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Abstract

In this paper we introduce the notion of Jordan socle for nondegenerate Lie algebras, which ex-
tends the definition of socle given in [A. Fernandez Lopez et al., 3-Graded Lie algebras with Jordan
finiteness conditions, Comm. Algebra, in press] for 3-graded Lie algebras. Any nondegenerate Lie
algebra with essential Jordan socle is an essential subdirect product of strongly prime ones having
nonzero Jordan socle. These last algebras areriled, up to exceptional cases, in terms of sim-
ple Lie algebras of finite rank operators and their algebras of derivations. When working with Lie
algebras which are infinite dimensional over an algebraically closed field of characteristic 0, the
exceptions disappear and the algebras of derivations are computed.
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1. Introduction

Let X be a vector space over a field Denote byfgl(X) the Lie algebra of all finite
rank linear operators oK. A Lie algebra is calledinitary if it is isomorphic to a subalge-
bra offgl(X) for some vector spack. Finitary Lie algebras have received a considerable
attention in the last years, motivated, in part, by their connection witliitiitary linear
groups, i.e., subgroups of GK) consisting of elementg such the endomorphism-1¢
has finite rank (see [20]). Particularly relevant for our purposes is the work by A.A. Bara-
nov [2] classifying infinite dimensional central simple finitary Lie algebras over a field of
characteristic 0.

In the present paper we approach simple finitary Lie algebras and their algebras of
derivations from a Jordan point of view, we mean, by using techniques from the theory
of Jordan systems. This is possible due to the fact that, in most cases, simple finitary Lie
algebras admit a nontrivial 3-grading, and for any 3-graded Lie alggbra) = L1 &

Lo ® L_1, wherer = (71, mo, m—1) denote the projeatins onto the subspacés, Lo,
L_1, we have thatr(L) = (L1, L_1) is a Jordan pair for the triple products defined by
{x,y,z}:=[[x,yl.z]forallx,ze Ly, ye L_,,0 = £1.

This idea of studying Lie algebras by means of Jordan methods is by no means a novelty;
on the contrary, fundamental contributionghés topic can be found in papers like [1,4,19]
and [22]. Let us say that in [19], the most related to our approach of these papers, E. Neher
describes Lie algebras graded by a 3-graded root system. A Lie alfidébrgraded by a
3-graded root systemR if and only if it is a central extensn of the Tits—Kantor—-Koecher
algebra of a Jordan palit (TKK (V) for short) covered by a grid whose associated 3-graded
root system is isomorphic tB. He gives the classification of Jordan pairs covered by a grid
and describes their Tits-dfitor—Koecher algebras.

In recent years, a wealthy socle theory has been developed for nondegenerate Jordan
pairs (see [15]) and, following the pattern of the structure of prime rings with minimal
one sided ideals, strongly prime Jordan pairs with nonzero socle have been classified [9].
We note that any simple Jordan pair covered by a grid with division coordinate algebra
coincides with its socle, so in this case the socle theory and the grid theory agree.

In our paper [7] we develop a similar socle theory for 3-graded Lie algebras making
use of their close relationship with Jordan pairs, and describe nondegenerate 3-graded Lie
algebras withlarge socles and their central extensions. (&t 7) be a nondegenerate
3-graded Lie algebra. (L) has socle Sdae (L)) = (Sodx (L))", Sodn(L))™), then

Sodr (L))" @ [Sodx (L))", Soq (L)) ~] @ Sodw (L))

turns out to be an ideal df that we call the socle afZ, 7) and denote by SqgL).

It is natural to ask whether the socle of a 3-graded Lie algebra is independent of the
grading. In the present paper we answer this question by proving that, in general, the socle
depends on the grading (3.3), but for gradings which are effective (3.4), the socle turns to
be independent (3.10). Nevertheless, it is still possible to extend the notion of socle to any
nondegenerate Lie algebta not necessarily 3-graded, by taking J8oc:= ) Sog, (1),
where (1, ) ranges over all 3-graded ideals bf(cf. 4.1). We call JSod.) the Jordan
socle ofLL.
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In 4.3 we prove that any nondegenerate Lie algebra with essential Jordan socle is sand-
wiched, via the adjoint mapping, between the TKK-algebra TKKof a nondegenerate
Jordan pairV coinciding with its socle, and the algebra of derivations (DEK (V)).
Moreover, in this case, JS@c) = ad TKK (V) = @ adTKK (V;)), where theV; are sim-
ple Jordan pairs with minimal inner ideals (4.2). Thus, to describe the Jordan socle of a
nondegenerate Lie algebra, it suffices to compute the TKK-algebras of the simple Jordan
pairs with minimal inner ideals. This task is carried out in Section 5 where we prove (5.15)
that, up to two exceptional cases (types and E7), simple Lie algebras with nonzero
Jordan socle are 3-graded Lie algebras of finite rank operators; the 3-gradings are also de-
scribed. We complete the description of nondegenerate Lie algebras with essential Jordan
socle by determining the algebra of derivations of the simple components of the Jordan
socle. To do so, we consider in the last section simple finitary Lie algebras of infinite
dimension over an algebraically closed fielidcharacteristic 0. By using Baranov’s clas-
sification [2, Corollary 1.2] together witbe La Harpe’s methods [5, 1.8, Proposition 2],
we compute their algebras of derivations. Any Lie algebra which is sandwiched between
an infinite dimensional finitary simple Lie algebra, s&y and its algebra of derivations
DerM is strongly prime and contains a reduced element (6.4). Conversely, any 3-graded
Lie algebra which is strongly prime, infinite dimensional and whose associated Jordan pair
contains a reduced element can be sandvddietween a finitary simple Lie algebra and
its algebra of derivations (6.7). The question whether or not the 3-graded condition can be
removed remains open.

2. Preliminarieson Lie algebrasand Jordan pairs

2.1. Throughout this paper, we will be dealing with Lie algebfaand Jordan pairs
V =(VT, V™) overaring of scalar® containing ¥6. As usual[x, y] will denote the Lie
product and adthe adjoint mapping determined by Jordan products will be denoted by
Oxy,foranyx e V7, y e V77,0 = =%, with linearizationgQ, .y = {x, y, z} = Dy yz. The
reader is referred to [12,14,19] for basic results, notation and terminology. Nevertheless,
we will stress some notions and basic properties for both Jordan pairs and Lie algebras.

2.2. Anelementx € V7 is called amabsolute zero divisoif Q, = 0. ThenV is said
to benondegenerati it has no nonzero absolute zero divisasemiprimef Qg+ BT =0
implies B = 0, andprimeif Q+CT =0 impliesB=0orC =0, for B= (B*, B7),
C = (C™*,C7) ideals of V. Similarly, x € L is anabsolute zero divisoof L if ad)zc =0,
andL is nondegenerat# it has no nonzero absolute zero divisasmiprimef [1, 1] =0
implies = 0, andprimeif [, J] =0implies/ =0orJ =0, for/, J ideals ofL. A Jordan
pair or Lie algebra istrongly primeif it is prime and nondegenerate.

2.3. ldeals of nondegenerate (strongly primiordan pairs inherit nondegeneracy
(strong primeness) [14, JP3], [16]. The same is true for Lie algebras: every ideal of a non-
degenerate (strongly prime) Lie algebragndegenerate (strongly prime) ([21, Lemma 4],
[10, 0.4, 1.5]).
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2.4. Given a subsef of L, theannihilatoror centralizerof S in L, Annz (S), consists
of the elements < L such thafx, S]= 0. By the Jacobi identity, An(S) is a subalgebra
of L and an ideal wheneveris so. Clearly, Anpp(L) = Z(L), the center of.. Moreover,
if an ideal E of L is semiprime (as an algebra), thénis essential E N I # 0 for every
nonzero ideal of L) if and only if Ann;, (E) = 0. Notice also thaL is prime if and only
if the annihilator of every nonzero ideal &fis zero.

The annihilator of a subsetX c V? is the set Ang(X) of all « € V™2 satisfying:
Q0.sx=0,0,a=0,0,0,=D,,=0,0,0,= D, ,=0 for everyx € X (cf. [14,16]).
In the linear case we are considering here,dahnihilator can be more easily characterized
[8, Lemma 1]:a € Anny(X) if and only if D, , =0= Dy, for everyxe X. If I =
(I*,I7) is an ideal ofV, then Ann, (1) = (Anny (I7), Anny(I1)) is also an ideal of
and has an easy expression whéis nondegenerate [16, Proposition 1.7]:

Anny (17) ={a e V™°: Q,1° =0}. 1)
A Lie analogue to (1) also holds, as can be seen in the following lemma.

25. Lemma. Let I be a nondegenerate ideal of a Lie algeltaThenAnn, (1) = {a €
L |[a,la,Il] = 0}. Hence,I N Ann. (/) = 0 and, if Ann. (I) = 0 then the wholeL is
nondegenerate.

Proof. If a € L is such thafa, [a, I]] =0, then[a, [a, [ + ®a]] =0, i.e.,a is also an
absolute zero divisor of the subalgelfa= I + ®a of L. Thereforea € K(I'), where

K () denotes the strongly degenerate radical or Kostrikin radical (cf. [21, p. 538]). Now
l[a,I1Cc K(I'"YNnI = K() by [21, Corollary 1, p. 543], and it is clear th&t(/) =0
becausd is nondegenerate. We have shown faafa, /1] = 0 implies thafa, 7] = 0. For

the last part, ift € INAnng (1) then[x, [x, I1] = 0, which impliest = 0 by nondegeneracy

of I. We also have that if Ani(7) = 0 thenL is nondegenerate:f, [a, L]] = O for some
a€L,then[a,[a,I]]=0,s0a €cAnn,(I)=0. O

2.6. A 3-gradingof a Lie algebral. is a decompositiod. = L1 & Lo @ L_1, where
eachL; is a submodule oL satisfying[L;, L;1C L;1;, and whereL;; ; =0if i 4+ j #
0,+1. A Lie algebra is 3gradedif it has a 3-grading. We will write(L, =) to denote
the Lie algebral with the particular 3-grading = (1, 7o, 7—1), Where eachr; is the
projection ofL ontoL;,i =0, 1.

Given (L, ) we have thatr (L) := (L1, L_1) is a Jordan pair for the triple products
defined by{x, y,z} :=[[x, y], z] forall x,z € Ly, y € L_,, 0 = £1, which is called
theassociated Jordan paiof (L, 7). We note that ifL is nondegenerate, so#qL) [22,
Lemma 1.8]. A standard example of a 3-graded Lie algebra is that given by the TKK-
algebra of a Jordan pair.

2.7. For any Jordan paiv, there exists a 3-graded Lie algebra TR = L1 ® Lo ®
L_1, theTits—Kantor—Koecher algebra df, uniquely determined by the following condi-
tions (cf. [19, 1.5(6)]):
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(TKK1) The associated Jordan pa&it1, L_1) of L is isomorphic toV.
(TKK2) [L1, L_1]= Lo.
(TKK3) [xp,L1® L_1] =0 impliesxg= 0, for anyxg € Lo.

In general, by a TKKalgebrawe mean a Lie algebra of the form TKK) for some Jordan
pair V.

2.8.Lemma. Let (L, ) be a3-graded Lie algebra with associated Jordan paifL) # O.
If = (L) is perfect(i.e., {ny (L), 71— (L), 1y (L)} = 7, (L) for bothe = +1) and[L, L] is
simple, thediTKK (= (L)) = [L, L].

Proof. Sincer (L) # 0 is perfectr1(L) @ [r1(L), m—1(L)] ® m—1(L) is a nonzero ideal
of L by [7, Lemma 4.2], clearly containedfifi, L]. Then, by simplicity[L, L] = 71(L) ®
[m1(L), m—1(L)] ® 7_1(L), and the latter is isomorphic to TKlk (L)) by 2.7. O

3. Thesocle of anondegenerate 3-graded Lie algebra

3.1. An inner ideal of a Jordan pairV is a ®-submoduleK C V¢ such that
QkxV~° C K. Following [15], thesocleof a nondegenerate Jordan p#iris defined by
SodV) = (Soq V1), SoaV ™)), where SocV?) is the sum of all minimal inner ideals of
V contained inv?. The socle is a von Neumann regular ideal and satisfies the descending
chain condition on principal inner ideals.

3.2. Thesocleof a nondegenerate 3-graded Lie algetitar) is defined as the ideal
of L generated by the socle of the associated Jordanmydiy. Denoted by Sog(L)
to show which grading we are considering, we have that,&oc= Sodri(L)) ®
[Sodmi(L)), Sodr_1(L))] ® Sodx_1(L)) [7, 4.3]. Moreover, Sog(L) can be decom-
posed as a direct sum of simple ideals,

SoG (L) = P s = P TKK (w (sV)).

where ther (S®) are the simple components of $8¢L)).
In general, the definition of the socle ohandegenerate 3-graded Lie algebra depends
on the 3-grading, as can be seen in the following example.

3.3. Example. Let V and W be two Jordan pairs coinciding with their socles, i¥é.=
SoqV) andW = SoqW). Let L be the Lie algebra built as the direct sum of the TKK-
algebras oV andW. Notice thatL admits the gradings

m(L)=VT, mo(L)=[V*T, V-] & TKK(W), ma(L)=V~,
(L) =W+, my(L) = [WT, W™ ] @ TKK(V), ' (L)y=W~,
r(Ly=vtewt, — ai)y=[Vtewr, v ew ]  aliL)=V oW,
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which give three essentially different socles: $@c) = TKK (V) while Sog/ (L) =
TKK (W) and Sog~ (L) = L.

3.4. We will show that the socle is indeed independent of the grading when the
grading iseffectivein the sense that there is no norzédeal contained in the zero part
of L. Notice that this condition is satisfied wheh, ) has (TKK3), and, in particular,
whenL is graded as the TKK-algebra of a Jordan pair or whes strongly prime.

3.5. Let(L,n) be a 3-graded Lie algebra with associated Jordanspdiy. For any
ideal I of L, denote byr, (1) the projection ofl onto =, (L), 0 = £1. We have the
following relations:

(i) [mo(L), ms (1] C 7o (1), hence alsdm, (L), m—o (L), 75 (1)} C 705 (1), and{m_o (L),
s (1), m—s (L)} C I Nm_s(L). Therefore
(i) =) := (m1(I), 7—1(1)) is an ideal ofr (L). Moreover,
(iii) id (D) = m1(1) ® ([m1(), m—1(L)] + [w-1(I), m1(L)]) ® m-1(I), wWhere by
idz (7w (1)) we denote the ideal df generated byt (7).

3.6. Lemma. Let (L, ) be a nondegenerategraded Lie algebra, and let be an ideal
of L. Then

() Anng(y(m—1(1)) & ANz (1(1)) C Anng (idg (7w (1))).
(i) If the grading is effective and is nonzero, then there exists a nonzero elemeat
m1(L) Um_1(L) such thafx, [x, IT] #0.

Proof. (i) Letx € Anng(z)(m—1(1)). Thenx € w1 (L) satisfies
[[x. m—1(D]. 71 (L) ® m—1(L)] = {x, m—a(D), ma (L)} + {w—1(1), x, m_1(L)} = 0.

Hence[x, m_1(1)] = 0 since the ideat1(L) ® [r1(L), m—1(L)] ® m—_1(L) inherits nonde-
generacy fromr (L) and therefore it is centerfree. Now it follows from 3.5(iii) that

[x.idz (m(D)] =[x, [r1(D), m_1(L) ] + [7-2(]), m1(L)]]
={m (), r_1(L), x} + {x, 7_2(1), (L)} = 0.

Therefore Anp 1) (wr—1(1)) C Anng (idg (7w (1))). The other containment follows by sym-
metry.

(i) Suppose on the contrary that, [x, I]] = 0 for everyx € w1(L) Um_1(L). Then it
follows from 2.5 thatr1 (L) Unw_1(L) C Anng (idz (= (1))). But thenid (7 (1)) C m1(L) &
[r1(L), m—1(L)] ® m—1(L) € Anng(idg ((1))), which implies that id (7w (1)) = 0 by
nondegeneracy of. Then! C mo(L), which contradicts the &ctiveness of the grad-
ing. O
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3.7. In[3, 1.7(iii)] Benkart proves that any € L with ad® = 0 and anyy € L satisfy
the following identity

adéy:adfad{%ad{f. (1)

Notice that the condition éd: 0 is trivially fulfilled wheneverx belongs to the 1 o1
part of a 3-grading. In fact, if € 7r1(L) and denote by_1 the projection ofy ontor_1(L),
this identity yields the fundamentdbrdan identity on the Jordan paitL):

ad;dzyilzadg1 y:atfad%adf:adfao&ladf.

Identity (1) plays a fundamental role ingltonstruction of minimal inner ideals.
A submoduleB of a Lie algebral is aninner idealof L if [B, [B, L]] C B. An abelian
inner idealis an inner ideaB which is also an abelian subalgebra, i[{8., B] = 0.

3.8. Proposition.

(i) LetL be a Lie algebraB an inner ideal ofZ, andc € L be such thaadf = 0. Then
adf B is an abelian inner ideal of..

Suppose for the resf the propogion that L is nondegenerate.

(ii) A nonzero abelian inner idea of L is minimal if and only ifB = a(fL for every
nonzero elemerit of B.

(iii) Let B be an abelian minimal inner ideal, ande L be such thaad? = 0. Then either
ad? B is zero or an abelian minimal inner ideal.

(iv) Letl =m1(1) ® mo(I) @ m—1(1) be a3-graded ideal ofL. A submoduled C =, (I),
o = %1, is a minimal inner ideal of the Jordan pait (/) if and only if it is an
(abelian minimal inner ideal ofL. In particular, an element € =, (I) of (Jordan
rank one int (1) generates the abelian minimal inner idéal [y, L]] of L.

Proof. For (i) use the same proof as that of [3, Lemma 1.8], while (ii) follows from
[3, Theorem 1.12].

(iif) Suppose now thaB is an abelian minimal inner ideal and thaﬁ:bd;é 0 for some
be B.Then

O;Aad;bezacfa(ﬁach,

by (1) and nondegeneracy 6f which implies agad? L # 0. But this is an inner ideal of
L (contained inB) by (i), since a§ = af = 0. Thus, agad’ L = B by minimality of B,
and therefore,

adgdgbLzaqz,B,

which proves that gdB is minimal.
(iv) Let B be a submodule ofr, (1) (say o = 1), and therefore an abelian subal-
gebra of L. By (i) and nondegeneracy df, if B is a minimal inner ideal ofL, then
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B=adl =afn_1(I) = {b,n_1(I), b}, for every 0# b € B. Hence, B is a mini-
mal inner ideal ofr (7). Suppose, conversely, th&t c w1(I) is a minimal inner ideal
of the Jordan pairr (/). Note that, because of the grading, for ang B, ad,fl =0.
We claim that afiL = 0. Otherwise, there exists € L such that 0% ¢ = ada € B.
But ath C aogl = 0 hence by using a Kostrikin's result [13] (or [3, Proposition 1.5]),
adf L = 0, giving thatB = ad? I (by its minimality inz (1)) is an inner ideal of. by (i).
But then a§ L =1b,[b,[b,L]]]C [b, B] =0, sinceB C m1(I) is clearly abelian. There-
fore, a(f L =0 foreveryb € B, so as soon as# 0, B = ac% I (by its minimality inz (1))

is an abelian minimal inner ideal d@f. The last assertion of (iv) follows from the first part
of (iv) together with (ii). O

3.9. Theorem. Let (L, ) be a nondegeneratg-graded Lie algebra with an effective
3-grading, and let! be an ideal ofL which is graded with respect to Zrgrading=’.
ThenSocg,/ (1) C SoG; (L).

Proof. If Soc, (1) is zero, there is nothing to prove. Assume then that,8ét # 0
and show that it is contained in Spd.). By 3.6(ii), for any simple componerst) of
Sog,/(I), there exists a nonzero element, say 71(L), such thatz, [z, @11 # 0. Let
us consider G4 w = [z, [z, s']] for somes’ € §"). Notice thatw € 71(S'®) because
z € m(L) and §’'Y) is an ideal of L by simplicity. Therefore, the ideal of. gener-
ated byw, which coincides withs’® by simplicity, is-graded, i.e. 5" = 71(8'D) @
[72(S"®), m_1(S' )] @ 7-1(S'D).
Let us show that there existse 71(S'®) U 7_1(5'®) such that

[, Lo (S]] + [, [, 7o (SO) ] 0, (2)

Otherwise, [x, [x, 7;(S" 1] = 0 = [x, [x, 7/ (S]] for all x € 71(S"?), so also
[x, [x, 71 (1 (SN = 0, andlx, [x, w_1(w” 4 (S")]] = 0, giving

n_l(ni(S'(i))) =0 and rr_l(rr'_l(S’("))) =0 (@)

by nondegeneracy of the pairry(S'"), 7_1(5'®)). Similarly, if we supposed that
[x, [x, 7 (S"N] = 0= [x, [x, 7’ (S]] for all x € 7_1(S'®) we would obtain that

mi(ry(SP)) =0 and mi(n 4(5"?)) =0. (b)

Then (a) and (b) would lead to; (S"?) + 7 ; (§'?) C 7o(L), implying that the whole
ideal ™, which is generated as a subalgebrarjys’”) + =’ ;(8'®), is contained in
mo(L). This contradicts the hypothesisafbeing an effective grading.

Sincer;(8'") andx’ ;(S'®) are generated by (Jordan) rank one elements’af)
(therefore, by 3.8(iv), by elemenjse =/(I) such that aﬁiL is an abelian minimal inner
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ideal of L), we can take by (2) an element, say 71(S'¥), and a (Jordan) rank one
element, say € ;(S'®), such that afly # 0. Now it follows from (1) and 3.8(iii) that

O#ad, L=adadadL=adadL

is a minimal inner ideal ofL, and since aijy =[x, [x, 711 = —{x,71-1(y),x} €
m1(L),

is also a minimal inner ideal of the Jordan paitZ). Therefore,B C 0 N SoG (L),
and sinces’® is a simple ideal of, §’¥) ¢ Sog, (L), for any simple componerst®) of
SoG/(I). Thus Sog/(I) C SoG, (L). O

Therefore, as soon as a nondegenerate Lie algebias an effective 3-gradind., =),
its socle contains the socle of any other 3-grading of

3.10. Corallary. Let L be a nondegenerate Lie algebra admitting an effecBgrading
(L, 7). ThenSog, (L) D Sog, (L) for any other3-grading (L, =) of L. In particular, the
socle ofL does not depend on the effectB«grading considered.

4, TheJordan socle

Motivated by Theorem 3.9 we are going to introduce a notion of socle, callelbttian
socle for nondegenerate Lie algebras which are not necessarily 3-graded.

4.1. Given a nondegenerate Lie algelditawe define itsJordan socleas the sum of
the socles ofI, =), wherel is any 3-graded ideal of ands denotes any of its possible
3-gradings:

JSo¢L) = Z Soc, (I).

,m)
4.2. Theorem. The Jordan socle of a nondegenerate Lie algebré an ideal ofL. If
JSogL) £ Othenitis a direct sum of simple ideals each of which is the TKK-algebra of a

simple Jordan pair with minimal inner ideals. Therefad&ocL) = TKK(V), whereV is
a nondegenerate Jordan pair coinciding with its socle.

Proof. By 3.2, for any 3-graded ide&l, =) of L,

Soc (1) =P sV =P TKK (7 (s?)),
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where, as pointed out before, th& are actually ideals af, and ther (S®) are the simple
components of Saa(1)). Moreover, JSod.) = @ TKK (7 (5?)) = TKK(@ n(51)),
and@ 7 (5?) is a nondegenerate Jordan pair that coincides with its socle.

Thus, the Jordan socle of a nondegenerate Lie algebra is the biggest 3-gradedideal of
that coincides with its socle. Moreover (if., ) is a nondegenerate 3-graded Lie algebra
with effective 3-grading, then S@¢L) = JSo¢L). We also have a structure theorem for
nondegenerate Lie algebra with essential saufglar to that proved in [7] for 3-graded
Lie algebras. Recall that assential subdirect producf a family of algebras$L,} is any
subdirect product of thé, containing an essential ideal of the full direct prodpEt,,.

4.3. Theorem. For a Lie algebraL, the following statements are equivalent

(i) L is nondegenerate and has essential Jordan socle.
(i) L is an essential subdirect product of a family of strongly prime Lie algeliras
having nonzero Jordan socles.
(i) PadTKK(V,)) <L < []DerTKK (Vy)), where eachV,, is a simple Jordan pair
with minimal inner ideals.
(iv) There exists a nondegenerate Jordan pHithat coincides with its socle such that
adTKK (V)) < L < Der(TKK(V)).

Moreover, in cas€iv), JSo¢L) = adTKK (V)), and L is strongly prime if and only if
JSocgL) is simple, if and only iV is simple. We also have thBer(TKK (V)) is the largest
strongly prime Lie algebra having Jordan socle equaatiTKK (V)).

Proof. (i) = (ii). LetJSo&L) = P M,, be essential, with th&f,, being the simple compo-
nents of JSod.), and takel, := L/ Anng (M) for each indext. By 2.4, Anng (M) =
Anng (p My) = Anng (JSocL)) = 0, and thereford. is a subdirect product of the,.
Moreover, by 2.5,

M= My + Anng (M) ~ M, _
7 Annp(My) Mg NAnNnL(My)

o

is a nondegenerate simple ideal bf, coinciding with its Jordan socle and having
Ann._(M,) = 0. Hence, again by 2.5 and simplicity 8f,, L, is a strongly prime Lie
algebra with JSad.,) = M, . Finally, since the ideadp M,, is essential if | L., we have
that L is actually an essential subdirect product of the

(ii) = (iii). Assume now that. is an essential subdirect product of a family of strongly
prime Lie algebragL, } having nonzero Jordan socles J8ag) = M, = TKK (Vy), where
the V,, are simple Jordan pairs with minimal inner ideals. Applying [6, Theorem 4.1] and
taking into account that we can replace, for each indethe maximal uniform component
Anng (Anng (M,,)) by M, since both have the same annihilator, we may assume that

DM <L<]]La.
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with L, = L/Anng (M) for each indexx. Now, L/Anng(M,) can be regarded, via the
adjoint mapping, as a subalgebra of De},).

(iii) = (iv). It follows settingV = &P V,, and observing that D& TKK (V,)) is iso-
morphic to] [(DernTKK (V,))).

(iv) = (i). Suppose finally that. is as in (iv). By [7, Proposition 2.11], TK&/)
is a nondegenerate Lie algebra, which coincides with its Jordan socle. Moreover,
adTKK (V)) = TKK (V) is essential in D&TKK (V)) and therefore also ii. Hence
L is nondegenerate, by 2.5, and has essential Jordan socle.

The remainder of the proof goes as that of [7, Theorem 5.4j.

5. Simple Lie algebras coinciding with their Jordan socles

By 4.2, to describe the Jordan socle of a nondegenerate Lie algehitrauffices to
compute the TKK-algebras of the simple Jordan pairs with minimal inner ideals. We be-
gin by recalling some notation on pairs of dual vector spaces and related Jordan pairs of
continuous operators.

5.1. LetP=(X,Y,g) andP’ = (X', Y’, g') be two pairs of dual vector spaces over
the same divisionp-algebraA. A linear operatow : X — X' is continuous(relative to
the pairsP andP’) if there existsa®: Y’ — Y, necessarily unique, such thgax, y') =
g(x,ay) for all x € X, y' e Y'. Denote byL(X, X’) the &-module of all continuous
operators fromX to X’, and by F(X, X’) the submodule of those continuous operators
having finite rank.

5.2. Everya € F(X, X') can be expressed as a sur& ) y‘x;, where both{x/} C X’
and{y;} C Y are linearly independent, and wheréx’ is defined byy*x’(x) = g(x, y)x/,
xeX.

53. LP,P) = (L(X,X'),L(X', X)) is a Jordan pair with Jordan products
{a1, b1, az} = a1b1az + asbiaa, {b1, a1, b2} = braiby + brarb, for a; € L(X, X'), b; €
L(X', X). This (rectangula) Jordan pair is strongly prime with socle the simple Jordan
pair F(P, P’ = (F(X,X"), F(X', X)), if P andP’ are both nonzero. Moreover, we
have the following formulae:

() a(y*x’) =y*(ax’), forallx’ € X', y € Y, anda € homy (X', X"),
(i) (y*x"b= "y )*x", forallx” e X",y €Y', andb € L(X, X'),
(|||) (y/*x//)(y*x/) — y*g/(x/’ y/)x//,
whereP = (X,Y,g) andP’ = (X', Y’, g’) are pairs of dual vector spaces, akid is a

vector space. WheR = P’ = (X, 7, g), thenL(X) := L(X, X) is a primitive associative
algebra with socleF (X) := F (X, X). It follows from (i) and (ii) that

5.4. F(X)is aleftideal of End (X), and a (two-sided) ideal af (X).
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5.5. Given a pairP = (X, Y, g) of skew dualvector spaces over a division algebra
with involution (A, —) (cf. [9, 3.11]), we define th@ppositeof P as the pair of skew
dual vector spacef := (¥, X, g°P), whereg®(y,x) :=g(x,y) forx e X andy €Y.
For anya € £(X, Y), its adjointa™ also lies in£(X, Y), so it makes sense to consider the
HermitianJordan pair

Her(L(P), #) = (Her(L(X, Y), #), Her(L(Y, X), #)),

which is strongly prime with socle the simple Jordan pair (f&fP), #), if P is nonzero.
Moreover, He(F (X, Y), #) is additively generated by the rank one operaiors, for all
yet.

5.6. Similarly, given a pair of dual vector spac®s= (X, Y, g) over a fieldF, we
may consider theskew-symmetridordan pair Ske¢L(P),#), which is strongly prime
with socle SkewF (P), #). Note also that Ske@# (X, Y), #) is additively generated by the
tracesy1y; — y2y7, forall y1, y2 € Y.

5.7. We also recall the so-called Clifford Jordan pairs. Xebe a vector space over
a field F, and letg: X — F be a quadratic form oX with associated bilinear form
qgx,y):=qx+y)—qx) —q(y). Then(X, X) becomes a Jordan pair for the prod-
uct given byQ.y = ¢ (x, y)x — g (x)y. It will be called theClifford pair defined byg. If ¢
is nondegenerate, then the Clifford pait X, ¢), is nondegenerate and coincides with its
socle (see [14, 12.8]). Moreover, it is simple if dim£ 2.

Strongly prime Jordan pairs with nonzero socle, and in particular simple Jordan pairs
with minimal inner ideals, were classified in [9, 5.1]. Under our present restriction on the
scalar ring®, the list reads as follows:

5.8. A Jordan paitV is simple with minimal inner ideals if and only if it is isomorphic
to one of the following:

(1) A simple exceptional Jordan pair, which is finite dimensional over its centroid.

(2) A Jordan pair of Clifford typeC (X, q), whereq denotes a nondegenerate quadratic
form on a vector spack over a fieldF, with dimX ## 2.

(3) A Jordan pair of finite rank continuous operatéi&P, P')’/, whereP, P’ are pairs of
dual vector spaces over the same division algebra.

(4) A Jordan pair of Hermitian finite rank continuous operators(H¢P), #), whereP is
a pair of skew dual vector spaces over a division algebra with involution, and # is the
adjoint involution.

(5) A Jordan pair of skew finite rank continuous operators SK&®), #), whereP is a
pair of dual vector spaces over a figlg and # is the adjoint involution.

If V in 5.8 is finite dimensional, it is a form of a pair covered by a grid, and its TKK-
algebra has been described by E. Neher in [19]. In particular, the TKK-algebra of a simple
exceptional Jordan pair is a Lie algebra of typgor E7. The study of the infinite dimen-
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sional cases will make use of finite rantrtinuous operators on dual vector spaces and a
class of Lie algebras introduced by A.A. Baranov and known as finitary Lie algebras.

5.9. Associated to a pair of dual vector spad@s= (X, Y, g) over a division algebra
A, we have the following Lie algebras:

() Thegeneral linear algebragl(P) := L(X)).
(i) The general linear algebra of finite rank operatofgl(P) := F(X).
(iif) The special linear algebra of finite rank operatofsl(P) := [fgl(P), fgl(P)].

Recall that a Lie algebra over a fiekis finitary if it is isomorphic to a subalgebra of
fgl(X), for some vector spack over F. It is clear that ifA is finite dimensional over a
field F, then bothfgl(P) andfs((P) are finitary Lie algebras.

Ifdima X > 1, thenfsl(P)/fsl(P) N Z is a simple Lie algebra (see [11, Theorem 1.12]),
whereZ denotes the center of the associative algeb(X). In particular, if X is infinite
dimensional overi or if A is finite dimensional over its center and has zero characteristic,
fsl(P) N Z =0, sofsl(P) is itself a simple Lie algebra.

Any decomposition ofP as a direct sum of two subpairs (such a decomposition always
exists, and we can even take one of the subpairs to be finite dimensional) induces a 3-gra-
ding in each of the Lie algebrad(P), fgl(P), fsl(P) (cf. [7, 5.8(1)]). Therefore, also in
the Lie algebrgs((P)/§sl(P) N Z, since any centratleal is graded.

5.10. Let (X, h) be a nonsingular Hermitian or skew-Hermitian inner product over
a division algebra with involutioA, —): h(y,x) = €h(x,y), € = £1 (in fact, every
skew-Hermitian inner product is alternate over a fiéldvith the identity as involution,
or becomes a Hermitian inner product). Denotesbthe adjoint involution k(ax, y) =
h(x,a*y), forall x, y € X) of the associative algebrx X).

Assume thatd is a field F if characteristic not 2 with the identity as involution, and that
dimg X > 2.

() If e=1,i.e.,his asymmetric bilinear form, then Ské@1(X), %) is theorthogonal al-
gebrao(X, h), and SkewF (X), ) = [Skew F(X), x), SkewF (X), x)] is thefinitary
orthogonal algebrgo(X, k) [2].

(iiy If e=—1,i.e.,h is alternate, then SkeMl(X), =) is thesymplectic algebrap(X, i),
and SkewF (X), x) = [SkewF (X), x), Skew F(X), )] is thefinitary symplectic al-
gebrafsp(X, h) [2].

If dimr X > 4 (possibly infinite), botffo(X, h) andfsp(X, k) are simple by [11, Theo-
rem 2.15], since in both cases Sk&W(X), x) N Z = 0, for Z the center ofF (X).

Let us compute the TKK-algebras of the Jordan pairs (2), (3), (4) and (5) listed in 5.8.
Notice that the nondegeneracy of these TKi§eddras is equivalent to the nondegeneracy
of their associated Jordan pairs by [7, 2.11(ii)].

5.11. LetV = C(X,q) be a Clifford pair as in 5.8(2) with di;mX > 2, and letH =
(x4, x_) be a hyperbolic plane. Sét= H & X and define a quadratic forgl onY by
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q'(x4,x-)=1,q'Ix =q andq’'(x4+) = q'(x-) = ¢'(H, X) = 0. This way (cf. [7, 5.8(3)]),
fo(Y, ¢q’) is a simple 3-graded Lie algebra with associated Jordaripatence TKKV) =
fo(Y,q’) by 2.8.

Conversely, any finitary orthogonal algeljrd X, i) such thatX contains an isotropic
vector and dimt X > 4 can be realized as the TKK-algebra of a simple Jordan pair of
Clifford type (if X contains a nonzero isotropic vector, thEn= H @ H' whereH is a
hyperbolic plane).

5.12. Let V = F(P1,P2)’ be a Jordan pair of finite rank continuous operators as
in 5.8(3), withPy = (X1, Y1, g1) andP2 = (X2, Y2, g2) pairs of dual vector spaces over the
central division algebra overF. DefineP = (X, 7Y, g), whereX = X1 X2, Y =Y1DY>
andg = g1 ® g2 (1-€.,glx;xv, = 81, glx,xv, = g2, ANAg|x; xv, = &lx,xr, = 0). We have
by 5.9 thatfsl(P)/fsl(P) N Z, with Z = Z(F (X)), is a simple 3-graded Lie algebra with
associated Jordan pdit. Hence, by 2.8, TKKV) = {s[(P)/fsl(P) N Z.

Conversely, any simple Lie algebfa= fsl(P)/fsl(P) N Z, whereP is a pair of dual
vector spaces ovet, can be regarded as the TKK-algebra of a Jordan pair of finite rank
operators/ = F(P1, P2)”.

5.13. LetV =Her(F(P),#) be a Jordan pair of Hermitian finite rank continuous oper-
ators as in 5.8(4), where = (X, Y, g) is a pair of skew dual vector spaces over a division
F-algebra with involution(A, —), F = Sym(Z(A), —). On the vector spac& @& Y we
define a nonsingular skew-Hermitian bilinear form, denoted bgsh(x ® y,x’ ® y’) =
g(x,y) — g% (y,x") = g(x,y") — g(x/, y). Then the corresponding associative algebra
F(X &Y) can be represented ax2 matrices

X X,Y by *
a= <a11 alz) € < F&) - F& )) with adjoint given by a* = (aiz af) .
a1 azp FY,X) FE) ay  apg

Now if x1, x2 € X, we have

g%P(a12x1, x2) = —h(a12x1, x2) = —h(x1, ajx2) = g(x1, —ai,x2).

Therefore, the adjoint involutionin F(X @ Y) corresponds te-# in theassociative pair
F(P,PP). If dimza(X @ Y) > 4 and we denote SkeéW (X @ Y),*) by K and the
center of F(X & Y) by Z, then[K, K]/[K, K]N Z is simple by [11, Theorem 2.15], and
hence, by 2.8, isomorphic to the TKK-algebra of the Jordan pair

Conversely, let(X, h) be a nonsingular skew-Heftian inner product vector space
over a division algebra with involutiofd, —), dimz4)(X) > 4. If X is a direct sum of
two totally isotropic vector subspaces, then the simple Lie algekt&']/[K, K1 N Z,
whereK := SkewF(X), x) and Z denotes the center ¢0f(X), is 3-graded and isomor-
phic to the TKK-algebra of a Jordan pair bermitian finite rank continuous operators
V =HenF(P),#).

Two particular cases of 5.13 deserve a special comment.

() If X is infinite dimensional oven, or A is finite dimensional over its center and has
zero characteristic, thei = 0 and[ K, K] is itself a simple Lie algebra. Moreover, if
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the involution of A is of second kind, theX is thefinitary unitary algebrafu(X &
Y, h), and[K, K] is thefinitary special unitary algebrgsu(X @ Y, h).

(i) If A is afield F with the identity as involution, thelr = Sym(F(P), #), with P =
(X, Y, g) being a pair of dual vector spaces overn this case, TKKV) is isomorphic
to the finitary symplectic algebfap(X ®Y, h): h(x Dy, x' D y') = g(x, y) —g(x’, ).

5.14. Assume finally thatV = Skew(F(P),#) is a Jordan pair as in 5.8(5), where
P =(X,Y,g) is apair of dual vector spaces over a fiéldDefine a nonsingular symmetric
bilinearformfonX ®Y by f(x® y,x’ ®y') = g(x,y") + g(x’, y). We obtainas in 5.13
that if dimg(X @ Y) > 4, then TKK(V) is isomorphic to the finitary orthogonal algebra
fo(X®Y, f).

Conversely, any finitary orthogonal algelfrd X, f), whereX is a direct sum of two
totally isotropic subspaces is 3-graded andrisgphic to the TKK-algebra of a Jordan pair
V = Skew(F(P),#), for P = (X, Y, g) a pair of dual vector spaces over a figld

All these results can be summarized as follows.

5.15. Theorem. A Lie algebral (over a fieldF' of characteristic different fror@ and3) is
simple, nondegenerate and has nonzero Jordan socle if and only if it is isomorphic to one
of the following

(1) an exceptional simple Lie algebra of typg or E7,

(2) a special linear algebra of finite rank operatofsl((P)/fsl(P) N Z, where P =
(X,7,g) is a pair of dual vector spaces over a divisignalgebra A, and where
Z stands for the center of the associative algelie),

(3) afinitary orthogonal algebrdo(X, ¢) (over an extension field df), whereX = H &
H~+ with H = (x, y) a hyperbolic plane, oX = X1 @ X» a direct sum of two totally
isotropic subspaces, and where, in both cagés, X > 4,

(4) a simple Lie algebralK, K]/[K,K] N Z, with K = Skew F(X),*) and Z =
Z(F(X)) relative to a nonsingular skew-Hmitian inner product vector space
over a divisionF-algebra with involution(A, —), and wheredimz4y(X) > 4 and
X = X1 & X, is a direct sum of two totally isotropic subspaces.

6. Simplefinitary Liealgebrasand their algebras of derivations

In this section we provide an intrinsic characterization of the simple finitary Lie algebras
of infinite dimension over an algebraicakyosed field of characteristic 0 which can be
equipped with a 3-grading, as well as of their algebras of derivations. We begin by recalling
Baranov'’s classification of simple finitary Lie algebras [2, Corollary 1.2].

6.1. Theorem. Let F be an algebraically closed field of characterisficThen any infinite
dimensional finitary simple Lie algebra overis isomorphic to one of the following

(i) afinitary special linear algebrasi(P),
(i) afinitary orthogonal algebrdo(X, ¢),
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(i) a finitary symplectic algebrg&p(X, i),
with P and X being infinite dimensional over.

Inspired by De La Harpe’s methods for classical Banach Lie algebras of compact oper-
ators on a Hilbert space (see [5, 1.8, Proposi2y), we compute the algebra of derivations
of each one of the finitary simple Lie algebras listed above.

6.2. Theorem. Let F, P, (X, g) and(X, h) be as in6.1. Then

() Der(jsl(P)) = gl(P)/Z, whereZ = F1ly is the center ofl(P).
(i) Der(fo(X,q)) =o0(X,q).
(i) Der(fsp(X, h)) Zsp(X, h).

Proof. (i) Let P = (X, Y, g) be an infinite dimensional pair of dual vector spaces dver
Consider the adjoint mapping— ada from gl(P) to Der(§sl(P)), which makes sense
sincefsl(P) is an ideal ofgl(P). Clearly, its kernel consists of all scalar multiples of the
identity onX, so we only need to show that it is onto. Fix a pair of vectegs yo) € X x ¥
such thatg (xo, yo) = 1, and consider the familif?; },c 4 of all subpairsP;, = (X3, Y, g2)
of dual vector subspaces @& such that (i) eachP, has finite dimensiom, > 2, and
(i) (x0, y0) € X, x Y, foreach index.

The P, form a directed set with respect to inclusion aRd= lim P;, the direct limit
of the P;. Moreover,P = P, @& P;- for each indexx, whereP;- = (Y5, X;-, gib) (see
[9, 3.17]). Consequently, for eaghe A the Lie algebrd. := fs[(P) contains a subalgebra
L) = {sl(P,) = sl,, (F) which is simple sincer;, > 2, the L, form a directed set with
respect to inclusion, and =lim L.

Let A € Der(L). SinceL = | J Ly, for eachx € A there existst, € A such that both
L, and A(L,) are contained irL,,, . Denote byA, the restriction ofA to L, into L, .
By [12, p. 80, Theorem 9], there exists € L, such thatA; (a) = [d;,al foralla € L,.
Moreover, the restriction af, to X, is uniquely determined up to a scalar multiple of the
identity on X, , souniquely determinetly the additional conditiog(dj xo, yo) = 0.

Defined: X — X asdx = d,x whenevew € X,. Clearly,d is well defined, linear and
satisfiesA(a) = [d, a] for all a € fsI(P). Thus it remains to show that is continuous,
relative to the paifP.

We have thatd, {s{(P)] C fsl(P). Moreover,d F(X) C F(X) by 5.4. Henceud €
F(X) for all a € §sl(P). Let us see that this fact implies the continuity &fi.e., for
eachy € Y there exists aniquevectory’ € Y such thaig(dx, y) = g(x, y’) forall x € X.
Indeed, givery € Y take a nonzero vectar € X satisfyingg(x’, y) = 0, which clearly ex-
ists because the pdht has infinite dimension. Theyix’ € fsI(P) and so(y*x")d € F(X),
that is, (y*x")d = y"™*x’ for a uniquely determined vectgf € Y. Applying both terms of
the equality to any € X, we getx'g(dx, y) = x'g(x,y’), sog(dx, y) = g(x,y’) since
x' #0, as required.

The proofs of (ii) and (iii) are similar, even easier than that of (i). To prove (ii)( Euty)
as a direct limit of nondegenerate inner subspdggs ¢;) of finite dimension 2 > 8,
in order to assure that the corresponding subalgebfa% fo(X,, ¢,) of fo(X,q) are
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simple of typeD, [12, pp. 139, 141]; to mve (iii), take the inner subspacéX;, /,)

of finite dimension 2 > 6 [12, p. 140]. In both cases, the restrictions of #heo the X,

are uniquely determined, and the linear operdtaX — X, locally defined by the), , sat-
isfiesd* = —d. Let us finally show that the adjoint mappiag— ada is injective in both
cases.

Leta € 0(X, g) be such thafa, fo(X, ¢)] = 0. Givenx € X, takey € X such thaty
does not lie in the subspace &fgenerated byx, ax}. Then there exists € X such that
q(x,z) =0=g(ax,z) andg(y,z) = 1. The operatop*x — x*y € fo(X, ¢) and therefore
[a, y*x — x*y] = y*ax — x*ay + (ay)*x — (ax)*y = 0. Evaluating this operator equality
onz, we obtainax = —¢g(ay, z)x, and hence is a scalar multiple of the identity, which is
a contradiction since* = —a and cha# = 0.

Similarly, if a € sp(X, h) satisfies[a, fsp(X, h)] = 0, then for anyx € X we have
[a, x*x] = x*ax + (ax)*x = 0. Assumex = 0 and lety € X be such thati(y, x) = 1.
Evaluating the operator equality gnwe getax = —h(y, ax)x, Soa = 0 as before. O

6.3. Let L be a Lie algebra oveF. An elementz € L will be calledreduced(over F)
if [a,[a, L]]= Fa.

6.4. Proposition. Let F be an algebraically closed field of characteris@iclet M be an
infinite dimensional finitary simple Lie algebra ovErand letL be a Lie algebra such that
M < L < K, whereK is a Lie algebra isomorphic tDerM. ThenL contains a reduced
element.

Proof. We will use Theorems 6.1 and 6.2, and treat each case separately.

(i) If M ={sl(P), takea = y*x wherex € X andy € Y are nonzero vectors satisfying
g(x,y)=0.
(i) If M =fo(X,q), takea = y*x — x*y wherex, y are two nonzero, isotropic and mu-
tually orthogonal vectors.
(i) If M ={sp(X, h), takea = x*x for a nonzero vectar € X.

Since M is nondegenerate, it will suffice to verify tht, [a, M]] C Fa. We also note
that in all these cases;? = 0 and hencela, [a, b]] = —2aba for all be L. If (i),
aba = (y*x)b(y*x) = g(bx, y)(y*x) € Fa. If (ii), aba = (y*x — x*y)b(y*x — x*y) =
y*q(y, bx)x + x*q(x,by)y = q(bx, y)a € Fa sinceq(bx,x)=0forallb € o(X, q) and
x € X. If (iii), aba = (x*x)b(x*x) = h(x,bx)(x*x) € Fa. Thereforea is reduced in any
of these cases.O

The structure theorem of strongly prime Jordan pairs with nonzero socle given in [9] ad-
mits the following refinement when the involved Jordan pairs do not merely have nonzero
socle, but a reduced element over an atgatally closed field of characteristic 0.

6.5. LetV be a Jordan pair over a field. An elementy € V° isreducedf Q,V ™7 =
Fx.
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Clearly, reduced elements in a Jordan géaigenerate minimal inner ideals &f, so, if
V is nondegenerate, then any reduced element lies in the socle.

6.6. Theorem. Let F be an algebraically closed field of characterislicA Jordan pair is
simple and contains a reduced element oFef and only if it is isomorphic to one of the
following:

(i) a simple exceptional Jordan pair, weh is finite dimensional oveF,
(i) a Clifford Jordan pairC(X, ¢q) determined by a nondegenerate quadratic form on a
vector spaceX of dimension# 2 over F,
(iii) a rectangular Jordan paiv = F(P, P/,
(iv) a Hermitian Jordan paiV = Sym(F(P), #), or
(v) an alternating Jordan paiV = Skew(F (P), #),

whereP = (X, Y, g) andP’ = (X', Y’, g’) are nonzero pairs of dual vector spaces o¥er

Proof. As already mentioned, the Jordan pairgdisabove are simple. Moreover, each of
them contains a reduced element: see [17, 1.12(iv)—(vi)] for the exceptional and Clifford
cases; for the rectangular cage= F(P, P')’, takey*x where bothx € X, y' € Y’ are
nonzero; for the Hermitian casé= Sym(F (P), #), takey*y for a nonzero € Y; finally,

for the alternating case, take* y>* — y2*y1* whereys, y2 € Y are both nonzero.

Suppose then thaf is a simple Jordan pair containing a reduced element Bvaihis
implies thatV has nonzero socle and thidtis central i.e., its centroid is the given ring of
scalarsF (cf.[18, 2.10]). This allows to us to refine the list given in 5.8VIfs exceptional,
then itis actually finite dimensional ovér[18, 5.9(V-VI)]; if V is of Clifford type, thenV
is the Jordan pair associated to a nondegenerate quadratic fornredjpace [18, 5.9(1V)];
if V=F(P, P’ thenitfollows as in [17, 1.12(ii)] that the coordinate divisiralgebra
A is equal toF. The same is true whevi is Hermitian or alternating, by [17, 1.12(Vv)],
sinceF is algebraically closed and therefore has no nontrivial quadratic extensians.

We note that, because of the grading, any reduced element, (o = £1) of the
Jordan pairV = (L1, L_1) associated to a 3-graded Lie algelirais actually a reduced
element ofL. Such an element will be called aJordan reduced elemenf L. Although
the existence of a Jordan reduced element involves the previous one of a 3-grading, we will
make no particular mention of the 3-grading when speaking of Jordan reduced element in
a Lie algebra.

6.7. Theorem. Let F be an algebraically closed field of characterisficA Lie algebral
is strongly prime, infinite dimensional and contains a Jordan reduced elementroifer
and only if it is, up to isomorphism, one of the following

(i) fsl(P)<L <gl(P)/Z,
(i) fo(X,q) <L <o(X,q),o0r
(iii) fsp(X,h) < L < sp(X, h), with X = X1 & X2 being a direct sum of two totally
isotropic subspaces,
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whereP? = (X, Y, g) is an infinite dimensional paiof dual vector spaces ovefF and
Z = Fly is the center ofil(P), and where; andh are nondegenerate bilinear forngthe
first one symmetric, the second one alterpate an infinite dimerisnal vector spacex
overF.

Proof. By 4.3 together with 6.2, any of the Lie algebradisted above is strongly prime,

and contains a reduced element (6.4), so we only need to show that any strongly prime
3-graded Lie algebrd over F which is infinite dimensional and whose associated Jor-
dan pair contains a reduced element, is isomorphic to one of those listed above. By [7,
5.4], adTKK(V)) <« L < Der(TKK(V)), whereV is a simple Jordan pair containing a
reduced element. MoreoveY, is infinite dimensional, since otherwise DEKK (V)) =
ad(TKK (V)) would be finite dimensional. The computation of TKK) is a mere refine-

ment of that carried out in 5.11-5.14, but now using 6.6 instead of 5.8. Finally, we can
compute DefTKK (V)) by 6.2. O

Open question

Does 6.7 remain true if the Jordan reduceshednt is replaced by a reduced element in
the Lie sense, and the restrictidh= X1 & X», with X; and X2 being totally isotropic, is
removed in (iii)? Recall that this last restriction is not required for the existence of reduced
elements in the Lie algebra, but that Joxdaduced elements are necessary in order to
apply Jordan techniques. On the other hand, it seems not to be known whether or not an
alternating spacéX, ) of uncountable dimension ovércan be expressed as a direct sum
of two totally isotropic subspaces.
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