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Miguel Gómez-Lozano 3

magomez@agt.cie.uma.es
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Introduction

In the classification of the maximal algebras of Martindale-like quotients of
strongly prime linear Jordan algebras [2], one can readily notice that speciality is
inherited by the algebra of quotients. As a consequence, any algebra of Martindale-
like quotients of a strongly prime special linear Jordan algebra is also special. The
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FQM 264.

1



2 anquela, cortés, garćıa, gómez-lozano

natural extension of this property to nondegenerate Jordan algebras finds the appar-
ently unavoidable obstacle of the bad behavior of quotients with respect to subdirect
products.

In this paper we present a different approach to that subject through polynomial
identities, which allows us to solve the problem in the even more general setting of
(quadratic) Martindale-like covers [1, Sect. 2]. On the other hand, we prove results
of independent interest on the inheritance of polynomial identities. These results,
involving polynomial identities, together with that of the inheritance of speciality,
apply to the particular situation of a Jordan algebra having a nondegenerate essential
ideal. From our results one can conclude that (admissible) polynomial identities and
speciality lift from such an ideal to the whole algebra.

The paper is divided into three sections plus a preliminary one devoted to re-
calling the basic known facts. Section 1 deals with polynomial identities in Jordan
algebras, including the fundamental fact that speciality of nondegenerate Jordan alge-
bras can be expressed in terms of satisfying certain polynomial identities. In Section
2 we show that a polynomial vanishing strictly on a PI nondegenerate Jordan algebra
vanishes strictly on any of its Martindale-like covers (indeed, on more general covers),
even if the polynomial is not admissible in the sense of Jordan identities. In the proof
of these results we use the abundance of central elements in nondegenerate PI Jordan
algebras [3, 3.6]. The final section is devoted to studying the inheritance of speciality.
The results of the previous sections settle the problem in the PI case. From that,
the general solution is given by studying the evaluation of the ideal of s-identities in
arbitrary nondegenerate Jordan algebras, together with some additional work on the
interaction of Martindale-like covers and ideals.

0. Preliminaries

0.1 We will deal with Jordan algebras over a ring of scalars Φ. The reader is
referred to [6, 7, 12] for definitions and basic properties not explicitly mentioned or
proved in this section. Given a Jordan algebra J , its products will be denoted x2,
Uxy, for x, y ∈ J . They are quadratic in x and linear in y and have linearizations
denoted Vxy = x ◦ y, Ux,zy = {x, y, z} = Vx,yz, respectively.

0.2 Given an associative algebra R over Φ, a Jordan algebra R(+), called the
symmetrization of R, can be built on the linear structure of R by taking the products
Uxy = xyx, x2 = xx, where juxtaposition denotes the associative product of R.
AJordan algebra is said to be special if it is a subalgebra of R(+), for some associative
algebra R, and it is said to be exceptional otherwise.

0.3 A Jordan algebra J is said to be nondegenerate if zero is the only absolute
zero divisor, i.e., zero is the only x ∈ J such that Ux = 0.

0.4 We recall that an ideal I of a Jordan algebra J is just a Φ-submodule of J
satisfying UIJ + I2 + UJI + I ◦ J ⊆ I, which implies {I, J, J} ⊆ I.
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0.5 We say that a Jordan algebra J is semiprime if UII 6= 0, for any nonzero ideal
I of J , and say that J is prime if UIL 6= 0, for any nonzero ideals I, L of J . Every
nondegenerate Jordan algebra is semiprime. A nondegenerate prime Jordan algebra
is said to be strongly prime. Notice that, in a prime Jordan algebra J , I ∩L 6= 0, for
any nonzero ideals I, L of J . An ideal I of J is said to be essential if I ∩ L 6= 0, for
any nonzero ideal L of J .

0.6 In a Jordan algebra J , the annihilator AnnJ(I) of an ideal I of J is an ideal
of J which, when J is nondegenerate, is given by

AnnJ (I) = {x ∈ J | UxI = 0} = {x ∈ J | UIx = 0}

[8, 1.3, 1.7; 13, 1.3]. An ideal I of J will be called sturdy if AnnJ(I) = 0. It is easy
to prove that essential ideals coincide with sturdy ideals in any semiprime Jordan
algebra. In a prime Jordan algebra J , AnnJ(I) = 0 for any nonzero ideal I of J [8,
1.6].

0.7 The centroid Γ(J) of a Jordan algebra J is the set of linear maps acting
“scalarly” in Jordan products [10]:

Γ(J) = {T ∈ EndΦ(J) | TUx = UxT, TVx = VxT,

T 2(x2) = (T (x))2, T 2Ux = UT (x), for any x ∈ J}.

It can be proved that TVx,y = Vx,yT, TUx,y = Ux,yT , for any T ∈ Γ(J), and any
x, y ∈ J . Clearly, ΦIdJ ⊆ Γ(J). By [10, 2.5], when the extreme radical of J is zero
(for example when J is nondegenerate), Γ(J) is a unital associative commutative
Φ-algebra and J can be seen as a Jordan algebra over Γ(J).

0.8 [1, 0.6] If J is a nondegenerate Jordan algebra and T ∈ Γ(J), then

(i) Ker T = Ker Tn for any positive integer n,

(ii) Ker T is an ideal of J .

0.9 Following [4], the (weak) center of J is the set C(J) of all elements z ∈ J
such that Uz, Vz ∈ Γ(J), which is a subalgebra of J when J is nondegenerate [4, Th.
1, 2].

0.10 When J and Q are Jordan algebras such that J is a subalgebra of Q, we
will say that Q is a cover of J . Following [1], we will consider the following ideal
absorption properties of a cover Q of J :

the outer ideal absorption properties

(IA1) for any 0 6= q ∈ Q there exists an essential ideal I of J such that
0 6= UIq ⊆ J ,

(IA2) for any q ∈ Q there exists an essential ideal I of J such that I ◦ q ⊆ J ,

and the inner ideal absorption property
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(IA3) for any q ∈ Q there exists an essential ideal I of J such that UqI ⊆ J .

A cover Q of J will be called a Martindale-like cover if it satisfies (IA1–3).

0.11 Remark: Notice that any cover Q of J satisfying (IA1) is tight over J ,
i.e., any nonzero ideal of Q hits J . As a consequence, if J is nondegenerate then Q
is also nondegenerate (cf. [9, 2.9(iii)]).

1. Polynomial Identities in Jordan Algebras

1.1 Recall [6, Ch. 3; 11, IV.B.1] that the free Jordan algebra FJ[X] on a set
of variables X is spanned over Φ by the so-called Jordan algebra monomials (on
X), defined inductively as follows: the elements in X are monomials, and, given
monomials a, b, c, the elements a2, a ◦ b, Uab and Ua,bc are also Jordan algebra
monomials. We will say that the elements in X are Jordan algebra monomials of
degree 1, and, in general, we will say that a Jordan algebra monomial a has degree
n > 1 if one of the following holds:

(i) a = b2, where b is a Jordan algebra monomial of degree n/2 (only if n is
even),

(ii) a = b◦c, where b, c are Jordan algebra monomials of degree k, l, respectively,
and k + l = n,

(iii) a = Ubc, where b, c are Jordan algebra monomials of degree k, l, respectively,
and 2k + l = n,

(iv) a = Ub,cd, where b, c, d are Jordan algebra monomials of degree k, l, m,
respectively, and k + l + m = n.

Although the set of Jordan algebra monomials is not a basis of FJ[X] over Φ (for
example, Ux,xy = 2Uxy for any x, y ∈ X), the above grading on monomials induces
a grading on FJ[X] and the corresponding notion of homogeneity.

The elements of FJ[X] will be called Jordan polynomials.

1.2 Let FAss[X] be the free associative algebra over X. The subalgebra of
FAss[X](+) generated by X is called the free special Jordan algebra over X, and it
is denoted by FSJ[X].

1.3 The algebra FJ[X] is free over the set X in the sense that, for any map
ϕ : X −→ J from X to a Jordan algebra J , there exists a unique Jordan alge-
bra homomorphism ϕ̃ : FJ[X] −→ J extending ϕ. Given p(X1, . . . , Xn) ∈ FJ[X],
a1, . . . , an ∈ J , the evaluation p(a1, . . . , an) of p is just the image ϕ̃(p) when ϕ(X1) =
a1, . . . , ϕ(Xn) = an. In particular we have the canonical specialization ψ : FJ[X] −→
FSJ[X], which is the unique Jordan algebra homomorphism from FJ[X] to FSJ[X]
fixing the elements of X.
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1.4 A Jordan polynomial p will be said admissible if its image by the canonical
specialization is a monic associative polynomial (i.e., it has a leading monomial with
coefficient 1).

1.5 We will say that a polynomial p ∈ FJ[X] vanishes on the Jordan algebra
J if p(a1, . . . , an) = 0, for any a1, . . . , an ∈ J . We will say that p ∈ FJ[X] vanishes
strictly on J if p vanishes on any scalar extension J⊗ΦΩ, equivalently, if p vanishes on
J ⊗Φ Φ[T ], where Φ[T ] is the unital commutative associative algebra of polynomials
on an infinite set T of variables, equivalently all partial linearizations (including the
homogeneous components) of p vanish on J .

1.6 A Jordan algebra J will be called PI if there is an admissible Jordan poly-
nomial p vanishing strictly on J .

1.7 A Jordan polynomial p ∈ FJ[X] is called an s-identity if it vanishes in
every special Jordan algebra, equivalently, if it lies in the kernel of the canonical
specialization ψ of (1.3). Hence, the set s-Id[X] of all s-identities is an ideal of FJ[X].
The fact that speciality is preserved by free scalar extensions implies that s-identities
vanish strictly on any special Jordan algebra, so that s-Id[X] is a homogeneous ideal,
invariant under partial linearizations (cf. (1.5)). Given an arbitrary Jordan algebra
J , s-Id(J) will denote the set of all evaluations of s-identities on J , which is an ideal
of J . If s-Id(J) = 0, J will be said to be i-special (any polynomial vanishing on all
special Jordan algebras vanishes on J).

1.8 Obviously, special Jordan algebras are always i-special, but the converse is
false (see [11, IV.A.3.3]). However, if we restrict to nondegenerate algebras i-speciality
and speciality turn out to be equivalent [12, 15.4].

1.9 Strongly prime exceptional Jordan algebras are always PI. Moreover, the
admissible Jordan polynomial

p(x, y, z) := S4(Vx3,y, Vx2,y, Vx,y, V1,y)(z),

for the alternating standard identity

S4(x1, x2, x3, x4) :=
∑

π

(−1)πxπ(1)xπ(2)xπ(3)xπ(4)

summed over all permutations on 4 letters, vanishes on any Albert form (cf. [11, p.
112]), hence, it vanishes strictly on any strongly prime exceptional Jordan algebra
(see [12, 15.2]).

2. Extending Polynomial Identities to Covers

The goal of this section consists of lifting identities from PI Jordan algebras to
a certain type of covers. Although we are mainly concerned with Martindale-like
covers, we state our results in a more general context.
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2.1 Lemma. Let J be a nondegenerate PI Jordan algebra, and Q be a cover of
J satisfying (IA1) and such that C(J) ⊆ C(Q). Then, for any 0 6= q ∈ Q, and any
essential ideal I of J , there exists z ∈ I ∩ C(J) such that Uzq 6= 0.

Proof: Let X = I ∩ C(J), and take

AJ(X) = {y ∈ J | Uxy = 0, for any x ∈ X} =
⋂

x∈X

KerJ Ux,

which is an ideal of J by (0.8). If AJ(X) 6= 0, then I ∩ AJ(X) 6= 0 by essentialness
of I, so AJ(X) ∩X = AJ(X) ∩ I ∩ C(J) 6= 0 by [3, 3.6]. Then we can take 0 6= x ∈
AJ(X) ∩X, which satisfies Uxx = 0, hence U3

x = UUxx (by [12, 0.3]) = 0. But this
is a contradiction by [10, 2.8] since, due to nondegeneracy, 0 6= Ux ∈ Γ(J). Therefore
AQ(X) ∩ J = AJ(X) = 0. But AQ(X) =

⋂
x∈X KerQ Ux is an ideal of Q by (0.8)

since Q is nondegenerate by (0.11), and C(J) ⊆ C(Q). By tightness of Q over J
(0.11), AQ(X) = 0, which implies q 6∈ AQ(X), i.e., there exists z ∈ I ∩ C(J) such
that Uzq 6= 0.

2.2 Theorem. Let J be a nondegenerate PI Jordan algebra, and let p ∈ FJ[X]
be a homogeneous Jordan polynomial vanishing on J . Then p vanishes on any cover
Q of J satisfying (IA1) and such that C(J) ⊆ C(Q).

Proof: Put p = p(X1, . . . , Xn) and assume that p has degree m. Given
q1, . . . , qn ∈ Q, we only have to prove that p(q1, . . . , qn) = 0. By the hypoth-
esis (IA1), there exist essential ideals I1, . . . , In of J such that UIiqi ⊆ J , for
i = 1, . . . , n. Now I = ∩n

i=1Ii is an essential ideal of J satisfying UIqi ⊆ J for
any i = 1, . . . , n. If p(q1, . . . , qn) 6= 0, then there exists z ∈ I ∩C(J) ⊆ I ∩C(Q) such
that Uzp(q1, . . . , qn) 6= 0, by (2.1). Hence Um

z p(q1, . . . , qn) 6= 0 by (0.8), since Q is
nondegenerate by (0.11), but Um

z p(q1, . . . , qn) = p(Uzq1, . . . , Uzqn) ∈ p(J, . . . , J) = 0,
which is a contradiction.

2.3 Corollary. Let J be a nondegenerate PI Jordan algebra, and let p ∈ FJ[X]
be a Jordan polynomial vanishing strictly on J . Then p vanishes strictly on any cover
Q of J satisfying (IA1) and such that C(J) ⊆ C(Q).

Proof: Notice that all linearizations of p are homogeneous polynomials van-
ishing on J (see (1.5)), which then vanish on Q by (2.2), i.e., p vanishes strictly on
Q.

By restricting (2.3) to admissible polynomials, we get

2.4 Corollary. Let J be a nondegenerate Jordan algebra and Q be a cover of
J satisfying (IA1) and such that C(J) ⊆ C(Q). If J is PI, then Q is PI.

When not only (IA1) but also (IA2) and (IA3) are satisfied, i.e., when Q is a
Martindale-like cover of J , C(J) ⊆ C(Q) [1, 3.16], so that we obtain the following
result.

2.5 Corollary. A Martindale-like cover Q of a nondegenerate PI Jordan
algebra J is PI. In this situation,
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(i) if p ∈ FJ[X] is a homogeneous Jordan polynomial vanishing on J , then p vanishes
on Q, and

(ii) if J is PI and p ∈ FJ[X] is a Jordan polynomial vanishing strictly on J , then p
vanishes strictly on Q.

2.6 Remark: The above result (2.5) applies to the following particular cases of
Martindale-like covers:

(i) J is a linear Jordan algebra and Q is a Jordan algebra of Martindale-like quo-
tients with respect to a power filter of sturdy ideals of J ,

(ii) J is an essential ideal of Q.

Indeed, in case (i), we only have to recall [1, 2.6], while, in case (ii), (IA1) follows
from (0.6) whereas (IA2) and (IA3) are obvious.

3. Speciality of Martindale-like Covers

We will show that under analogous conditions as in the previous section, spe-
ciality is inherited by covers. We start with the PI case.

3.1 Proposition. Let J be a nondegenerate special PI Jordan algebra. Then
any cover Q of J satisfying (IA1) and such that C(J) ⊆ C(Q) is special.

Proof: Since J is special, it satisfies every s-identity. By (2.2), Q also sat-
isfies every homogeneous s-identity, hence every s-identity (because the ideal of all
s-identities is homogeneous), i.e., Q is i-special. Thus Q is special by (1.8), since it
is nondegenerate by (0.11).

3.2 Proposition. If J is a strongly prime exceptional Jordan algebra, then any
nonzero ideal of J is a strongly prime exceptional Jordan algebra.

Proof: Let I be a nonzero ideal of a strongly prime exceptional Jordan algebra
J . It is immediate that J is a cover of I. Moreover, it satisfies (IA1) by (0.6), and
C(I) ⊆ C(J) by [3, 3.2]. On the other hand, I is PI since J is PI by (1.9), and I
is strongly prime by [8, 2.5]. Finally, if I were special, J would be special by (3.1),
which would be a contradiction.

3.3 Lemma. Let Q be a nondegenerate Jordan algebra. Then the ideal s-Id(Q)
of Q is either zero (hence Q is special) or an exceptional PI-algebra.

Proof: If s-Id(Q) = 0, then Q is i-special, hence special by (1.8). Otherwise,
s-Id(Q) is a nonzero ideal of Q. Since Q is nondegenerate, it is a subdirect product
of strongly prime Jordan algebras [14, Cor. 4]. So there exists a family {Iα}α∈A of
ideals of Q such that Q ⊂ ∏

α∈A Q/Iα and Q/Iα is strongly prime for any α ∈ A.
Moreover,

s-Id(Q) ⊆
∏

α∈A

s-Id(Q/Iα) ∼=
∏

α∈B

s-Id(Q/Iα) ⊆
∏

α∈B

Q/Iα, (1)
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where B = {α ∈ A | s-Id(Q/Iα) 6= 0}. Notice that, for any α ∈ B, Q/Iα is
exceptional by (1.8) since it is not i-special, hence the admissible Jordan polynomial
p given in (1.9) vanishes strictly on Q/Iα. Thus p vanishes strictly on Πα∈BQ/Iα,
therefore on s-Id(Q), which means s-Id(Q) is PI.

Furthermore, s-Id(Q) is exceptional. Indeed B 6= ∅ by (1) since s-Id(Q) 6= 0.
Now, for any α ∈ B, let fα : Q → Q/Iα denote the canonical projection of Q
onto Q/Iα (so that 0 6= s-Id(Q/Iα) = fα(s-Id(Q))). Since Q/Iα is strongly prime
exceptional, we have that the nonzero ideal s-Id(Q/Iα) is a strongly prime exceptional
Jordan algebra by (3.2), hence it is not i-special by (1.8), i.e., s-Id(s-Id(Q/Iα)) 6= 0,
and

fα(s-Id(s-Id(Q))) = s-Id(s-Id((Q/Iα))) 6= 0,

which implies s-Id(s-Id(Q)) 6= 0, i.e., s-Id(Q) is not i-special, hence it is exceptional.

3.4 Lemma. Let Q be a nondegenerate Jordan algebra, q ∈ Q, and I be a
Φ-submodule of Q such that UIq = 0. Then UIUqI = 0.

Proof: If UIq = 0, then UI[t]q = 0 in the algebra Q[t] of polynomials over Q
which is also nondegenerate. For any h ∈ I[t], let a := UhUqh ∈ Q[t]. By [12, 0.3],

UaQ[t] = UhUqUhUqUhQ[t] = UUhqUqUhQ[t] = 0,

hence a = 0 by nondegeneracy. For x, y ∈ I, the coefficient of t in Ux+tyUq(x +
ty) is UxUqy + Ux,yUqx, which is then zero. But, on the other hand, Ux,yUqx =
{Uxq, q, y} (by [7, JP2]) = 0, hence we obtain UxUqy = 0, for any x, y ∈ I.

3.5 Lemma. Let J be a nondegenerate Jordan algebra and let Q be a cover of
J satisfying (IA1). If K̃ is an ideal of Q, then K̃ is a cover of K := K̃ ∩J satisfying
(IA1). Moreover,

(i) if Q satisfies (IA2) and/or (IA3) over J , then K̃ satisfies (IA2) and/or (IA3)
over K, respectively,

(ii) if C(J) ⊆ C(Q), then C(K) ⊆ C(K̃).

Proof: We claim that

(1) if I is an essential ideal of J , then I ∩K is an essential ideal of K.

Indeed, K is also nondegenerate since it is an ideal of J , hence (0.6) applies, and we
just need to show that AnnK(I ∩K) = 0: If k ∈ AnnK(I ∩K), then, for any y ∈ I,

UUkyI = UkUyUkI ⊆ Uk(I ∩K) = 0,

which shows Uky ∈ AnnJ(I) = 0 since I is sturdy in J by (0.6); therefore UkI = 0,
which means k ∈ AnnJ (I) = 0. This proves (1).

For any 0 6= q ∈ K̃, there exists an essential ideal I of J such that 0 6= UIq ⊆ J ,
but also UIq ⊆ UQK̃ ⊆ K̃, hence

0 6= UIq ⊆ J ∩ K̃ = K. (2)
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In particular UI∩Kq ⊆ UIq ⊆ K. Moreover,

(3) Uq(L ∩K) 6= 0, for any essential ideal L of J .

Indeed, I ∩ L is an essential ideal of J , hence, by [1, 2.4], UI∩Lq 6= 0, and we can
find y ∈ I ∩L such that 0 6= Uyq ∈ UIq ⊆ K by (2). Since AnnK(L∩K) = 0 by (1),
0 6= UUyq(L ∩K) = UyUqUy(L ∩K) ⊆ UyUq(L ∩K), which implies (3).

Finally UI∩Kq 6= 0: otherwise,

UI∩KUq(I ∩K) = 0 (4)

by (3.4). On the other hand, (3) implies that there exists x ∈ I∩K such that Uqx 6= 0,
hence (3) applied to 0 6= Uqx ∈ K̃ implies that 0 6= UUqx(I ∩K) = UqUxUq(I ∩K) ⊆
UqUI∩KUq(I ∩K), which would contradict (4). Thus, K̃ satisfies (IA1) over K.

(i) If Q satisfies (IA2) (resp., (IA3)) over J , then, for any q ∈ K̃, there exists an
essential ideal I of J such that q ◦ I ⊆ J (resp., UqI ⊆ J), but also q ◦ I ⊆ K̃ (resp.,
UqI ⊆ K̃) as in (2) above, hence

q ◦ (I ∩K) ⊆ q ◦ I ⊆ J ∩ K̃ = K (resp., Uq(I ∩K) ⊆ UqI ⊆ J ∩ K̃ = K).

(ii) Notice that C(K) ⊆ C(J) (by [3, 3.2]) ⊆ C(Q), which obviously implies
C(K) ⊆ C(K̃).

3.6 Theorem. Let J be a nondegenerate Jordan algebra and Q be a cover of
J satisfying (IA1) and such that C(J) ⊆ C(Q). If J is special, then Q is special.

Proof: If s-Id(Q) = 0, then Q is i-special, hence special by (1.8), since it is
nondegenerate by (0.11). Otherwise s-Id(Q) is an exceptional PI algebra by (3.3). On
the other hand, s-Id(Q) is a cover of s-Id(Q)∩J satisfying (IA1) and C(s-Id(Q)∩J) ⊆
C(s-Id(Q)) by (3.5), and s-Id(Q)∩ J is special and PI, so that (3.1) yields s-Id(Q) is
special, which is a contradiction.

As in (2.5) and (2.6), we immediately obtain:

3.7 Corollary. A Martindale-like cover Q of a nondegenerate special Jordan
algebra J is special. In particular, this holds when J is nondegenerate special and
either

(i) J is a linear Jordan algebra and Q is a Jordan algebra of Martindale-like quo-
tients with respect to a power filter of sturdy ideals of J , or

(ii) J is an essential ideal of Q.
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