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A NOTE ON A RESULT OF KOSTRIKIN
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Let L be a Lie algebra over a ring of scalars in which 2� 3� � � � � r are invertible, and let
x be an ad-nilpotent element of index n with n+ [

n
2

]− 1 ≤ r. We prove that adn−1
x �L�

is an abelian inner ideal of L. In particular, for every a ∈ L, adn−1
x �a� is ad-nilpotent of

index at most 3, which extends a result of Kostrikin [2, Lemma 1.1, p. 31].
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1. INTRODUCTION

Kostrikin’s Lemma is a fundamental result on Lie algebras.

Kostrikin’s Lemma ([2, Lemma 1.1, p. 31]). Let L be a Lie algebra over a field of
characteristic p and x ∈ L be an ad-nilpotent element of L of index n, with 4 ≤ n < p.
Then, for every a ∈ L, adn−1

x �a� is an ad-nilpotent element of L of index at most n− 1.

This result has been used to obtain ad-nilpotent elements of index at most
3 from ad-nilpotent elements of greater indexes. Ad-nilpotent elements of index
at most 3 play a fundamental role in Benkart’s proof of Kostrikin’s conjecture
that any finite-dimensional simple nondegenerate Lie algebra (over a field of
characteristic greater than 5) is classical, see [1, 3].

We say that a submodule B of a Lie algebra L over a ring of scalars � is an
inner ideal of L if �B� �L� B�� ⊂ B, and it is an abelian inner ideal if it is an inner ideal
with �B� B� = 0, [1, §1]. Abelian inner ideals are closely related with ad-nilpotent
elements of index 3: an element x ∈ L is ad-nilpotent of index 3 if and only if it is
contained in the abelian inner ideal �x + �x� �x� L��, see [1].

In this article, we prove that every ad-nilpotent element of index n of a Lie
algebra L over a ring of scalars in which 2� 3� � � � � r are invertible, r ≥ n+ � n2 �− 1,
gives rise to the abelian inner ideal adn−1

x �L�. This result extends [1, 1.10] where this
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2406 GARCÍA AND GÓMEZ LOZANO

fact was proved for ad-nilpotent elements of index 3. Moreover, Kostrikin’s Lemma
is also generalized in the sense that we show that adn−1

x a is already ad-nilpotent of
index at most 3 for any a ∈ L.

2. MAIN

The following lemma is part of the proof of [2, Theorem 3.1, p. 40].

Lemma 2.1. Let n� r� s ∈ � with 2r + s ≤ n and A�r� s� the matrix A�r� s� =
��ij�i�j=0�����r where �ij 	= �−1�s+i+j

(
n

s+i+j

)
. Then the determinant of A is equal to

�A�r� s�� = �−1�s�r+1�+
(
r+1
2

)

r+s−1

i=0

(
n+r−i
r+1

)

r+s−1

i=0

(
2r+s−i
r+1

) �
From now on, to simplify the notation, let us denote by capital letters the

adjoint maps, i.e., X = adx, A = ada for any x� a ∈ L.

Lemma 2.2. Let L be a Lie algebra over a ring of scalars in which 2� 3� � � � � r are
invertible, and let x ∈ L be an ad-nilpotent element of L of index n. Let 0 < m < n,
a ∈ L, and let us denote

y1 = XmAXn−1� y2 = Xm+1AXn−2� � � � � yn−m = Xn−1AXm�

(i) If 2m ≥ n and r ≥ 2n−m− 1, then all y1� � � � � yn−m are zero.
(ii) If 2m < n and r ≥ n+m− 1, then for any 1 ≤ i ≤ n− 2m+ 1, we can express

the m elements yi� � � � � yi+m−1 ∈ �y1� � � � � yn−m� as a linear combination of the rest
n− 2m elements of �y1� � � � � yn−m�.

Proof. Since Xn = 0, we have that adXn�a� = 0. So, for �i = �−1�i
(
n
i

)
,

�1XAX
n−1 + �2X

2AXn−2 + · · · + �n−1X
n−1AX = 0� (1)

Let us multiply (1) by Xm−1−i on the left, and by Xi on the right, i = 0� 1� 2� � � � � m− 1:

�1X
mAXn−1 + · · · + �n−m Xn−1AXm = 0

�2X
mAXn−1 + · · · + �n−m+1 X

n−1AXm = 0

���
���

�mX
mAXn−1 + · · · + �n−1 X

n−1AXm = 0�

If we adopt the notation y1 = XmAXn−1, y2 = Xm+1AXn−2� � � � � yn−m = Xn−1AXm,
these equations can be written as a linear system with m equations and n−m

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
d
a
d
 
d
e
 
M
a
l
a
g
a
]
 
A
t
:
 
1
0
:
5
5
 
1
7
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



A NOTE ON A RESULT OF KOSTRIKIN 2407

unknowns y1� � � � � yn−m. The matrix of the system is

A =



�1 � � � � � � �n−m

�2 � � � � � � �n−m+1

���
���

�m � � � � � � �n−1


 ∈ Matm×�n−m��

(i) If 2m ≥ n, the first n−m equations give an homogeneous linear system of
equations with matrix of the form A�n−m− 1� 1� in the notation of 2.1. Looking at
its determinant, we conclude that this matrix is invertible in the ring of scalars if
r ≥ 2n−m− 1. In this case, all unknowns of the homogeneous system are zero.

(ii) If 2m < n, for any 1 ≤ i ≤ n− 2m+ 1, the columns �i� � � � � i+m− 1� of
A form the matrix A�m− 1� i� in the notation of 2.1. This matrix is invertible in the
ring of scalars when r ≥ n+m− 1, so we can express the unknowns yi� � � � � yi+m−1 ∈
�y1� � � � � yn−m� as a linear combination of the rest n− 2m unknowns. �

Theorem 2.3. Let L be a Lie algebra over a ring of scalars in which 2� 3� � � � � r are
invertible, and let x ∈ L be an ad-nilpotent element of index n, with n+ [

n
2

]− 1 ≤ r.
Then adn−1

x �L� is an abelian inner ideal of L.

Proof. Let a ∈ L. We are going to show that �adXn−1�a��
2 = Xn−1
 for some 
 in the

subalgebra of EndL generated by X and A, so adn−1
x �L� is an inner ideal of L:

�adXn−1�a��
2 =

( n−1∑
i=0

�−1�i
(
n− 1
i

)
Xn−1−iAXi

)( n−1∑
j=0

�−1�j
(
n− 1
j

)
XjAXn−1−j

)

=
n−1∑
i�j=0

�−1�i+j

(
n− 1
i

)(
n− 1
j

)
Xn−1−iAXi+jAXn−1−j (1)

Notice that Xn−1−iAXi+j = 0 if 2j ≥ n by 2.2(i) and, similarly, Xi+jAXn−1−j = 0 if
2i ≥ n, so we can assume in (1) that both i� j = 0� � � � �

[
n
2

]
.

(I) We consider a generic term Xn−1−iAXi+jAXn−1−j , and we claim that it can
be expressed as a linear combination of elements of the form

Xn−1AX�AXn−1−� for some �

and elements of the form

XrAX2n−2−r−sAXs�

where the last exponent s is lower than n− 1− j.

• We are going to show that Xn−1−iAXi+j can be expressed as a linear combination
of the terms{

Xn−1AXj� Xn−j−2AX2j+1� Xn−j−3AX2j+2� � � � � Xj+1AXn−2� XjAXn−1
}
�
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2408 GARCÍA AND GÓMEZ LOZANO

(i) If i ≥ j + 1 or i = 0, the element Xn−1−iAXi+j is already one of

{
Xn−1AXj� Xn−j−2AX2j+1� Xn−j−3AX2j+2� � � � � Xj+1AXn−2� XjAXn−1

}
�

(ii) If i < j + 1, by 2.2(ii) the set of j elements

{
Xn−2AXj+1� � � � � Xn−1−jAX2j

}
can be expressed as a linear combination of

{
Xn−1AXj� Xn−j−2AX2j+1� Xn−j−3AX2j+2� � � � � Xj+1AXn−2� XjAXn−1

}
�

In particular, Xn−1−iAXi+j ∈ �Xn−2AXj+1� � � � � Xn−1−jAX2j� can be expressed as
a linear combination of

{
Xn−1AXj� Xn−j−2AX2j+1� Xn−j−3AX2j+2� � � � � Xj+1AXn−2� XjAXn−1

}
�

• This means that the monomial Xn−1−iAXi+jAXn−1−j is expressed as a linear
combination of Xn−1AXjAXn−1−j and the terms

{
Xn−j−2AX2j+1AXn−1−j� Xn−j−3AX2j+2AXn−1−j� � � � � XjAXn−1AXn−1−j

}
�

• Take any monomial appearing in the last set

Xn−j−1−kAX2j+kAXn−1−j� k = 1� � � � � n− 1− 2j�

By 2.2(i) and (ii), the j + k elements in

{
X2j+2k−1AXn−j−k� � � � � Xj+kAXn−1

}
are either zero (when 2j + 2k ≥ n) or can be expressed as a linear combination of
the terms

{
X2j+2kAXn−1−j−k� � � � � Xn−1AXj+k

}
�

so in particular X2j+kAXn−1−j ∈ {
X2j+2k−1AXn−j−k� � � � � Xj+kAXn−1

}
can be

expressed as a linear combination of

{
X2j+2kAXn−1−j−k� � � � � Xn−1AXj+k

}
�

• This means that any monomial Xn−1−j−kAX2j+kAXn−1−j can be expressed as a
linear combination of

{
Xn−1−j−kAX2j+2kAXn−1−j−k� � � � � Xn−1−j−kAXn−1AXj+k

}
�

• Since k ≥ 1, all the monomials appearing in the set are elements of the form
XrAX2n−2−r−sAXs, where the last exponent s is lower than n− 1− j.
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A NOTE ON A RESULT OF KOSTRIKIN 2409

(II) We repeat this process with all monomials of (1) until they are a linear
combination of terms of the form Xn−1AX�AXn−1−� for some �, and terms whose
last exponent is lower than n

2 − 1; in this last case, the sum of the first two exponents
is greater than n− 1+ n

2 and the corresponding monomial is zero by 2.2(i).

To see that adn−1
x �L� is abelian, consider two elements Xn−1�a�� Xn−1�b� ∈

adn−1
x �L�. Then

[
Xn−1�a�� Xn−1�b�

] = adXn−1aX
n−1�b� = ∑

i

�−1�i
(
n− 1
i

)
Xn−iAXi+n−1�b��

but the sum of the two exponents appearing in the monomials of this last formula
is 2n− 1 and by 2.2(i) they are all zero. �

If L is a Lie algebra over a ring of scalars � without k-torsion, k ≤ n+
�n/2�− 1, we can regard L as a Lie algebra over the scalar extension �̃ = S−1�,
for S = {

1� � � � � n+ [
n
2

]− 1
}
. Let us denote this Lie algebra by L�̃. Given an

ad-nilpotent element x ∈ L of index n, by Theorem 2.3, adn−1
x L is an abelian inner

ideal of L�̃. All elements of an abelian inner ideal are ad-nilpotent of index at most
3, so we get the following corollary.

Corollary 2.4 (Generalization of Kostrikin’s Lemma). Let L be a Lie algebra over
a ring of scalars without k-torsion, k ≤ n+ [

n
2

]− 1, and let x ∈ L be an ad-nilpotent
element of L of index n. Then, for every a ∈ L, adn−1

x �a� is ad-nilpotent of index at most 3.
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