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Abstract

In this paper we show that the scalar center of a nondegenerate quadratic Jordan algebra is contained in
the scalar center of any of its Martindale-like covers.
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Introduction

The notion of (weak) scalar center, introduced by Fulgham in [3], has revealed a central tool
in the study of Martindale-like quotients [1,4] of linear Jordan algebras mainly due to two facts:

(i) any nonzero ideal of a nondegenerate PI Jordan algebra contains nonzero central elements
[2, 3.6], and
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(ii) the scalar center of a nondegenerate linear Jordan algebra is contained in the scalar center of
any of its Martindale-like algebras of quotients [1, 4.1].

Our aim in this paper is showing that the general (quadratic) version of (ii) holds. Indeed we
will work at the slightly more general setting of what we call “Martindale-like covers,” defined
in terms of natural “ideal absorption properties.” This result is basic in our forthcoming paper on
polynomial identities and speciality of quadratic Martindale-like quotients, as well as we expect
it to be useful in the description of Martindale-like quotients of strongly prime quadratic Jordan
algebras satisfying a polynomial identity.

The proof of our main result is purely combinatorial, based on the fact that 2J + Ker 2 IdJ

is an essential ideal of any nondegenerate Jordan algebra J , which, with the use of annihilators,
allows to split the problem into the 2-torsion free and the characteristic 2 cases.

The paper is divided into four sections. Section 0 is devoted to recalling basic facts and no-
tions, including the essentialness of 2J + Ker 2 IdJ , mentioned above, and the definition of the
scalar center. In Section 1 we study characteristic 2 phenomena needed in the sequel, and their
natural extensions to arbitrary Jordan algebras in terms of the annihilator AnnJ (Ker 2 IdJ ) of
Ker 2 IdJ . In the next section we establish the fundamental properties of Martindale-like covers.
Finally, in Section 3, we prove our main theorem asserting the inheritance of the scalar center by
Martindale-like covers of nondegenerate Jordan algebras. It turns out that for a central element z

of J , and a cover Q of J , Vz is in the centroid of Q as soon as Q satisfies the natural outer ideal
absorption properties, while for the fact that z is indeed central in Q, the inner ideal absorption
property must be assumed too.

0. Preliminaries

0.1. We will deal with Jordan algebras over a ring of scalars Φ . The reader is referred to [5,7,11]
for definitions and basic properties not explicitly mentioned or proved in this section. Given a
Jordan algebra J , its products will be denoted x2, Uxy, for x, y ∈ J . They are quadratic in x and
linear in y and have linearizations denoted Vxy = x ◦ y, Ux,zy = {x, y, z} = Vx,yz, respectively.
A Jordan algebra J is said to be unital if there is an element 1 ∈ J satisfying U1 = IdJ and
Ux1 = x2, for any x ∈ J (such an element can be shown to be unique and it is called the unit
of J ).

Every Jordan algebra J embeds in a unital Jordan algebra Ĵ = J ⊕ Φ1 called its ( free) uniti-
zation [11, 0.6].

A Jordan algebra J is said to be nondegenerate if zero is the only absolute zero divisor, i.e.,
zero is the only x ∈ J such that Ux = 0.

0.2. We will need the following identities valid for arbitrary Jordan algebras.

(i) (x ◦ y) ◦ z = {x, y, z} + {y, x, z},
(ii) z ◦ Uxy = {z, x, y} ◦ x − y ◦ Uxz,

(iii) UUxy = UxUyUx , Ux2 = (Ux)
2,

(iv) {x,Uzx, y} = {Uxz, z, y},
(v) 2Uxy = x ◦ (x ◦ y) − x2 ◦ y,

(vi) {z, x,Uy1y2} = {z, {x, y1, y2}, y1} − {z, y2,Uy1x},
(vii) Ux(y ◦ z) = {x ◦ y, z, x} − y ◦ Uxz,

(viii) Uz◦xy = UzUxy + UxUzy + z ◦ Ux(y ◦ z) − {Uzx, y, x},
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(ix) (Uxy)2 = UxUyx
2,

(x) (x ◦ y)2 = Uxy
2 + Uyx

2 + x ◦ Uyx,
(xi) U{a,x,b}z = UaUxUbz + UbUxUaz + {a, x,Ub{x, a, z}} − {UaUxb, z, b},

(xii) {a, z,UaUxa} = {Uaz, x,Uax},
(xiii) 2UaUxUaz = {a, x,Ua{x, a, z}} − {Uax,x,Uaz},
(xiv) Ux{a, b, c} = {x, a, {b, c, x}} − {Uxa, c, b}.

Indeed, (vi) is [7, JP10], (xi) is [7, JP21], (xiv) is [7, JP12], and the rest of them follow from
Macdonald’s theorem [6].

0.3. We recall that an ideal I of a Jordan algebra J is just a Φ-submodule of J satisfying
UIJ + I 2 + UJ I + I ◦ J ⊆ I , equivalently, UI Ĵ + U

Ĵ
I ⊆ I , which implies {I, J, J } ⊆ I using

(0.2)(i). An ideal I of J is said to be essential if it hits every nonzero ideal of J , i.e., I ∩ L �= 0
for any nonzero ideal L of J .

0.4. In a Jordan algebra J , the annihilator AnnJ (I ) of an ideal I of J is an ideal of J which,
when J is nondegenerate, is given by

AnnJ (I ) = {
x ∈ J

∣∣ UxI = 0
} = {x ∈ J | UIx = 0}

[8, 1.3, 1.7], [12, 1.3]. An ideal I of J will be said sturdy if AnnJ (I ) = 0. It is easy to prove that
essential ideals coincide with sturdy ideals in any semiprime Jordan algebra.

0.5. The centroid Γ (J ) of a Jordan algebra J is the set of linear maps acting “scalarly” in Jordan
products [10]:

Γ (J ) = {
T ∈ EndΦ(J )

∣∣ T Ux = UxT , T Vx = VxT ,

T 2(x2) = (
T (x)

)2
, T 2Ux = UT (x), for any x ∈ J

}
.

It is immediate that T Vx,y = Vx,yT , T Ux,y = Ux,yT for any T ∈ Γ (J ), and any x, y ∈ J .
Clearly, Φ IdJ ⊆ Γ (J ). By [10, 2.5], when J has no nonzero extreme elements (for example,
when J is nondegenerate), Γ (J ) is a unital associative commutative Φ-algebra and J is a Jor-
dan algebra over Γ (J ).

0.6. Lemma. If J is a nondegenerate Jordan algebra and T ∈ Γ (J ), then

(i) the sum T (J ) + KerT is direct and, indeed, KerT = KerT n for any positive integer n,
(ii) T (J ) and KerT are ideals of J ,

(iii) T (J ) + KerT is an essential ideal of J .

Proof. (i) Let x ∈ J such that T 2(x) = 0. Then, for any y ∈ J , we have

UUT (x)y = UT (x)UyUT (x) = UT (x)UyT
2Ux = T 2UT (x)UyUx = UT 2(x)UyUx = 0,

hence UT (x)y = 0 by nondegeneracy. This shows UT (x) = 0, hence T (x) = 0 again by nonde-
generacy. We have proved KerT = KerT 2, which readily implies our assertion.
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(ii) By [10, 2.6] we already know that T (J ) is an ideal of J and KerT is an outer ideal
of J . But, under nondegeneracy, KerT is also an inner ideal of J : for any x ∈ KerT , y ∈ Ĵ ,
T 2(Uxy) = UT (x)y = 0, hence Uxy ∈ KerT 2 = KerT by (i).

(iii) Given a nonzero ideal L of J , if T (L) = 0, then 0 �= L ⊆ L∩KerT ⊆ L∩(T (J )+KerT ).
Otherwise, there exists x ∈ L such that T (x) �= 0. By nondegeneracy, 0 �= UT (x)J = T 2UxJ =
UxT

2(J ) ⊆ ULJ ∩ T (J ) ⊆ L ∩ (T (J ) + KerT ). �
0.7. Following [3], the (weak) center of J is the set C(J ) of all elements z ∈ J such that Uz,Vz ∈
Γ (J ), which is a subalgebra of J when J is nondegenerate [3, Theorems 1, 2]. More explicitly,
z ∈ J lies in C(J ) if and only if

ci(z, J, J ) = 0, for i = 1,2,3,5,6, and ci(z, J ) = 0 for i = 4,7,

where

c1(z, x, y) = VzUxy − UxVzy = z ◦ Uxy − Ux(z ◦ y),

c2(z, x, y) = VzVxy − VxVzy = z ◦ (x ◦ y) − x ◦ (z ◦ y),

c3(z, x, y) = UVzxy − V 2
z Uxy = Uz◦xy − z ◦ (z ◦ Uxy),

c4(z, x) = (Vzx)2 − V 2
z x2 = (z ◦ x)2 − z ◦ (

z ◦ x2),

c5(z, x, y) = UzUxy − UxUzy,

c6(z, x, y) = UzVxy − VxUzy = Uz(x ◦ y) − x ◦ Uzy,

c7(z, x) = (Uzx)2 − U2
z x2,

since c5(z, J, J ) = 0 and (0.2)(iii) imply UUzx = UzUxUz = U2
z Ux , for any x ∈ J .

We claim that z ∈ C(J ) also satisfies c8(z, J, J ) = 0, where c8(z, x, y) = {Uzx, y, x} −
2UzUxy, which readily follows from the fact that Uz ∈ Γ (J ). If J is nondegenerate then also
c9(z, J ) = 0 for c9(z, x) = Uzx

2 − Uxz
2, since c9(z, x) = c5(z, x,1) and C(J ) ⊆ C(Ĵ ) by [3,

Corollary 1].

1. Characteristic 2 phenomena

1.1. We remark that, by applying (0.6) to T = 2 IdJ in a nondegenerate Jordan algebra J , 2x = 0
if and only if 2nx = 0 for a positive integer n.

On the other hand, if 2x = 0 and x ∈ Ann(Ker 2 IdJ ), then x = 0: x ∈ Ker 2 IdJ ∩
Ann(Ker 2 IdJ ) = 0 since J is semiprime and Ker 2 IdJ is an ideal of J by (0.6)(ii).

1.2. Remark. In a nondegenerate Jordan algebra J , Uyx = Uy(−x), i.e., Uy2x = 0, for any
x ∈ J , y ∈ Ker 2 IdJ : Uy2x = 2Uyx = 0 since Uyx ∈ Ker 2 IdJ by (0.6)(ii).

1.3. Lemma. Let J be a nondegenerate Jordan algebra, and let a, b ∈ J . If (Ua − Ub)J ⊆
AnnJ (Ker 2 IdJ ), then a − b ∈ AnnJ (Ker 2 IdJ ).

Proof. (I) U{a,J,b}J ⊆ AnnJ (Ker 2 IdJ ): for any y ∈ Ker 2 IdJ , x, z ∈ J , using (0.2)(xi),
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UyU{a,x,b}z = Uy

[
UaUxUbz + UbUxUaz + {

a, x,Ub{x, a, z}} − {UaUxb, z, b}]

= Uy

[
UaUxUaz + UaUxUaz + {

a, x,Ua{x, a, z}} − {UbUxb, z, b}]
(
for t ∈ J , Uat − Ubt ∈ AnnJ (Ker 2 IdJ ), which is an ideal of J

)

= Uy

[
2UaUxUaz + {

a, x,Ua{x, a, z}} − {Ubx,x,Ubz}
] (

by (0.2)(xii)
)

= Uy

[
2UaUxUaz + {

a, x,Ua{x, a, z}} − {Uax,x,Uaz}
]

(
for t ∈ J , Uat − Ubt ∈ AnnJ (Ker 2 IdJ ), which is an ideal of J

)

= Uy[4UaUxUaz]
(
by (0.2)(xiii)

)

= 0

by (1.2).
(II) {a,J, b} ⊆ AnnJ (Ker 2 IdJ ): using (0.2)(iii), for any y ∈ Ker 2 IdJ , x ∈ J , UUy {a,x,b} =

UyU{a,x,b}Uy = 0 by (I), hence Uy{a, x, b} = 0 by nondegeneracy of J .
(III) Ua−bJ ⊆ AnnJ (Ker 2 IdJ ): for any y ∈ Ker 2 IdJ , x ∈ J ,

UyUa−bx = Uy

[
Uax + Ubx − {a, x, b}] = Uy

[
Uax + Uax − {a, x, b}] (as above)

= Uy

[
2Uax − {a, x, b}] = 0

by (1.2) and (II).
Finally, for any y ∈ Ker 2 IdJ , UUa−by = Ua−bUyUa−b (by (0.2)(iii)) = 0, by (III), hence

Ua−by = 0 by nondegeneracy, and a − b ∈ AnnJ (Ker 2 IdJ ) (0.4). �
Under the assumption of characteristic 2, (1.3) turns into the following result of independent

interest, though it is not explicitly needed in the sequel.

1.4. Corollary. Let J be a nondegenerate Jordan algebra of characteristic two (2J = 0),
a, b ∈ J . If Ua = Ub , then a = b.

Proof. Use (1.3) and the fact that AnnJ (Ker 2 IdJ ) = AnnJ (J ) = 0 by nondegeneracy. �
2. Martindale-like covers

2.1. When J and Q are Jordan algebras such that J is a subalgebra of Q, we will say that Q is
a cover of J . We will consider the following ideal absorption properties for a cover Q of J :

the outer ideal absorption properties:
(IA1) for any 0 �= q ∈ Q there exists an essential ideal I of J such that 0 �= UIq ⊆ J ,
(IA2) for any q ∈ Q there exists an essential ideal I of J such that I ◦ q ⊆ J ,
and the inner ideal absorption property:
(IA3) for any q ∈ Q there exists an essential ideal I of J such that UqI ⊆ J .

A cover Q of J will be said a Martindale-like cover if it satisfies (IA1)–(IA3).

2.2. Remark. Assuming (IA1), condition (IA2) can be replaced by

(IA2′) For any q ∈ Q there exists an essential ideal I of J such that {q, I, I } ⊆ J .



620 J.A. Anquela et al. / Journal of Algebra 305 (2006) 615–628
Indeed, (0.2)(i) implies that {q, I, I } ⊆ (q ◦ I ) ◦ I + {I, q, I } ⊆ J when I is the intersection
of the ideals in (IA1) and (IA2) for the element q . Conversely, if I and L are essential ideals
satisfying UIq +{q,L,L} ⊆ J , then K := UI∩L(I ∩L) is an essential ideal of J by [12, 1.2(a)],
and (0.2)(ii) yields

q ◦ K = q ◦ UI∩L(I ∩ L) ⊆ {q, I ∩ L,I ∩ L} ◦ (I ∩ L) + (I ∩ L) ◦ UI∩Lq

⊆ {q,L,L} ◦ J + J ◦ UIq ⊆ J.

2.3. Remark. Notice that any cover Q of J satisfying (IA1) is tight over J , i.e., any nonzero
ideal of Q hits J . As a consequence, if J is nondegenerate then Q is also nondegenerate (cf. [9,
2.9(iii)]). Similarly, J is free of 2-torsion if and only if Q is free of 2-torsion, using tightness,
(0.6)(ii), and the obvious fact that Ker 2 IdJ = J ∩ Ker 2 IdQ.

In the next result we go further in the tightness of Martindale-like covers, in fact of covers just
satisfying (IA1).

2.4. Proposition. Let J be a nondegenerate Jordan algebra and Q be a cover of J satisfying
(IA1). Then, for any 0 �= q ∈ Q, and any essential ideal L of J , ULq �= 0 and UqL �= 0. If J has
not 2-torsion, then also L ◦ q �= 0.

Proof. Given 0 �= q ∈ Q, let I be an essential ideal of J such that 0 �= UIq ⊆ J , so that we can
take x ∈ I such that 0 �= Uxq . For any essential ideal L of J , 0 �= UUxqL since AnnJ (L) = 0.
But UUxqL = UxUqUxL (by (0.2)(iii)) ⊆ UxUqL, which implies UqL �= 0.

If ULq = 0, then UL[t]q = 0 in the algebra Q[t] of polynomials over Q. Notice that Q is
nondegenerate by (2.3), which readily implies that Q[t] is also nondegenerate. For any h ∈ L[t],
let a := UhUqh ∈ Q[t]. By (0.2)(iii),

UaQ[t] = UhUqUhUqUhQ[t] = UUhqUqUhQ[t] = 0

since Uhq = 0, hence a = 0 by nondegeneracy. For x, y ∈ L, the coefficient of t in
Ux+tyUq(x + ty) is UxUqy + Ux,yUqx, which is then zero. But, on the other hand, Ux,yUqx =
{Uxq,q, y} (by (0.2)(iv)) = 0, hence we obtain ULUqL = 0. Fixing any x ∈ L such that Uqx �= 0,
we then have 0 �= UUqxL = UqUxUqL ⊆ UqULUqL, which contradicts ULUqL = 0. This shows
ULq �= 0.

Finally, in case J has not 2-torsion, 0 �= 2ULq ⊆ L ◦ (L ◦ q) + L2 ◦ q (by (0.2)(v)) ⊆ L ◦
(L ◦ q) + L ◦ q implies L ◦ q �= 0. �

As a consequence, we can choose a single ideal to nontrivially absorb any given finite set of
elements in the cover.

2.5. Corollary. Let J be a nondegenerate Jordan algebra and Q be a cover of J satisfying (IA1).
Given a finite set q1, . . . , qn of nonzero elements in Q, there exists an essential ideal I of J such
that 0 �= UIqi ⊆ J , for all i = 1, . . . , n.

If Q also satisfies (IA2) and/or (IA3), then the ideal I above can also be assumed to satisfy
I ◦ qi + {qi, I, I } ⊆ J (with 0 �= I ◦ qi in case J has not 2-torsion), and/or 0 �= Uqi

I ⊆ J ,
respectively, for all i = 1, . . . , n.
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Proof. Apply (2.4) and (2.2) together with the fact that the finite intersection of essential ideals
is also essential. �
2.6. If J is a nondegenerate Jordan algebra without 2-torsion, a cover Q of J is a Martindale-
like cover of J if and only if for any 0 �= q ∈ Q there exists an essential ideal I of J such
that 0 �= I ◦ q ⊆ J (when 1/2 ∈ Φ , this just amounts to saying that Q is a Jordan algebra of
Martindale-like quotients of J with respect to the filter of all essential ideals of J in the sense of
[4, 5.1]).

Indeed, a Martindale-like cover of J satisfies (IA2) and, moreover, I ◦q �= 0 for any 0 �= q ∈ Q

by (2.4) in the absence of 2-torsion. Conversely, assume that, for any 0 �= q ∈ Q, there exists an
essential ideal I of J such that 0 �= I ◦ q ⊆ J . Clearly, M := 2I is an essential ideal of J and

UMq = 2(2UIq) ⊆ 2
(
I ◦ (I ◦ q) + I 2 ◦ q

) (
by (0.2)(v)

)

⊆ I ◦ J + I ◦ q ⊆ J.

Moreover, for x ∈ I such that x ◦ q �= 0, we have, by sturdiness of I (cf. (0.4)),

0 �= UI (x ◦ q) ⊆ {I ◦ x, q, I } + x ◦ UIq
(
by (0.2)(vii)

)

⊆ UIq + x ◦ UIq,

which implies UIq �= 0, hence 0 �= 4UIq = UMq , and we have established (IA1).
Furthermore, M ◦ q ⊆ J , and {q,M,M} ⊆ J as in the proof of (2.2). We now just need to

show (IA3). Let L be an essential ideal of J such that q2 ◦L ⊆ J , and let K := UMM ∩L, which
is an essential ideal of J by [12, 1.2(a)], and we will show Uq2K ⊆ J . First, q ◦ UMM ⊆ M : for
any x, y ∈ M ,

q ◦ Uxy = {q, x, y} ◦ x − y ◦ Uxq
(
by (0.2)(ii)

)

⊆ {q,M,M} ◦ M + M ◦ UMq ⊆ J ◦ M ⊆ M.

Thus, by (0.2)(v), Uq2K = 2UqK ⊆ q ◦ (q ◦K)+ q2 ◦K ⊆ q ◦ (q ◦UMM)+ q2 ◦L ⊆ q ◦M +
q2 ◦ L ⊆ J .

3. Center inheritance in Martindale-like covers

The proof of the next result is just the quadratic version of the proof of [1, 4.1]. In the gener-
alization a factor 2 comes out.

3.1. Lemma. Let J be a nondegenerate Jordan algebra, Q be a cover of J satisfying (IA1) and
(IA2), and z ∈ C(J ). Then, 2z ◦ (p ◦ q) = 2(z ◦ p) ◦ q , for any p,q ∈ Q, i.e., 2VzVq = 2VqVz,
for any q ∈ Q.

Proof. (I) For any q ∈ Q and any x ∈ J such that x ◦ q ∈ J , z ◦ (x ◦ q) = (z ◦ x) ◦ q:
Use (2.5) to find an essential ideal I of J such that UIq + {q, I, I } ⊆ J . For any y1, y2 ∈ I ,

and t ∈ Ĵ ,
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{z ◦ t, q,Uy1y2} = {
z ◦ t, {q, y1, y2}, y1

} − {z ◦ t, y2,Uy1q} (
by (0.2)(vi)

)

= z ◦ {
t, {q, y1, y2}, y1

} − z ◦ {t, y2,Uy1q}
= z ◦ {t, q,Uy1y2}

(
by (0.2)(vi)

)
(1)

since {q, y1, y2},Uy1q ∈ J , z ∈ C(J ), and C(J ) ⊆ C(Ĵ ) [3, Corollary 1]. Now, if K := UI I and
y ∈ K ,

Uy

(
(z ◦ x) ◦ q

) = {
y ◦ (z ◦ x), q, y

} − (z ◦ x) ◦ Uyq
(
by (0.2)(vii)

)

= {
z ◦ (y ◦ x), q, y

} − z ◦ (x ◦ Uyq)
(
since x, y,Uyq ∈ J, z ∈ C(J )

)

= z ◦ {y ◦ x, q, y} − z ◦ (x ◦ Uyq)
(
by (1)

)

= z ◦ (
Uy(x ◦ q)

) (
by (0.2)(vii)

)

= Uy

(
z ◦ (x ◦ q)

)

since y, x ◦ q ∈ J and z ∈ C(J ). We have shown that UK((z ◦ x) ◦ q − z ◦ (x ◦ q)) = 0, which
implies (z ◦ x) ◦ q − z ◦ (x ◦ q) = 0 by (2.4) since K is an essential ideal of J by [12, 1.2(a)].

(II) Let q ∈ Q, and I be an essential ideal of J satisfying I ◦ q + UIq + {q, I, I } ⊆ J , that
can be found by (2.5). Then (z ◦ q) ◦ x = z ◦ (q ◦ x) for any x ∈ UI I :

(z ◦ q) ◦ x = 2{z, q, x} − z ◦ (q ◦ x) + (z ◦ x) ◦ q
(
by linearized (0.2)(v)

)

= 2{z, q, x} (
by (I)

)

= {z ◦ 1, q, x}
= z ◦ {1, q, x} (

by (1)
)

= z ◦ (q ◦ x).

(III) For any p,q ∈ Q, 2(z ◦ p) ◦ q = 2z ◦ (p ◦ q):
By (2.5), we can find an essential ideal I of J such that I ◦ p + UIp + {p, I, I } + I ◦ q +

UIq + {q, I, I } + I ◦ (p ◦ q) + UI (p ◦ q) + {p ◦ q, I, I } ⊆ J . Let K := UI I and L := UKK .
Notice that

ULq ⊆ K. (2)

Indeed, ULq is spanned by elements of the form UUabq and {Ua′b′, q,Uab}, where a, b, a′, b′ ∈
K , and

UUabq = UaUbUaq
(
by (0.2)(iii)

)

⊆ UKUKUIq ⊆ UKUKJ ⊆ K,

whereas

{Ua′b′, q,Uab} ⊆ {K,q,Uab} ⊆ {
K, {q, a, b}, a} + {K,b,Uaq} (

by (0.2)(vi)
)

⊆ {
K, {q, I, I },K} + {K,K,UIq} ⊆ {K,J,K} + {K,K,J } ⊆ K.
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Now, for any y ∈ L,

Uy

(
2(z ◦ p) ◦ q

) = 2
[{

y ◦ (z ◦ p), q, y
} − (z ◦ p) ◦ Uyq

] (
by (0.2)(vii)

)

= 2
[{

z ◦ (y ◦ p), q, y
} − z ◦ (p ◦ Uyq)

] (
by (II) since y,Uyq ∈ K by (2)

)

= 2
[
z ◦ {y ◦ p,q, y} − z ◦ (p ◦ Uyq)

] (
by (1) since y ◦ p ∈ J and y ∈ K

)

= 2z ◦ Uy(p ◦ q)
(
by (0.2)(vii)

)

= z ◦ [(
y ◦ (p ◦ q)

) ◦ y − y2 ◦ (p ◦ q)
] (

by (0.2)(v)
)

= [(
y ◦ (

z ◦ (p ◦ q)
)) ◦ y − y2 ◦ (

z ◦ (p ◦ q)
)] (

by (II)
)

= 2Uy

(
z ◦ (p ◦ q)

) (
by (0.2)(v)

)

= Uy

(
2z ◦ (p ◦ q)

)
.

We have shown UL(2(z ◦p)◦q − 2z ◦ (p ◦q)) = 0, which implies 2(z ◦p)◦q − 2z ◦ (p ◦q) = 0
by (2.4), since L is an essential ideal of J by [12, 1.2(a)]. �
3.2. Theorem. Let J be a nondegenerate Jordan algebra, Q be a cover of J satisfying (IA1) and
(IA2), and z ∈ C(J ). Then,

2ci(z,Q,Q) = 0, for i = 1,2,3,5,6,8 and 2ci(z,Q) = 0, for i = 4,7,9.

Proof. By (1.1), it is enough to prove 2nci(z,Q, . . .) = 0 for some positive integer n. On the
other hand, we claim that, for any ci , i = 1, . . . ,9, there exists a positive integer n such that 2nci

can be expressed in terms of 2 times “◦-products.” As an example, for p,q ∈ Q, using (0.2)(v)
yields

8c3(z,p, q) = 8
[
Uz◦pq − z ◦ (z ◦ Upq)

]

= 4
[
(z ◦ p) ◦ (

(z ◦ p) ◦ q
) − (z ◦ p)2 ◦ q − z ◦ (

z ◦ [
p ◦ (p ◦ q) − p2 ◦ q

])]

= 2
[
2(z ◦ p) ◦ (

(z ◦ p) ◦ q
) − [

(z ◦ p) ◦ (z ◦ p)
] ◦ q

− z ◦ (
z ◦ [

2p ◦ (p ◦ q) − (p ◦ p) ◦ q
])]

.

Now, our result follows from (3.1). �
The above result is enough to obtain a generalization of [1, 4.1] for 2-torsion free Jordan

algebras.

3.3. Corollary. Let J be a nondegenerate Jordan algebra without 2-torsion, Q be a cover of J

satisfying (IA1) and (IA2). Then, C(J ) ⊆ C(Q).

Proof. Use (0.7), (3.2), and the fact that Q has not 2-torsion by (2.3). �
3.4. Corollary. Let J be a nondegenerate Jordan algebra, Q be a cover of J satisfying (IA1)
and (IA2). Then, 2C(J ) ⊆ C(Q).
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Proof. For any z ∈ C(J ), and any i = 1, . . . ,7, ci(2z,Q, . . .) = 2kci(z,Q, . . .) (for some posi-
tive integer k) = 0 by (3.2), hence 2z ∈ C(Q) by (0.7). �

In order to extend (3.3) to the general quadratic case we will proceed in two steps. In the first
one we will study the centrality in Q of the operator Vz for a central element of J , and show that
only conditions (IA1) and (IA2) are needed. Our first result is the natural generalization of [3,
Corollary 2].

3.5. Lemma. In a nondegenerate Jordan algebra J , C(J ) ◦ Ker 2 IdJ = 0.

Proof. Let z ∈ C(J ), x ∈ Ker 2 IdJ , and y ∈ J . By (0.2)(viii),

Uz◦xy = UzUxy + UxUzy + z ◦ Ux(y ◦ z) − {Uzx, y, x}
= 2UzUxy + (z ◦ z) ◦ Uxy − 2UzUxy = 2z2 ◦ Uxy ∈ 2J.

But 4Uz◦xy = Uz◦2xy = 0, hence Uz◦xy = 0 by (1.1). We have shown Uz◦xJ = 0, hence z◦x = 0
by nondegeneracy. �

The next two results are meant to “lift” (3.5) to covers satisfying (IA1).

3.6. Lemma. If J is a nondegenerate Jordan algebra and Q is a cover of J satisfying (IA1), then
C(J ) ◦ Ker 2 IdQ = 0.

Proof. Let z ∈ C(J ), q ∈ Ker 2 IdQ, and let I be an essential ideal of J such that UIq ⊆ J .
Notice that L := I ∩ (2J + Ker 2 IdJ ) is an essential ideal of J by (0.6)(iii). For any y ∈ L, using
(0.2)(vii),

Uy(z ◦ q) = {y ◦ z, q, y} − z ◦ Uyq.

But writing y = 2a + b for a ∈ J , b ∈ Ker 2 IdJ , {y ◦ z, q, y} = {2a ◦ z, q, y} + {b ◦ z, q, y} =
{a ◦ z,2q, y} (since b ◦ z = 0 by (3.5)) = 0 since q ∈ Ker 2 IdQ. On the other hand, 2Uyq =
Uy2q = 0, hence Uyq ∈ J ∩ Ker 2 IdQ = Ker 2 IdJ , so that z ◦ Uyq = 0 by (3.5). We have shown
UL(z ◦ q) = 0, which implies z ◦ q = 0 by (2.4). �
3.7. Lemma. If J is a nondegenerate Jordan algebra and Q is a cover of J satisfying (IA1), then
C(J ) ◦ Q ⊆ AnnQ(Ker 2 IdQ).

Proof. Let z ∈ C(J ), p ∈ Ker 2 IdQ, and q ∈ Q. By (0.2)(vii),

Up(z ◦ q) = {p ◦ z, q,p} − z ◦ Upq = 0

by (3.6) since p,Upq ∈ Ker 2 IdQ. This shows z ◦ q ∈ AnnQ(Ker 2 IdQ) (cf. (0.4) since Q is
nondegenerate by (2.3)). �
3.8. Theorem. If J is a nondegenerate Jordan algebra and Q is a cover of J satisfying (IA1)
and (IA2), then Vz ∈ Γ (Q) for any z ∈ C(J ), equivalently,

c1(z,Q,Q) = c2(z,Q,Q) = c3(z,Q,Q) = c4(z,Q) = 0.
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Proof. Notice that, c1(z,Q,Q), c2(z,Q,Q), c3(z,Q,Q), c4(z,Q) are contained in
AnnQ(Ker 2 IdQ) by (3.7), since they lie in the ideal of Q generated by z ◦ Q. Now, the re-
sult follows by using (3.2) and (1.1). �
3.9. Theorem. Let J be a nondegenerate Jordan algebra, Q be a cover of J satisfying (IA1) and
(IA2), and z ∈ C(J ). Then

(i) {z,p, q} = {z, q,p} = {p, z, q}, for any p,q ∈ Q,
(ii) c6(z,Q,Q) = c7(z,Q) = c9(z,Q) = 0.

Proof. (i) By (0.2)(i) and (3.8),

{z,p, q} = −{p, z, q} + (p ◦ z) ◦ q = −{p, z, q} + p ◦ (z ◦ q) = {z, q,p}, and

{z,p, q} = −{z, q,p} + (p ◦ q) ◦ z = −{z, q,p} + p ◦ (q ◦ z) = {p, z, q}.

(ii) If c9(z,Q) = 0 then, for any p ∈ Q,

c7(z,p) = (Uzp)2 − U2
z p2 = (Uzp)2 − UzUpz2 = 0

by (0.2)(ix). Thus we will show c6(z,Q,Q) = c9(z,Q) = 0, and we just need to prove that
c6(z,Q,Q), c9(z,Q) ⊆ AnnQ(Ker 2 IdQ) by (3.2) and (1.1). For any p,q ∈ Q, y ∈ Ker 2 IdQ,

Uyc6(z,p, q) = Uy

(
Uz(p ◦ q) − p ◦ Uzq

)

= Uy

(
Uz(p ◦ q) + p ◦ Uzq

) (
by (1.2) since Q is nondegenerate by (2.3)

)

= Uy

({z ◦ p,q, z}) (
by (0.2)(vii)

)

= 0

since z ◦ p ∈ AnnQ(Ker 2 IdQ) (by (3.7)) implies {z ◦ p,q, z} ∈ AnnQ(Ker 2 IdQ). Also

Uyc9(z,p) = Uy

(
Uzp

2 − Upz2)

= Uy

(
Uzp

2 + Upz2) (
by (1.2) since Q is nondegenerate by (2.3)

)

= Uy

(
(z ◦ p)2 − z ◦ Upz

) (
by (0.2)(x)

)

= 0

since z ◦ Q ⊆ AnnQ(Ker 2 IdQ) by (3.7). �
3.10. Lemma. Let J be a nondegenerate Jordan algebra, Q be a cover of J satisfying (IA1) and
(IA2), and z ∈ C(J ). Then

UzUpq = −UpUzq + {Uzp,q,p}, for any p,q ∈ Q.
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Proof. Notice that c10(z,p, q) := UzUpq + UpUzq − {Uzp,q,p} = −c5(z,p, q) − c8(z,p, q),
hence 2c10(z,p, q) = 0 by (3.2). Using (1.1), we just need to prove c10(z,Q,Q) ⊆
AnnQ(Ker 2 IdQ). But using (0.2)(viii) yields c10(z,p, q) = Uz◦pq − z ◦ Up(q ◦ z) ∈
AnnQ(Ker 2 IdQ) by (3.7). �

Notice that, up to now, only the outer ideal absorption properties have been needed. The next
results, aimed at studying the centrality of Uz, will make explicit use of inner ideal absorption.

3.11. Lemma. Let J be a nondegenerate Jordan algebra, Q be a Martindale-like cover of J , and
z ∈ C(J ). Then c5(z, J,Q) = 0.

Proof. Let x ∈ J , q ∈ Q, and I be an essential ideal of J such that UqI ⊆ J , UI (UzUxq) ⊆ J ,
and UI (UxUzq) ⊆ J , which exists by (2.5). For any y ∈ I , a ∈ J ,

UUyUzUxqa = UyUzUxUqUxUzUya
(
by (0.2)(iii)

)

= UyUxUzUqUxUzUya
(
since UqUxUzUya ⊆ UqI ⊆ J, and Uz ∈ Γ (J )

)

= UyUxUzUqUzUxUya
(
since Uya ∈ J, and Uz ∈ Γ (J )

)

= UUyUxUzqa
(
by (0.2)(iii)

)
.

By (1.3), we have Uyc5(z, x, q) = UyUzUxq − UyUxUzq ∈ AnnJ (Ker 2 IdJ ). But 2Uyc5(z, x,

q) = Uy2c5(z, x, q) = 0 by (3.2), hence Uyc5(z, x, q) = 0 by (1.1).
We have shown that UIc5(z, x, q) = 0, which implies c5(z, x, q) = 0 by (2.4). �

3.12. Lemma. Let J be a nondegenerate Jordan algebra, Q be a Martindale-like cover of J , and
z ∈ C(J ). Then, for any x, y ∈ J , q ∈ Q,

(i) {Uzx, q, x} = 2UzUxq ∈ 2Q, so that {Uzx, q, x} ∈ AnnQ(Ker 2 IdQ),
(ii) {Uzx, q, y} + {x, q,Uzy} ∈ AnnQ(Ker 2 IdQ).

Proof. By (3.10), UzUxq = −UxUzq + {Uzx, q, x}, which implies (i) using (3.11), (2.3),
and (1.2), whereas (ii) follows by linearizing (i). �
3.13. Lemma. Let J be a nondegenerate Jordan algebra, Q be a Martindale-like cover of J ,
z ∈ C(J ), q ∈ Q, and I be an essential ideal of J such that UqI + UIq ⊆ J . Then,

{Uzq, y, q} = 2UzUqy ∈ 2Q, so that {Uzq, y, q} ∈ AnnQ(Ker 2 IdQ),

for any y ∈ I .

Proof. For any x ∈ I,u ∈ Ker 2 IdQ,

UuUx{Uzq, y, q} = Uu

[{
x,Uzq, {y, q, x}} − {UxUzq, q, y}] (

by (0.2)(xiv)
)

= Uu

[
Uz

{
x, q, {y, q, x}} − {UzUxq, q, y}]

(
by applying (3.11) to both terms since {y, q, x} ∈ UIq ⊆ J

)
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= Uu

[
Uz

{
x, q, {y, q, x}} − {Uxq,q,Uzy}]

(
by (3.12)(ii) since Uxq ∈ UIq ⊆ J , and (1.2)

)

= Uu

[
Uz

{
x, q, {y, q, x}} − {x,Uqx,Uzy}] (

by (0.2)(iv)
)

= Uu

[
Uz

{
x, q, {y, q, x}} − Uz{x,Uqx, y}]

(
since Uqx ∈ UqI ⊆ J and Uz ∈ Γ (J )

)

= Uu

[
Uz

{
x, q, {y, q, x}} − Uz{Uxq,q, y}] (

by (0.2)(iv)
)

= UuUzUx{q, y, q} (
by (0.2)(xiv)

)

= Uu2UzUxUqy = 0

by (1.2). Also UuUx2UzUqy = 0 by (1.2), hence we have shown

UIc8(z, q, y) = UI

[{Uzq, y, q} − 2UzUqy
] ⊆ AnnQ(Ker 2 IdQ).

But 2UIc8(z, q, y) = UI 2c8(z, q, y) = 0 by (3.2), so that UIc8(z, q, y) = 0 by (1.1). Therefore
c8(z, q, y) = 0 by (2.4), i.e., {Uzq, y, q} = 2UzUqy. �
3.14. Lemma. Let J be a nondegenerate Jordan algebra, Q be a Martindale-like cover of J ,
z ∈ C(J ), q ∈ Q, and I be an essential ideal of J such that UqI + UIq ⊆ J . Then, for any
y ∈ I , c5(z, q, y) = 0.

Proof. By (3.10), UqUzy = −UzUqy + {Uzq, y, q} = UzUqy using (3.13). �
3.15. Proposition. Let J be a nondegenerate Jordan algebra, Q be a Martindale-like cover of J ,
and z ∈ C(J ). Then c5(z,Q,Q) = 0.

Proof. Let p,q ∈ Q and I be an essential ideal of J such that UIq +{q, I, I }+UIp+UpI ⊆ J ,
which exists by (2.5). If we take K := UI I , we also have that K is an essential ideal of J [12,
1.2(a)], and UKq ⊆ I , as in (III)(2) of the proof of (3.1).

For any x ∈ K ,

UxUzUpq = U{p,z,x}q − UpUzUxq − {
p, z,Ux{z,p, q}} + {UpUzx, q, x} (

(0.2)(xi)
)

= U{z,p,x}q − UzUpUxq − {
z,p,Ux{p, z, q}} + {UzUpx,q, x}

(
by (3.9)(i) and (3.14) since Uxq ∈ I

)

= UxUpUzq

using again (0.2)(xi). We have shown that UKc5(z,p, q) = 0, which implies that c5(z,p, q) = 0
by (2.4). �
3.16. Theorem. Let J be a nondegenerate Jordan algebra, Q be a Martindale-like cover of J .
Then C(J ) ⊆ C(Q).

Proof. Put together (3.8), (3.9)(ii), and (3.15), and use (0.7). �
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