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Introduction
In 1990, Fountain and Gould [1] gave a notion of order in a ring not necessarily unital, and
obtained in [2] a Goldie-like characterization of two-sided orders in semiprime rings with de-
scending chain condition on principal one-sided ideals, i.e., in semiprime rings coinciding with
their socles. Later on, Ánh and Márki extended these results to one-sided orders [3, 4]. In [5],
local algebras were used to introduce a notion of order for associative pairs and describe such
two-sided orders in semiprime pairs coinciding with their socles.

In our work we will give a pair version of weak Fountain–Gould one-sided orders and study
associative pairs which are weak Fountain–Gould one-sided orders in semiprime pairs coinciding
with their socles. In this sense, we remove the two-sidedness of the results of [5]. At the present
moment some work on the Goldie theory of Jordan systems is being done [6, 7], so that having
a suitable Goldie theory for associative systems could be of some help.

We will use envelopes and local algebras to translate pair problems into algebra ones; thus,
already known results on Fountain–Gould orders in rings [4, 1, 8] will be very important in our
work. We will also study the connections of our notion of order and other related notions given
for associative pairs [5, 9].

Our paper is divided into three sections, apart from Section 0 devoted to outlining some
preliminary results and definitions. Section 1 deals with the algebra envelopes of associative
pairs. These will be the “atmospheres” where pairs embed and calculations are performed; they
must be close enough to the pairs we deal with, but, on the other hand, they must be general
enough to allow working with a pair and its quotient at the same time. Using algebra envelopes,
we introduce in Section 2 the notion of weak Fountain–Gould left order for associative pairs.
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We also show that the quotients obtained via this notion are particular cases of those one-sided
quotient pairs studied in [9]. This is used, together with local inverse lifting properties, to
show that in most of the cases, our notion does not depend on the algebra envelope where the
computations are done, for example, when one is restricted to semiprime pairs. In the last
section, we study weak Fountain–Gould left orders in semiprime pairs coinciding with their
socles and characterize them in terms of chain conditions on left annihilators and local Goldie
dimension.

We finally remark that, though we always work with left orders and left quotients, the
results in this paper have their right-side analogues, with obvious changes in the definitions,
just reversing products in the proofs or applying the left-side results to the opposite pairs and
algebras.

0 Preliminaries

0.1 Throughout this paper Φ will denote a unital commutative associative ring of scalars,
and all algebraic systems will be defined on modules over Φ. Recall that an associative pair
over Φ is a pair (A+, A−) of Φ-modules together with Φ-trilinear maps

Aσ ×A−σ ×Aσ → Aσ

(x, y, z) �→ xyz

satisfying the following identities:
uv(xyz) = u(vxy)z = (uvx)yz, (1)

for all u, x, z ∈ Aσ, v, y ∈ A−σ and σ = ±.
The first example of an associative pair is given by V (A ) := (A ,A ), for any associative

algebra A , where the triple product of x, y, and z is given by the usual product xyz in the
algebra A .

0.2 Given an associative pair A = (A+, A−), and elements x, z ∈ Aσ, y ∈ A−σ, σ = ±, recall
that left, middle and right multiplications are defined by:

λ(x, y)z = μ(x, z)y = ρ(y, z)x = xyz. (1)
From (0.1)(1), for any x, u ∈ Aσ, y, v ∈ A−σ,

λ(x, y)λ(u, v) = λ(xyu, v) = λ(x, yuv), (2)
and similarly,

ρ(u, v)ρ(x, y) = ρ(x, yuv) = ρ(xyu, v). (3)

As a consequence of (2) and (3), it is clear that the linear span of all operators T : Aσ → Aσ

of the form T = λ(x, y), for (x, y) ∈ Aσ × A−σ, or T = IdAσ is a unital associative algebra; it
will be denoted by Λ(Aσ, A−σ). Clearly Aσ is a left Λ(Aσ, A−σ)-module. Similarly, we define
P(A−σ, Aσ) as the linear span of all the right multiplications and the identity on Aσ, so that Aσ

becomes a left P(A−σ, Aσ)-module. We define the left ideals L ⊂ Aσ of A as the Λ(Aσ, A−σ)-
submodules of Aσ, and the right ideals R ⊂ Aσ as the P(A−σ, Aσ)-submodules. A two-sided
ideal B ⊂ Aσ is both a left and a right ideal. An ideal I = (I+, I−) of A is a pair of two-sided
ideals of A such that AσI−σAσ ⊆ Iσ, σ = ±. A Φ-submodule M of Aσ is called an inner ideal
of A if xA−σx ⊆M , for any x ∈M .

0.3 An associative pair A is semiprime if and only if nonzero ideals of A have a nonzero cube
[I ideal of A and IσI−σIσ = 0, σ = ±, implies I = 0]. We will say that A is prime if A is
semiprime and two nonzero ideals of A have nonzero intersection. An element a in Aσ generates
the ideal I = (I+, I−) of A given by Iσ := Φa + AσA−σa + aA−σAσ + AσA−σaA−σAσ and
I−σ := A−σaA−σ. This provides elemental characterizations of semiprimeness and primeness
(see [10, 1.18]): A is semiprime if and only if A is nondegenerate (aAσa = 0, a ∈ A−σ ⇒ a = 0,
σ = ±); A is prime if and only if A is elementally prime (aAσb = 0, a, b ∈ A−σ ⇒ a = 0 or
b = 0, σ = ±).
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0.4 If A is a subalgebra of a unital associative algebra Q, we say that A is a weak classical
left order in Q (or Q is a weak classical left quotient algebra of A ) if for any q ∈ Q, there exist
a, b ∈ A, such that a is invertible in Q and q = a−1b. We say that A is a classical left order
in Q (or Q is a classical left quotient algebra of A ) when it is a weak classical left order and
every regular element in A is invertible in Q.
0.5 Given an associative pair A = (A+, A−) and a ∈ A−σ, the Φ-module aAσa becomes an
associative algebra, denoted by Aσ

a and called the local algebra of A at a by defining the product
axa · aya = axaya, for any x, y ∈ Aσ.

Let Aσ(a) be the a-homotope of A, i.e., the Φ-module A with product x ·a y := xay for any
x, y ∈ Aσ. The set KerA a = Ker a := {x ∈ Aσ | axa = 0} is an ideal of Aσ(a) and the quotient
Aσ(a)/Ker a is isomorphic to Aσ

a (see [5, 11]).

1 Algebra Envelopes of Associative Pairs

1.1 Associative pairs are really “abstract off-diagonal Peirce spaces” of associative algebras:
Let E be a unital associative algebra, and consider the Peirce decomposition E = E11 ⊕ E12 ⊕
E21 ⊕ E22 of E with respect to an idempotent e ∈ E , i.e.,

E11 = eE e, E12 = eE (1 − e), E21 = (1 − e)E e and E22 = (1 − e)E (1 − e).
From the Peirce multiplication rules, (E12,E21) is a subpair of V (E ). Conversely, every associa-
tive pair A = (A+, A−) can be obtained in this way (see [12, 2.3]): Let C be the Φ-submodule
of B = EndΦ(A+) × EndΦ(A−)op spanned by e1 = (IdA+ , IdA−) and all (λ(x, y), ρ(x, y)), and
similarly, let D be the submodule of Bop spanned by e2 = (IdA+ , IdA−) and all (ρ(y, x), λ(y, x))
where (x, y) ∈ A+ × A−. By (0.2), these Φ-linear spans are really subalgebras. Clearly, A+

is an (C ,D)-bimodule if we set cx = c+(x), xd = d+(x) for x ∈ A+ and c = (c+, c−) ∈ C ,
d = (d+, d−) ∈ D . Similarly, A− is a (D ,C )-bimodule. Now we define bilinear maps on
A± × A∓ with values in C , respectively, D , by xy = (λ(x, y), ρ(x, y)), yx = (ρ(y, x), λ(y, x)).
Then it is easy to check that (C , A+, A−,D) is a Morita context which gives rise to a unital
associative algebra E (cf. [12, 2.3]). If we set e = e1, then the pair A = (A+, A−) is isomor-
phic to the associative pair (E12,E21). Moreover E11 (respectively, E22) is spanned by e and all
products x12y21 (respectively, 1 − e and all products y21x12) for x12 ∈ E12, y21 ∈ E21, and has
the property that

x11E12 = E21x11 = 0 =⇒ x11 = 0, x22E21 = E12x22 = 0 =⇒ x22 = 0. (1)

1.2 Let A be the subalgebra of E generated by E12∪E21, i.e., A = E12⊕E12E21⊕E21E12⊕E21.
It is immediate that A is an ideal of E . We will call A the standard envelope of the associative
pair A, and write τ = (τ+, τ−) for the natural inclusion τσ : Aσ −→ A of A into A .
1.3 Let A be an associative pair, A be an associative algebra, and ϕ = (ϕ+, ϕ−), where
ϕσ : Aσ −→ A is an injective Φ-linear map, σ = ±. We say that A is a subpair of (A , ϕ), if:

(i) ϕ+(A+) ∩ ϕ−(A−) = 0;
(ii) ϕ+(A+)ϕ+(A+) = ϕ−(A−)ϕ−(A−) = 0; and,
(iii) ϕ : A −→ V (A ) is a pair homomorphism (hence monomorphism).

When A is a subpair of (A , ϕ), (A , ϕ) is called an envelope of A if ϕ+(A+)∪ϕ−(A−) generates
A as an algebra, i.e.,

(iv) A = ϕ+(A+) + ϕ+(A+)ϕ−(A−) + ϕ−(A−)ϕ+(A+) + ϕ−(A−).
An envelope (A , ϕ) of A is called tight if every nonzero ideal of A hits A [I ∩ (ϕ+(A+) ∪
ϕ−(A−)) �= 0 for every nonzero ideal I of A ]. We say that (A , ϕ) and (Ã , ϕ̃) are isomorphic
envelopes of A if there exists an algebra isomorphism ψ : A −→ Ã such that ψ ◦ ϕσ = ϕ̃σ,
σ = ±.

Notice that, for an associative pair A, the standard envelope (A , τ ) of A is an envelope of
A in the above sense.
1.4 Let A be an associative algebra. An element a ∈ A is said to be a left (respectively,
right) total zero divisor if aA = 0 (respectively, A a = 0). Similarly, an element a ∈ Aσ
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of an associative pair is called a left (respectively, right) total zero divisor if aA−σAσ = 0
(respectively, AσA−σa = 0). A pair or an algebra not having nonzero left (respectively, right)
total zero divisors is said to be left (respectively, right) faithful. It is immediate that a semiprime
algebra or pair is both left and right faithful.
Proposition 1.5 Let A be a left and right faithful (for example, semiprime) associative pair,
and (A , ϕ) be an envelope of A. Then

I = {x ∈ ϕ+(A+)ϕ−(A−) + ϕ−(A−)ϕ+(A+) | xϕσ(Aσ) = 0 = ϕσ(Aσ)x, σ = ±}
= {x ∈ ϕ+(A+)ϕ−(A−) | xϕ+(A+) = 0 = ϕ−(A−)x}+

+ {x ∈ ϕ−(A−)ϕ+(A+) | xϕ−(A−) = 0 = ϕ+(A+)x}
is the biggest ideal of A not hitting ϕ(A), and satisfies IA = A I = 0. Moreover, if φσ :
Aσ −→ A /I is given by φσ(xσ) = ϕσ(xσ) + I, σ = ±, then (A /I, φ) is an envelope of A
isomorphic to the standard envelope of A.
Proof From (1.3), it is clear that I is an ideal of A and that both definitions of I agree. Indeed,
A x = xA = 0 for any x ∈ I. Moreover (I ∩ϕ+(A+), I∩ϕ−(A−)) is an ideal of ϕ(A) consisting
of two-sided total zero divisors, hence it is zero by the faithfulness of ϕ(A) ∼= A. This means
that φσ is injective for σ = ±, and it is straightforward that (A /I, φ) satisfies (1.3)(ii)–(iv).
To show that (A /I, φ) is an envelope of A, we just need to check (1.3)(i). Indeed, an element
in φ+(A+) ∩ φ−(A−) has the form ϕ+(a+) + I = ϕ−(a−) + I for some aσ ∈ Aσ, σ = ±. Thus,
there must be y ∈ I such that ϕ+(a+) = ϕ−(a−) + y, hence

ϕ+(a+)ϕ−(A−)ϕ+(A+) = (ϕ−(a−) + y)ϕ−(A−)ϕ+(A+) = 0,
because ϕ satisfies (1.3)(ii). Therefore ϕ+(a+) = 0, by the left faithfulness of ϕ(A).

Let L be an ideal of A not hitting ϕ(A). We will show that L ⊆ I: if x ∈ L, write
x = x+ + y + z + x−, where xσ ∈ ϕσ(Aσ), σ = ±, y ∈ ϕ+(A+)ϕ−(A−), z ∈ ϕ−(A−)ϕ+(A+).
By (1.3)(ii), ϕ+(A+)xϕ+(A+) = ϕ+(A+)x−ϕ+(A+) ∈ ϕ+(A+) ∩ L = 0, hence x− = 0 by the
left and right faithfulness of ϕ(A). Similarly x+ = 0. But now, again by (1.3)(ii), xϕ+(A+) =
yϕ+(A+) ∈ ϕ+(A+) ∩ L = 0, and, similarly xϕ−(A−) = ϕ+(A+)x = ϕ−(A−)x = 0, which
shows x ∈ I.

Let (Ã , τ ) be the standard envelope of A. We can define a linear map ψ : A −→ Ã given
by

ψ
(
ϕ+(x+) +

∑
i

ϕ+(y+
i )ϕ−(y−i ) +

∑
j

ϕ−(z−j )ϕ+(z+
j ) + ϕ−(u−)

)

= τ+(x+) ⊕
∑

i

τ+(y+
i )τ−(y−i ) ⊕

∑
j

τ−(z−j )τ+(z+
j ) ⊕ τ−(u−),

for any x+, y+
i , z

+
j ∈ A+, y−i , z

−
j , u

− ∈ A−. Indeed, if

a = ϕ+(x+) +
∑

i

ϕ+(y+
i )ϕ−(y−i ) +

∑
j

ϕ−(z−j )ϕ+(z+
j ) + ϕ−(u−) = 0,

then 0 = ϕ−(A−)aϕ−(A−) = ϕ−(A−)ϕ+(x+)ϕ−(A−) = ϕ−(A−x+A−) by (1.3), thus A−x+

A− = 0 by the injectivity of ϕ−, which implies x+ = 0 by the left and right faithfulness of A;
similarly u− = 0; hence

0=ϕ+(A+)a=ϕ+(A+)
(∑

j

ϕ−(z−j )ϕ+(z+
j )
)
=
∑

j

ϕ+(A+)ϕ−(z−j )ϕ+(z+
j )=ϕ+

(∑
j

A+z−j z
+
j

)
,

which implies
∑

j A
+z−j z

+
j = 0, and thus

0 = τ+
(∑

j

A+z−j z
+
j

)
=
∑

j

τ+(A+)τ−(z−j )τ+(z+
j ) = τ+(A+)

(∑
j

τ−(z−j )τ+(z+
j )
)
;

similarly
(∑

j τ
−(z−j )τ+(z+

j )
)
τ+(A+) = 0, which implies

∑
j τ

−(z−j )τ+(z+
j ) = 0 by (1.2) and

(1.1)(1); in a similar manner
∑

i τ
+(y+

i )τ−(y−i ) = 0, and we get that ψ is well defined.
It is clear that ψ is a surjective algebra homomorphism satisfying ψ◦ϕσ = τσ, σ = ±. By the

very definition of ψ, an element a as above lies in Kerψ if and only if a =
∑

i ϕ
+(y+

i )ϕ−(y−i )+
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j ϕ

−(z−j )ϕ+(z+
j ) with

∑
i τ

+(y+
i )τ−(y−i ) ⊕ ∑j τ

−(z−j )τ+(z+
j ) = 0, which is shown to be

equivalent to aϕσ(Aσ) = ϕσ(Aσ)a = 0, σ = ±, using (1.1)(1). Thus Kerψ = I, and we can
define ψ̃ : A /I −→ Ã by ψ̃(a + I) = ψ(a), which turns out to be an algebra isomorphism
satisfying ψ̃ ◦ φσ = τσ, σ = ±.

Corollary 1.6 Let A be a left and right faithful (for example, semiprime) associative pair,
and (A , ϕ) be an envelope of A. Then the following are equivalent :

(i) (A , ϕ) is tight on A;
(ii) A is left and right faithful;
(iii) (A , ϕ) is isomorphic to the standard envelope of A.

Proof Apply (1.5) together with the obvious fact that the set of left (respectively, right) total
zero divisors of an algebra is an ideal.

Remark 1.7 To simplify notation, from now on, when dealing with a subpair A of (A , ϕ) we
will assume that Aσ ⊆ A , the maps ϕσ will be simply the inclusion maps, and we will write A
instead of (A , ϕ). This will also be applied to the particular case of (A , ϕ) being an envelope
of A.

2 Weak Fountain–Gould Left Orders in Associative Pairs

In this section, we introduce the notion of weak Fountain–Gould left order for associative pairs,
inspired by Fountain–Gould’s definition of left orders for rings given in [1].

2.1 Let a be an element of an algebra R. We say that b in R is the group inverse of a if
aba = a, bab = b, and ab = ba. It is easy to see that the group inverse is unique when it exists,
and that a has a group inverse in R (say b) if and only if there exists an idempotent e in R
such that a is an invertible element of eRe (indeed, e is unique, given by e = ab). An element
a is said to be locally invertible if it has a group inverse, which will be denoted by a#. If a is
locally invertible, then any power an of a is also locally invertible, and (an)# = (a#)n. It is
obvious that an invertible element a in a unital algebra is locally invertible with a# = a−1.

2.2 A subalgebra R of an associative algebra Q is said to be a weak Fountain–Gould left
order in Q (or Q is said to be a weak Fountain–Gould left quotient algebra of R) if for every
element q ∈ Q there exist a, x ∈ R such that a is locally invertible in Q and q = a#x. Clearly,
if R is a weak classical left order in a unital algebra Q, then R is a weak Fountain–Gould left
order in Q. The converse is not true in general, as it was shown by Fountain and Gould in [1,
Example 3.1].

A subalgebra R of an associative algebra Q is said to be a Fountain–Gould left order in Q
(or Q is said to be a Fountain–Gould left quotient algebra of R) if R is a weak Fountain–Gould
left order in Q and every square-cancellable element of R is locally invertible in Q (cf. [1]).

2.3 Let A be a subpair of an associative pair Q, which is a subpair of the algebra Q (in
particular A is also a subpair of the algebra Q). We will say that A is a weak Fountain–Gould
left order in Q relative to Q if for any q ∈ Qσ there exist a ∈ AσA−σ which is locally invertible
in QσQ−σ, and b ∈ Aσ, such that q = a#b. We will also say that Q is a weak Fountain–Gould
left quotient pair of A relative to Q.

Remark 2.4 Under the conditions of (2.3), we can always replace Q by the subalgebra
generated by Q+ ∪Q−, and assume that Q is an envelope of Q.

Remark 2.5 If A is a weak Fountain–Gould left order in Q relative to Q, for any q ∈ Qσ

we can always find a, b as in (2.3) such that also aq = b [just replace a and b in (2.3) by a2 and
ab, respectively].

Examples 2.6 (i) Let R be a subalgebra of an associative algebra Q. It is easy to see
that Q is a weak Fountain–Gould left quotient algebra of R if and only if V (Q) is a weak
Fountain–Gould left quotient pair of the associative pair V (R) relative to the algebra of 2×2
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matrices over Q with the natural embedding

a ∈ V (Q)+ �→
(

0 a

0 0

)
∈ M2×2(Q), b ∈ V (Q)− �→

(
0 0
b 0

)
∈ M2×2(Q).

(ii) Let D be a weak classical left order in a division algebra Δ. Then, one can show that,
for every pair (m,n) of positive integers, (Mm×n(D),Mn×m(D)) is a weak Fountain–Gould left
order in the associative pair (Mm×n(Δ),Mn×m(Δ)) relative to the algebra M(m+n)×(m+n)(Δ),
considering the natural embedding given by

a ∈ Mm×n(Δ) �→
(

0 a

0 0

)
∈ M(m+n)×(m+n)(Δ),

b ∈ Mn×m(Δ) �→
(

0 0

b 0

)
∈ M(m+n)×(m+n)(Δ).

2.7 The following notion was introduced by Utumi in [13]: Let R be a subalgebra of an
associative algebra Q. We say that Q is a (general) left quotient algebra of R if for every
x, y ∈ Q with x �= 0 there is an a ∈ R such that ax �= 0 and ay ∈ R. Notice that an algebra
is a left quotient algebra of itself if and only if it is right faithful. If R is right faithful, then
it has a unique maximal left quotient algebra Ql

max(R), which is unital, called the Utumi left
quotient algebra of R [13].
2.8 In [9] a pair version of the above notion is introduced. Let A = (A+, A−) be a subpair of
an associative pair Q = (Q+, Q−). We say that Q is a left quotient pair of A if given p, q ∈ Qσ

with p �= 0, σ = ±, there exist a ∈ A−σ, b ∈ Aσ such that bap �= 0 and baq ∈ Aσ.

2.9 Let A be an associative pair and let X ⊂ Aσ, σ = ±. The left annihilator of X in A is
defined to be the set lan(X) = lanA(X) = {b ∈ A−σ | bXA−σ = 0, AσbX = 0}. Similarly, the
right annihilator of X in A is defined by ran(X) = ranA(X) = {b ∈ A−σ | XbAσ = 0, A−σXb =
0}.

Clearly, lan(X) is a left ideal of A and ran(X) is a right ideal of A.
Let A be an associative pair which is a subpair of the algebra A . For σ = ± and an element

a ∈ AσA−σ we can also consider lanA(a) = {x ∈ A−σ | xa = 0}, (respectively, ranA(a) = {x ∈
Aσ | ax = 0}) which is a left (respectively, right) ideal of A.
Lemma 2.10 Let A be a subpair of an associative pair Q, which is a subpair of the algebra
Q, and let a ∈ AσA−σ satisfy that there exists a# ∈ QσQ−σ. Then

(i) Q−σ = Q−σa+ lanQ(a).
If A is a weak Fountain–Gould left order in Q relative to Q, then

(ii) lanQ(a) = Q−σQσ lanA(a).
(iii) Q−σ = Q−σQσ(lanA(a) +A−σa).

Proof (i) If q ∈ Q−σ, then q = qa#a + (q − qa#a), where qa#a ∈ Q−σa and (q − qa#a) ∈
lanQ(a), and we have shown Q−σ ⊆ Q−σa+ lanQ(a). The converse is obvious.

(ii) Let q ∈ lanQ(a) and write q = u#v, with u ∈ A−σAσ (u# ∈ Q−σQσ), v ∈ A−σ, and
uq = v. Then v ∈ lanQ(a) ∩ A−σ = lanA(a) and q = u#v ∈ Q−σQσ lanA(a). The converse is
obvious.

(iii) follows from (i), (ii), and the fact that Q−σQσA−σ = Q−σ.
Proposition 2.11 If A is a weak Fountain–Gould left order in an associative pair Q relative
to an algebra Q, then Q is a left quotient pair of A.
Proof Let p, q ∈ Qσ with p �= 0. We can write q = a#b, p = c#d where a, c ∈ AσA−σ

(a#, c# ∈ QσQ−σ) and b, d ∈ Aσ. By (2.5), we can also assume that aq = b. Notice that
0 �= p = c#d = c#cc#d = c#cp ∈ QσQ−σp. Hence 0 �= QσQ−σp = QσQ−σQσ(lanA(a)+A−σa)p
by (2.10)(iii), and there exist t ∈ Qσ, x ∈ lanA(a) and y ∈ A−σ such that 0 �= t(x+ ya)p. If we
write t = u#v, with u ∈ AσA−σ (u# ∈ QσQ−σ) and v ∈ Aσ, then v(x+ ya)p �= 0 and

v(x+ ya)q = vxq + vyaq = vxa#b+ vyaq = vxaa#a#b+ vyaq
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= vyaq (xa = 0 since x ∈ lanA(a)) = vyb ∈ Aσ.

Next we will show that, for pairs without total zero divisors, the notion of weak Fountain–
Gould left order is intrinsic, independent of the “atmosphere” algebra Q we deal with.
Lemma 2.12 Let Q be a left quotient pair of an associative pair A. Then A and Q are both
right faithful. Moreover,

(i) If A is left faithful, then Q is left faithful;
(ii) If A is semiprime, then Q is semiprime.

Proof Let 0 �= q ∈ Qσ. By the very definition of left quotient pair, we can find a ∈ Aσ, b ∈ A−σ

such that 0 �= abq ∈ Aσ. But abq ∈ AσA−σq ⊆ QσQ−σq, which shows the first assertion.
(i) If qQ−σQσ = 0, then abqAσA−σ ⊆ abqQ−σQσ = 0, which is a contradiction if A is left

faithful.
(ii) is [9, 2.13(ii)].

Lemma 2.13 Let R be an associative algebra, and I be an ideal of R such that RI = IR = 0.
If x ∈ R/I is locally invertible in R/I with group inverse x# ∈ R/I, then there exists a locally
invertible element a ∈ R such that x = a + I and x# = a# + I. Indeed, if x = u + I, and
x# = v + I, we can set a = uvu, a# = vuv.
Proof Let x = u+I, x# = v+I, where u, v ∈ R. By the definition of group inverse, we obtain

uv − vu ∈ I, uvu− u ∈ I, vuv − v ∈ I. (1)
Let a = uvu, a′ = vuv. By (1), x = u+ I = uvu + I = a+ I, x# = v + I = vuv + I = a′ + I.
Moreover,

a′a = vuvuvu = vu(vuv − v)u+ vuvu = vuvu [since vu(vuv − v)u ∈ RIR = 0]
= vu(vu− uv) + vuuv = vuuv [since vu(vu− uv) ∈ RI = 0]
= (vu− uv)uv + uvuv = uvuv [since (vu− uv)uv ∈ IR = 0]
= (u− uvu)vuv + uvuvuv = uvuvuv [since (u− uvu)vuv ∈ IR = 0] = aa′.

Similarly, a′aa′ = a′ and aa′a = a, which shows a′ is the group inverse of a.
Proposition 2.14 Let A be a subpair of an associative pair Q such that either A or Q is
left faithful (for example, if either A or Q is semiprime), and let Q be an associative algebra
such that Q is a subpair of Q. Then A is a weak Fountain–Gould left order in Q relative to Q
if and only if A is a weak Fountain–Gould left order in Q relative to the standard envelope Q̃
of Q.
Proof Notice that (2.11) and (2.12) imply that Q is left and right faithful in any case. By
(2.4), we can assume that Q is an envelope of Q, and, by (1.5) there exists an ideal I of Q not
hitting Q such that Q/I and Q̃ are isomorphic envelopes of Q, and QI = IQ = 0.

If A is a weak Fountain–Gould left order in Q relative to Q, then it is straightforward that
A is a weak Fountain–Gould left order in Q relative to Q/I, i.e., A is a weak Fountain–Gould
left order in Q relative to Q̃.

Conversely, assume that A is a weak Fountain–Gould left order in Q relative to Q̃, i.e., A
is a weak Fountain–Gould left order in Q relative to Q/I. Thus, given q ∈ Qσ, there exist
u ∈ AσA−σ, b ∈ Aσ such that u+ I is locally invertible, (u+ I)# = v+ I with v ∈ QσQ−σ, and
q + I = (u + I)#(b + I). By (2.13), a = uvu ∈ QσQ−σ is locally invertible with a# = vuv ∈
QσQ−σ, and u + I = a + I, (u + I)# = v + I = a# + I. Thus q − a#b ∈ I ∩ Qσ = 0, i.e.,
q = a#b. The problem is that we do not know whether a is in AσA−σ. Anyway,

a2 = au+ a(a− u) = au [since a(a− u) ∈ QI = 0]
= u2 + (a− u)u = u2 [since (a− u)u ∈ IQ = 0] ∈ AσA−σ,

ab = ub+ (a− u)b = ub [since (a− u)b ∈ IQ = 0] ∈ AσA−σAσ ⊆ Aσ,

and q = a#b = (a#)2ab, where (a2)# = (a#)2 ∈ QσQ−σ.
Remark 2.15 Under the conditions of (2.14), there is no need to specify the algebra Q
where the calculations are made, and we will simply say that A is a weak Fountain–Gould left
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order in Q.

3 Weak Fountain–Gould Left Orders in Semiprime Pairs Coinciding
with their Socles

3.1 For an associative pair, different reasonable notions of socle can be considered (see [14]).
However, we will restrict ourselves to semiprime pairs, where these notions coincide [14, 3.7]:
Given a semiprime associative pair A the socle Soc(A) of A is the pair (Soc(A)+, Soc(A)−),
where Soc(A)σ is the sum of all minimal left ideals of A contained in Aσ (Soc(A)σ = 0 if A
does not have minimal left ideals contained in Aσ), and Soc(A)σ coincides with the sum of all
minimal right or inner ideals of A contained in Aσ.
Lemma 3.2 Let Q be an associative pair, and Q be its standard envelope. Then Q is
semiprime if and only if Q is semiprime.
Proof Let E be the associative algebra built out of Q, as in (1.1), so that Q is an ideal of E
(1.2).

If Q is semiprime, then E is semiprime by [5, 4.2] and Q is semiprime because it is an ideal
of E . Conversely, if Q is semiprime, we will show that Q is so. Indeed, let us show that Q
is nondegenerate (0.3): If q ∈ Qσ satisfies 0 = qQ−σq, then qQq = q(Qσ + Q−σ + QσQ−σ +
Q−σQσ)q = qQ−σq = 0 since qQσ, Qσq ⊆ QσQσ = 0; thus q = 0 by the semiprimeness
(nondegeneracy) of Q.
Lemma 3.3 Let Q be a semiprime associative pair, Q its standard envelope. Then Soc(Q)σ =
Soc(Q) ∩ Qσ. Moreover, Q = Soc(Q) if and only if Q = Soc(Q), and, in this case, QσQ−σ

(σ = ±) is a semiprime algebra which coincides with its socle.
Proof Let E be the associative algebra built out of Q, as in (1.1), so that Q is an ideal of E
(1.2). By [5, 4.2], E is semiprime, hence Soc(Q) = Soc(E ) ∩ Q using (3.1), and [15, Prop. 3]
applied to V (E )(+), together with [14, 2.1, 4.2]. Thus Soc(Q) ∩ Qσ = Soc(E ) ∩ Q ∩ Qσ =
Soc(E ) ∩Qσ = Soc(Q)σ by [5, 4.7(i)].

Obviously, the above equality shows Q = Soc(Q) when Q = Soc(Q). If, conversely, Q =
Soc(Q), then Soc(Q) is an ideal of Q, containing Q+ ∪Q−, hence Q = Soc(Q) since Q+ ∪Q−

generates Q as an algebra.
Assume now that Q = Soc(Q), and let e be the idempotent of E given in (1.1). Now

eE e, (1 − e)E (1 − e) are semiprime algebras (using (0.3)), and Q+Q− = Q ∩ eE e, Q−Q+ =
Q ∩ (1 − e)E (1 − e) are ideals of them, hence semiprime. Moreover, again by (3.1) and [15,
Prop. 3] we get

Soc(Q+Q−) = Soc(eE e) ∩Q+Q−, Soc(Q−Q+) = Soc((1 − e)E (1 − e)) ∩Q−Q+. (1)
On the other hand, [15, Prop. 3] also applies to full subpairs, which, again together with

(3.1), yields
Soc(eE e) = Soc(E ) ∩ eE e, Soc((1 − e)E (1 − e)) = Soc(E ) ∩ (1 − e)E (1 − e). (2)

Finally, using (1) and (2),
Soc(Q+Q−) = Soc(eE e) ∩Q+Q− = Soc(E ) ∩ eE e ∩Q+Q−

= Soc(E ) ∩Q+Q− ⊇ Soc(Q) ∩Q+Q− = Q ∩Q+Q− = Q+Q−,
hence Soc(Q+Q−) = Q+Q−, and, similarly, Soc(Q−Q+) = Q−Q+.
Theorem 3.4 Let A be a weak Fountain–Gould left order in a simple associative pair Q
coinciding with its socle. Then A is a prime associative pair.
Proof By (2.14), we may assume that A is a weak Fountain–Gould left order in Q relative to
the standard envelope Q of Q.

Let a, c be nonzero elements of Aσ. Since Q is simple, it is prime. Hence there is an
element q ∈ Q−σ satisfying aqc �= 0 (0.3). On the other hand, q = u#v, where u ∈ A−σAσ

(u# ∈ Q−σQσ), v ∈ A−σ, and uu#v = v (2.5). Then 0 �= aqc = au#vc. By the semiprimeness
of Q (0.3), au#vcQ−σ �= 0 and, since Q = Soc(Q), there exists an element t in a minimal right
ideal I of Q contained in Q−σ, satisfying 0 �= au#vct ∈ Q−σQσ.
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Let us consider the set Γ = {unu#vctQσ | n = 1, 2, . . . } of right ideals of V := V (Q−σQσ)
contained in uV −σV σ = uQ−σQσQ−σQσ. Notice that all the right ideals in Γ are nonzero
(0 �= u#vct = (u#)nunu#vct =⇒ unu#vct �= 0 =⇒ unu#vctQσ �= 0 by the semiprimeness of
Q). On the other hand, Q−σQσ is a semiprime algebra coinciding with its socle by (3.3), so
that V is a semiprime pair coinciding with its socle [14, 2.1, 4.2]. Hence, by [5, 5.2(vi)], the
sum of the elements of Γ cannot be direct, and so there exist α1, . . . , αm ∈ Qσ such that

m∑
i=1

uiu#vctαi = 0, (1)

and at least one summand is nonzero. Let uku#vctαk be the first nonzero summand. By
multiplying (1) by (u#)k on the left and renumbering the α’s, we obtain

u#vctα1 + uu#vctα2 + · · · + ur−1u#vctαr = 0, (2)
with u#vctα1 �= 0. On the other hand, tα1 is a nonzero element in the semiprime algebra
Q−σQσ, hence tα1Q

−σQσ �= 0, which implies that tα1Q
−σ is a nonzero right ideal of Q con-

tained in I. By the minimality, I = tα1Q
−σ, hence t = tα1α for some α ∈ Qσ. Multiplying (2)

by a on the left and by α on the right we obtain
au#vctα1α+ auu#vctα2α+ · · · + aur−1u#vctαrα = 0,

i.e.,
au#vct+ auu#vctα2α+ · · · + aur−1u#vctαrα = 0. (3)

Then
0 �= −au#vct = auu#vctα2α+ · · · + aur−1u#vctαrα

= avctα2α+ · · · + aur−2vctαrα (4)
since uu#v = v. Thus aukvctαk+2α �= 0 for some k ∈ {0, . . . , r − 2} and, consequently,
0 �= aukvc ∈ aA−σc, which proves that A is prime (0.3).
Corollary 3.5 Let A be a weak Fountain–Gould left order in a semiprime associative pair Q
coinciding with its socle. Then A is semiprime.
Proof By [16, Theorem 1], Q is a direct sum of ideals Qi (i ∈ I), where Qi is simple and
coincides with its socle. For every i ∈ I, let πi = (π+

i , π
−
i ) : Q → Qi be the canonical

projection. It is easy to see that πi(A) is a weak Fountain–Gould left order in Qi and, by (3.4),
we have that πi(A) is a prime algebra, for any i ∈ I.

We will show that A is nondegenerate (0.3): Given 0 �= x ∈ Aσ, there exists j ∈ I such that
πσ

j (x) �= 0. By the primeness of πj(A), 0 �= πσ
j (x)(πj(A))−σπσ

j (x) = πσ
j (x)π−σ

j (A−σ)πσ
j (x) =

πσ
j (xA−σx), which implies xA−σx �= 0.

In the next result we express the fact of A being a weak Fountain–Gould left order in a
semiprime pair Q coinciding with its socle in terms of the algebras naturally attached to these
pairs.
Remark 3.6 We claim that [5, 8.7, 8.8] remain true when replacing “A being a left triple
product order in Q” by “Q being a left quotient pair of A”. Indeed, the proofs given in [5]
remain valid under this new condition, which can be readily checked (also cf. [9, 2.14]).
Theorem 3.7 Let A be a subpair of a semiprime associative pair Q which coincides with
its socle, and Q be the standard envelope of Q. Let A be the subalgebra of Q generated by
A+ ∪A−, i.e., A = A+ +A+A− +A−A+ +A−. The following are equivalent conditions :

(i) A is a weak Fountain–Gould left order in Q;
(ii) A is semiprime, Qσ = AσQ−σAσ, σ = ±, and Q is a left quotient pair of A;
(iii) A is semiprime, Qσ = AσQ−σAσ and, for every a ∈ A−σ, Aσ

a is a classical left order
in Qσ

a , σ = ±;
(iv) A is a Fountain–Gould left order in Q;
(v) AσA−σ is a Fountain–Gould left order in QσQ−σ, for σ = ±.

Moreover, under any of the above conditions, Qσ = QσA−σAσ = AσA−σQσ, σ = ±, and A is
isomorphic to the standard envelope of A.
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Proof (i)⇒(ii) By (3.5), A is a semiprime associative pair. For any q ∈ Qσ, there exist
a ∈ AσA−σ, b ∈ Aσ, with a# ∈ QσQ−σ such that q = a#b = a(a#)2b ∈ AσA−σQσQ−σAσ =
Aσ(A−σQσQ−σ)Aσ ⊆ AσQ−σAσ, and Q is a left quotient pair of A by (2.11). Moreover,
q = a#b = (a#)2ab ∈ QσQ−σAσA−σAσ = (QσQ−σAσ)A−σAσ ⊆ QσA−σAσ, and q = a#b =
a(a#)2b ∈ AσA−σQσQ−σAσ = AσA−σ(QσQ−σAσ) ⊆ AσA−σQσ.

(ii)⇒(iii) follows from [5, 8.8(ii)] and (3.6).
(iii)⇒(ii) First we claim that
(1) If 0 �= aqc, where a, c ∈ A−σ, q ∈ Qσ, then the set Λaqc = {aba ∈ Aσ

a | abaqc ∈ A−σ} is
an essential left ideal of Aσ

a .
Indeed Λaqc is clearly a left ideal of Aσ

a . Any nonzero left ideal of Aσ
a has the form aIa, where

I ⊆ Aσ. If aIaqc = 0, then aIa ⊆ Λaqc, hence aIa hits Λaqc. Assume y ∈ I satisfies ayaqc �= 0.
By the semiprimeness of Q (0.3), ayaqcpayaqc �= 0 for some p ∈ Qσ, hence cpayaqc �= 0. Since
Aσ

c is a classical left order in Qσ
c , cpayaqc = cūcvc, for some elements cuc, cvc ∈ Aσ

c , such that
cuc is regular in Aσ

c , and cūc is the inverse of cuc in Qσ
c . Then 0 �= cucpayaqc = cvc ∈ Aσ

c . By
[16, Theorem 1], Q is a direct sum of ideals Qα (α ∈ J), where the Qα’s are simple and coincide
with their socles. Let πα = (π+

α , π
−
α ) : Q → Qα be the canonical projection, α ∈ J . For every

w ∈ A−σ, π−σ
α induces μα : Qσ

w −→ Qσ
π−σ

α (w)
= (Qα)σ

π−σ
α (w)

, an algebra epimorphism . Now, [8,
4.6] is applied to obtain that μα(Aσ

w) = πσ
α(Aσ)π−σ

α (w) is a classical left order in (Qα)σ
π−σ

α (w)
,

whenever π−σ
α (w) �= 0. In particular πσ

α(Aσ)π−σ
α (w) �= 0 if π−σ

α (w) �= 0, which implies that
πα(A) is semiprime (0.3). Since Qα is simple for any α ∈ J , by [5, 5.2(iii)(v)], (Qα)σ

π−σ
α (w)

is a
simple artinian algebra, and, by Goldie’s First Theorem [17, 3.2.16], πσ

α(Aσ)π−σ
α (w) is a prime

algebra, whenever 0 �= π−σ
α (w), which implies that πα(A) is prime, using [5, 5.2(ii)]. Choose

β ∈ J , such that 0 �= π−σ
β (cvc) = π−σ

β (cucpayaqc). Then π−σ
β (a) �= 0, and, by the primeness

(0.3) of πβ(A), there exists x ∈ Aσ such that 0 �= π−σ
β (a)πσ

β(x)π−σ
β (cvc) = π−σ

β (axcvc). In
particular,

axcvc = axcucpayaqc �= 0. (2)

Take ara, asa ∈ Aσ
a , such that ara is regular in Aσ

a and axcucpa = ar̄asa, where ar̄a denotes
the inverse of ara in Qσ

a . Then araxcucpa = asa, and (2) yields
0 �= araxcucpayaqc = araxcvc ∈ araxcAσc ⊆ A−σ

and araxcucpaya = asaya is a nonzero element in Λaqc ∩ aIa, which proves (1).
Now we can prove that Q is a left quotient pair of A: Let p, q be in Qσ, with p �= 0.

Since Q is semiprime QσQ−σp �= 0 and since Qσ = AσQ−σAσ, σ = ±, then 0 �= QσQ−σp =
QσA−σQσA−σp = QσA−σAσQ−σAσA−σp. Hence there exist a ∈ Aσ, b ∈ A−σ such that
abp �= 0. If abq = 0, we are done. Otherwise, we can use the fact that q ∈ Qσ = AσQ−σAσ

to find qj ∈ Q−σ, dj ∈ Aσ such that abq =
∑n

j=1 aqjdj , and aqjdj �= 0 for any j = 1, . . . , n.
By (1), the Λaqjdj

’s are essential left ideals of A−σ
a and, consequently, Λ = (∩n

j=1Λaqjdj
) is an

essential left ideal of A−σ
a . Applying Goldie’s Second Theorem [17, 3.2.14], there exists aua ∈ Λ

such that aua is regular in A−σ
a . Then auabq =

∑n
j=1 auaqjdj ∈ Aσ because aua ∈ Λaqjdj

for
every j, and auabp �= 0 (0 �= abp =⇒ 0 �= abpQ−σabp by the semiprimeness, but abpQ−σabp =
aūauabpQ−σabp, because aūa is the inverse of aua in Q−σ

a ).
(ii)⇒(iv) By (3.2), the algebra Q is semiprime, and by (3.3), it coincides with its socle.

Since A is semiprime, by the proof of [9, 2.5(i)(iii)] Q is a left quotient algebra of A , and the
latter is isomorphic to the standard envelope of A, which is semiprime using (3.2). The equality
Qσ = AσQ−σAσ readily implies Q = A Q, hence A is a Fountain–Gould left order in Q by [8,
4.11].

(iv)⇒(v) By (3.3), QσQ−σ is semiprime and coincides with its socle. Moreover, by A
being a Fountain–Gould left order in Q, we have

Q = A Q, (1)
which yields

Qσ = AσQ−σQσ +AσA−σQσ ⊆ AσQ−σQσ. (2)
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Hence
QσQ−σ = AσQ−σ +AσA−σQσQ−σ (by (1)) ⊆ AσA−σQσQ−σ ⊆ QσQ−σ (3)

by (2). Similarly, Q = QA implies QσQ−σ = QσQ−σAσA−σ, which implies, using (3), that
QσQ−σ = AσA−σQσQ−σAσA−σ.

For every 0 �= a ∈ AσA−σ, (AσA−σ)a = Aa is a classical left order in Qa = (QσQ−σ)a [8, 4.7],
hence AσA−σ is a Fountain–Gould left order in QσQ−σ by [8, 4.11].

(v)⇒(i) Let p ∈ Qσ. By (3.3), Q = Soc(Q). In particular Q is von Neumann regular [15,
Th. 1], hence there exists q ∈ Q such that p = pqp. Notice that this equality also holds if we
replace q by its component in Q−σ, thus we can assume that q ∈ Q−σ. Now, qp = a#b for some
a, b ∈ A−σAσ such that a# ∈ Q−σQσ. Let bi ∈ A−σ and ci ∈ Aσ satisfy b =

∑n
i=1 bici. Then

p = pqp = pa#b =
∑n

i=1 pa
#bici. Using [4, Theorem 5], pa#bi = u#vi, i = 1, . . . , n, for some

u, vi ∈ AσA−σ such that u# ∈ QσQ−σ. Then p = u#(
∑n

i=1 vici), which proves (i).
Now we establish an analogue of [4, Theorem 5] for pairs. The way we state the result is

due to the fact that, unlike the algebra case, having a common denominator for two elements
does not seem to imply the property for an arbitrary finite family.
Corollary 3.8 (Common Denominator Property) Let A be a weak Fountain–Gould left order
in a semiprime associative pair Q which coincides with its socle. Then, given any finite number
of elements p1, . . . , pn ∈ Qσ, there exist a ∈ AσA−σ, b1, . . . , bn ∈ Aσ such that a is locally
invertible in QσQ−σ, and pi = a#bi, for i = 1, . . . , n.

Proof We can write pi = (ui)
#
vi, with ui ∈ AσA−σ and vi ∈ Aσ. By (3.7), AσA−σ is a

Fountain–Gould left order in QσQ−σ, and by [4, Theorem 5], given (u1)#, . . . , (un)# there
exist a, c1, . . . , cn ∈ AσA−σ such that (ui)# = a#ci, i = 1, . . . , n. Hence, if we define bi := civi,
we have pi = a#bi, for i = 1, . . . , n.

We finally express the fact of A being a weak Fountain–Gould left order in a semiprime pair
Q coinciding with its socle in intrinsic pair terms and Goldie theory notions [5].
Theorem 3.9 For an associative pair A the following conditions are equivalent :

(i) A is a weak Fountain–Gould left order in a semiprime associative pair Q coinciding
with its socle;

(ii) A is semiprime, satisfies the ascending chain condition on lanA(x), with x ∈ Aσ,
σ = ±, and has finite left local Goldie dimension;

(iii) A is a semiprime left local Goldie associative pair;
(iv) A is semiprime and all its local algebras at nonzero elements are left Goldie;
(v) A is semiprime and there is a semiprime associative pair coinciding with its socle which

is a left quotient pair of A.
In this case : (1) A is prime if and only if Q is simple; and,

(2) A is left Goldie if and only if Q is artinian.
Proof (i)⇒(ii) By (3.5) A is semiprime. Moreover since Q is a left quotient pair by (2.11), it
follows from [5, 8.8(i)] and (3.6) that A is left local Goldie, hence it has finite left local Goldie
dimension. By [5, 8.7(ii), 2.5(1)(iii)] and (3.6), A satisfies the ascending chain condition on the
left annihilators of a single element.

(ii)⇒(iii) is a consequence of [5, 3.6].
(iii)⇒(i) Let A be the standard envelope of A.

We will first show that A is a semiprime left local Goldie associative algebra: By (3.2) and
[9, 1.9], the standard envelope A of A is semiprime and left nonsingular. On the other hand,
for every a ∈ Aσ, the Goldie (or uniform) dimension u-dimA (a) of a in A equals the uniform
dimension u-dim(Aa) of Aa by [8, 2.1(iv)], and we remark A−σ

a = Aa. Moreover, by [5,
5.2(iv)], u-dim(A−σ

a ) = u-dimA(a) < ∞ since A is left local Goldie. Thus we have shown that
u-dimA (a) <∞, for any a ∈ Aσ, i.e., A+∪A− ⊆ I(A ), where I(A ) denotes the set of elements
of A of finite uniform dimension. But I(A ) is an ideal of A by [18, Prop. 1; 9, 3.2(iii)], and
A+ ∪A− generate A , hence the whole algebra A is contained in I(A ), i.e., A = I(A ).
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Let Q = Ql
max(A ). By [8, 4.9(i)] A is a Fountain–Gould left order in A Q, which is a semiprime

algebra coinciding with its socle.
Let E be the algebra built out of A, as in (1.1), having a unit element 1 and an idempotent e
such that (A+, A−) = (eE (1 − e), (1 − e)E e). By [9, 2.9(i)], Q = Ql

max(E ), and e, 1 − e ∈ Q.
Let Q := (eA Q(1 − e), (1 − e)A Qe). Notice that A ⊆ Q, and Q+ ∪ Q− ⊆ A Q since
eA , (1 − e)A ⊆ A .

We claim that
(a) Q is semiprime and Q = Soc(Q).

Let x be a nonzero element in Qσ, σ ∈ {+,−}. Since A Q is semiprime and coincides with its
socle, (A Q)x is a (nonzero) semiprime artinian algebra by [8, 2.1(i)(v)]. But Q−σ

x = (A Q)x,
hence (a) follows by [5, 5.2(v)].

(b) A is a weak Fountain–Gould left order in Q.
By [9, 2.9, 2.11], Ql

max(A) = (eQ(1− e), (1− e)Qe). Thus A ⊆ Q ⊆ Ql
max(A), which obviously

implies that Q is a left quotient pair of A. Now, A Q = A A QA , because A is a Fountain–
Gould left order in A Q [for any x ∈ A Q, x = a#b, where a ∈ A , a# ∈ A Q, b ∈ A ,
hence x = a(a#)2b ∈ A A QA ], hence, Qσ = AσQ−σAσ [for example Q+ = eA Q(1 − e) =
eA A QA (1−e) = e(A++A+A−)A Q(A−A++A+)(1−e) ⊆ eA+A QA+(1−e) = A+A QA+ =
A+(1 − e)A QeA+ = A+Q−A+]. Now, (b) follows from (3.7).

(iii)⇔(iv) follows from [5, 5.2(iv), 5.3].
(v)⇒(iii) is just [5, 8.8(i)] together with (3.6).
(i)⇒(v) follows from (2.11) and (3.5).
Finally (1) and (2) are consequences of [5, 8.8], (2.11), and (3.6), since A is left local Goldie.
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