Preliminaries

0.1. We will deal with associative and Jordan algebras. The reader is referred
16,21] for definitions and properties of Jordan algebras not explicitly mentioned or p
in this section. We will deal with algebras over a ring of scalarsΦ such that 1/2 ∈ Φ. A
Jordan algebra over such a ring of scalars is calledlinear since the productsUxy, x2 which
define its algebraic structure can be expressed in terms of the linear productx ◦y = Vxy :=
(x + y)2 − x2 − y2:

Uxy = 1

2

(
(x ◦ y) ◦ x − x2 ◦ y

)
, x2 = 1

2
(x ◦ x).

We will also use the linearization{x, y, z} of theU -product:

{x, y, z} = Ux,zy = Vx,yz := Ux+zy − Uxy − Uzy,

so thatUxy = 1
2{x, y, x}.

0.2. The usual notions of Jordan algebras simplify when restricting to linear ob
Thus anidealI of a linear Jordan algebraJ is just aΦ-submodule ofJ satisfyingI ◦J ⊆ I ,
while ahomomorphismf :J → J̃ between two linear Jordan algebrasJ andJ̃ is a linear
map preserving squares or linear products:f (x ◦ y) = f (x) ◦ f (y), for anyx, y ∈ J , or,
equivalently,f (x2) = f (x)2, for anyx ∈ J . We remark the fact that the Jordan cubeUI I

of an idealI is also an ideal [12]. The intersection of all nonzero ideals ofJ is called the
heartof J and it is denoted by Heart(J ).

0.3. Given a Jordan algebraJ , we can consider a Jordan algebra structure onĴ :=
J ⊕ Φ1 so thatJ is an ideal ofĴ and 1 is the unit element in̂J . In our linear setting, we
just need to define squares in̂J by (α1⊕ x)2 = α21⊕ (2αx + x2), for anyα ∈ Φ, and any
x ∈ J .

0.4. A Jordan algebraJ is said to benondegenerateif zero is the onlyabsolute zero
divisor, i.e., zero is the onlyx ∈ J such thatUx = 0. We say thatJ is semiprimeif UI I �= 0,
for any nonzero idealI of J , and say thatJ is prime if UIL �= 0, for any nonzero idealsI ,
L of J . Every nondegenerate Jordan algebra is semiprime. A nondegenerate prime Jord
algebra is said to bestrongly prime. Notice that, in a prime Jordan algebraJ , I ∩ L �= 0,
for any nonzero idealsI , L of J .

0.5. Given a subsetX of a Jordan algebraJ , the annihilator of X in J [12, 1.2] is
given by

Ann(X) = AnnJ (X) = {
z ∈ J

∣∣ {
z,X, Ĵ

} = {
X,z, Ĵ

} = {
z, Ĵ , x

} = UXz = UzX

= UzUXĴ = UXUzĴ = UzU ˆX = UXU ˆz = 0
}
.

J J
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If I is an ideal ofJ , then AnnJ (I) is also an ideal ofJ . Moreover, ifJ is nondegenerat
andI is an ideal ofJ , then AnnJ (I) = {x ∈ J | UxI = 0} [12, 1.7]. If J is prime, then
AnnJ (I) = 0 for any nonzero idealI of J [12, 1.6]. In general, an idealI of J will
be calledsturdy if AnnJ (I) = 0. An idealI of J will be calledessentialif it hits every
nonzero ideal ofJ (I ∩ L �= 0 for any nonzero idealL of J ).

0.6. ThecentroidΓ (J ) of a Jordan algebraJ is the set of linear mapsT :J → J such
that

T Ux = UxT , T Vx,y = Vx,yT , T Vx = VxT ,

T 2(x2) = (
T (x)

)2
, T 2Ux = UT (x),

for anyx, y ∈ J [15]. In the linear case, the above just amounts to sayingT Vx = VxT , for
anyx ∈ J . Following [5], the (weak) centerof J is the setC(J ) of all elementsz ∈ J such
that Uz,Vz ∈ Γ (J ). In the linear case,C(J ) is just the set of elementsz ∈ J satisfying
Vz ∈ Γ (J ).

0.7. One can obtain Jordan systems from associative systems by symmetrizatioR

is an associative algebra, we canobtain a Jordan algebra denoted byR(+), over the same
Φ-module, with products built out of the associative product byx2 = xx, Uxy = xyx, for
anyx, y ∈ R.

A Jordan algebra is said to bespecialif it is a subalgebra ofR(+) for some associativ
algebraR. A particularly important example of special Jordan algebras can be obt
out of an associative algebraR with involution ∗ by taking the setH(R,∗) of symmetric
elements ofR. If J is a subalgebra ofR(+) (respectively,H(R,∗)) andR is generated
by J , thenR is said to be an (associative) envelope(respectively,∗-envelope) of J . We
say that an envelope (respectively,∗-envelope)R is tight (respectively,∗-tight) if every
nonzero ideal (respectively,∗-ideal) ofR hitsJ .

0.8. We will need the following identities which are valid for arbitrary, not necessa
linear Jordan algebras.

(i) {a, y ◦ x, b} = {a ◦ x, y, b} + {a, y, x ◦ b} − x ◦ {a, y, b},
(ii) Ux(y ◦ z) = {x ◦ y, z, x} − y ◦ Uxz,

(iii) (Uxy) ◦ y = (Uyx) ◦ x,
(iv) UUxy = UxUyUx , Ux2 = (Ux)2,
(v) Ux(y2) = (x ◦ y)2 − (Uyx) ◦ x − Uy(x

2),
(vi) (Ux(y ◦ x))2 = UxUyUx(x2) + (Uxy) ◦ (UxUxy) + UxUxUy(x

2),
(vii) UxUy(x

2) = (Uxy)2,
(viii) Ux(x2) = x4 = (x2)2,
(ix) UxUx(Uyx ◦ x) = Ux({x, x, y} ◦ Uxy) − ((Uxy) ◦ (UxUxy)),
(x) (Ux({x, x, y})) ◦ (UxUxy) = Ux(UxUxy ◦ Uxy) + {Uxy,x2,UxUxy},
(xi) {y2, x, z} = {y, y ◦ x, z} − Uyx ◦ z,
(xii) {y1 ◦ y2, x, y3} = {y1, y2 ◦ x, y3} + {y2, x ◦ y1, y3} − {y1, x, y2} ◦ y3,



J.A. Anquela et al. / Journal of Algebra 280 (2004) 367–383 371

m

hen

y
ists

roid

r
thout

ced

f

al-

r-
(xiii) {x, z, {y1, y2, y3}} = {x, {z, y1, y2}, y3} + {x, {z, y3, y2}, y1} − {x, y2, {y1, z, y3}},
(xiv) (x ◦ y) ◦ z = {x, y, z} + {y, x, z}.

Indeed, (i) is the linearization of (ii), (ii)–(xi) and (xiv) follow from Macdonald’s Theore
[8], (xii) is the linearization of (xi), and (xiii) is the linearization of [9, JP10].

0.9. Proposition. If J is a strongly prime Jordan algebra that has a nonzero PI ideal, t
J is PI.

Proof. Let I be a nonzero PI ideal ofJ , so that I satisfies a multilinear identit
f (x1, . . . , xn). Notice that I is also strongly prime by [12, 2.5], hence there ex
0 �= z ∈ I such thatUz,Vz are in the centroid ofI [4, 3.6]. Thus, for anyy1, . . . , yn ∈ J ,
Uzy1, . . . ,Uzyn ∈ I , and f (Uzy1, . . . ,Uzyn) = 0. But f (Uzy1, . . . ,Uzyn) = Un

z f (y1,

. . . , yn) becauseUz,Vz are in the centroid ofJ by [4, 3.2], which yieldsUn
z f (y1, . . . , yn) =

0, hencef (y1, . . . , yn) = 0 usingUz �= 0 by nondegeneracy and the fact that the cent
acts faithfully onJ [15, 2.8]. �

1. Universal properties of algebras of quotients

Through this section, unless explicitly stated,“algebra” will stand for an associative o
Jordan algebra overΦ. In the case of associative algebras, the results remain valid wi
assuming that 1/2 ∈ Φ.

1.1. In [6,14] algebras of quotients in the Jordan and associative cases are introdu
and studied. When dealing with associative algebras,algebra of quotientswill mean Mar-
tindale algebra of symmetric quotients [14]. When dealing with Jordan algebras,algebra
of quotientswill mean Jordan algebra of Martindale-like quotients [6].

1.2. Given an algebraJ , afilter of ideals ofJ is a nonempty setF of nonzero ideals o
J such that for anyI1, I2 ∈F , there existsL ∈ F such thatL ⊆ I1 ∩ I2. A filter F will be
called apowerfilter if for any I ∈ F , there existsL ∈ F such thatL ⊆ I ′, whereI ′ = II

in the associative setting, andI ′ = I ◦ I in the Jordan setting.
If F is a power filter of a Jordan algebra, then for anyI ∈ F there existsK ∈ F such

thatK ⊆ UI I : by definition, there existsL ∈ F such thatL ⊆ I ◦ I andK ∈ F such that
K ⊆ L ◦ L ⊆ (I ◦ I) ◦ (I ◦ I) ⊆ (I ◦ I) ◦ I , but (I ◦ I) ◦ I ⊆ UI I by 0.8(xiv).

If J is a semiprime Jordan algebra, the setF of all sturdy ideals ofJ coincides with
the set of all essential ideals ofJ and is a power filter of sturdy ideals [6, 2.1]. WhenJ is
strongly prime, the above filter is just the set of all nonzero ideals ofJ .

1.3. Unlike [6,14], we will outline the monomorphism linking an algebra with its
gebra of quotients. Thus, given an algebraJ , an algebra of quotients forJ with respect to
a filter of idealsF is (Q, τ), such thatQ is an algebra,τ :J → Q is an algebra monomo
phism, and, for any 0�= q ∈ Q, there existsI ∈ F such that
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• 0 �= q ◦ τ (I) ⊆ τ (J ), whenJ is a Jordan algebra.
• 0 �= qτ(I) + τ (I)q ⊆ τ (J ), whenJ is an associative algebra.

1.4. Notice that in the associative case, the definition given in [14, 1.2, 1.3
cludes the fact that the annihilator ofτ (K) in Q is zero, for anyK ∈ F , rather than
0 �= qτ(I) + τ (I)q . However, both facts are equivalent when dealing with a filteF
of sturdy ideals. Indeed, assuming our definition, for anyK ∈ F , if q ∈ Q satisfies
qτ(K) + τ (K)q = 0, then we can takeI ∈ F such that 0�= qτ(I) + τ (I)q ⊆ τ (J ), and
qτ(I)τ (K) + τ (K)qτ(I) ⊆ qτ(K) + τ (K)qτ(I) = 0, which impliesqτ(I) = 0 by stur-
diness ofK in J , and similarlyτ (I)q = 0, which is a contradiction. The converse is cle
since 0�= qτ(I)+ τ (I)q just means thatq does not belong to the annihilator ofτ (I) in Q.
Anyway, if F is a filter of sturdy ideals,K ∈F , and 0�= q ∈ Q, thenqτ(K)+ τ (K)q �= 0.

An analogous fact for Jordan algebras is stated in the following result.

1.5. Lemma. Let J be a Jordan algebra and let(Q, τ) be an algebra of quotients ofJ
with respect to a power filterF of sturdy ideals ofJ . Then for any nonzeroq ∈ Q and any
ideal I ∈ F we have0 �= q ◦ τ (I). If J is nondegenerate, then also{τ (I), q, τ (I)} �= 0.

Proof. By [6, 4.2, 5.2], 0�= {q, τ (I), τ (I)} + {τ (I), q, τ (I)} ⊆ (q ◦ τ (I)) ◦ τ (I) + q ◦
(τ (I) ◦ τ (I)) (see 0.1) ⊆ (q ◦ τ (I)) ◦ τ (I) + q ◦ τ (I), which implies 0�= q ◦ τ (I).

Let us assume now thatJ is nondegenerate. Since 0�= q ∈ Q, there exists an eleme
x ∈ τ (J ) such that 0�= q ◦ x ∈ τ (J ). Using [17, 1.3], nondegeneracy ofJ ∼= τ (J ), and
sturdiness ofI in J , 0 �= {τ (I), q ◦ x, τ (I)} ⊆ {x ◦ τ (I), q, τ (I)} + x ◦ {τ (I), q, τ (I)} (by
0.8(i)) ⊆ {τ (I), q, τ (I)} + x ◦ {τ (I), q, τ (I)}, hence{τ (I), q, τ (I)} �= 0. �

1.6. Going through the proofs of [6, 3.2, 5.5], [20, 3.6], [14, 1.3], one can obtain
suming 1/3 ∈ Φ in the Jordan case) the following result. LetJ be an algebra, andF be
a power filter of sturdy ideals ofJ , then there exists an algebra of quotients(Q, τ) with
respect toF such that

(1) for any algebra of quotients(Q̃, τ̃ ) of J with respect to the same filter, there is
algebra homomorphismf : Q̃ → Q such thatf τ̃ = τ .

1.7. Given an algebraJ , and a filterF of ideals ofJ , an algebra of quotients(Q, τ)

of J with respect toF will be said to bemaximalif it satisfies 1.6(1).
We will show that one gets uniqueness off in 1.6(1) for free.

1.8. Lemma. Let J be an algebra,(Q, τ), (Q̃, τ̃ ) be algebras of quotients ofJ respect to
a power filterF of sturdy ideals ofJ . If f :Q → Q̃ andg :Q → Q̃ are algebra homomor
phisms such thatf τ = τ̃ andgτ = τ̃ , thenf = g.

Proof. Assume, for example, that we are in the Jordan algebra case. If there isq ∈ Q such
thatf (q) �= g(q), then we can findI ∈F such that 0�= (f (q) − g(q)) ◦ τ̃ (I ) ⊆ τ̃ (J ), and
alsoq ◦ τ (I) ⊆ τ (J ), f (q) ◦ τ̃ (I ) ⊆ τ̃ (J ) andg(q) ◦ τ̃ (I ) ⊆ τ̃ (J ) (1.5). Thus, we can find
y ∈ I such that(f (q) − g(q)) ◦ τ̃ (y) �= 0. But also
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(
f (q) − g(q)

) ◦ τ̃ (y)

= f (q) ◦ τ̃ (y) − g(q) ◦ τ̃ (y)

= f (q) ◦ f
(
τ (y)

) − g(q) ◦ g
(
τ (y)

) (
usingf τ = τ̃ , gτ = τ̃

)
= f

(
q ◦ τ (y)

) − g
(
q ◦ τ (y)

)
(usingf, g are algebra homomorphisms)

= 0,

sinceq ◦ τ (y) ∈ τ (J ), leading to a contradiction.�
1.9. Theorem (Universal Property for Maximal Algebras of Quotients). LetJ be an alge-
bra, (Q, τ) be a maximal algebra of quotients with respect to a power filterF of sturdy
ideals ofJ , and (Q̃, τ̃ ) be any algebra of quotients ofJ with respect toF . Then there
exists a unique algebra homomorphismf : Q̃ → Q such thatf τ̃ = τ .

1.10. Remark. Using 1.9, maximal algebras of quotients ofJ with respect to a power filte
F of sturdy ideals ofJ are unique up to isomorphism. From now on,(QF (J ), τJ ), or
simply (Q(J ), τJ ) will denote such a maximal algebra of quotients.

We can also obtain injectivity off in 1.9 for free.

1.11. Lemma. Let J be an algebra,(Q, τ), (Q̃, τ̃ ) be algebras of quotients ofJ with
respect to a power filterF of sturdy ideals ofJ . If f :Q → Q̃ is an algebra homomorphism
satisfyingf τ = τ̃ , thenf is injective.

Proof. Notice that by 1.3 every nonzero ideal ofQ hits τ (J ). On the other hand,f τ = τ̃

implies thatτ (J ) ∩ Kerf = 0 by injectivity of τ̃ , hence Kerf = 0, i.e.,f is injective. �
1.12. Corollary. Under the conditions of1.9, f is injective.

2. Associative envelopes and algebras of quotients

2.1. Lemma. Let J be a subalgebra of a special Jordan algebraQ. Suppose that for a
elementx ∈ Q there exists an idealI of J with x ◦ I ⊆ J . Then

(i) x(y1 ◦ y2) ∈ Jy1 +Jy2 −{y1, x, y2} for anyy1, y2 ∈ I , where the associative produc
are taken in any associative envelope ofQ, and

(ii) {I ◦ I, x, I } ⊆ {I, J, I } + J ◦ I ⊆ I .

Proof. (i) It is straightforward to check thatx(y1 ◦ y2) = (x ◦ y2)y1 + (x ◦ y1)y2 −
{y1, x, y2} ∈ Jy1 + Jy2 − {y1, x, y2}.

(ii) By 0.8(xii), for any y1, y2, y3 ∈ I we have that{y1 ◦ y2, x, y3} = {y1, y2 ◦ x, y3} +
{y2, x ◦ y1, y3} − {y1, x, y2} ◦ y3 ∈ {I, J, I } + J ◦ I ⊆ I . �

The following result and its proof are patterned out of [18, 4.3.13].



374 J.A. Anquela et al. / Journal of Algebra 280 (2004) 367–383

bra

a

re

t
r

2.2. Proposition. Let (Q, τ) be an algebra of quotients of a strongly prime Jordan alge
J with respect to the filter of all nonzero ideals ofJ . Suppose thatQ is a special Jordan
algebra, letS be any associative envelope(respectively,∗-envelope) of Q, andT be the
associative subalgebra ofS generated byτ (J ). Then

(1) for anys ∈ S there exists a nonzero idealK of J such thatsτ (K) + τ (K)s ⊆ T .

Moreover, ifS is tight (respectively,∗-tight) overQ and0 �= s ∈ S, thenτ (I)sτ (I) �= 0 for
any nonzero idealI of J .

Proof. SinceS is an envelope ofQ, its elements are generated by elements ofQ, hence
s = ∑

qi1 · · ·qink
with qij ∈ Q. We will prove (1) for monomials of the formq1 · · ·qn by

induction onn (once we find ideals for the summands ofs, their intersection, which is
nonzero ideal by strong primeness ofJ , satisfies (1) fors).

If s = q ∈ Q, there exists a nonzero idealL of J with q ◦ τ (L) ⊆ τ (J ). SinceJ is
strongly prime,K = {L,L,L} = ULL is a nonzero ideal ofJ . Then

qτ(K) = qτ
({L,L,L}) = q

{
τ (L), τ (L), τ (L)

} ⊆ q
(
τ (L) ◦ τ (L)

)
⊆ τ (J )τ (L) + {

τ (L), q, τ (L)
} (

by 2.1(i)
)

⊆ τ (J )τ (L) + (
τ (L) ◦ q

) ◦ τ (L) + q ◦ (
τ (L) ◦ τ (L)

)
⊆ τ (J )τ (L) + τ (J ) ◦ τ (L) + q ◦ τ (L)

⊆ τ (J )τ (L) + τ (L) + τ (J ) ⊆ T .

By symmetry, the idealK also satisfiesτ (K)q ⊆ T .
Now suppose that (1) is true for any monomial of length less than or equal ton. If

s = snq , for a monomialsn of S of lengthn andq ∈ Q, by the induction hypothesis the
exists a nonzero idealK1 of J such thatsnτ (K1) ⊆ T . Moreover, sinceq ∈ Q there also
exists a nonzero idealK2 of J with q ◦ τ (K2) ⊆ τ (J ). Now, sinceJ is strongly prime,
K3 = K1 ∩ K2 is nonzero and alsoL = {K3,K3,K3} is a nonzero ideal ofJ . Then

sτ (L) = snqτ(L) = snq
{
τ (K3), τ (K3), τ (K3)

} ⊆ snq
((

τ (K3) ◦ τ (K3)
) ◦ τ (K3)

)
⊆ sn

(
τ (J )τ (K3)

) + sn
{(

τ (K3) ◦ τ (K3)
)
, q, τ (K3)

} (
by 2.1(i)

)
⊆ sn

((
τ (J ) ◦ τ (K3)

) + τ (K3)τ (J )
) + snτ (K3)

(
by 2.1(ii)

)
⊆ snτ (K3) + snτ (K3)τ (J ) ⊆ T .

Similarly, sinces also can be written asq ′s′
n for a monomials′

n of S of lengthn andq ′ ∈ Q,
there exists a nonzero idealM of J such thatτ (M)s ⊆ T . The nonzero idealK = L ∩ M

satisfiesτ (K)s + sτ (K) ⊆ T .
Now, let us show the last assertion whenS is ∗-tight over Q (the case withou

involution follows analogously, with obvious changes). If 0�= s ∈ S, let us conside
the nonzero∗-ideal Is = ŜsŜ + Ŝs∗Ŝ of S generated bys and s∗. SinceS is ∗-tight
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over Q, Is ∩ Q �= 0 and there exists a finite number of elementsai, bi, cj , dj ∈ Ŝ with
0 �= q = ∑

i aisbi + ∑
j cj s

∗dj ∈ Q. Using (1), the fact that(Q, τ) is an algebra of quo
tients of J , and strong primeness ofJ , we can find a nonzero idealK of J such that
τ (K)ai + τ (K)cj ⊆ T , biτ (K) + djτ (K) ⊆ T , for everyi, j , andτ (K) ◦ q ⊆ τ (J ). By
strong primeness ofJ , we can find a nonzero idealL of J contained into(K ∩I)◦ (K ∩I).
Then, by 1.5,

0 �= {
τ (L), q, τ (L)

} ⊆
∑

i

τ (I )τ (K)aisbiτ (K)τ(I) +
∑
j

τ (I)τ (K)cj s
∗dj τ (K)τ(I)

⊆ τ (I)T sT τ(I) + τ (I)T s∗T τ(I)

⊆ (
T τ(I) + τ (I)

)
s
(
τ (I)T + τ (I)

)

+ (
T τ(I) + τ (I)

)
s∗(τ (I)T + τ (I)

)
,

getting thatτ (I)sτ (I) �= 0 (notice thatτ (I)T ⊆ T τ(I)+ τ (I) andT τ(I) ⊆ τ (I)T + τ (I)

by induction becausehy = h ◦ y + yh for everyh ∈ τ (J ) andy ∈ τ (I)). �
2.3. Theorem. Let (Q, τ) be an algebra of quotients of a strongly prime Jordan alge
J with respect to the filter of all nonzero ideals ofJ . Suppose thatQ is a special Jordan
algebra, letS be any tight(respectively,∗-tight) associative envelope ofQ, andT be the
associative subalgebra ofS generated byτ (J ). Letj :Q → S, µ :T → S be the inclusion
maps. ThenT is a tight(respectively,∗-tight) envelope ofτ (J ), henceT is prime(respec-
tively,∗-prime), and(S,µ) is an algebra of quotients ofT with respect to the filter of al
nonzero ideals(respectively,∗-ideals) of T . Moreover, in the case with involution,µ is a
∗-homomorphism.

Proof. We will prove the theorem in the case with involution (the proof holds also with
involution, with obvious changes).

Notice thatT is a∗-subalgebra ofS since it is generated by the elements ofτ (J ) ⊆ Q,
which are∗-symmetric, so thatµ is a∗-homomorphism.

To show thatT is a ∗-tight envelope ofτ (J ), we will proceed as in [18, 4.3.13(2)
We just need to show that every nonzero∗-ideal ofT hits τ (J ). Indeed, ifI is a nonzero
∗-ideal ofT , thenŜI Ŝ is a nonzero∗-ideal ofS, hence it hitsQ by ∗-tightness. Thus, ther
exists a finite number of elementsai, bi ∈ Ŝ, yi ∈ I such that 0�= q = ∑

i aiyibi ∈ Q.
Using the fact that(Q, τ) is an algebra of quotients ofJ and 2.2, together with stron
primeness ofJ , we can find a nonzero idealK of J such thatq ◦ τ (K) ⊆ τ (J ), and
τ (K)ai ⊆ T , biτ (K) ⊆ T for everyi. On the one hand,{τ (K), q, τ (K)} ⊆ τ (K)qτ(K) ⊆∑

i τ (K)aiyibiτ (K) ⊆ ∑
i T yiT ⊆ I sinceI is an ideal ofT . But, on the other hand

by 1.5, 0�= {τ (K), q, τ (K)} ⊆ (τ (K) ◦ q) ◦ τ (K) + q ◦ (τ (K) ◦ τ (K)) ⊆ τ (J ), i.e., we
have that 0�= {τ (K), q, τ (K)} ⊆ I ∩ τ (J ).

By 2.2(1), given 0�= s ∈ S, there exists a nonzero idealK of J such that

sτ (K) + τ (K)s ⊆ T . (1)
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Notice that the ideal̃K of T generated byτ (K) satisfies

K̃ = τ (K)T̂ = T̂ τ (K) (2)

(iterate the fact thatτ (K)τ(J ) = τ (K) ◦ τ (J ) + τ (J )τ (K) = τ (K ◦ J ) + τ (J )τ (K) ⊆
τ (K) + τ (J )τ (K) and the analogousτ (J )τ (K) ⊆ τ (K) + τ (K)τ(J )). Now, sµ(K̃) +
µ(K̃)s = sK̃ + K̃s ⊆ T by (1) and (2). Moreover,sK̃ + K̃s �= 0 since K̃sK̃ ⊇
τ (K)sτ(K) �= 0 by 2.2. �

3. Maximal algebras of quotients of symmetrizations of associative algebras

3.1. Let R be a prime associative algebra,(Q(R), τR) be the maximal algebra of quo
tients ofR with respect to the filter of all nonzero ideals ofR. Notice thatR(+) is strongly
prime by [11, p. 384], [1, 1.2(ii)].

3.2. Let R be a∗-prime associative algebra with involution∗, (Q(R), τR) be the max-
imal algebra of quotients ofR with respect to the filter of all nonzero∗-ideals ofR. By
[14, 1.10], there exists a unique involution (also denoted by∗) on Q(R) extending the in-
volution of R, so thatτR is a∗-homomorphism. Notice thatH(R,∗) is strongly prime by
[1, 2.7(i)]).

3.3. Theorem.

(i) Under the conditions of3.1:
(a) (Q(R)(+), τR) is an algebra of quotients ofR(+) with respect to the filter of al

nonzero ideals ofR(+).
(b) If R(+) is not PI, then we have that(Q(R)(+), τR) is the maximal algebra o

quotients ofR(+) with respect to the filter of all nonzero ideals ofR(+).
(ii) Under the conditions of3.2:

(a) (H(Q(R),∗), τ ) is an algebra of quotients ofH(R,∗) with respect to the filter o
all nonzero ideals ofH(R,∗), whereτ denotes the restriction ofτR .

(b) If R is a ∗-tight associative envelope ofH(R,∗), and H(R,∗) is not PI, then
(H(Q(R),∗), τ ) is the maximal algebra of quotients ofH(R,∗) with respect to
the filter of all nonzero ideals ofH(R,∗).

Proof. (i)(a) Let 0 �= q ∈ Q(R). There exists an idealI of R such that 0�= qτR(I) +
τR(I)q ⊆ τR(R). SinceR is semiprime,K = II is a nonzero ideal ofR, hence it is a
nonzero ideal ofR(+). Clearly q ◦ τR(I) ⊆ τR(R), but alsoq ◦ τR(I) �= 0: otherwise,
qx = −xq for anyx ∈ τR(I) and, in particular, for anyx, y ∈ τR(I),

−q2xy = qxyq
(
sincexy ∈ τR(I)

)
= −qxqy

(
sincey ∈ τR(I)

)
= q2xy
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sincex ∈ τR(I), henceqxyq = 0 using 1/2 ∈ Φ, and we have shownqτR(K)q = 0, which
contradicts the algebra version without involution of [3, 2.8].

(ii)(a) is just [6, 2.11, 4.1, 5.2].
(i)–(ii)(b) We just need to prove(Q(R)(+), τR) (respectively,(H(Q(R),∗), τ )) satisfies

1.6(1). Let(Q̃, τ̃ ) be an algebra of quotients ofR(+) (respectively,H(R,∗)). SinceR(+)

(respectively,H(R,∗)) is strongly prime,̃Q is also strongly prime [6, 4.4, 5.2], and sin
R(+) (respectively,H(R,∗)) is not PI,Q̃ is not PI, hence it is special by [21, Theorem

Let S be a tight (respectively,∗-tight) envelope ofQ̃, andT be the subalgebra ofS
generated bỹτ (R(+)) (respectively,τ̃ (H (R,∗))). As in 2.3, letj : Q̃ → S, µ :T → S

be the inclusion maps, andτ ′ :R(+) → T (respectivelyτ ′ :H(R,∗) → T ) be the restric-
tion of j τ̃ . SinceT is a tight (respectively∗-tight) envelope ofτ̃ (R(+)) (respectively,
τ̃ (H (R,∗)) = τ ′(H(R,∗))) by 2.3, we can use [13, 3.1] to find, replacingR by its op-
posite if it is necessary, an associative algebra isomorphismg :R → T extendingτ ′, i.e.,
g = τ ′ (respectively, we can use [13, 2.3] to find an associative algebra∗-isomorphism
g :R → T extendingτ ′, i.e., g|H(R,∗) = τ ′). Now, µg :R → S is an algebra homomo
phism (respectively∗-homomorphism) such that(S,µg) is an algebra of quotients ofR
with respect to the filter of all nonzero ideals (respectively,∗-ideals), using the correspon
ing fact for(S,µ), established in 2.3. Thus, by the universal property of(Q(R), τR), there
exists an associative algebra homomorphismf :S → Q(R) such that

f µg = τR. (1)

Hence, in case (i), we can restrictf to the Jordan algebra homomorphismh : Q̃ →
Q(R)(+) which satisfieshτ̃ = τR : for anyx ∈ R, hτ̃ (x) = f τ̃ (x) = f τ ′(x) = f µτ ′(x) =
f µg(x) = τR(x) by (1). In case (ii),f is a ∗-homomorphism by [14, 3.20], henc
we havef (Q̃) ⊆ f (H(S,∗)) ⊆ H(Q(R),∗), and we can restrictf to the Jordan alge
bra homomorphismh : Q̃ → H(Q(R),∗) which satisfieshτ̃ = τ : for any x ∈ H(R,∗),
hτ̃ (x) = f τ̃ (x) = f τ ′(x) = fµτ ′(x) = f µg(x) = τR(x) = τ (x) by (1). �

4. The general case

We begin with the study of strongly prime PI Jordan algebras. The description of
maximal algebras of quotients is based on the fundamental fact that nonzero ideals
nonzero central elements [4, 3.6], a result that was extended in [18, 4.7.4] to essenti
ideals. Our result is based on [18, 4.7.7], though in our proof we have extracted the
with weak centers, which gives rise to the following result of independent interest,
for arbitrary nondegenerate algebras (not necessarily PI).

4.1. Proposition. Let J be a nondegenerate Jordan algebra,F be a power filter of sturdy
ideals ofJ , and(Q, τ) be an algebra of quotients ofJ with respect toF . Thenτ (C(J )) ⊆
C(Q).

Proof. ReplacingJ by its isomorphic imageτ (J ), we can assume thatτ is the inclusion
map and prove thatC(J ) ⊆ C(Q). Let z ∈ C(J ).
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(I) For anyq ∈ Q and anyx ∈ J such thatx ◦ q ∈ J , z ◦ (x ◦ q) = (z ◦ x) ◦ q :
TakeI ∈F such thatI ◦ q ⊆ J . For anyy1, y2, y3 ∈ I , andt ∈ Ĵ ,

{
z ◦ t, q, {y1, y2, y3}

} = {
z ◦ t, {q, y1, y2}, y3

} + {
z ◦ t, {q, y3, y2}, y1

}
− {

z ◦ t, y2, {y1, q, y3}
} (

by 0.8(xiii)
)

= z ◦ {
t, {q, y1, y2}, y3

} + z ◦ {
t, {q, y3, y2}, y1

}
− z ◦ {

t, y2, {y1, q, y3}
}

= z ◦ {
t, q, {y1, y2, y3}

} (
by 0.8(xiii)

)
(1)

since{q, y1, y2}, {q, y3, y2}, {y1, q, y3} ∈ J , z ∈ C(J ), andC(J ) ⊆ C(Ĵ ) [5, Corollary 1].
Now, givenK ∈ F such thatK ⊆ UI I = {I, I, I }, and anyy ∈ K,

Uy

(
(z ◦ x) ◦ q

) = {
y ◦ (z ◦ x), q, y

} − (z ◦ x) ◦ Uyq
(
by 0.8(ii)

)
= {z ◦ (y ◦ x), q, y} − z ◦ (x ◦ Uyq)

(
sincex, y,Uyq ∈ J andz ∈ C(J )

)
= z ◦ {y ◦ x, q, y} − z ◦ (x ◦ Uyq)

(
by (1)

)
= z ◦ (

Uy(x ◦ q)
) (

by 0.8(ii)
)

= Uy

(
z ◦ (x ◦ q)

)

sincey, x ◦ q ∈ J andz ∈ C(J ). We have shown thatUK((z ◦ x) ◦ q − z ◦ (x ◦ q)) = 0,
which implies(z ◦ x) ◦ q − z ◦ (x ◦ q) = 0 by 1.5.

(II) Assumeq ∈ Q, I ∈F andI ◦ q ⊆ J . Then(z ◦ q) ◦ x = z ◦ (q ◦ x) for anyx ∈ UII :

(z ◦ q) ◦ x = 2{z, q, x} − z ◦ (q ◦ x) + (z ◦ x) ◦ q (see 0.1)

= 2{z, q, x} (
by (I)

)
= {z ◦ 1, q, x} = z ◦ {1, q, x} (

by (1)
)

= z ◦ (q ◦ x).

(III) For anyp,q ∈ Q, (z ◦p) ◦ q = z ◦ (p ◦ q), i.e.,z ∈ C(Q). Indeed, letI1, I2, I3 ∈ F
such thatp ◦ I1 + q ◦ I2 + (p ◦ q) ◦ I3 ⊆ J . Let I ∈ F satisfyI ⊆ I1 ∩ I2 ∩ I3, and let
K,L ∈ F satisfyK ⊆ UII andL ⊆ UKK. Notice that

L ◦ q ⊆ UKK ◦ q ⊆ {K ◦ q,K,K} + UK(K ◦ q)
(
by 0.8(ii)

)
⊆ {J,K,K} + UKJ ⊆ K (2)

and

ULq ⊆ (L ◦ q) ◦ L + L2 ◦ q (see 0.1)

⊆ J ◦ L + L ◦ q ⊆ K (3)
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by (2). Now, for anyy ∈ L,

Uy

(
(z ◦ p) ◦ q

) = {
y ◦ (z ◦ p), q, y

} − (z ◦ p) ◦ Uyq
(
by 0.8(ii)

)
= {z ◦ (y ◦ p), q, y} − z ◦ (p ◦ Uyq)

(
using (II) sincey,Uyq ∈ K by (3)

)
= z ◦ {y ◦ p,q, y} − z ◦ (p ◦ Uyq)

(
by (1)

)
= z ◦ Uy(p ◦ q)

(
by 0.8(ii)

)

= z ◦ 1

2

[(
y ◦ (p ◦ q)

) ◦ y − y2 ◦ (p ◦ q)
]

(by 0.1)

= 1

2

[(
y ◦ (

z ◦ (p ◦ q)
)) ◦ y − y2 ◦ (

z ◦ (p ◦ q)
)] (

by (II)
)

= Uy

(
z ◦ (p ◦ q)

)
,

and we have shownUL((z◦p)◦q−z◦(p◦q)) = 0, which implies(z◦p)◦q −z◦(p◦q) =
0 by 1.5. �
4.2. Proposition. Let J be a strongly prime PI Jordan algebra,Γ the centroid ofJ , and
τJ :J → Γ −1J the natural injection. Then(Γ −1J, τJ ) is the maximal Jordan algebra o
quotients ofJ with respect to the filter of all nonzero ideals ofJ .

Proof. Given 0 �= q = γ −1x ∈ Γ −1J , we have thatI = γ J is a nonzero ideal ofJ such
that 0�= I ◦ q = τJ (I) ◦ q ⊆ J = τJ (J ). Thus,(Γ −1J, τJ ) is a Jordan algebra of quotien
of J with respect to the set of all nonzero ideals ofJ .

Let (Q, τ) be an algebra of quotients ofJ . For everyq ∈ Q there exists a nonzer
ideal I of J such thatτ (I) ◦ q ⊆ τ (J ). By [4, 3.6] I contains a nonzero elementz such
that z ∈ C(J ); moreover 0�= Uz by nondegeneracy ofJ . This allows us to define a ma
f :Q → Γ −1J given by

f (q) = γ −1τ−1(Uτ(z)q), (1)

whereγ = Uz satisfies

Uτ(z)q ∈ τ (J ), (2)

0 �= z ∈ C(J ). (3)

Let us show thatf is well defined. Ifz′ also satisfies (2) and (3), and writeδ = Uz′ , then
we haveγ −1τ−1(Uτ(z)q) = δ−1τ−1(Uτ(z′)q) using injectivity ofτ since

τ
(
γ δ

[
γ −1τ−1(Uτ(z)q) − δ−1τ−1(Uτ(z′)q)

])

= τ
([

δτ−1(Uτ(z)q) − γ τ−1(Uτ(z′)q)
]) = τ

([
Uz′τ−1(Uτ(z)q) − Uzτ

−1(Uτ(z′)q)
])

= Uτ(z′)Uτ(z)q − Uτ(z)Uτ(z′)q = 0
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usingτ (z), τ (z′) ∈ C(Q) by 4.1. The mapf clearly satisfiesf τ = τJ : for anyx ∈ J ,

f
(
τ (x)

) = γ −1τ−1(Uτ(z)τ (x)
) = γ −1τ−1(τ (Uzx)

) = γ −1Uzx = τJ (x).

We will finally show thatf is an algebra homomorphism. Givenp,q ∈ Q, we can use
strong primeness ofJ to find a nonzero idealI satisfyingτ (I)◦p+τ (I)◦q+τ (I)◦(p2) ⊆
τ (J ); by [4, 3.6]I contains a nonzero elementz such thatz ∈ C(J ), so thatz satisfies (2)
and (3) forp, q , p2 and all theirΦ-multiples at the same time, and alsoz2 satisfies (2)
and (3) forp2 (z2 �= 0 since 0�= Uz2 becauseΓ is a domain [15, 2.8], andUz2 = (Uz)

2 by
0.8(iv)); thus, ifγ = Uz, δ = γ 2 = Uz2, α ∈ Φ,

f (αp) = γ −1τ−1(Uτ(z)(αp)
) = αγ −1τ−1(Uτ(z)p) = αf (p),

f (p + q) = γ −1τ−1(Uτ(z)(p + q)
) = γ −1τ−1(Uτ(z)p) + γ −1τ−1(Uτ(z)q)

= f (p) + f (q),

f (p2) = δ−1τ−1(Uτ(z2)

(
p2)) = δ−1τ−1(Uτ(z)2

(
p2))

= δ−1τ−1(Uτ(z)Uτ(z)

(
p2)) (

by 0.8(iv)
)

= δ−1τ−1((Uτ(z)p)2) (
sinceτ (z) ∈ C(Q) by 4.1

)

= γ −1γ −1(τ−1(Uτ(z)p)
)2 = (

γ −1τ−1(Uτ(z)p)
)2 = (

f (p)
)2

. �
4.3. Proposition. Let J be a strongly prime Jordan algebra and letI be a nonzero idea
of J . If j : I → J denotes the inclusion,(J, j) is an algebra of quotients ofI with respect
to the filter of all nonzero ideals ofI . Moreover, if(Q̃, τ̃ ) is an algebra of quotients ofJ
with respect to the filter of all nonzero ideals ofJ , then(Q̃, τ̃ j ) is an algebra of quotient
of I with respect to the filter of all nonzero ideals ofI .

Proof. Let 0 �= x ∈ J . Clearlyx ◦ j (I) = x ◦ I ⊆ I . Moreover,x ◦ I �= 0 sinceUIx �= 0
by strong primeness ofJ and [17, 1.3].

For anyq ∈ Q̃, there exists a nonzero idealL of J such thatq ◦ τ̃ (L) ⊆ τ̃ (J ). Let
K = UL∩I (L ∩ I) which is a nonzero ideal ofI andJ . For anya, b ∈ I ∩ L,

q ◦ τ̃ j (Uab) = q ◦ (
Uτ̃(a)τ̃ (b)

) = {
τ̃ (a) ◦ q, τ̃ (b), τ̃ (a)

} − Uτ̃(a)

(
q ◦ τ̃ (b)

) (
by 0.8(ii)

)
∈ {

τ̃ (J ), τ̃ (I ), τ̃ (I )
} + Uτ̃(I )τ̃ (J ) ⊆ τ̃ (I ) = τ̃ j (I ),

which showsq ◦ τ̃ j (K) ⊆ τ̃ j (I ). Moreover, by 1.5, 0�= q ◦ τ̃ (K) = q ◦ τ̃ j (K). �
4.4. Let J be a strongly prime Jordan algebra and letI be a nonzero ideal ofJ . Let

(Q(I), τI ) be a maximal algebra of quotients ofI with respect to the filter of all nonzer
ideals ofI (notice thatI is strongly prime by [12, 2.5]). Ifj : I → J denotes the inclusion
by 4.3 and 1.9 there exists a unique algebra homomorphismf :J → Q(I) such thatfj =
τI and, moreover,f is injective by 1.11. Let

Q = {
q ∈ Q(I)

∣∣ q ◦ f (L) ⊆ f (J ), for some nonzero idealL of J
}
.
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Clearlyf (J ) ⊆ Q (for anyx ∈ J , x ◦ I ⊆ I impliesf (x) ◦ f (I) ⊆ f (I) ⊆ f (J )), so that
f can be restricted toτ :J → Q.

4.5. Proposition. Under the conditions of4.4, (Q, τ) is a maximal algebra of quotien
of J with respect to the filter of all nonzero ideals ofJ . Moreover, ifJ has a simple idea
(equivalently,Heart(J ) �= 0 [2, 2.6]), thenQ = Q(I).

Proof. Notice that(Q, τ) is an algebra of quotients ofJ with respect to the filter of al
nonzero ideals ofJ : for anyq ∈ Q, there exists an idealL of J such thatq ◦ τ (L) ⊆ τ (J ),
but 0 �= I ∩ L is a nonzero ideal ofI , hence, by 1.5, 0�= q ◦ τI (I ∩ L) ⊆ q ◦ τ (L).

Let (Q̃, τ̃ ) be an algebra of quotients ofJ with respect to the filter of all nonzero idea
of J . By 4.3, (Q̃, τ̃ j ) is an algebra of quotients ofI , hence, there exists an algebra h
momorphismh : Q̃ → Q(I) such thathτ̃j = τI . We claim thath(Q̃) ⊆ Q. Indeed, for any
q ∈ Q̃, there exists a nonzero idealL of J such thatq ◦ τ̃ (L) ⊆ τ̃ (J ). LetK = UL∩I (L∩I),
which is a nonzero ideal ofJ andI . Notice that

q ◦ τ̃ (K) ⊆ τ̃ (L ∩ I) (1)

(for anya, b ∈ τ̃ (L∩I), 0.8(ii) yieldsq ◦Uab = −Ua(q ◦b)+{a◦q, b, a}∈ Uτ̃(L∩I )τ̃ (J )+
{τ̃ (J ), τ̃ (L ∩ I), τ̃ (L ∩ I)} ⊆ τ̃ (L ∩ I) sinceL ∩ I is an ideal ofJ ). But

h(q) ◦ f (K) = h(q) ◦ fj (K) = h(q) ◦ τI (K) = h(q) ◦ hτ̃j (K) = h
(
q ◦ τ̃ j (K)

)
= h

(
q ◦ τ̃ (K)

) ⊆ hτ̃ (L ∩ I)
(
by (1)

)
= hτ̃j (L ∩ I) = τI (L ∩ I) = fj (L ∩ I) = f (L ∩ I) ⊆ f (J ).

Now we can restricth to an algebra homomorphismg : τ̃ (J ) → Q which satisfiesgτ̃ = τ

(hτ̃j = τI = fj implies hτ̃ = f by uniqueness in 4.4, hence, for anyx ∈ J , gτ̃ (x) =
hτ̃ (x) = f (x)).

If I0 is a simple ideal ofJ , thenI0 is contained inI by strong primeness ofJ . ThusI0
is a simple ideal ofI , and, sinceI is strongly prime,I0 is contained in any nonzero ide
of I . Thus, anyq ∈ Q(I) satisfiesq ◦ f (I0) = q ◦ fj (I0) = q ◦ τI (I0) ⊆ τI (I) = fj (I) =
f (I) ⊆ f (J ), henceq ∈ Q, and we have shownQ = Q(I). �
4.6. Theorem. Let J be a strongly prime Jordan algebra. Then, there exists a max
algebra of quotients(Q(J ), τJ ) of J with respect to the filter of all nonzero ideals ofJ .
Up to isomorphism,(Q(J ), τJ ) can be obtained as follows:

(i) WhenJ is PI, Q(J ) = Γ −1J , whereΓ is the centroid ofJ , and τJ is the natural
injection ofJ in Γ −1J .

(ii) WhenJ is not PI, then there exists a nonzero ideal ofJ of the formH(R,∗), where
R is a ∗-prime associative algebra which can be assumed to be a∗-tight envelope o
H(R,∗). If (H(Q(R),∗), τ ) is as in3.2, thenQ(J ) = {q ∈ H(Q(R),∗) | q ◦ f (L) ⊆
f (J ) for some nonzero idealL of J }, wheref :J → H(Q(R),∗) denotes the uniqu
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algebra homomorphism such thatf |H(R,∗) = τ , andτJ is the restriction off . More-
over, ifHeart(J ) �= 0, thenQ(J ) = H(Q(R),∗) andτJ = f .

Proof. Use 4.2, 3.3, 4.5, and [21, Theorem 3], together with the fact that ideals of
PI strongly prime Jordan algebra are non PI (0.9).�
4.7. Final remarks. (i) Notice that 4.6 shows that Zelmanov’s classification of stron
prime linear Jordan algebras [21, Theorem 3] is given in terms of the maximal J
algebras of Martindale-like quotients.

(ii) The existence of maximal algebras of quotients established in 4.6 extends [6
to rings of scalars not necessarily having 1/3, when dealing with strongly prime Jorda
algebras.
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