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Abstract

In this paper we prove the existence and give precise descriptions of maximal algebras of Martin-
dale like quotients for arbitrary strongly prime linear Jordan algebras. As a consequence, we show
that Zelmanov’s classification of strongly prime Jordan algebras can be viewed exactly as the de-
scription of their maximal algebras of Martindale-like quotients. As a side result, we show that the
Martindale associative algebra of symmetric quotients can be expressed in terms of the symmetrized
product, i.e., in purely Jordan terms.
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Introduction

The structure theories of important types of associative algebras involve different no-
tions of algebras of quotients. Indeed, certain classes of algebras are too broad to allow
a full description of their objects, while their algebras of quotients can be more precisely
characterized. The choice of the notion ¢debra of quotients is given by the nature of
the class of algebras under study. Goldie Theory [19, Chapter 3] is an example of such
a situation: though there is not an explicit description of semiprime noetherian rings, we
have a precise description of their classical rings of quotients and, on the other hand, the
information on the ring of quotient9 (R) of a noetherian ringR reverts toRr itself.

Martindale rings of quotients were introduced by Martindale in 1969 [10] to study prime
rings satisfying a generalized polynomidentity. In 1989, McCrimmon [14] modified
Martindale’s construction to obtain what ltalled the Martindale ring of symmetric quo-
tients and also its triple system version. These objects play a central role in McCrimmon—
Zelmanov’s classification of strongly prime Jordan algebras [16].

In [6], definitions of linear Jordan systems of Martindale-like quotients are given. When
1/3 and Y2 are assumed to be in the ring of scalars, the existence of maximal systems of
guotients is obtained by using Lie algebras of quotients [20] through the Tits—Kantor—
Koecher construction. The notions of Jordan system of quotients in [6] follow the pattern
of McCrimmon [14], and are given with respect to filters of ideals, so that some general
properties are obtained when the filters are sufficiently regular.

A different notion of Jordan algebra of quotients in which the denominators are inner
ideals instead of ideals has been recently igivg Montaner and Paniello in [18]. Indeed,
they go through the list of strongly prime Jordan algebras [16, 15.2], showing the existence
and giving precise descriptions of the nragl algebras of quotients in each case. We fol-
low some of their ideas to obtain analogous results for Martindale-like quotients in the
linear case (indeed, some of the arguments given in [18, Chapter 4] apply almost verbatim
in our setting).

The main result of our paper establishes the existence and gives precise descriptions of
the maximal algebras of Martindale-like quotients of strongly prime linear Jordan algebras
with respect to the filter of all nonzero idea#ss a consequence, we show that Zelmanov’s
classification [21, Theorem 3] of strongly prime Jordan algebras can be viewed exactly as
the description of their maximal algebras of Martindale-like quotients.

The paper is divided into four sections. After listing some basic facts, mainly about
Jordan algebras, we recall in Section 1 theibdsfinitions of algebras of quotients, and
establish their universal properties in order to be able to identify them later on in the paper.
In Section 2, we study the interaction of the notions of algebra of quotients and associative
envelope when dealing with special Jordan algebras. As a consequence, we show in Sec-
tion 3 that the symmetrizatio@(R)™ of the Martindale associative algebra of quotients
Q(R) given in [14] is just the maximal Jordan algebra of quotientR6f, whenR is
a prime associative algebra such tiR4at) is not PI. A similar description is obtained for
Jordan algebras of symmetric elemehtéR, x) of an associative algebra with involution.

In the final section we obtain the description of the maximal algebra of Martindale-like
guotients of a strongly prime Pl Jordan algebra, as well as study the interaction of Jordan
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algebras of quotients and ideals. These together with the results of the previous section
yield our main result mentioned above.

0. Preliminaries

0.1. We will deal with associative and Jordan algebras. The reader is referred to [7,
16,21] for definitions and properties of Jordan algebras not explicitly mentioned or proved
in this section. We will deal with algebras over a ring of scatarsuch that 12 @. A
Jordan algebra over such a ring of scalars is caitedr since the products, y, x2 which
define its algebraic structure can be expressed in terms of the linear pradwet V, y :=
(x + )% —x? = y%

2

1 5 1
nyzé((xoy)ox—x oy), X :E(xox).

We will also use the linearizatiofx, y, z} of the U-product:
{x,y,2}=Uxy = Vi,yz :=Uxy;y — Uyy — Uy,
so thatU,y = %{x, v, x}.

0.2. The usual notions of Jordan algebras simplify when restricting to linear objects.
Thus arideal I of a linear Jordan algebrais just ag-submodule o/ satisfyingl/oJ C I,
while ahomomorphisny : J — J between two linear Jordan algebtasnd J is a linear
map preserving squares or linear produgtét o y) = f(x) o f(y), foranyx,y € J, or,
equivalently,f (x2) = f(x)2, for anyx € J. We remark the fact that the Jordan cubg
of an ideall is also an ideal [12]. The integstion of all nonzero ideals of is called the
heartof J and it is denoted by Hedtt).

0.3. Given a Jordan algebra, we can consider a Jordan algebra structure/ os:
J @ @1 so that/ is an ideal of/ and 1 is the unit element in. In our linear setting, we
just need to define squaresdrby (a1 ® x)% = «?1 @ (2ox + x2), for anya € @, and any
xelJ.

0.4. A Jordan algebrd is said to benondegenerati zero is the onlyabsolute zero
divisor, i.e., zerois the only € J such that/, = 0. We say thatf is semiprimef U;I # 0,
for any nonzero ideal of J, and say that is primeif U; L # 0, for any nonzero ideals,
L of J. Every nondegenerate Jordan algebramiprime. A nondegenerate prime Jordan
algebra is said to bstrongly prime Notice that, in a prime Jordan algebfal N L # 0,
for any nonzero ideals, L of J.

0.5. Given a subsek of a Jordan algebrd, theannihilator of X in J [12, 1.2] is
given by

Ann(X) =Ann;(X) =1lzeJ | {z. X, J} =X, 2, J} ={z, J,x} =Uxz = U, X
=U.UxJ =UxU.J =U.U;X =UxU;z=0}.
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If Iis an ideal of/, then Anry(7) is also an ideal off. Moreover, if J is nondegenerate
and! is an ideal of/, then Anry(I) = {x € J | U,I =0} [12, 1.7]. If J is prime, then
Anny(I) = 0 for any nonzero ideal of J [12, 1.6]. In general, an idedl of J will
be calledsturdyif Ann;(7) = 0. An ideall of J will be calledessentialf it hits every
nonzero ideal off (I N L # 0 for any nonzero idedl of J).

0.6. ThecentroidI"(J) of a Jordan algebra is the set of linear maps: J — J such
that

TU, =U,T, TVyy=VeyT, TVy =WT,
2
T2(x?) = (T()", T, =Ure),

for anyx, y € J [15]. In the linear case, the above just amounts to sa¥ilig= V., T, for
anyx € J. Following [5], the (veaRk centerof J is the setC(J) of all elementg € J such
thatU,, V, € I'(J). In the linear case( (J) is just the set of elementse J satisfying
V. eI'(J).

0.7. One can obtain Jordan systems from associative systems by symmetrizaiion: If
is an associative algebra, we oalptain a Jordan algebra denoted Ry, over the same
@-module, with products built out of the associative produckBy= xx, U,y = xyx, for
anyx,y € R.

A Jordan algebra is said to Ispecialif it is a subalgebra ok for some associative
algebraR. A particularly important example of special Jordan algebras can be obtained
out of an associative algebRawith involution * by taking the se (R, x) of symmetric
elements ofR. If J is a subalgebra oR™) (respectively,H (R, x)) and R is generated
by J, thenR is said to be angssociativg envelopgrespectivelyx-envelopg of J. We
say that an envelope (respectivetyenvelope)R is tight (respectivelyx-tight) if every
nonzero ideal (respectively;ideal) of R hits J.

0.8. We will need the following identities which are valid for arbitrary, not necessarily
linear Jordan algebras.

() {a,yox,b}={aox,y,b}+{a,y,xob}—xo{a,y,b},

(i) Ux(yoz)={xo0y,z,x}—yoUxz,

(i) (Uxy)oy=(Uyx)ox,

(IV) Uny = Uny U)n sz = (Ux)zi

(V) Ux(y®) = (x 0 y)2 = (Uyx) ox — Uy (x?),

(Vi) (Ur(y0x))?=UxUyUyr(x?) + (Uxy) o (UrUyy) + Ux U Uy (x?),
(Vi) U Uy(x?) = (Uyy)?,
(viii) Uy(x?) =x*= (x2)?,

(iX) Uxe(ny ox)=Ux({x,x, y} o Uxy) — (Uxy) o (UxUyy)),

() (Ux({x, x, y}) o (UxUxy) = Ux (U Uy 0 Uxy) + {Uxy, x2, Ux Uy y},

(xi) {y2,x,z2}={y,yox,z}— Uyx oz,
(xii) {y10y2,x,y3}={y1,y20x, y3} +{y2,x o y1, y3} — {y1. x, y2} o y3,
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(xiii)) {x,z, {y1, y2, y3}} = {x, {z, y1. y2}, y3} + {x, {z, y3, y2}, y1} — {x, y2, {y1, 2, y3}},
(Xiv) (xoy)oz={x,y,z}+{y,x,z}.

Indeed, (i) is the linearization of (ii), (ii)—(xi) and (xiv) follow from Macdonald’s Theorem
[8], (xii) is the linearization of (xi), and (xiii) is the linearization of [9, JP10].

0.9. Proposition. If J is a strongly prime Jordan algebra that has a nonzero Pl ideal, then
J is Pl

Proof. Let I be a nonzero PI ideal of, so that/ satisfies a multilinear identity
f(x1,...,x,). Notice that/ is also strongly prime by [12, 2.5], hence there exists
0+#z € I such that,, V, are in the centroid of [4, 3.6]. Thus, for anyws,...,y, € J,
Uyt ..., Uy €1, and f(Uy1, ..., Uzyp) = 0. But f(Uyy1, ..., Uyn) = Ul f (31,

.., yn) becausé/,, V, are in the centroid af by [4, 3.2], whichyieldJ” f(y1, ..., yx) =

0, hencef (y1, ..., y,) =0 usingU, # 0 by nondegeneracy and the fact that the centroid
acts faithfully onJ [15,2.8]. O

1. Universal properties of algebrasof quotients

Through this section, unless explicitly statéalgebra” will stand for an associative or
Jordan algebra ove®. In the case of associative algebras, the results remain valid without
assuming that 2 € @.

1.1. In[6,14] algebras of quotients in the Jardand associative cases are introduced
and studied. When dealing with associative algetalgbra of quotientsvill mean Mar-
tindale algebra of symmetric quotients [14]. When dealing with Jordan algebgetra
of quotientawill mean Jordan algebra of Martindale-like quotients [6].

1.2. Given an algebrd, afilter of ideals ofJ is a nonempty sef of nonzero ideals of
J such that for any, I € F, there existd. € F such thatL. € Iy N I,. A filter F will be
called apowerfilter if for any I € F, there existd. € F such thatl. C I’, wherel’ =11
in the associative setting, adl= I o I in the Jordan setting.

If F is a power filter of a Jordan algebra, then for dng F there existk € F such
that K C U;I: by definition, there exist& € F such thatL C I o I andK € F such that
KCLoLC(Uol)o(Iol)S(Iol)ol,but(Iol)ol CU;I by 0.8(xiv).

If J is a semiprime Jordan algebra, the $ebf all sturdy ideals of/ coincides with
the set of all essential ideals gfand is a power filter of sturdy ideals [6, 2.1]. Whéns
strongly prime, the above filter is just the set of all nonzero ideals of

1.3. Unlike [6,14], we will outline the monomorphism linking an algebra with its al-
gebra of quotients. Thus, given an algelfraan algebra of quotients for with respect to
a filter of idealsF is (Q, 1), such thatQ is an algebrag : J — Q is an algebra monomor-
phism, and, for any & g € Q, there existd € F such that
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e O£qgot(lI)Ct(J),whenJ is a Jordan algebra.
e O£qgt(I)+1t(I)g Ct(J), whenJ is an associative algebra.

1.4. Notice that in the associative case, the definition given in [14, 1.2, 1.3] in-
cludes the fact that the annihilator ofK) in Q is zero, for anyK € F, rather than
0+ gt(I) + t(I)g. However, both facts are equivalent when dealing with a fiker
of sturdy ideals. Indeed, assuming our definition, for &y F, if ¢ € Q satisfies
qt(K) + t(K)q = 0, then we can také € F such that G4 gt (1) + t(I)qg < (J), and
gt(DT(K)+ t(K)gt(I) S qt(K)+ t(K)gt(I) =0, which impliesqz (/) = 0 by stur-
diness ofK in J, and similarlyz (I)g = 0, which is a contradiction. The converse is clear,
since O£ gt (1) + t(1)q just means thaj does not belong to the annihilatorofl) in Q.
Anyway, if F is a filter of sturdy idealsk € F, and O£ g € Q, thengt(K) + 7(K)q # 0.

An analogous fact for Jordan algebras is stated in the following result.

1.5. Lemma. Let J be a Jordan algebra and I&tQ, t) be an algebra of quotients of
with respect to a power filteF of sturdy ideals off. Then for any nonzerg € Q and any
ideal I € F we haveD # g o T(1). If J is nondegenerate, then al$o(1), ¢, (1)} #O.

Proof. By [6, 4.2, 5.2], O£ {g,t(I), t()}+ {t(I),q,t(I)} S (qot(I))ot(I)+q o
(t(I)ot(I)) (see 0.1C (g ot(I)) o (I) + g o t(I), which implies 0% g o T (I).

Let us assume now thadtis nondegenerate. Sincedqg € Q, there exists an element
x € 7(J) such that G% g o x € T(J). Using [17, 1.3], nondegeneracy ¢f= 7(J), and
sturdinessof in J,0#4 {t(I),gox,t(I)} S{xot(),q, (D} +xo0{t),q, ()} (by
0.8(1) S {r (1), q,t(D}+xofr(l),q,t()} hencelr(l),q,7(I)} #0. O

1.6. Going through the proofs of [6, 3.2, 5.5], [20, 3.6], [14, 1.3], one can obtain (as-
suming ¥3 € @ in the Jordan case) the following result. Letbe an algebra, an@ be
a power filter of sturdy ideals af, then there exists an algebra of quotiefds ) with
respect taF such that

(1) for any algebra of quotierlt@, 7) of J with respect to the same filter, there is an
algebra homomorphisryi: Q — Q such thatf7 =r.

1.7. Given an algebrd, and a filterF of ideals ofJ, an algebra of quotientg, 1)
of J with respect taF will be said to benaximalif it satisfies 1.6(1).
We will show that one gets uniquenessjoin 1.6(1) for free.

1.8. Lemma. Let J be an algebra(Q, 1), (O, 7) be algebras of quotients of respect to
a power filterF of sturdy ideals off. If f: Q — 0 andg:Q — 0 are algebra homomor-
phisms such thaft =7 andgr =7, thenf = g.

Proof. Assume, for example, that we are in the Jordan algebra case. If theeed@ssuch
that f(¢) # g(¢g), then we can find € F such that G4 (f(q) — g(q)) o T(I) C T(J), and
alsogot(I)Ct(J), f(g)oT(I) S T(J)andg(g)oT(I) < T(J) (1.5). Thus, we can find
y € I suchthat(f(¢) — g(q)) o T(y) #0. But also
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(f(@)—2@)oT(y)
= fg)oT(y) —g(g) o T(y)
=f(@o ft) —g@og(r(y) (usingfr=7, gz =7)
=f(got(»)) —g(got(y)) (usingf, g are algebrahomomorphisms)
=0,

sinceq o t(y) € t(J), leading to a contradiction.O

1.9. Theorem (Universal Property for Maximal Algebras of Quotientlsgt / be an alge-
bra, (Q, ) be a maximal algebra of quotients with respect to a power fieof sturdy
ideals of J, and (é, 7) be any algebra of quotients of with respect taF. Then there
exists a unique algebra homomorphigmQ — Q such thatf7 = .

1.10. Remark. Using 1.9, maximal algebras of quotients/olvith respect to a power filter
F of sturdy ideals of/ are unique up to isomorphism. From now @@ ~(J), t;), or
simply (Q(J), =) will denote such a maximal algebra of quotients.

We can also obtain injectivity of in 1.9 for free.

1.11. Lemma. Let J be an algebra Q, 1), (é, 7) be algebras of quotients of with
respect to a power filtef of sturdy ideals ofl. If f: Q@ — Q is an algebra homomorphism
satisfyingft = 7, thenf is injective.

Proof. Notice that by 1.3 every nonzero ideal @fhits (J). On the other handfr =7
implies thatr (J) N Ker f = 0 by injectivity of 7, hence Keyf =0, i.e., f is injective. O

1.12. Corollary. Under the conditions 01.9, f is injective.

2. Associative envelopes and algebras of quotients

2.1. Lemma. Let J be a subalgebra of a special Jordan algelpa Suppose that for an
elementx € Q there exists an ideal of J withx o I C J. Then

(i) x(yr1oy2) € Jy1+ Jy2—{y1, x, y2} foranyyi, y2 € I, where the associative products
are taken in any associative envelopgifand
(i) {Tol,x,Iy<{I,J,I}+JoICI.

Proof. (i) It is straightforward to check that(y1 o y2) = (x o y2)y1 + (x o y1)y2 —
{y1,x, y2} € Jy1+ Jy2 — {y1, x, y2}.

(i) By 0.8(xii), for any y1, y2, y3 € I we have thafy; o y2, x, y3} = {y1, y2 0 x, y3} +
{y2, xoy1, ya} = {yr.x,y2boysef{l, J, [} +Jol CI. O

The following result and its proof are patterned out of [18, 4.3.13].



374 J.A. Anguela et al. / Journal of Algebra 280 (2004) 367-383

2.2. Proposition. Let (Q, t) be an algebra of quotients of a strongly prime Jordan algebra
J with respect to the filter of all nonzero ideals £f Suppose tha is a special Jordan
algebra, letS be any associative envelofespectivelyx-envelopgof Q, andT be the
associative subalgebra éfgenerated by (J). Then

(1) for anys € S there exists a nonzero ide&l of J such thattt(K) + t(K)s C T.

Moreover, ifS is tight (respectivelyx-tight) over Q and0# s € S, thent (I)st () # 0O for
any nonzero ideal of J.

Proof. SincesS is an envelope oD, its elements are genated by elements a, hence
s =3_qi, " qi, With g;; € 0. We will prove (1) for monomials of the formp - - - g, by
induction onn (once we find ideals for the summandssotheir intersection, which is a
nonzero ideal by strong primenessJgfsatisfies (1) fos).

If s =¢q € Q, there exists a nonzero idealof J with ¢ o 7(L) C 7(J). SinceJ is
strongly prime, K ={L, L, L} =UL isanonzeroideal af. Then

qu(K)=qt({L,L,L}) =q{z(L), (L), 1(L)} S q(e(L) o T(L))
Ct(r)+{rL),q, t (L)} (by2.1()
Ct(Ht() + (T(L) oq) ot(L)+gqgo (T(L) ° T(L))
St +t()ot(L)+got(L)
Ct(HtL)+t(L)+t(J)CT.
By symmetry, the ideak also satisfies (K)qg C T.
Now suppose that (1) is true for any monomial of length less than or equal Ifo
s = spq, for a monomiak, of S of lengthn andq € Q, by the induction hypothesis there
exists a nonzero ided’; of J such thats, t (K1) € T. Moreover, sincey € Q there also

exists a nonzero ided, of J with g o t(K2) C t(J). Now, sinceJ is strongly prime,
K3= K1N K>is nonzero and alsb = {K3, K3, K3} is a nonzero ideal of . Then

sT(L) = spq7(L) = snq {7 (K3), T(K3), T(K3)} C s4¢((r(K3) 0 T(K3)) 0 T(K3))
C su(t(NT(K3)) + 50 {(r(K3) 0 T(K3)). q.T(K3)} (by 2.1(P))
Csi((t())oT(K3) +T(K3)T(J)) +s5,T(K3)  (by 2.1(ii))
C 5,7(K3) + 5,1 (K3)T(J)C T,

Similarly, sinces also can be written ag's;, for a monomiak,, of S of lengthn andg’ € Q,
there exists a nonzero ide# of J such that: (M)s C T. The nonzeroideak =L N M
satisfiest (K)s +st(K) < T.

Now, let us show the last assertion whénis x-tight over QO (the case without
involution follows analogously, with obvious changes). IE0s € §, let us consider
the nonzeros-ideal I, = SsS + Ss*S of S generated by ands*. Since s is x-tight
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over Q, I, N Q # 0 and there exists a finite number of elememts;, c;,d; € S with
0#q=>;aisbi +} ;cjs*dj € Q. Using (1), the fact thatQ, 7) is an algebra of quo-
tients of J, and strong primeness of, we can find a nonzero ide& of J such that
1(K)a; + ©1(K)c; €T, bit(K) +d;t(K) C T, for everyi, j, andt(K) oqg S t(J). By
strong primeness of, we can find a nonzero idealof J contained intd K N1)o (K N1).
Then, by 1.5,

0% {r(L).q. 7(L)} € > t(NT(K)aishit(K)T(D) + Y t(D)T(K)ejs*djr(K)T(I)

! J

Ct(DTsTr()+t(DHTs*Tt()
S(Tt) +t)s(z(DT + (1))
+ (Tt (D) +t(D)s*( (DT + (1)),

getting thatr (I)st(I) # 0 (notice that ()T C Tt(I)+t(l) andTt(I) Ct ()T +t(I)
by induction becausky =h oy + yh foreveryh e t(J) andy e t(1)). O

2.3. Theorem. Let (Q, t) be an algebra of quotients of a strongly prime Jordan algebra
J with respect to the filter of all nonzero ideals 6f Suppose tha is a special Jordan
algebra, letS be any tight(respectivelyy-tight) associative envelope @, andT be the
associative subalgebra dfgenerated by (J). Letj: Q — S, u: T — S be the inclusion
maps. TherT is a tight(respectivelyx-tight) envelope of (J), hencel is prime(respec-
tively, x-prime), and (S, n) is an algebra of quotients &f with respect to the filter of all
nonzero idealgrespectivelyx-idealg of 7. Moreover, in the case with involutiop, is a
x-homomorphism.

Proof. We will prove the theorem in the case with involution (the proof holds also without
involution, with obvious changes).

Notice thatT is ax*-subalgebra of since it is generated by the elementg¢f) C Q,
which arex-symmetric, so that is ax-homomorphism.

To show thatT is a x-tight envelope ofr(J), we will proceed as in [18, 4.3.13(2)].
We just need to show that every nonzeraleal of T hits t(J). Indeed, if/ is a nonzero
x-ideal of T, thenSTS is a nonzera-ideal of S, hence it hitsQ by x-tightness. Thus, there
exists a finite number of elements, b; € S, yi € I such that G£ ¢ =) ;a;yibi € Q.
Using the fact that Q, ) is an algebra of quotients of and 2.2, together with strong
primeness of/, we can find a nonzero ided& of J such thatg o t(K) C t(J), and
©(K)a; C T, bit(K) C T foreveryi. Onthe one handz(K), ¢, 1(K)} C t(K)gt(K) C
> t(K)aiyibit(K) €Y, Ty;T < I sincel is an ideal ofT. But, on the other hand,
by 1.5, 0+ {t(K),q, 71 (K)} S (t(K) o q) o T(K) + g o (t(K) 0o T(K)) C 7(J), i.e., we
have that G4 {t(K), ¢, T(K)} S INt(J).

By 2.2(1), given G£ s € S, there exists a nonzero ideklof J such that

sT(K)+t(K)sCT. Q)
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Notice that the ideak of T generated by (K) satisfies
K=1(K)T=Tt(K) 2)

(iterate the fact that (K)t(J) = t(K)ot(J) + t(J)T(K) =1(K o J) + T(J)T(K) C
T(K) + r(J)](K)~and the analogous(J)t(K) C t(K) tT(KlT(J))- Now, s;i(f(;) +
uw(K)s =sK + Ks € T by (1) and (2). MoreoversK + Ks # 0 since KsK 2
t(K)st(K)#0by2.2. O

3. Maximal algebras of quotients of symmetrizations of associative algebras

3.1. Let R be a prime associative algeb(@(R), Tg) be the maximal algebra of quo-
tients of R with respect to the filter of all nonzero ideals Bf Notice thatR ™ is strongly
prime by [11, p. 384], [1, 1.2(ii)].

3.2. Let R be ax-prime associative algebra with involutien(Q(R), Tg) be the max-
imal algebra of quotients aR with respect to the filter of all nonzeseideals of R. By
[14, 1.10], there exists a unique involution (also denoted)gn Q(R) extending the in-
volution of R, so thatrg is ax-homomorphism. Notice tha¥ (R, x) is strongly prime by

[1, 2.7()D).
3.3. Theorem.

(i) Under the conditions 08.1:
(@) (Q(R)™), tr) is an algebra of quotients a® ) with respect to the filter of all
nonzero ideals oR().
(b) If R™) is not PI, then we have thatQ(R)*), tg) is the maximal algebra of
quotients ofR*) with respect to the filter of all nonzero ideals Bft.
(i) Under the conditions 08.2:
(8) (H(Q(R), %), 1) is an algebra of quotients df (R, *) with respect to the filter of
all nonzero ideals of (R, %), wheret denotes the restriction afz.
(b) If R is a x-tight associative envelope @ (R, x), and H (R, x) is not Pl, then
(H(Q(R), %), ) is the maximal algebra of quotients &f(R, ) with respect to
the filter of all nonzero ideals off (R, *).

Proof. (i)(a) Let 0# g € Q(R). There exists an idedl of R such that G£ gtr(I) +
tr(I)g C tg(R). SinceR is semiprime,K = I is a nonzero ideal oR, hence it is a
nonzero ideal ofR™). Clearly ¢ o r(I) € tr(R), but alsog o tz(I) # 0: otherwise,
gx = —xq for anyx € tg(I) and, in particular, for any, y € tp (1),
2 _ .
—q°xy =qxyq (smcexy € rR(I))
=—qxqy (sincey € 'CR(I))

=q%xy
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sincex € g (1), hencegxyq = 0 using ¥2 € &, and we have showgirg (K )g = 0, which
contradicts the algebra version without involution of [3, 2.8].

(il(a)isjust[6,2.11,4.1,5.2].

(i)—(ii)(b) We just need to proveQ (R) ™, tr) (respectively(H (Q(R), %), 7)) satisfies
1.6(1). Let(Q, 7) be an algebra of quotients &) (respectivelyH (R, x)). SinceR™)
(respectivelyH (R, %)) is strongly prime,@ is also strongly prime [6, 4.4, 5.2], and since
R™) (respectivelyH (R, %)) is not PI,Q is not PI, hence it is special by [21, Theorem 3].

Let S be a tight (respectively-tight) envelope ofQ, and 7 be the subalgebra dof
generated byt (R™)) (respectively,7(H(R, %))). As in 2.3, letj:Q — S, u:T — S
be the inclusion maps, and: R — T (respectivelyr’: H(R, ) — T) be the restric-
tion of j7. SinceT is a tight (respectively-tight) envelope off (R) (respectively,
T(H(R,*)) = t/(H(R, %))) by 2.3, we can use [13, 3.1] to find, replaciRgby its op-
posite if it is necessary, an associative algebra isomorppisfi— T extendingt’, i.e.,

g = 1’ (respectively, we can use [13, 2.3] to find an associative algelisamorphism
g:R — T extendingt’, i.e., gl = 1’). Now, ug: R — S is an algebra homomor-
phism (respectivelyx-homomorphism) such thds, ug) is an algebra of quotients at
with respect to the filter of all nonzero ideals (respectiveligeals), using the correspond-
ing fact for (S, w), established in 2.3. Thus, by the universal property®fR), tg), there
exists an associative algebra homomorphfny — Q(R) such that

fug=r1g. 1)

Hence, in case (i), we can restrigt to the Jordan algebra homomorphigmé —
Q(R)™") which satisfiesiT = tg: foranyx e R, hi(x) = fT(x) = fr/(x) = fut'(x) =
furgx) = tp(x) by (1). In case (ii),f is a x-homomorphism by [14, 3.20], hence,
we havef(é) C f(H(S,*) € H(Q(R), %), and we can restricf to the Jordan alge-
bra homomorphisn : 0 — H(Q(R), ) which satisfiesit = t: for anyx € H(R, %),
ht(x) = fT(x) = ft'(x) = fut'(x) = fug(x) =tr(x) =7(x) by (1). O

4. Thegeneral case

We begin with the study of strongly prime Pl Jordan algebras. The description of their
maximal algebras of quotients is based on the fundamental fact that nonzero ideals contain
nonzero central elements [4, 3.6], a result that was extended in [18, 4.7.4] to essential inner
ideals. Our result is based on [18, 4.7.7], though in our proof we have extracted the work
with weak centers, which gives rise to the following result of independent interest, valid
for arbitrary nondegenerate algebras (not necessarily PI).

4.1. Proposition. Let J be a nondegenerate Jordan algebfabe a power filter of sturdy
ideals ofJ, and(Q, t) be an algebra of quotients dfwith respect taF. Thent (C(J)) €

C(Q).

Proof. Replacing/ by its isomorphic image (J), we can assume thatis the inclusion
map and prove that (J) € C(Q). Letz € C(J).
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() Foranyg € Q and anyx € J suchthattog € J, zo (x 0g)=(zox)ogq:
Takel € F such thatl o ¢ C J. For anyy1, y2, y3€ I, andr € J,
{zot.q. 1. y2, y3}} = {z 0. {q. y1. y2}. ya} + {z 01, {g. y3, y2}. y1}
—{zot,y2, 31,9, y3t}  (by 0.8(xiii))
=zo{t,{q, y1. y2}. y3} +z0{r.{q. y3. y2}, y1}
—zof{t,y2.{y1.¢. y3}}
=zo{t,q,{y1, y2,y3}} (by 0.8(xiii)) 1)

since{q, y1. y2}. {¢, y3. y2}. {y1.¢. y3} € J, z € C(J), andC(J) € C(J) [5, Corollary 1].
Now, givenK € F suchthatk CU;I ={I,1,1},and anyy € K,

Uy((zox)ogq) ={yo(zox),q.y} —(zox)oUyq (by0.8(i)
={zo(yox),q,y}—zo(xoUyg) (sincex,y,Uyqg € Jandze C(J))
=zo{yox,q,y}—zo(xoUyq) (by(l))
=zo(Uy(xoq)) (by 0.8(ii)
=Uy(zo(x0q))

sincey,x oqg € J andz € C(J). We have shown thdl/x ((zox)og —zo(x0gq)) =0,

which implies(zox) og —zo(x og) =0 by 1.5.
(I Assumeg € Q, I e Fandlog C J. Then(zog)ox =zo(qox)foranyx e U;I:

(zog)ox=2{z,q,x} —zo(qox)+(zox)oqg (see0.1)
=2{z,q.x} (by (1))
={zol.q.x}=z0{l.q.x} (by(D)

=zo(qox).

(I Foranyp,qg € Q,(zop)og=zo(pogq),i.e,ze C(Q).Indeed, letly, I7, I3 € F
suchthatpol1 +golo+ (pog)olz C J. Letl € F satisfyl C I1 NI, N I3, and let
K,L € FsatisfyK CU;I andL C Uk K. Notice that

LogCUxKoqC{Koq,K,K}+Ug(Kog) (byO0.8(ii)
C{J,K,K}+UgJCK (2)
and

Urg<(Log)oL+L%0q (see0.1)
CJoL+LogCK (3)
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by (2). Now, for anyy € L,

Uy((zop)og)={yo(zop).q,y} —(zop)oUyg (byO0.8(ii)
={zo(yop).q,y}—zo(poUyq) (using(ll) sincey, Uyqg € K by (3))
=zo{yop.q.y}—zo(poU,q) (by(1)
=zoUy(pogq) (by0.8(ii))

1
=zo5[(yo(poq))oy—yzo(poq)] (by 0.1)

=%[(yo(zo(poq)))oy_yzo(zo(poq))] (by (1)

=Uy(ZO(qu)),

and we have showti; ((zo p)og —zo(pog)) =0, whichimplieS(zo p)og—zo(pogq) =
Oby15. O

4.2. Proposition. Let J be a strongly prime Pl Jordan algebrd; the centroid of/, and
t7:J — I'"1J the natural injection. ThewI"~1J, z;) is the maximal Jordan algebra of
guotients of/ with respect to the filter of all nonzero ideals.bf

Proof. Given 0+ ¢ =y ~1x e I'~1J, we have thaf = y J is a nonzero ideal of such
that0#£ I og=1;(I)oq C J =1;(J). Thus,(I"~1J, t;) is a Jordan algebra of quotients
of J with respect to the set of all nonzero ideals/of

Let (Q, ) be an algebra of quotients of. For everyqg € Q there exists a nonzero
ideal I of J such thatr (/) o g C t(J). By [4, 3.6] I contains a nonzero elemensuch
thatz € C(J); moreover 0% U, by nondegeneracy of. This allows us to define a map
f:0— r~1J given by

f@) =y e U9, (1)

wherey = U, satisfies
Uripng €et(J), (2)
0£zeC()). 3

Let us show thaif is well defined. Ifz’ also satisfies (2) and (3), and write= U/, then
we havey 1t =Y(U,,)q) = § 1t ~1(U,(;)q) using injectivity ofr since
T(y8ly Tt T Ueg) — 8 Uy 9)])
=1([6t7 ' Ur09) — v WUeh@)]) = [Vt Ur(09) — Ut U (y9)])
=Ur@)Ur ()4 — Ur()Ur(yg =0
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usingz(z), t(z') € C(Q) by 4.1. The mayy clearly satisfiesfz = t;: foranyx € J,
f(r(x)) = y_lr_l(Ur(Z)r(x)) = y_lt_l(t(UZx)) = y_lUZx =17(x).

We will finally show thatf is an algebra homomorphism. Giveng € Q, we can use
strong primeness of to find a nonzeroidedl satisfyingr (1) o p+t(I)og+1t(I)o(p?) C
7(J); by [4, 3.6]I contains a nonzero elemensuch that € C(J), so thatz satisfies (2)
and (3) forp, ¢, p? and all their®-multiples at the same time, and alsbsatisfies (2)
and (3) forp? (2 # 0 since 0# U2 becausd” is a domain [15, 2.8], anti 2 = (U,)? by
0.8(\v)); thus, ify = U, 8 =y2=U_,a € @,

flap) =y HUry(@p)) =ay 't Uy p) = af (p).
fe+o=y "t Uo(p+@) =yt Uryp) + v 1t Ur )
= f(p)+ f(q),
F(PH) =871 Uz (7)) =871 (Ure2(p7))
=5 Uy Ur(oy(p?))  (by 0.8(iv))
=517 ((Uryp)?) (sincer(z) € C(Q) by 4.)
=y Y Ueo) = (v Uewp)’ = (F)?. D

4.3. Proposition. Let J be a strongly prime Jordan algebra and Ietbe a nonzero ideal
of J. If j: I — J denotes the inclusion/, j) is an algebra of quotients af with respect
to the filter of all nonzero ideals af. Moreover, if(é, 7) is an algebra of quotients of
with respect to the filter of all nonzero ideals.bfthen(Q, 7 j) is an algebra of quotients
of I with respect to the filter of all nonzero ideals kof

Proof. Let0#£x € J. Clearlyx o j(I) =x oI C I. Moreoverx oI 0 sinceU;x #0
by strong primeness of and [17, 1.3].

For anyq € Q, there exists a nonzero ideal of J such thatg o 7(L) C 7(J). Let
K =Urn;(LNT) whichis anonzeroideal df andJ. For anya,be I N L,

qotj(Usb)=qo (Uzih)) = {F(a)oq,T(h), #(@)} — Uz()(q 0 T () (by 0.8ii))
€ {f(J),f(I),f(I)} +Usnt()St)=7j(),
which shows; o 7j(K) C Tj(I). Moreover,by 1.5, go7(K)=qgo7j(K). O

4.4. Let J be a strongly prime Jordan algebra and/ldie a nonzero ideal of . Let
(Q(), 1) be a maximal algebra of quotients biwith respect to the filter of all nonzero
ideals ofI (notice that/ is strongly prime by [12, 2.5]). If : I — J denotes the inclusion,
by 4.3 and 1.9 there exists a unique algebra homomorplisin— Q(I) such thatf;j =
77 and, moreoverf is injective by 1.11. Let

0={q€0W)|qo f(L)< f(J), for some nonzero idedl of J}.
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Clearly f(J) € Q (foranyx € J,x o I C I implies f(x)o f(I) C f(I) C f(J)), so that
f can be restricted te: J — Q.

4.5. Proposition. Under the conditions o#.4, (Q, 7) is a maximal algebra of quotients
of J with respect to the filter of all nonzero ideals £f Moreover, ifJ has a simple ideal
(equivalentlyHeartJ) # 0 [2, 2.6]) thenQ = Q(1).

Proof. Notice that(Q, ) is an algebra of quotients of with respect to the filter of all
nonzero ideals of : for anyq € Q, there exists an ided! of J such thay o t(L) C t(J),
but 0# I N L is a nonzero ideal of, hence, by 1.5, & got;(INL) Cqgot(L).

Let (é 7) be an algebra of quotients dgfwith respect to the filter of all nonzero ideals
of J. By 4.3, (0, , Tj) is an algebra of quotients df, hence, there exists an algebra ho-
momorph|srm Q — Q) suchthatitj = ;. We claim tha1h(Q) C Q. Indeed, for any
q € Q there exists a nonzero iddabf J suchthay o7 (L) C T(J).LetK = Upn(LNI),
which is a nonzero ideal of and. Notice that

goi(K)CT(LNI) ()

(foranya, b e T(LN1I),0.8(ii)yieldsgoU,b = —U,(qob)+{aocq,b,a} € Uz npyT(J)+
(), (LN, T(LNI)} S T(LNI)sinceLNI is anideal of/). But

h(g)o f(K)=h(g)o fj(K) =h(g) ot/(K)=h(g) o hTj(K)=h(q 07 j(K))
=h(goT(K)) Cht(LNI) (by(1)
=htj(LND =1 (LND=fjLND)=fLN])CfJ)

Now we can restrick to an algebra homomorphisgn 7(J) — Q which satisfieg? =1
(htj =1 = fj implieshT = f by uniqueness in 4.4, hence, for any J, gT(x) =
ht(x) = f(x)).

If I is a simple ideal of/, thenlp is contained i/ by strong primeness of. Thus/y
is a simple ideal of , and, sincd is strongly prime g is contained in any nonzero ideal
of I. Thus, anyy € Q(I) satisfiesgo f(lp) =qo fj(lo)=qoti(Ip) Sty (1) = fj(I) =
f) < f(J), hencegg € Q, and we have show@ = Q(I). O

4.6. Theorem. Let J be a strongly prime Jordan algebra. Then, there exists a maximal
algebra of quotientsQ(J), t;) of J with respect to the filter of all nonzero ideals bHf
Up to isomorphism(Q(J), t;) can be obtained as follows

() WhenJ is PI, Q(J) = I'"1J, wherer is the centroid of/, and z; is the natural
injection of J in "=1J.

(i) WhenJ is not PI, then there exists a nonzero ideal/obf the formH (R, x), where
R is a x-prime associative algebra which can be assumed to bdight envelope of
H(R,*).If (H(Q(R),*),t)isasin3.2 thenQ(J)={q € H(Q(R),*) |qo f(L) C
f(J) for some nonzero idedl of J}, wheref : J — H(Q(R), ) denotes the unique



382 J.A. Anguela et al. / Journal of Algebra 280 (2004) 367-383

algebra homomorphism such th@tz r.«) = v, andz; is the restriction off. More-
over, ifHear(J) # 0, thenQ(J) = H(Q(R), %) andt; = f.

Proof. Use 4.2, 3.3, 4.5, and [21, Theorem 3], together with the fact that ideals of a non
P1 strongly prime Jordan algebra are non PI (0.9

4.7. Final remarks. (i) Notice that 4.6 shows that Zelmanov’s classification of strongly
prime linear Jordan algebras [21, Theorem 3] is given in terms of the maximal Jordan
algebras of Martindale-like quotients.

(ii) The existence of maximal algebras of quotients established in 4.6 extends [6, 5.4]
to rings of scalars not necessarily having@,lwhen dealing with strongly prime Jordan
algebras.
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