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INTRODUCTION

The notion of Martindale rings of quotients, jointly with the notion of
extended centroid, play an important role in the study of prime rings satisfying a
generalized polynomial identity, see Martindale (1969).

This notion of quotients has been a useful tool in several branches of algebra,
not only in the associative setting but also for nonassociative structures such
as Jordan systems or Lie algebras. For example, McCrimmon (1989) extended
Martindale’s construction to semiprime associative structures to obtain what
he called the Martindale system of symmetric quotients, which played a central
role in McCrimmon-Zelmanov’s classification of strongly prime Jordan systems
(McCrimmon and Zelmanov, 1988).

In a recent article, Garcia and Gémez Lozano (2004), the authors introduced this
type of quotients for Jordan systems and called them Martindale-like Jordan systems of
quotients (M-quotients, for short). In their work they showed the existence of maximal
systems of M-quotients for nondegenerate Jordan systems when 6 was invertible in
the ring of scalars, and later on, in a work jointly written with Anquela, Anquela
et al. (2004), they extended the construction of maximal algebras of 2t-quotients
for strongly prime Jordan algebras when only % belonged to the ring of scalars.
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On the other hand, similar-like algebras of quotients for Lie algebras where
defined by Siles (2004). In Garcia and Gémez Lozano (2004) it is proved that they
are related to Jordan systems of 9i-quotients through the Tits—Kantor-Koecher
(TKK) construction.

An important result on Martindale associative quotients is that the extended
centroid of a semiprime associative ring coincides with the center of its Martindale
ring of quotients (Lam, 1999, 14.18 and 14.19). This fact implies that the central
closure of a semiprime associative ring R is the subring of its Martindale ring of
quotients Q generated by R and the center of Q.

The goal of this article is to give an analog of this result for Jordan algebras,
where Martindale rings of quotients are replaced by maximal Jordan algebras of
M-quotients with respect to the filter 7, of all essential ideals of the algebra. Moreover,
for nondegenerate Jordan pairs and triple systems 7', where the notion of center
is naturally replaced by the centroid, we obtain that the extended centroid of T is
isomorphic to the centroid and to the extended centroid of the maximal system of
M-quotients of T with respect to the filter 7, of all essential ideals of 7. Our proof is
made in two steps: firstly, we show that the extended centroid of T is isomorphic to
the extended centroid of any system of )t-quotients of 7" with respecto to any power
filter of essential ideals, and, secondly, we prove that the centroid and the extended
centroid of the maximal system of i-quotients of T with respect to 7, are isomorphic.

The article is divided into three sections. In Section 1 we recall basic facts
and notions on Jordan systems and Lie algebras over a ring of scalars ®, % € d,
including the notions of centroid and extended centroid. In Section 2 we study some
properties of Jordan systems of t-quotients, showing, with a purely combinatorial
proof, that the extended centroid does not change when considering Jordan systems
of Yi-quotients with respect to power filters of essential ideals. In the last section
we show the coincidence of the centroid and the extended centroid for the maximal
Jordan system of 9)-quotients of a nondegenerate Jordan systems (pairs or triple
systems) with respect to the filter of all essential ideals. Moreover, in the case of
algebras, we also obtain that the center, the centroid and the extended centroid
of the maximal Jordan algebra of 9i-quotients coincide. Some of our arguments
are done for Lie algebras since Jordan pairs and Lie algebras are easily connected
through the TKK construction.

1. PRELIMINARIES

1.1. We will deal with Jordan systems over a ring of scalars ®, where % € d.
The reader is referred to Jacobson (1981), Loos (1975), and McCrimmon and
Zelmanov (1988) for basic results, notation and terminology, though we will stress
some notions and basic properties. The identities JPx listed in Loos (1975) will be

quoted with their original numbering without explicit reference to Loos (1975).

(1) For a Jordan pair V= (V*,V~) we will denote its linear products by

Q,.y={x,y.z}, forx,z€ V°, y e V=7, ¢ = +. We will write Q,y = 3{x, y, x}.

(i) A Jordan linear triple system T is given by its products P .y = {x,y,z},
x,y,z € T. We also have P,y = 1{x, y, x}.

(iii)) Given a Jordan algebra J, its linear products will be denoted by x oy and

U..y={x,y 2}, for x,y,z € J. In this case, U,y = %{x, y, x} and x* = %(x 0 X).
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A Jordan algebra J is said to be unital if there is an element 1 € J satisfying
U, =1d, and U 1 = x2, for any x € J (such an element can be shown to be unique and
it is called the unit of J). Every Jordan algebra J imbeds in a unital Jordan algebra
7 =J @ @I called its (free) unitization (McCrimmon and Zelmanov, 1988, 0.6).

A Jordan system J is said to be nondegenerate if zero is the only absolute
zero divisor, i.e., zero is the only x € J such that U, =0 (respectively, O, =0 or
P, =0). It is semiprime if it has no nonzero nilpotent ideals, and it is prime if it
has no nonzero orthogonal ideals. Strongly prime Jordan systems are those that are
nondegenerate and prime.

1.2. A Jordan algebra J gives rise to a Jordan triple system J, by simply forgetting
the squaring and letting P = U. Moreover, J is nondegenerate if and only if J; is
so. Conversely, if a Jordan triple system 7" has an element 1 with P,x = x for every
x € T, then it is really a unital Jordan algebra with product U = Pand xox = P_,1
(Montaner, 1999, 0.1).

By doubling any Jordan triple system 7 one obtains the double Jordan
pair V(T) = (T, T) with products Q. .y =P, .y, for any x,y,z€ T (Loos, 1975,
1.13). Moreover, T is a nondegenerate Jordan triple system if and only if V(7) is
nondegenerate. Reciprocally, each Jordan pair V gives rise to a polarized triple
system T(V) =Vt @ V~. Niceness conditions such as nondegeneracy, primeness,
strong primeness, and others are inherited by the polarized triple system of a
Jordan pair. Moreover, V is a nondegenerate Jordan pair if and only if T(V) is
nondegenerate.

1.3. In a nondegenerate Jordan system J, the annihilator Ann,(/) of an ideal
I of J is an ideal of J, given by Ann,(l)={xe J|UJI=0}={xe J|Ux =0}
(McCrimmon, 1984, 1.3, 1.7; Montaner, 2001, 1.3).

An ideal I of J will be said sturdy if Ann,(/) = 0. It is easy to prove that
essential ideals coincide with sturdy ideals in any semiprime Jordan system.

1.4. Given a Jordan triple system T, its centroid I'(T) consists of all maps y €
End(7) such that y({x, y, z}) = {y(x), y, z} = {x, p(»), z} for all x, y, z € T. Similarly,
when dealing with Jordan pairs V = (V*, V™), amap y = (y*, y~) € End(V) belongs
to its centroid I'(V) if y7({x°, y7°, z°}) = {y°(x), y %, 2°} = {x7, y~°(y™°), 2°}, for all
x?,z° € V2 and y° € V7°, ¢ = +. The condition for a linear map 7y to belong to the
centroid of a Jordan algebra J is y(xoy) = y(x) oy, for all x,y € J.

The centroid of a Lie algebra L is the set of linear maps y : L — L such that

7([x, y]) = [7(x), y] for all x, y € L.

1.5. Let T be a Jordan triple system and let / be an ideal of 7. A linear mapping
f:1— T will be called a T-homomorphism if for all y € I, x, 7 € T it satisfies:

1) fdy, x,z}) = {f(y), x, z}; and
() f({x,y,2}) = {x, f(»), 2}

The set of T-homomorphisms with domain 7 will be denoted Hom(/, 7).
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1.6. Similarly, for a Jordan pair V = (V*, V™) and an ideal I = (I*, "), we define
a V-homomorphism as a pair f = (f*, f7) of linear mappings f° : I — V°, 0 = &,
satisfying, for all y* € I°, x°, z° € V?, 0 = +:

@) oy x72,2%) = {f°(?), x7%, z°}; and
(i) fo{x y70 7)) = {x7, (7). 2}

We denote by Hom,, (1, V) the set of V-homomorphisms from 7/ into V.

1.7. For a Jordan algebra J and an ideal /, an algebra J-homomorphism is a linear
map that satisfies, for all x € J and all y € I,

(iii) f(yox) = f(y)ox.

Again we denote the set of J-homomorphisms defined on I by Hom, (1, J).

Following Montaner (1999), a pair (f, I), where f € Hom, (1, J), for a Jordan
system (pair, triple, or algebra) will be called a permissible map if the ideal I is
essential.

1.8. For permissible maps (f, I) and (g, L) of the Jordan system T, define a relation
= by (f,I) = (g, L) if there is an essential ideal K of 7, contained in 7 N L, such
that f(x) = g(x) for all x € K. It is easy to see that this is an equivalence relation.
The quotient set C(7) will be called the extended centroid of T. We will write [f, I]
for the equivalence class of the permissible map (f, I).

For nondegenerate linear systems this set has a ring structure coming from
the addition of homomorphisms and from the composition of restrictions of
homomorphisms, see Baxter and Martindale (1979).

1.9. As for Jordan systems, we can define the extended centroid for Lie algebras.
Given a Lie algebra L and an ideal I of L, an L-homomorphism with domain 7 is
a linear map f: 1 — L such that for any x € L and any y € I we have f([x, y]) =
[x, f(»)]- A pair (f, I), where f is an L-homomorphism with domain 7, will be called
a permissible map if the ideal I is essential. As before, we can define an equivalence
relation = in the set of all permissible maps, such that the quotient C(L) is called
the extended centroid of L. If L is nondegenerate, C(L) has also a ring structure
through the addition of homomorphisms and the composition of restrictions of
homomorphisms.

2. QUOTIENTS AND THE EXTENDED CENTROID

2.1. A filter 7 on a Jordan system or a Lie algebra is a nonempty family of nonzero
ideals such that for any I, I, € 7 there exists I € F such that I C I, N I,. Moreover,
F is a power filter if for any I € F there exists K € F such that K C I¥, where I* =
[Z, 1] for Lie algebras, I = (Q,+I~, Q,-I") for Jordan pairs, I* = P,I for Jordan
triple systems, and I* = I?> for Jordan algebras. We highlight the filter 7, of all

essential ideals in V. When V is semiprime it is easy to show that ¥, is a power
filter (for any essential ideal I of V, I° is a semiideal and generates an essential ideal
contained I* (see McCrimmon, 1988, 6.2(b)), and that it coincides with the set F, of

all sturdy ideals in V.
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2.2. Let T be a Jordan triple systems and consider a filter ¥ on 7. We say that a
Jordan triple system Q (such that J is a triple subsystem of Q) is a triple system of
Martindale-like quotients (triple system of -quotients, for short) of T with respect to
7 if the elements of Q are F-absorbed into 7, i.e., for each 0 # g € Q there exists
an ideal I, € 7 such that

0#{q. 1, TV +{q. T, 1,} +{1,,q. T} CT.

Similarly, a pair of Martindale-like quotients (9-quotients, for short) of a Jordan
pair V with respect to a filter F in V is Jordan pair Q (such that V is a subpair
of Q) whose elements are F-absorbed into V (cf. Garcia and Gémez Lozano, 2004,
2.5), and an algebra of Martindale-like quotients (I-quotients, for short) of a Jordan
algebra J with respect to a filter ¥ in J is a Jordan algebra that contains J as a
subalgebra and whose elements satisfy the absorption property into J by ideals of F
(cf. Garcia and Gémez Lozano, 2004, 5.1).

To simplify our calculations, in this section we are going to work with Jordan
triple systems, though the results are also valid for Jordan algebras and pairs.

2.3. Lemma. Let Q be a Jordan triple system of I-quotients of a Jordan triple
system T with respect to a filter F. Then {q, I, T} + {q, T, I} + {I, q, T} # 0 for any
0 # q € Q and any sturdy ideal I in F. Moreover, if F is a power filter, {q, I, I} # 0 #
{1, 4,1}

Proof. This lemma is mainly Garcia and Gémez Lozano (2004, 4.2). If 7 is a
power filter, we already know that {q, I, I} + {I, g, I} # 0 for any I € 7.

Now suppose that {g, I, I} = 0. Then there exist y,, y, € I with {y,, g, y,} # 0.
Moreover, since I has zero annihilator,

0# Py, q ) C{LLL{g 1, 1}}+{Pl 1 q} =0,

by JP13, leading to a contradiction, hence {g, I, I} # 0. Similarly, {I, g, I} must be
nonzero. O

2.4. Lemma. Let Q be a Jordan triple system of -quotients of a Jordan triple
system T with respect to a filter . Given u, w € Q and an ideal K of T

(i) if K' € F is an ideal of T that absorbs w, and x € (K N K')?, then both {w, x, u}
and {x, w, u} belong to {KNK', T, u} +{T, KN K', u};

(i) if K' € F is an ideal of T that absorbs w, and t € (K N K')°, then both {t, w, u}
and {w, t, u} belong to {(KNK')*, (KN K')*, u}.

Proof. (i) By JP16, for x, x,, x; € KNK’,
{w, {x1, x5, x5}, u} = {{w, x1, %2}, x5, u} + {{w, x3, x,}, xy, u}
—{x, {x,w, x5}, uy e {KNK', T, u} +{T, KN K, u},

{x1> %2, 23}, w, u} = {x3, {x2, x, w}, u} — {{x3, w, x,}, x5, u}

+ {xy, {xy, x5, wh,u} e {KNK', T,u} + {T, K NK', u}.
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(i) Let us consider x,, x,, x; € (K N K")>. By JP16 and (i),

{w, {x1, x5, x5}, u} = {{w, x1, X2}, x5, u} + {{w, x5, %}, xy, u}

— {xy, {x, w, x5}, u} € (KNK'), (KNK')?, u}
since (K N K’)? is a semi-ideal of (7, T). Similarly,

{x1s %2, X3}, w, u} = {x3, {x0, x5 w), u} — {{x35, w, x,}, x5, u}

+ {xp, g, whou) € (KNKD) (KN K, u}
which completes the proof. |

25. Lemma. Let Q be a Jordan system of IN-quotients of a nondegenerate Jordan
system T with respect to a filter of essential ideals F. Then every essential ideal of Q
hits T in an essential ideal of T.

Proof. Let us suppose without loss of generality that 7 and Q are Jordan triple
systems. Let .7 be an essential ideal of Q and define I = .¥ N T. Given z € Ann ()
and g € .7, if P_.q # 0, there exists an essential ideal K € F that absorbs both ¢ and
P.g into T. Let x € K* such that 0 # P,P.qg € T. Now, since T is nondegenerate
and K3 contains an essential ideal, 0 75 Py p K> =PPPPPK CPPPK C

P (FNT) (because P, K" 3¢ T by (2.4)(1) and ge 5)=PPI=0,a contradlctlon
So P.q = 0 for every g e ¥, which implies that z =0, i.e., AnnT(I) =0and [ is an
essential ideal of 7. O

The following theorem is the main result of this section: Extended centroids
do not change when considering triples of t-quotients with respect to power filters
of essential ideals.

2.6. Theorem. Let T < Q be nondegenerate Jordan triple systems such that Q is a
triple system of Mi-quotients of T with respect to a power filter of essential ideals. Then
C(T) = C(Q) (ring isomorphism).

Proof. Let [f, 7] € C(Q), i.e., .7 is an essential ideal of Q and f:.7 — Q is a
permissible map.

It is trivial to prove that I := f~'(T) N T is an ideal of T.

Let us show that [ is essential. Let J be a nonzero ideal of 7. Since ¥ NT
is an essential ideal of T (2.5), we can consider 0 Zx e JNF C T. If f(x) € T we
have finished; otherwise, since Q is a triple system of 2t-quotients of 7" and f(x) # 0
there exist a, b € T such that 0 # {f(x), a, b} € T, so 0 # {x, a, b} € J NI, because
f{x,a,b}) ={f(x),a, b} € T.

Let us consider the map ¢ : C(Q) — C(T) defined by o([f, 7)) = [fl;» I].
Clearly, it is well defined and it is a homomorphism of associative rings.

Let us show that ¢ is a monomorphism. Let [f, .¥] € C(Q) be such that
0=¢[f, F] =[fl;»I]. Then there exists an essential ideal K of T contained in
I with f|,(K) =0. Now consider the ideal Id,(K) of Q generated by K, and
Id,(K) N .7, which is an essential ideal of Q (since Id,(K) is an essential ideal of Q)
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with f(Id,(K) N .¥) =0, which implies [f, 7] =0, ie., ¢ is a monomorphism of
associative rings.

Now we prove that ¢ is an epimorphism. Let [f, I] € C(T). We want to define
a permissible map on the ideal 1d,(/) generated by 7 in Q. Given an element ¢ €
Id, (1) we can express it as a sum of monomials consisting of an element of /
multiplied an even number of times by elements of Q, ie., { = Zf:l a;", for 0 <
n <---<mn <---<n, and where a;"', f(a;)", and the sets A” and fA! are defined
inductively as follows:

a; € A} = {a;}) C I fla)’ € fA} = {f(a)) | a] € AY);
atl e A = {{v, w, a’} |v,w e Q,a € A}
U {{v, a], w}|v,we Q,al € AT};
fla)™" e fAT = {{v, w, fla;)"} v, w € O, fla))" € fA}
U {{v. fla)", w} v, w € Q, f(a))" € fA]}.
Sometimes, to simplify the notation, we will forget the subscrips of the a; € I and
simply write a for elements of I, a" for elements in A" and f(a)" for elements in

fA™.
We define

k k
E Id,(I) = W by f(Za?") =Y fla)".
i=1 i=1

Let us show that f is well defined, i.., if ¢ = Y%  a/" =0, then also f(¢) =
> f(a)" = 0. Then it is easy to see that [f, Id, (D] € C(Q) and o([f, Id,(D]) =
[f, I], proving that ¢ is surjective.

We claim that it is enough to prove the following property (P): For every a”
there exists an essential ideal K of T such that for every x, y € K,

{x.y.a"tel —and  f({x.y.a"}) = {x.y., f(a)"}. (P)

Indeed, as soon as we have (P) then we can find a common absorbing essential ideal
K of T for every summand a;' appearing in ¢ = Y5, /" = 0, i.e., for every x,y € K

{x.y.ai'y el and  f({x,y,a]"}) = {x,y, fla)"}.
Suppose that 0 £ f(¢) = Zf:, f(a)" € Q, so we can choose K’ € ¥ such that
k
02 (kK. Tstay | e,
i=1

i.e., we have elements v, w € K’ such that 0 # n = {v, w, Zf.‘zl f(a;))"'} C T. But using
(P), for every x,y € K

0= f({x, y. {v.w. &}}) :f({xa Y, {v, Wé“”) = {x’ > {v’ w’if(a")”’”’

i=1
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hence 0 = {K, K, n}, which is not possible since K is an essential ideal of T. We have
proved that 0 = Zf.‘:l a;" € 1dy(I) implies Zf.‘:l fla)" =0, ie., f is well defined.
Now let us prove property (P). We give a proof by induction on n.
If n = 0, the result follows for K = T because f is a permissible map of 7.
Suppose it is true for n and let K be an essential ideal of T such that for every
x,ye K

{x,y,a"y el and  f({x,y,a"}) = {x, 5, fla)"}. (P),

Let a"*! := {v, w, a"} for some v, w € Q and let us consider an ideal K’ € F
that absorbs v, w and @” into T, and let K, be an essential ideal of T contained in
(K'NKN 1)9. Then for every x, y, z € K, by JP16 we have:

{x.y {v, w, a"}} = {x, {y, v, w}, @} = {x, w, {v, y, @"}} + {x, {y, @, w}, v} @

Let us study each summand separately.

(1) By (2.4)(i), (ii) and the induction hypothesis: {y, v, w} e {(K'NKNI)3,
(K'NnKND*,wyc (K'NKNI*CK, hence {x,{y, v,w},a"}el{K,K,a"}ClI.
Therefore,

S{x {y, v, w}, @) = {x, {y, v, wh, f(@)"} (S1)

(2) By (2.4)(i), (ii) and the induction hypothesis: {v, y, a"} € {(K'NKNI)3,
(K'NKND3 a"} c(K'NKNI)? CI, hence {x,w, {v,y,a"}} € {(K'NKND3 (KN
Knh} 1 cl.

Now, for any z € (K'NK N 1)* and x,, x,, x; € (K' N K N 1), by JP16,

J({x, xp, x5} w, 2})
= f({x {3, x5, whh 2) 4 [, {xa, x5 wh 2)) — F({xg, w, x5}, x5, 23)
= {xp, {x, x5, wh, (D)} + {3, {xo, x, wh [} = {{x, w, 63}, x0, f(2)}
= {{x. x2, x5}, w, f(2)},

since z € I and {x,, x5, w} € T, {x,, x;, w} € T and {x,, w, x3} € T. Therefore,
fx w2 = {xw, f(2)},  Vaxze® NnKND (AS,)

Now for every y;, y,, y; € (K' N K N 1)3, by JP16,

Jv, {1, v2, v3}, a"})
= f({{v. yi, 2}, 3, @"D) + f({v, y3, 2}, yis @) = f{ya, (v 0, 33}, @)
= {{v. yi. ;b v, f(@)"} + {{vs y3. b v (@) = {3a, {v1s v, 33} f(@)")
= {v, {y1, », y3}, f(a)"}
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because we can use the induction hypothesis in each summand (each summand
belongs to 7 and consists of elements in K and a"). Hence for every y € (K'N K N I)°
we obtain

J{u, y, a"}) = {v, 5, fla)"}. (BS,)

By (AS,) we get f({x, w, {v, y, a"}}) = {x, w, f({v, y, a"})} and together with (BS,)
we have

J{x, w, {v, y,a"}}) = {x, w, {v, y, f(a)"}}. (S2)

(3) By (2.4)(i), (ii) and the induction hypothesis: {y, a", w} € {(K' N K N I)3,
(K'NKND*wyc (K'NKNI?3 hence {x,{y,a", w},v}e{(KKNKND> (KN
K N1)3 v} C I If we take any b € K, and any x,t € (K'NKNI)*, and use JP13,
Ppf({x, 1, v}) = f(P,{x, t,v}) = f({b. x. {t, v, b}}) — f({P,x, v, 1})

= {b, x, f({t. v. B} = {Pyx. v. f(D} = {b. x, {{(1), v, b} — {P,x, v, f(1)}
= P,{x, f(1), v}

by (AS,) (which is also true if we change w by v) applied to both terms. Since this
holds for every b € K,, which is an essential ideal of 7, we obtain

flx, 1, 0}) = {x, f(1), v} (AS5)

for every x,t € (K’ N K NI)3.
On the other hand, for every z,, 2, 23 € (K’ N K N I)* we have
J{{z1, 22, 23}, w, a"})
= f({z1; {22, 25, wh @"}) + f({z3, {22, 21, w}, @"}) — f({{z1, w, 23}, 25, @"})
= {21, {22, z3, w}, f(@)"} + {z5, {22, 21, wh, fl@)"} = {{z1, w, 23}, 20, f(@)")
= {{z1, 22, 23} w, f(@)"}

because we can use the induction hypothesis in each summand (each summand
belongs to I and consists of elements in K and a"). Therefore, for z € K, we get

f{z, w,a"} = {z, w, f(a)"}. (BS;)

Now, for every b, y € K, we have by JP13

Pof({y, a", w}) = f(Py{y, a", w}) = f({b, y, {a", w, b}}) — f({P,y, w, a"})
= {b,y, f({a", w, b))} = {Ppy, w, f(a)"}
= {b,y, {f(@)", w, b}} = {Pyy, w, f(a)"}
= Py{y, fla)", w}
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since b and P,y belong to K, so we can apply (BS;) in each summand. This formula
holds for every b € K,, which is an essential ideal of 7, so for every y € K|

Sy, a", w}) = {y, fla)", w}. (CSy)

Now putting together (AS;) and (CS;) we get that for every x, y € K

FUx Ay, a" wh, o)) = {x, f({y, ", w}), v} = {x. {y, f(@)", w}, v}. (S3)
And putting together (I), (S,), (S,), and (S;) we get that for every x, y € K,
{x,y, {v,w,a"}} e (K'NKNI?cl,  and
fx y {v,w, a"}}) = {x. y. {v. w. f(@)"}},

which is (P), ., for "™ := {v, w, a"}.
It remains to prove the same property (P),., for an element of the form a"! =
{v, a", w}. For every x, y € K,, by JP16,
{2,y {v. @", wh} = {x, {y, v, a"} wh + {x, {y, w, @}, v} — {x, @", {v, y, w}}
e (K'nkNnI?

using (2.4) and the induction hypothesis as in (I). Moreover, by (AS;), (BS;), and
the induction hypothesis,

JUx iy, v, @'} wh) = {x, f({y, v, a,}), wh = {x, {y, v, f(@)"}, w},
JUx v, w, a'}, v)) = {x, f({y, w,a"}, v} (by (ASy)) = {x, {y, w, f(@)"}} and
f({x, " {v, y, wh}) = {x, fl@)", {v, y, w}},

so f({x, y, {v, a", w}}) = {x, y, {v, f(a)", w}}, i.e., for every x, y € K
{x,y, {v,a",w}} e (K'NKNI*cI,  and
S{x . {v, a", wi}) = {x, p, {v, f(@)", w}}.
which completes the proof. O

Now, it is natural to extend this theorem to Jordan pairs and algebras.

2.7. Corollary. Let V < W be nondegenerate Jordan pairs such that W is a pair of
M-quotients of V with respect to a power filter of essential ideals. Then C(V) = C(W)
(ring isomorphism).

Proof. If W is a Jordan pair of 9-quotients of V with respect to a power filter
of essential ideals 7, then the polarized triple system T(W) associated to W is a
triple system of i-quotients of the polarized triple system T(V) with respect to
the power filter of essential ideals (%) = {It @I~ |(IT,I7) € F}. Now, by (2.6),
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C(T(V)) = C(T(W)), while by Montaner (2001, 2.7), C(V) = C(T(V)) and C(W) =
C(T(W)), which completes the proof. d

2.8. Corollary. Let J be a nondegenerate Jordan algebra and let Q be an algebra of
IMN-quotients of J with respect to a power filter of essential ideals. Then C(J) = C(Q)
(ring isomorphism).

Proof. Let J; and Q; denote the underlying triple systems of J and Q, respectively.
It has been shown in Garcia and Gémez Lozano (2004, 5.2) that Q; is a triple
system of MM-quotients of J, with respect to the same filter of ideals, so by
(2.6) C(J;) = C(Q;). Moreover, by Montaner (2001, 2.4), the extended centroid
of a nondegenerate Jordan algebra is isomorphic to the extended centroid of its
underlying triple system, which completes the proof. |

3. CENTROIDS, EXTENDED CENTROIDS, AND CENTERS

From now on, we will deal with rings of scalars ® with } and 1 in ®. The
condition % € ® is needed for the existence of maximal systems of 2i-quotients of
nondegenerate Jordan systems and Lie algebras (cf. Garcia and Gémez Lozano,
2004, 5.4). Moreover, in this section we will always consider quotients with respect
to the filter F, of all essential ideals of the Jordan system or Lie algebra.

The goal of this section is to show the coincidence of the center, the centroid
and the extended centroid of the maximal algebra of Ii-quotients Q,,.(/) of a
nondegenerate Jordan algebra J with respect to %,. With this, given such J with
extended centroid C(J), we will get that the central closure of J is the subalgebra of
0,..(J) generated by J and the center of Q,,,.(J).

Our proof will be done through Lie algebras by the TKK construction (Neher,
1996, §1).

3.1. Recall that given a semiprime Lie algebra L, we can consider algebras of
quotients Q of such L with respect to the filter of all essential ideals 7, in the sense
that any nonzero element ¢ of Q can be absorbed into L by an essential ideal: There
exists an essential ideal I of L such that 0 # [g, I] C L. Moreover, it was shown in
Siles (2004, 3.4, 3.6) that the maximal algebra of quotients Q,,,.(L) of L can be
built, in the sense that it is an algebra of quotients of L and any other algebra of
quotients of L can be imbedded in such Q,,,.(L). Explicitly, Q,,,.(L) consists of the

direct limit of all derivations defined on essential ideals of L, i.e.,

0,.ax(L) = lim Der (7, L), I €5,
The elements ¢ of Q,,,.(L) can be seen as equivalence classes [d,, I] where [ is an
essential ideal of L and d,:1 — L is a derivation. Two equivalence classes g =
[d,, 1] and p = [d,, K] are equal if d, and d,, coincide on a common domain (which
must be an essential ideal of L). Notice that the Lie product in Q,,,.(L) is [p, ¢] =

[[d,.d,]. (I NK)*], ie., the derivation associated to [p, q] is dy, ,, = [d,. d,].
We have an analogue of (2.5) for Lie algebras.
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3.2. Lemma. Let L be a semiprime Lie algebra and let Q be an algebra of quotients
of L with respect to the filter of all essential ideals. Then every essential ideal of Q hits
L in an essential ideal of L.

Proof. Let .7 be an essential ideal of Q and define I =.FNL. Take 0 £ g€ .7
and an absorbing essential ideal K for ¢: 0 # [¢, K] C L N.¥ = I. The absorption
property of ¢ into L also holds for the ideal K=KnI+K N Ann, (1), which is
essential because it contains the essential ideal [K, I + Ann, ()]. Given z € Ann, (1),
if [z, q] #0, there exists x € [K, K], such 0 # [x, [z, ¢]] = [[x. z], ¢] + [z, [%, ¢]] €
[[K N Ann, (1), K N Ann, (I)], g] + [Ann, (I), I] =0, a contradiction. So [z,g] =0
for every z € Ann,(I) and every g € .7, which means Ann, (/) C Ann,(.¥) =0
(because .7 is essential), i.e., I is an essential ideal of L. O

The next result relates the centroid and the extended centroid of some ideals
Of Qmax(L)'

3.3. Theorem. Let L be a semiprime Lie algebra, let @ = Q,,,.(L) be its maximal
algebra of quotients and .F an essential ideal of @ with L C .¥. Then:

(1) The map VY, :1I(F) — C(F) defined by Y,(y) = [y, F] is a monomorphism of
associative rings; B
(ii) Every [f, J'] € C(F) can be extended to a map f:. 5 — @ such that for every

p.q €7, flp.ql=[f(p). ql.

Moreover, if f(q) € .F for every g € .F and [f,.7'] € C(.F), T(F) = C(5). In
particular, we always have that I'(@) = C(@).

Proof. (i) Let us consider the map
v, 1(F) - C(¥) defined by ¥,(y) = [y, .7].

It is clear that W, is a homomorphism of associative rings. Moreover, since Q is
semiprime, .7 is semiprime and ¥, is a monomorphism: If there exists 0 # y € I'(.¥)
with W, (y) = 0, then y annihilates an essential ideal # of .7, i.e., p(¥#) =0, and in
this case, since 0 # y(.¥) is an ideal of .7 (so y(.¥) N H# # 0), there exists 0 # y(x) € &,
which implies that y?(x) = 0 and therefore the (nonzero) ideal of .7 generated by
7(x) has zero square, a contradiction.

(i) Given [f, '] € C(J) and g = [d,, I"] € .F, we define

(@ =[fod, ("0 f (L))

(1) Let us show that f(g) is an element of @. On the one hand, let us prove
that (1”7 N f~1(L))? is an essential ideal of L. It is clear that we only have to show
that f~'(L) is an essential ideal of L: For any ideal C of L, .¥'N L is essential
in L (see (3.2) applied to Q = .¥), so we can take 0 #ae 9 NC. If f(a) €L,
aec f~'(L)NC; otherwise, 0# f(a) €.7 implies that there exists b € L with
0 # [f(a),b] € L, so 0 # [a, b] € f~'(L) N C. On the other hand, let us prove that
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fod, is a derivation on (I"N f~'(L))* for any x,y e (I"N f~'(L))*, (f o d,)[x,y] =
Jd (%), yD) + f(lx. d,(0]D = [fd,(x), y] + [x, fd,(y)] because d,(x), d,(y)€.T"
We have proved that f(q) € Q for any ¢ € .7.

. (2) Let us prove that the map f:.%F — @ satisfies that for every p, g € .%,
flp.al =11 (p). ql:

(2.1) Given p=|[d,.1"] € %, f, and d, commute on (I" N f~'(L))*: for any
xe("nf (L)) (fod)(x) = f([p., x]) = [p, f(x)] = (d, o f)(x), because [p, x] €
[p, F1C ¥, xe ¥, and f(x) e I".

(2.2) For any two elements of .¥, p=[d,, 1] and g =[d,, I|], we want

. A z i 7 'q
to show that f([p, q]) = [f(p), ¢l = [p, f(@)], i.e., the maps fod, . 7)., and
dy, 74 coincide on an essential ideal of L. Take any x € (I, NI, N f~'(L))*,

(f o dp, )(x) = F([[p: ql. xD) = F({[p, 1. 4D + f (. [g, x1])
= —fd,d,(x) + fd,d,(x) = [fd,, d ](x) + [d,, fld,(x) = d3) (x),
because d, and f commute on d,(x) € (7, N f~Y(L))* by (1). Now, (fo dp, ) (x) =
—(f o digp)(¥) = —dj7g).5)(¥) = 3 (%)

(3) Therefore, if f(g) € .7 forevery g € .7 and [f, 7'] € C(.¥), given [f, 7] €
C(¥), we have that [f, 7] = ¥,(f) which implies that ¥ is an isomorphism of
rings, i.e., I'(.¥) = C(.%). O

Now we turn to Jordan pairs and use their connection with Lie algebras
through the TKK construction. Recall that given a Jordan pair V, TKK (V) becomes
a 3-graded Lie algebra with associated Jordan pair V. To use (3.3) for Jordan pairs,
we need the following technical result.

3.4. Lemma. LetV be a Jordan pair and let TKK (V) be its TKK algebra. We denote
by T'() the centroid, and by C( ) the extended centroid. Then:

(@) Any f e T(V) can be extended to a unique element f € T(TKK(V)).
Conversely, given any g € I(TKK(V)), the restriction (gy+, gy-) is an element of I(V).
Moreover, given any f € I'(V) and any g € I'(TKK(V)),

= fv-)  and g = (gy+, gy-)-
(b) Any [f, I] € C(V) can be extended to a unique element
¢lf. 11 :=[f, 1] € C(TKK(V))
where I=1" & ([I", V-] +[V~,I"]) @ 1". Conversely, given any [g, K] € C(TKK(V)),

the ideal K contains a 3-graded ideal K of TKK(V) yielding to the same class [gz, K],
so that

Ylg. K] = [(gz+- gz )- (KT, K")] € C(V).
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Moreover, given any [f, I| € C(V) and any [g, K] € C(TKK(V)),

[, 1 =y(elf. 1) and [g K] = ¢(¥[g, K]). g

3.5. Theorem. Let T be a nondegenerate Jordan system and let Q be its maximal
system of IN-quotients. Then the extended centroid C(Q) is isomorphic to the centroid
I'(Q) and, in the case of Jordan algebras, also to the center of Q.

Proof. Let us suppose that we are working with a Jordan pair 7. Let us denote by
L = TKK(T), the TKK algebra of T. The maximal Lie algebra of quotients Q,,,,(L)
of L with respect to the filter 7, is a 3-graded Lie algebra, Q,,,.(L) =@_, & @, ® @,
see Garcia and Gémez Lozano (2004, 2.4), and Q = (@_,, @,) is the maximal pair
of M-quotients of T with respect to 7,, see Garcia and Goémez Lozano (2004, 3.2).

Since Q,,,.(L) is nondegenerate, the ideal .¥ of Q,,,.(L) generated by Q is
isomorphic to TKK(Q) and is an essential ideal of Q,,,,(L) which contains L. Let
us show that .¥ = TKK(Q) satisfies the hypothesis of (3.3)(ii),

(I) FNLis an essential ideal of L: Since .7 is an essential ideal of @, .¥ N Q
is a essential ideal of Q. Now, by (2.5), N QN T is an essential ideal of 7" which
implies that .¥ N L is an essential ideal of L.

) (I) f(¥) C .7: Given ¢, = [d,.1"] € J, and [f, 5] € C(.F), let us show that
f@) = [fod, (I"Nf7'(L))*] € F,. If we put f(q,) = p; +po + p_; € @, then

0= J_c([‘h’ S = [J_c(fh), Sl Cpo> Kl + [po1s Fi] € F @ Ty,

s0 [py, %] = 0 and [p_;, )] = 0, and, since .¥ is nondegenerate, p_; = 0. Therefore,
f(F) C I @ F,. Similarly, f(5_ ) C F@®.F,. We know that [f(q)),q ] =
[9:. f(q-1)], but [f(q).q.]€ I, &, and [q,, f(g_1)] € F,® .9, implies that
[f(q1),q-1] € F and therefore [p,y, 7] =0. So [py, J; U.7_] =0, which gives

[Py, 71 =0 and, therefore, p, =0. Hence f(q,) € .¥,. Notice that flqg) e,
follows in a similar way, which implies that f(.¥) C .7.

Then, by (3.3)(ii), I(TKK(Q)) = I'(.¥) = C(.¥) = C(TKK(Q)). Moreover, the
elements of the centroid (extended centroid) of a Jordan pair can be extended
to elements of the centroid (extended centroid) of its TKK algebra (3.4), and
conversely, so we can define an isomorphism from I'(Q) to C(Q) by extending
any element in I'(Q) to an element of I'(TKK(V)), taking into account that
I(TKK(Q)) = C(TKK(Q)), and then restricting the element of C(TKK(Q)) to
C(Q) as in (3.4).

Since the centroid and the extended centroid of a Jordan triple system are
isomorphic to the centroid and the extended centroid of its double Jordan pair, we
obtain the result for Jordan triple systems, and since the centroid and the extended
centroid of a Jordan algebra are isomorphic to the centroid and the extended
centroid of its associated Jordan triple system, we obtain the result for Jordan
algebras.

Finally, by Garcia and Gémez Lozano (2004, 5.5), the maximal Jordan algebra
Q of M-quotients of a nondegenerate Jordan algebra is unital, and we have, by
McCrimmon (2004, p. 156), that the centroid of Q is essentially the center of 9. [
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Putting together (2.6) and (3.5) we have the main result of this work.

3.6. Corollary. Let T be a nondegenerate Jordan system and let Q be its maximal
system of Mi-quotients with respect to F,. Then:

(1) (1) = C(Q) =1(Q);
(1) If T is a Jordan algebra, C(T) = C(Q) = I'(Q) = Z(Q) - 1d, where 1d denotes the
identity map in Q.

3.7. Corollary. Let T be a nondegenerate Jordan system and let Q be its maximal
system of M-quotients with respect to F,. Then the central closure T of T is the

subsystem of Q generated by T and the centroid of Q. Moreover, if T is an algebra, its
central closure is generated by T and the center of Q.

Proof.  The central closure TofTisa system of I-quotients of 7, so there exists
a monomorphism ¢ : T — Q whose restriction to T is the identity. Moreover, ¢ is
C(T)-linear: given A € C(T) and x € T, ¢(Ax) — Jx is zero in Q because there exists
an essential ideal 7 of T (the ideal of definition of A, for which AI C T) such that
{T, I, 9(Jx) — Ax} = 0. Now it suffices to apply (3.6) to get the result. O
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