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Keywords: Alternative rings, maximal ring of quotient, Fountain-Gould left
order.

1 Introduction

The theory of rings of quotients has its origins between 1930 and 1940, in the
works of O. Ore and K. Osano on the construction of the total ring of fractions.
In that decade, Ore proved that a necessary and sufficient condition for a ring R
to have a (left) classical ring of quotients is that for any regular element a in R,
and any b ∈ R there exist a regular c ∈ R and d ∈ R such that cb = da (left
Ore condition). At the end of the 50’s, Goldie, Lesieur and Croisot characterized
the (associative) rings that are classical left orders in semiprime and left Artinian
rings [9, Chapter IV], (result known as Goldie’s Theorem).

Later on in 1956, Y. Utumi introduced the notion of general left quotient rings
[11] and proved that the rings without right zero divisors are precisely those which
have a maximal left quotient ring.

Following Goldie’s idea of characterizing certain types of rings via a suitable
envelope, R. E. Johnson characterized those rings R whose maximal left quotient
rings are von Neumann regular, see [9, (13.36)], and P. Gabriel specialized it
further by giving characterizations for those rings whose maximal left quotient
rings are semisimple, i.e., isomorphic to a finite direct product of rings of the form
End∆i(Vi) for suitable finite dimensional left vector spaces Vi over division rings
∆i, see [9, (13.40)].

In 1990, J. Fountain and V. Gould, basing on ideas from semigroup theory,
see [7], introduced a notion of order in a ring which need not to have an identity
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and gave, see [8], a Goldie-like characterization of two-sided orders in semiprime
rings with descending chain conditions on principal one-sided ideals (equivalently,
coinciding with their socles). Later, P. Ánh and L. Márki, see [1], extended this
result to one-sided orders and, more recently, the same authors developed a general
theory of Fountain-Gould left quotient rings, see [2] (we point out that the maximal
left quotient ring plays a fundamental role in this work).

It is natural to ask whether similar notions (and results) can be obtained for
alternative rings.

K.L. Beidar and A.V. Mikhalev, interested in the structure of nondegenerate
and purely alternative algebras, introduced what they referred to as the almost
classical localization of an algebra and described, using the theory of orthogonally
complete algebraic systems, the structure of this type of algebras, see [5, (2.12)].

The question of Goldie’s Theorems for alternative algebras was posed by H.
Essannouni and A. Kaidi, see [6], for Noetherian alternative rings. Later, in 1994,
the same authors established a Goldie-like theorem for alternative rings without
elements of order three in its associator ideal. In [10], M. Gómez Lozano and
M. Siles Molina introduced Fountain-Gould left orders in alternative rings and
gave a Goldie-like characterization of alternative rings which are Fountain-Gould
left orders in nondegenerate alternative rings which coincide with their socle (this
result generalizes the classical Goldie’s Theorems for alternative rings without
additional conditions). In this work the authors introduced, as a tool, the notion
of general left quotient rings (for nondegenerate alternative rings) and related
properties of a ring to any of its general rings of quotients. In [3] we gave a general
theory of maximal left quotient ring: We constructed a maximal left quotient ring
of any alternative ring which is a left quotient ring of itself and proved that this
is an alternative ring when D(R) is semiprime or 2-torsion free. Furthermore, in
[4], we introduced a notion of left nonsingularity for alternative rings and proved
that an alternative ring is left nonsingular if and only if every essential left ideal
is dense, if and only if its maximal left quotient ring is von Neumann regular (a
Johnson-like Theorem) and we obtained a Gabriel-like Theorem for alternative
rings.

In this paper, following the associative theory, see [2], we give a necessary and
sufficient condition on an alternative ring R in order to have a Fountain-Gould left
order (an Ore-like condition for Fountain-Gould left orders in alternative rings).§

2 Main

2.1 The following three basic central subsets can be considered in a ring R: The
associative center N(R), the commutative center K(R), and the center Z(R),
defined by:

N(R) = {x ∈ R | (x,R, R) = (R, x, R) = (R, R, x) = 0},
K(R) = {x ∈ R | [x, R] = 0},
Z(R) = N(R) ∩K(R),
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where [x, y] = xy − yx denotes the commutator of two elements x, y ∈ R and
(x, y, z) = (xy)z − x(yz) is the associator of three elements x, y, z of R.

2.2 The defining axioms for an alternative ring R are the left and the right
alternative laws:

(x, x, y) = 0 = (y, x, x)

for every x, y ∈ R. As a consequence, we have that the associator is an alternating
function of its arguments. The standard reference for alternative rings is [12].

2.3 For a ring R, R1 will denote its unitization, i.e., R if the ring is unital, or
Z×R with product (m,x)(n, y) := (mn, nx + my + xy) if R has no unity.

2.4 We recall that for every nonempty subset X of an alternative ring R, the left
annihilator of X is defined as the set

lan(X) := {a ∈ R | ax = 0 for all x ∈ X},
written lanR(X) when it is necessary to emphasize the dependence on R. Similarly,
the right annihilator of X, ran(X) = ranR(X), is defined by

ran(X) := {a ∈ R | xa = 0 for all x ∈ X}.
We also write ann(X) = annR(X) := lan(X) ∩ ran(X) to denote the annihilator
of X. In general, the left (right) annihilator of a subset X of an alternative ring
R does not have to be a left (right) ideal. However, it is true if X is a right (left)
ideal of R or if X ⊂ N(R).

2.5 The notion of left quotient ring of an alternative ring was introduced in [10],
where the relationship among classical, Fountain-Gould and this type of rings of
quotients was established.

Let R be a subring of an alternative ring Q. We recall that Q is a left quotient
ring of R, if:

(1) N(R) ⊂ N(Q) and

(2) for every p, q ∈ Q, with p 6= 0, there exists r ∈ N(R) such that rp 6= 0 and
rq ∈ R.

In [3] we proved that an alternative ring R has a unique, up isomorphism,
maximal left quotient ring if and only if R is a left quotient ring of itself. We
denote the maximal left quotient ring of an alternative ring R as Ql

max(R). The
maximal left quotient ring of an alternative ring R can be constructed as follows:

We will say that a left ideal I of R is dense if for every p, q ∈ R, with p 6= 0,
there exists a ∈ N(R) such that ap 6= 0 and aq ∈ I.

We denote by F∗ the set of all left ideals A of N(R) such that for every
0 6= x ∈ R and µ ∈ N(R) there exists λ ∈ N(R) such that λx 6= 0 and λµ ∈ A.
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Let F := {R1A |A ∈ F∗}, by [3, Proposition 2.6] every element of F is a dense
left ideal of R and if I is a dense ideal of R, N(I) ∈ F∗.

Let us consider

S := {(I, f) | I ∈ F and f ∈ Hom∗
N(R)(I, R)}

where Hom∗
N(R)(I, R) denotes the set of all homomorphism of left N(R)–modules

from I to R such that for every x ∈ R and λ, µ ∈ N(I), (xλ)f = x((λ)f) and
([λ, µ])f ∈ N(R). Then Ql

max(R) = S/ ≈, where ≈ is the equivalence relation,
(I, f) ≈ (I ′, f ′) if and only if there exists I ′′ ∈ F , with I ′′ ⊂ I ∩ I ′, such that
f |I′′ = f ′|I′′ , and operations: For any q = [Aq, fq], q′ = [Aq′ , fq′ ],

• Sum: q + q′ = [R1(Aq ∩Aq′), fq + fq′ ].

• Product: qq′ = [R1Aqq′ , fqq′ ] where Aqq′ := {λ ∈ Aq such that (λ)fq ∈ Iq′}
and (

∑
xiai)fqq′ :=

∑
xi ((ai)fq)fq′ .

2.6 Let a be an element of an alternative ring R. We recall that:
(i). An element b ∈ R is a group inverse of a if the following conditions hold:

aba = a, bab = b, ab = ba

It is easy to prove that the group inverse is unique. So we denote by a] the group
inverse of an element a ∈ R.

(ii). We say that a is left semiregular or left square cancellable (respectively
right semiregular or right square cancellable) if a2x = a2y implies ax = ay (xa2 =
ya2 implies xa = ya) for any x, y ∈ R ∪ {1}. We will say that a is semiregular if
it is left and right semiregular. We denote by

S := {a ∈ N(R) such that a is semiregular in R}.
2.7 Let R be a subring of an alternative ring Q. We recall that R is a Fountain-

Gould left order in Q if:
(i). Every element of S has a group inverse in Q, and
(ii). Every q ∈ Q can be written in the form q = a]x, where a ∈ S and x ∈ R.

When only condition (ii) is satisfied we speak about weak Fountain-Gould left
order.

The next lemma is a review of properties of Fountain-Gould left orders that
can be found in [10, 6.3, 6.4, 6.5, 6.6] and [3, 3.1].

Lemma 2.8 If R is a Fountain-Gould left order in Q, then:

(i). If q ∈ Q, there exist a ∈ S and b ∈ R with q = a]b and aa]b = b.

(ii). N(R) ⊂ N(Q), and a] ∈ N(Q) for every a ∈ S.

(iii). Common Denominator Property: For a finite number of elements of Q,
q1, q2, ..., qn, there exist a ∈ S and b1, b2, ..., bn ∈ R such that qi = a]bi

with aa]bi = bi.
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(iv). Every semiregular element of R is semiregular in Q.

(v). Q is a left quotient ring of R, so Q ⊂ Ql
max(R).

Corollary 2.9 If R is a Fountain-Gould left order in Q and a ∈ S, then

lanQ(a) = lanQ(a2) = lanQ(a]) = lanQ((a])2).

Proposition 2.10 Let R be an alternative ring and let a ∈ N(R) such that a has
a group inverse in Q = Ql

max(R). Then:

(i). If q = a]x ∈ Q, then lanQ(a) ⊂ lanQ(q). In particular, if q ∈ R, we have
that lanR(a) ⊂ lanR(q).

(ii). Let us suppose that Ra + lanR(a) is a dense left ideal of R and let x ∈ R, is
such that lanR(a) ⊂ lanR(x), then a]ax = x.

Proof: By definition a ∈ N(Q). Moreover for every p, q ∈ Ql
max(R),

((a])2, p, q)a4 = ((a])2a4, p, q) = (a2, p, q) = 0.

So 0 = (((a])2, p, q)a4)(a])3 = ((a])2, p, q)a4)a = ((a])2a, p, q)a4) = (a], p, q) and
therefore, a] ∈ N(Ql

max(R)).
(i). If pa = 0, pq = p(a]b) = (pa])b = (pa(a])2)b = 0.
(ii). Since (Ra + lanR(a))(x − a]ax) = Ra(x − a]ax) = R(ax − ax) = 0, we

have that x = a]ax since Q is a left quotient ring of Ra + lanR(a).§

The next theorem is a generalization to alternative rings of [2, Theorem 6].
Moreover, the proof of [2, Theorem 6] has been adapted to this case. So we have
a Ore-like condition for Fountain-Gould left orders in alternative rings.

Theorem 2.11 Let R be an alternative ring with N = N(R). Then R has a
Fountain-Gould left quotient ring if and only if it satisfies the following conditions:

(i). For every x ∈ R there is a ∈ S such that lanR(a) ⊂ lanR(x);

(ii). For every a ∈ S and x ∈ R, (lanN (a) + Na)x = 0 implies x = 0;

(iii). For every a, b ∈ S there exist c ∈ S and r, s ∈ N such that

lanR(c) ⊂ lanR(a) ∩ lanR(b), ca = ra2, cb = sb2;

(iv). For every a, b ∈ S and x ∈ R there exist u ∈ S, z ∈ R and r ∈ N such that

lanR(u) ⊂ lanR(a), ua = ra2, rxb = zb2

Remark:
(iii’) In condition (iii), we can choose r ∈ Ra, s ∈ Rb: Applying the condition

to a2, b2 ∈ S there exists c ∈ S and r, s ∈ N such that ca2 = ra4, hence (since
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a ∈ S) ca = ra3 = (ra)a2, and cb = sb3 = (sb)b2. Moreover, lanR(a) = lanR(a2)
and lanR(b) = lanR(b2) implies that lanR(c) ⊂ lanR(a2) ∩ lanR(b2) = lanR(a) ∩
lanR(b). So c ∈ S and ra, sb ∈ N satisfies (iii).

(iv’) In condition (iv), u, z, r can be chosen so that lanR(u) ⊂ lanR(z) ∩
lanR(r): In the same way as above, we first choose u, y, r and then replace them
by u2, uz, ur. Furthermore, z can be chosen in Rb and r can be chosen in Ra as
one can see in the same way as in the previous remark.

Proof: NECESSITY: (1) Let y ∈ R, a ∈ S such that x = a]y. Then, by 2.10
(i), lanR(a) ⊂ lanR(x).

(2) If ax 6= 0, then there exist c ∈ S, y ∈ R such that ax = c]y with c(ax) =
cc]y = y 6= 0, so Nax 6= 0. if ax = 0, then 0 6= x = (1−a]a)x. So, by the common
denominator property, there exist c1 ∈ S, y1, y2 ∈ R such that x = c]

1y1 and a]a =
c]
1y2 with 0 6= y1 = c1x = c1(1−aa])x. Therefore, since c1(1−aa]) ∈ lanN (a), we

have that lanN (a)x 6= 0.
(3) Put a] = c]r and b] = c]s with cc]r = r, cc]s = s, then ca] = r, cb] = s,

hence r, s ∈ N by 2.8 (ii), and ca = c(a]a2) = (ca])a2 = ra2, and similarly
cb = sb2.

(4) Choose u ∈ S, r, z ∈ R such that a]xb] = u]z, a] = u]r with z = uu]z
and r = uu]r = ua] ∈ N(Q), so r ∈ R ∩ N(Q) = N(R) by 2.8 (ii). Moreover,
lanR(u) ⊂ lanR(a) by 2.10(i). Now, as above, we can see that ua = ra2, so

(u]r)xb] = a]xb] = u]z

and hence
rxb = (uu]r)x(b]b2) = u(u]rxb])b2 = (uu]z)b2 = zb2

SUFFICIENCY: The proof has 7 steps:
(1) For every b ∈ S, lanR(b) + Rb is a dense left ideal of R: Let x, y ∈ R with

x 6= 0. Applying condition (i) to x there exists a ∈ S such that lanR(a) ⊂ lanR(x).
Now, if we apply condition (iv) to a, b ∈ S and ay ∈ R, there exist u ∈ S, z ∈ R,
r ∈ N verifying lanR(u) ⊂ lanR(a), ua = ra2, r(ay)b = rayb = zb2. Since
(u − ra)a = 0 and lanR(a) ⊂ lanR(x) we obtain rax = ux. Now, this element is
nonzero (in other case since lanR(u) ⊂ lanR(a) ⊂ lanR(x), (lanN (u) + Nu)x = 0
a contradiction by (ii)), so rax 6= 0. Now, since (ray − zb)b = 0, we have that
ray ∈ lanR(b) + Rb, so n = ra ∈ N verifies nx 6= 0, ny ∈ lanR(b) + Rb.

(2) Now by [3, 2.3] and (1), for every b ∈ S, R is a left quotient ring of
lanR(b) + Rb and therefore by [3, 1.12], R is a left quotient ring of itself. Then,
by the construction given in 2.5 (see [3]) there exists, Ql

max(R), the maximal left
quotient ring of R, where R is a dense N(R)-submodule of Ql

max(R) with N(R) ⊂
N(Ql

max(R)) and where Ql
max(R) verifies the linearizations of the alternative laws.

(3) We prove that every element of S has a group inverse in Ql
max(R): Let

a ∈ S. We have seen, by (1) since a2 ∈ S, that lanR(a2) + Ra2 = lanR(a) + Ra2

is a dense left ideal of R. So, by [3, 2.6(i)], N(lanR(a) + Ra2) ∈ F∗.
Let us define the homomorphism of N(R)-modules: a] : lanR(a) + Ra2 −→

R, (l + xa2)a] = xa. This map is well defined since a is semiregular. Now,
we want to see that [R1N(lanR(a) + Ra2), a]] is an element of Ql

max(R). By
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construction of Ql
max(R), see 2.5, we have to prove that for every y ∈ R and

λ, µ ∈ N(lanR(a)⊕Ra2), (yλ)a] = y((λ)a]): If l′ + x′a2 ∈ N(R),

((l + xa2)(l′ + x′a2))a] = (ll′ + xa2l′ + lx′a2 + xa2x′a2)a] = lx′a + xa2x′a

= (l + xa2)x′a = (l + xa2)((l′ + x′a2)a]),

and ([λ, µ])a] ∈ N(R): If λ = l + xa2, µ = l′ + x′a2 ∈ N(lanR(a)⊕Ra2) ⊂ N(R),
then for every y, z ∈ R we have 0 = (l+xa2, y, z) = (l, y, z)+(xa2, y, z), so multiply
by a, 0 = (l, y, z)a+(xa2, y, z)a = (la, y, z)+(xa3, y, z) = (x, y, z)a3 which implies,
since a is semiregular in R that 0 = (x, y, z)a = (xa, y, z) then xa ∈ N(R) and
(l, y, z) = 0, hence l ∈ N(R). Similarly, l′, x′a ∈ N(R). Therefore,

[λ, µ]a] = l(x′a) + (xa)a(x′a)− l′(xa)− (x′a)a(xa) ∈ N(R).

And it is straightforward that aa] = a]a, a(a])2 = a] and a]a2 = a.
(4) If a ∈ S then a] ∈ N(Ql

max(R)): For every p, q ∈ Ql
max(R), we have that

a3((a])2, p, q) = (a3(a])2, p, q) = (a, p, q) = 0

which implies that

0 = (a])2(a3((a])2, p, q)) = a((a])2, p, q) = (a], p, q).

The other conditions are verified since Ql
max(R) satisfies the linearizations of the

alternative laws.
(5) We prove that the set Q := {a]x with a ∈ S, x ∈ R} is a subring of

Ql
max(R): By condition (iii’), given a, b ∈ S, there exist c ∈ S, r, s ∈ N such that

ca = ra2, cb = sb2 and lanR(c) ⊂ lanR(a)∩ lanR(b) with r ∈ Ra, s ∈ Rb. Then by
2.10 (ii) and 2.9, a] = c]ca] = c]ca(a])2 = c]ra2(a])2 = c]r, and similarly b] = c]s,
so a]x1 + b]x2 = c](rx1 + sx2) ∈ Q. Next, given a, b ∈ S and x ∈ R, by condition
(iv’) there exist u ∈ S, z ∈ R and r ∈ N such that lanR(u) ⊂ lanR(a), ua = ra2

and rxb = zb2. Then, by 2.10 (ii) and 2.9,

a] = u]ua] = u]ua(a])2 = u]ra2(a])2 = u]r,

and therefore
a]xb] = u]rxb(b])2 = u]zb2(b])2 = u]z,

so (a]x)(b]y) = (a]xb])y = u]zy ∈ Q.
(6) R is contained in Q. Let r ∈ R, by condition (i) there exists c ∈ S such

that lanR(c) ⊂ lanR(r). So by 2.10 (ii), r = c]cr ∈ Q.
(7) N(R) ⊂ N(Q). It is straightforward since N(R) ⊂ N(Ql

max(R)).
(8) Now, given p, q ∈ Q there exist a, b ∈ S and x, y ∈ R such that p = a]x

and q = b]y. So

(p, p, q) = (a]x, a]x, b]y) = (a])2b](x, x, y) = 0

(q, p, p) = (b]y, a]x, a]x) = b](a])2(y, x, x) = 0

So R is a Fountain-Gould left order in the alternative ring Q. §
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CALVIÑO, J., (2005). The maximal left quotient rings of alternative rings.
Communications in Algebra (33), 4, 1031–1042.
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