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In this paper we study if the Kostrikin radical of a Lie algebra is
the intersection of all its strongly prime ideals, and prove that this
result is true for Lie algebras over fields of characteristic zero, for
Lie algebras arising from associative algebras over rings of scalars
with no 2-torsion, for Artinian Lie algebras over arbitrary rings
of scalars, and for some others. In all these cases, this implies
that nondegenerate Lie algebras are subdirect products of strongly
prime Lie algebras, providing a structure theory for Lie algebras
without any restriction on their dimension.
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The theory of radicals constitutes an important tool in the study of rings. This notion appears
firstly in the context of non-associative rings: in a work of E. Cartan about finite dimensional Lie
algebras A over C, he defined the maximal solvable ideal of A as the sum of all solvable ideals of A
and proved that A is semisimple (direct sum of simple ideals) if and only if its radical is zero.

For an associative ring R , the Baer radical r(R) is defined as the intersection of all prime ide-
als of R , so R/r(R) is a subdirect product of prime rings, and r(R) coincides with the smallest
ideal of R such that R/r(R) is semiprime, see [17]. Similarly, for Jordan systems J one finds the no-
tion of McCrimmon radical Mc( J ), which is the least ideal of J such that J/Mc( J ) is nondegenerate.
It coincides with the intersection of all strongly prime ideals of J , J/Mc( J ) is a subdirect product of
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strongly prime Jordan systems, and Mc( J ) can be characterized as the set of elements such that any
m-sequence starting with any of them has finite length, see [22] and [19].

For a Lie algebra L, the smallest ideal inducing a nondegenerate quotient is the Kostrikin radi-
cal K (L). This radical was first studied by Filippov in [10]. We highlight the works of E. Zelmanov
[24,23] where the properties of K (L) were established and used intensively. Among other proper-
ties, it is shown that the Kostrikin radical is inherited by subalgebras (K (A) = A for any subalgebra
A ⊂ K (L)) and by ideals (K (I) = I ∩ K (L) for any ideal I of L) for Lie algebras over fields of character-
istic zero.

The goal of this paper is to answer the question: Is the Kostrikin radical of a Lie algebra L the in-
tersection of all strongly prime ideals of L? A positive answer to this question would imply that any
nondegenerate Lie algebra is a subdirect product of strongly prime Lie algebras, providing a structure
theory for Lie algebras without any restriction on their dimension.

In this paper we show that this question has a positive answer for the following types of Lie
algebras:

(1) Nondegenerate Lie algebras L satisfying that every submodule invariant under inner automor-
phisms is an ideal of L and such that every nonzero ideal of L contains nonzero Jordan elements,
Theorem 2.9. In particular, nondegenerate Lie algebras of the form L = Ln ⊕ · · · ⊕ L0 ⊕ · · · ⊕ L−n ,
L0 = ∑n

i=1[Li, L−i], over a ring of scalars Φ with 1
k ∈ Φ for every 0 � k � 4n, Corollary 2.10.

Furthermore, we relate the Kostrikin radical and the McCrimmon radical when the Lie and the
Jordan structures are connected, Corollaries 2.5 and 2.6, and Proposition 2.7.

(2) Lie algebras over fields of characteristic zero, Theorem 3.10.
(3) Lie algebras arising from associative algebras over rings of scalars with no 2-torsion, Theo-

rems 4.3, 4.7 and Remark 4.9. Moreover, in these cases we relate the Kostrikin radical of the
Lie algebras with the Baer radical of the associative algebras.

(4) Nondegenerate Lie algebras with chain condition on annihilator ideals over arbitrary rings of
scalars, Proposition 5.3; in particular, Artinian Lie algebras, Corollary 5.4.

The key point to prove that the Kostrikin radical is the intersection of all strongly prime ideals is to
define m-sequences for Lie algebras (a notion similar to that of Jordan systems), and to characterize
the elements of the Kostrikin radical as those for which every m-sequence starting with them has
finite length. This characterization is true for Lie algebras of type (1) and (3). For Lie algebras as
in (2) the notion of m-sequence needs to be generalized. Generalized m-sequences for Lie algebras
are defined in 3.5, and it is proved that for Lie algebras over fields of characteristic zero the Kostrikin
radical coincides with the set of elements such that every generalized m-sequence starting with them
has finite length, Corollary 3.9.

The paper is organized as follows. Section 1 consists on a preliminary section where we recall
several notions and results that will be used in the paper. In order to relate the Kostrikin radical of
a Lie algebra L and the McCrimmon radical of some Jordan structures associated to L, in Section 2
we deal with Lie algebras where every submodule invariant under inner automorphisms is an ideal,
which is satisfied by large families of Lie algebras such as Lie algebras generated as algebras by ad-
nilpotent elements of index at most n over a ring of scalars Φ with 1

k ∈ Φ for k = 1,2, . . . ,2n − 2, in
particular Lie algebras with a finite Z-grading L = L−n ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln with L0 = ∑n

i=1[Li, L−i]
over a ring of scalars Φ with 1

k ∈ Φ for k = 1,2, . . . ,4n. There are different constructions to relate Lie
and Jordan structures: associated to any ad-nilpotent element x of index � 3 of a Lie algebra L one
can build a Jordan algebra Lx , and the Kostrikin radical of L and the McCrimmon radical of Lx can be
compared: Mc(Lx) = {a ∈ Lx | [x, [x,a]] ∈ K (L)}. Similarly, one has the notion of subquotient of a Lie
algebra, which is a Jordan pair: if V = (M, L/Ker M) is the subquotient, then Mc(V )+ = M ∩ K (L), and
Mc(V )− = {a+Ker M | [M, [M,a]] ⊂ K (L)}. This result generalizes the one given by E. Zelmanov in [23,
Lemma 3] where he proved that the McCrimmon radical of the Jordan pair (V +, V −) consisting of two
abelian inner ideals V + and V − of a Lie algebra L satisfies [[Mc(V )σ , V −σ ], V σ ] ⊂ K (L) and where
he related the Kostrikin radical of a Lie algebra L with a short Z-grading L = L−n ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln

and the McCrimmon radical of the Jordan pair V = (L−n, Ln).
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Under the technical property that every submodule invariant under inner automorphisms is an
ideal, the ad-nilpotent elements of index 3 contained in the Kostrikin radical of L satisfy that any
m-sequence starting with them has finite length. This makes possible to prove that Lie algebras with
enough ad-nilpotent elements are nondegenerate if and only if they are subdirect product of strongly
prime ones. In particular, this result applies to any Lie algebra with a finite Z-grading, L = ⊕n

i=−n Li ,
L0 = ∑n

i=1[Li, L−i], over a ring of scalars of characteristic bigger than 4n.
Section 3 of the paper follows a private communication with E. Zelmanov where he dropped the

hypothesis of having enough ad-nilpotent elements when dealing with Lie algebras over a field of
characteristic zero. Basically Section 3 is [20] with some minors changes made by us. We are grate-
ful to E. Zelmanov for allowing us to include them in the final version of this paper. We highlight
the notion of generalized m-sequence, which is the key point for the results contained in this sec-
tion.

In Section 4 we relate the Baer radical of an associative algebra R and the Kostrikin radical of Lie
algebras of the form R− or Skew(R,∗) when R is an associative algebra with involution over a ring
of scalars with no 2-torsion. Roughly speaking, the Kostrikin radical of these algebras coincides with
the center of R− or Skew(R,∗) modulo the Baer radical r(R) of R .

Finally, in Section 5 we study Lie algebras satisfying chain conditions on annihilator ideals and de-
fined over arbitrary rings of scalars; in particular, Artinian Lie algebras and Lie algebras with essential
socle.

We remark that each Sections 2, 3, 4 and 5 can be read independently.

1. Nondegenerate radicals

1.1. We will be dealing with Lie algebras L, (linear) Jordan algebras J and (linear) Jordan pairs. As
usual, given a Lie algebra L, [x, y] will denote the Lie bracket, with adx (sometimes denoted by X ) the
adjoint map determined by x, Jordan algebras J have bilinear product a • b, with quadratic operator
Uab = 2(a • b) • a − a2 • b, and Jordan pairs V = (V +, V −) have triple products {x, y, z} ∈ V σ , for
x, z ∈ V σ , y ∈ V −σ , σ = ±.

1.2. We recall that a (non-necessarily associative) algebra A is a subdirect product of algebras {Aα}α∈Λ

if there exists a monomorphism f : A → ∏
α∈Λ Aα such that for every β ∈ Λ, πβ ◦ f : A → Aβ is

onto, where πβ : ∏
α∈Λ Aα → Aβ denotes the canonical projection. Notice that this is equivalent to

the existence of a family of ideals {Iα}α∈Λ of A such that
⋂

α∈Λ Iα = 0 and Aα
∼= A/Iα for all α ∈ Λ.

A subdirect product of {Aα}α∈Λ will be called an essential subdirect product if A contains an essential
ideal of the direct product

∏
α∈Λ Aα . Recall that an ideal I of an algebra A is essential if it intersects

nontrivially any nonzero ideal K of A, i.e., I ∩ K 
= 0 for every nonzero ideal K of A.

1.3. A (non-necessarily associative) algebra A is semiprime if for every nonzero ideal I of A, I2 :=
{xy | x, y ∈ I} 
= 0, and it is prime if I J := {yx | y ∈ I, x ∈ J } 
= 0 for every nonzero ideals I, J of A.
Moreover, an ideal I of A is semiprime (prime) if the quotient algebra A/I is semiprime (prime). It is
well known that every semiprime ideal I of an algebra A is the intersection of all prime ideals of A
which contain I , see [3,17]. This result implies that the Baer or semiprime radical r(A) of an algebra A
is the intersection of all prime ideals of A and therefore that semiprime algebras are exactly subdirect
products of prime ones.

1.4. An important characterization of primeness and semiprimeness in the associative setting appears
in [17]: A ring R is prime if and only if aRb 
= 0 for arbitrary nonzero elements a,b ∈ R and it is
semiprime if and only if aRa 
= 0 for every nonzero element a ∈ R . Unfortunately (or fortunately) in
a general non-associative setting, due to the difficulty of building ideals, these characterizations do
not hold. Nevertheless, the above characterizations give rise to new concepts in the Lie and Jordan
settings, nondegeneracy and strong primeness (these notions have not been defined in a general non-
associative context): An absolute zero divisor in a Jordan algebra J is an element x ∈ J such that the
quadratic operator Ux = 0. A Jordan algebra J is called nondegenerate if it has no nonzero absolute
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zero divisors and it is strongly prime if J is nondegenerate and prime. An element x in a Lie algebra
L is ad-nilpotent of index k ∈ N if adk

x L = 0 but adk−1
x L 
= 0. An absolute zero divisor of L is an ad-

nilpotent element of index � 2. A Lie algebra L is nondegenerate if it has no nonzero absolute zero
divisors and it is strongly prime if L is nondegenerate and prime. Note that if a Lie or Jordan algebra
is nondegenerate, then it is semiprime.

1.5. Let L be a Lie algebra. By a nondegenerate (strongly prime) ideal of L we mean an ideal I of L
such that the quotient algebra L/I is nondegenerate (strongly prime). The Kostrikin radical K (L) of L
is the smallest ideal of L whose associated quotient algebra L/K (L) is nondegenerate. It is radical in
the sense of Amitsur–Kurosh, see [10], and can be constructed in the following way: K0(L) = 0 and
let K1(L) be the ideal of L generated by all absolute zero divisors of L; using transfinite induction we
define a chain of ideals Kα(L) by Kα(L) = ⋃

β<α Kβ(L) for a limit ordinal α, and Kα(L)/Kα−1(L) =
K1(L/Kα−1(L)) otherwise. The Kostrikin radical of L is defined as K (L) = ⋃

α Kα(L). By construction,
K (L) is the smallest nondegenerate ideal of L, see [23].

1.6. Let J be a Jordan algebra. We will say that an ideal I of J is a nondegenerate (strongly prime)
ideal of J if the quotient algebra J/I is nondegenerate (strongly prime). The McCrimmon radical or
small radical Mc( J ) of a Jordan algebra J is the smallest ideal of J whose associated quotient algebra
J/Mc( J ) is nondegenerate. It is radical in the sense of Amitsur–Kurosh, see [19, Theorem 4], and can
be constructed in the following way: Mc0( J ) = 0 and let Mc1( J ) be the subalgebra of J generated
by all absolute zero divisors of J (Mc1( J ) is an ideal of J , see [18, Theorem 9]); using transfinite
induction we define a chain of ideals Mcα( J ) by Mcα( J ) = ⋃

β<α Mcβ( J ) for a limit ordinal α, and
Mcα( J )/Mcα−1( J ) = Mc1( J/Mcα−1( J )) otherwise. Then the McCrimmon radical of J is defined as
Mc( J ) = ⋃

α Mcα( J ). Note that Mc( J ), by construction, is a nondegenerate ideal and is contained in
any nondegenerate ideal of J , see [18,15].

1.7. For any Jordan system J one has the notion of m-sequence: It is a sequence {an}n∈N such
that an+1 = Uan b for some b ∈ J . We will say that an m-sequence of J has length k if ak 
= 0 and
ak+1 = 0. There is a beautiful characterization of the elements of the McCrimmon radical in terms of
m-sequences: An element x ∈ J is contained in Mc( J ) if and only if any m-sequence {an}n∈N with
a1 = x has finite length, i.e., there exists k ∈ N such that ak = 0. From this property it is shown that
the McCrimmon radical of a Jordan algebra J coincides with the intersection of all strongly prime
ideals of J or, equivalently, that every nondegenerate ideal I of a Jordan algebra J is the intersection
of all strongly prime ideals of J containing I , see [22] for the linear case and [19] for its quadratic
extension.

1.8. Following the notion of m-sequence introduced in the previous paragraph for Jordan algebras, we
define an analogous concept in the context of Lie algebras: Let L be a Lie algebra. An m-sequence
is a set {an}n∈N such that an+1 = [an, [an,bn]] for some bn ∈ L. We will say that an m-sequence of L
has length k if ak 
= 0 and ak+1 = 0. Note that, if x ∈ L satisfies that [x, [x, L]] ⊂ K (L), then x ∈ K (L)

(because x = x + K (L) is an absolute zero divisor in the nondegenerate Lie algebra L/K (L)). So if any
m-sequence of L starting with x has finite length, then x ∈ K (L).

2. Lie algebras with enough ad-nilpotent elements

2.1. Let L be a Lie algebra over a ring of scalars Φ such that 1
2 , 1

3 ∈ Φ . We say that an element x in L

is a Jordan element if x is ad-nilpotent of index � 3, i.e., if ad3
x = 0. Every Jordan element gives rise

to a Jordan algebra, called the Jordan algebra of L at x, see [7]: Let L be a Lie algebra and let x ∈ L be
a Jordan element. Then L with the new product given by a • b := 1

2 [[a, x],b] is an algebra such that

ker(x) := {
z ∈ L

∣∣ [
x, [x, z]] = 0

}
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is an ideal of (L,•). Moreover, Lx := (L/ker(x),•) is a Jordan algebra. In this Jordan algebra the
U-operator has this very nice expression:

Uab = 1

8
ad2

a ad2
x b, for all a,b ∈ L,

and

{a,b, c} = −1

4

[
a,

[
ad2

x b, c
]]

for all a,b, c ∈ L.

A Lie algebra is nondegenerate if and only if Lx is nonzero for every Jordan element x ∈ L. Moreover,
Lx inherits nondegeneracy from L [7, 2.15(i)].

An inner ideal of L is a subspace M of L such that [M, [M, L]] ⊂ M . It is an abelian
inner ideal if it is also an abelian subalgebra, i.e., [M, M] = 0. The kernel of M is the set
KerL M = {x ∈ L: [M, [M, x]] = 0}. If M is abelian, then KerL M = {x ∈ L: [m, [m, x]] = 0 for every
m ∈ M}. For any abelian inner ideal M of L, the pair V = (M, L/KerL M) with the triple products
given by

{m,a,n} := [[m,a],n
]

for every m,n ∈ M and a ∈ L,

{a,m,b} := [[a,m],b
]

for every m ∈ M and a,b ∈ L,

where x denotes the coset of x relative to the submodule KerL M , is a Jordan pair called the subquo-
tient of L with respect to M . When L is nondegenerate, the notion of subquotient generalizes that of
Jordan algebra of a Lie algebra: if x is a Jordan element, M is the abelian inner ideal generated by x,
and we consider the subquotient V = (M, L/Ker M) defined by M , then the Jordan homotope algebra
V (x) coincides with the Jordan algebra Lx of L at x, cf. [8, §3].

Proposition 2.2. Let L be a Lie algebra over a ring of scalars Φ such that 1
2 , 1

3 ∈ Φ and let x ∈ L be a Jordan
element. Then for every a ∈ L every m-sequence of L of length k starting with [x, [x,a]] gives rise to an m-
sequence of Lx starting with a with the same length, and vice versa.

Proof. Let {cn} be an m-sequence in Lx . Let us prove that {an}, with an := [x, [x, cn]] is an m-sequence
of L with the same number of nonzero terms: we know that for every n ∈ N there exists bn ∈ Lx such

that cn+1 = Ucn bn = ad2
cn

ad2
x bn . So

adan bn = ad2
x ad2

cn
ad2

x bn = ad2
x cn+1 = an+1.

Moreover, by construction, an 
= 0 if and only if [x, [x,an]] 
= 0.
Conversely, let {an}n∈N be an m-sequence of L with a1 = [x, [x,a]] and let us consider bn ∈ L such

that an+1 = [an, [an,bn]] for every n ∈ N. Let us prove that for every n there exists cn ∈ L such that
an = [x, [x, cn]]: The case n = 1 holds by hypothesis. So let us suppose that there exists cn ∈ L such
that an = [x, [x, cn]]. Then

an+1 = [
an, [an,bn]

] = ad2
ad2

x cn
bn = ad2

x ad2
cn

ad2
x bn. (1)

Now, formula (1) implies that {cn}n�2 is an m-sequence of Lx because

Ucn bn = ad2
cn

ad2
x bn = cn+1

with cn 
= 0 if an 
= 0. �
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From now on we will suppose that L is a Lie algebra where every submodule invariant under inner
automorphisms is an ideal of L. For example:

(i) Every Lie algebra L over a ring of scalars Φ with no torsion which is generated as an algebra by
ad-nilpotent elements; also if L is generated by ad-nilpotent elements of index at most m and
1
k ∈ Φ for 1 � k � 2m − 2 (by using a Vandermonde argument).

(ii) Every Z-graded Lie algebra L = ⊕n
i=−n Li with L0 = ∑n

i=1[Li, L−i], defined over a ring of scalars
Φ with 1

k ∈ Φ for 1 � k � 4n.

Next proposition was suggested to the authors by Prof. Artem Golubkov.

Proposition 2.3. Let L be a Lie algebra over a ring of scalars Φ with 1/7! ∈ Φ , let C1 be the submodule
generated by all absolute zero divisors of L, and let x1, x2, . . . , xn be absolute zero divisors of L such that
x = x1 + · · · + xn ∈ C1 is a Jordan element. Then Mc(Lx) = Lx and every m-sequence of Lx finishes in a finite
number of steps.

Proof. Let us denote by capital letters the adjoint maps associated to elements of L, i.e., A = ad a,
a ∈ L, etc. First let us prove that for every absolute zero divisor z ∈ L and any a ∈ L, [a, z] is ad-
nilpotent of index � 3 and [a, [a, z]] is ad-nilpotent of index � 5: using that Z 2 = Z A Z = 0

ad2[a,z] = −Z A2 Z , ad3[a,z] = −Z A2 Z(A Z − Z A) = 0.

Moreover, since Z adk
A(Z)Z = 0 for k ∈ N we get

6Z A2 Z A2 Z = 0 for k = 4,

10Z A2 Z A3 Z − 10Z A3 Z A2 Z = 0 for k = 5

and

20Z A3 Z A3 Z − 15Z A2 Z A4 Z − 15Z A4 Z A2 Z = 0 for k = 6.

Therefore, since 1
2 , 1

3 , 1
5 ∈ Φ

ad3[a,[a,z]] = 2A Z A2 Z A3 Z − Z A4 Z A2 Z − Z A2 Z A4 Z + 2Z A2 Z A3 Z A,

ad4[a,[a,z]] = Z A2 Z A4 Z A2 Z and ad5[a,[a,z]] = 0.

Now, since C1 is invariant under inner automorphisms and 1
k ∈ Φ for k = 2,3,5,7, [t, z] ∈ C1 for

z ∈ C1 and t an ad-nilpotent element of L of index � 5.

Every absolute zero divisor z of L gives rise to an absolute zero divisor z of Lx: U za = ad2
z ad2

x a = 0,
so

C1 ⊂ Mc(Lx). (1)

Moreover, C1 is an inner ideal of L: for any x = x1 + · · · + xk ∈ C1, with xi absolute zero divisors of
L and any b ∈ L, ([x j,b] is ad-nilpotent of index � 3),

ad2
x b =

n∑
i, j=1

[
xi, [x j,b]] ∈ C1. (2)
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Furthermore,

U
ad2

a z
b = [

ad2
a z,

[
ad2

a z,ad2
x b

]] ∈ [
ad2

a z,
[
ad2

a z, C1
]] ⊂ C1 ⊂ Mc(Lx), (3)

and therefore ad2
a z ∈ Mc(Lx), which implies that ad2

a C1 ⊂ Mc(Lx). Finally, by (2) and (3), Uab =
ad2

a ad2
x b ∈ Mc(Lx) for every b ∈ Lx , so a ∈ Mc(Lx) for every a ∈ Lx , i.e., Mc(Lx) = Lx . �

Proposition 2.4. Let L be a Lie algebra such that every submodule of L invariant under inner automorphisms is
an ideal and let x ∈ K (L) be a Jordan element. Then every m-sequence of Lx has finite length and Mc(Lx) = Lx.

Proof. By hypothesis C1, the submodule generated by all absolute zero divisors of L, is an ideal of L
and coincides with K1(L). Similarly, by induction, if α is not a limit ordinal Kα(L) = Cα , the submod-
ule generated by all x ∈ L such that [x, [x, L]] ⊂ Kα−1(L), which is an ideal since it is invariant under
inner automorphisms.

Therefore, if x ∈ K (L) = ⋃
β Kβ(L) is a Jordan element, x ∈ Kα(L) = Cα for some α which is not

a limit ordinal. Now, for every a ∈ Lx and every m-sequence {an}n∈N of elements of Lx with a1 = a,
by 2.3 there exists n ∈ N such that an ∈ Kα−1. Then by induction there exists m ∈ N with am = 0, i.e.,
the m-sequence vanishes in a finite number of steps, which implies that Lx = Mc(Lx). �
Corollary 2.5. Let L be a Lie algebra such that every submodule of L invariant under inner automorphisms is
an ideal and let x ∈ L be a Jordan element. Then Mc(Lx) = {a ∈ Lx | [x, [x,a]] ∈ K (L)}.

Proof. If a ∈ Mc(Lx), then every m-sequence of Lx starting with a has finite length. Therefore, by
Proposition 2.2, every m-sequence of L starting with [x, [x,a]] has finite length and therefore, by 1.8,
[x, [x,a]] ∈ K (L). Conversely, since x is a Jordan element, for every a ∈ L, ad2

x a is a Jordan element.
So, if [x, [x,a]] ∈ K (L), by Proposition 2.4 every m-sequence starting with [x, [x,a]] has finite length
in L, so the m-sequences of Lx starting with a have finite length by Proposition 2.2, which implies
that a ∈ Mc(Lx). �
Corollary 2.6. Let L be a Lie algebra such that every submodule of L invariant under inner automorphisms is
an ideal, let M be an abelian inner ideal of L and consider the subquotient V = (M, L/Ker M). Then

Mc(V )+ = M ∩ K (L),

and

Mc(V )− = {
a + Ker M

∣∣ [
M, [M,a]] ⊂ K (L)

}
.

Proof. Notice that Mc(V )+ consists on the elements of M for which every m-sequence has finite
length, so Mc(V )+ ⊂ K (L). Conversely, since every element of M is a Jordan element, if x ∈ K (L) ∩ M
then it satisfies the m-sequence condition by Proposition 2.4, so it belongs to Mc(V ).

For the second equality, if a + Ker M belongs to Mc(V )− , then [m1, [m2,a]] = −{m1,a,m2} ∈
Mc(V )+ ⊂ K (L) for every m1,m2 ∈ M . Conversely, if a ∈ L has [M, [M,a]] ∈ K (L) then {M, (a +
Ker L), M} ⊂ K (L) ∩ M = Mc(V )+ , but this implies a + Ker M ∈ Mc(V )− by [1, 3.4]. �

The next result can be found in [24]. We give here an alternative proof.

Proposition 2.7. Let V be a Jordan pair over a ring of scalars Φ with 1
2 , 1

3 ∈ Φ and consider the Lie algebra
L = TKK(V ). Then, the Kostrikin radical K (L) of L is a 3-graded ideal with πσ1(K (L)) = Mc(V )σ , σ = ±,
where πσ1 denotes the canonical projection of L onto Lσ1 , and is isomorphic to the center of L/ idL(Mc(V )+ ⊕
Mc(V )−).
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Proof. Under these conditions, L satisfies that every submodule invariant under inner automorphisms
is an ideal of L. We will show that

K (L) = Mc(V )+ ⊕ (
K (L) ∩ [

V +, V −]) ⊕ Mc(V )−. (1)

Clearly, Mc(V )+ ⊕ Mc(V )+ ⊂ K (L) since all m-sequences starting with these elements have finite
length. Conversely, let y = y1 + y0 + y−1 ∈ K (L). If [V +, [y, V +]] = [V +, [y−1, V +]] 
⊂ Mc(V )+ , then
we would have Jordan elements in K (L) ∩ V + which do not belong to the McCrimmon radical
of V , a contradiction with Theorem 2.4. Therefore, [V +, [y, V +]] = {V +, y−1, V +} ⊂ Mc(V )+ , so
y−1 ∈ Mc(V )− by [1, 3.4]. Similarly, y1 ∈ Mc(V )+ .

Suppose that now that y0 
= 0. Then at least [y0, V +] 
= 0 or [y0, V −] 
= 0. Suppose [y0, V +] 
= 0.
Since [V −, [V −, [y, V +]]] = [V −, [V −, [y0, V +]]] ⊂ I ∩ V − ⊂ Mc(V )− , then the Jordan triple product

{
V −,

[
y0, V +]

, V −} ⊂ Mc(V )−,

so [y0, V +] ⊂ Mc(V )+ by [1, 3.4]. Therefore, [y0, [y0, V +]] ⊂ Mc(V )+ ⊂ K (L), and similarly [y0, [y0,

V −]] ⊂ K (L). Therefore [y0, [y0, L]] ⊂ K (L), so also y0 ∈ K (L).
From (1), every x ∈ K (L) satisfies [x, L] ∈ idL(Mc(V )+ ⊕ Mc(V )−), so x + idL(Mc(V )) ∈ Z(L/

idL(Mc(V ))). Conversely, if x ∈ L satisfies

[x, L] ∈ idL
(
Mc(V )+ ⊕ Mc(V )−

)
,

then [x, [x, L]] ∈ idL(Mc(V )) ⊂ K (L), so x ∈ K (L) by 1.8. �
Proposition 2.8. Let L be a Lie algebra such that every submodule invariant under inner automorphisms is an
ideal of L, and let M be an m-system of L of nonzero Jordan elements. Then every maximal ideal P of L with
respect to the property P ∩ M = ∅ is nondegenerate. Moreover, if M is an m-sequence of L, then P is strongly
prime.

Proof. Let P be a maximal ideal with respect to the property P ∩ M = ∅.
Let us prove that P is nondegenerate: consider the canonical projection π : L → L/P . Let us

suppose that L/P is degenerate and let K := π−1(K (L/P )) where K (L/P ) is the Kostrikin radical
of L/P . By construction, since P is maximal, there exists x ∈ M ∩ K and therefore an m-sequence {xi}
which starts with x contained in M . But {xi} is an infinite m-sequence in L/P . So, by Theorem 2.4,
x /∈ K (L/P ) ⊇ L/P , a contradiction.

Now, let us suppose that M = {an}n∈N is an m-sequence and let I, J be two ideals of L with P � I
and P � J . Then, since P is maximal with respect to P ∩ M = ∅, there exist i, j ∈ N such that ai ∈ I
and a j ∈ J . Moreover, if k � max{i, j}, ak ∈ I ∩ J and 0 
= ak+1 = [ak, [ak,bk]] ∈ [I, J ] with ak+1 /∈ P
which proves that P is a strongly prime ideal of L. �

In the following results we will require that every nonzero ideal of L contains nonzero Jordan
elements. If the ring of scalars Φ has 1

k ∈ Φ for every 0 � k � r, this hypothesis can be achieved as
soon as every ideal of L contains nonzero ad-nilpotent elements of index at most n for n +[ n

2 ]−1 � r,
see [16, Lemma 1.1, p. 31].

Theorem 2.9. Let L be a nondegenerate Lie algebra such that every submodule invariant under inner auto-
morphisms is an ideal of L, and such that every nonzero ideal of L contains nonzero Jordan elements. Then,
the intersection of all strongly prime ideals of L is zero. Consequently, L is nondegenerate if and only if it is a
subdirect product of strongly prime Lie algebras.

Proof. We will show that for any nonzero element x of L we can always find a strongly prime ideal
of L that does not contain x. Let I := idL(x) be the ideal of L generated by x. By hypothesis there is
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a nonzero Jordan element y of L contained in I . Now, we can construct the following m-sequence of
L of infinite length N = {ai}i∈N: a1 = y, and given any ai 
= 0 define ai+1 = [ai, [ai, xi]] for any xi ∈ L
such that 0 
= [ai, [ai, xi]] (there exists such xi because L is nondegenerate). By Zorn Lemma there
exists a maximal ideal in { J  L | J ∩ N = ∅}, which is strongly prime ideal of L by Proposition 2.8 and,
by construction, it does not contain y and therefore it does not contain x. �

In particular, all nonzero ideals of a nondegenerate Lie algebra with a finite Z-grading of the form
L = Ln ⊕ · · · ⊕ L0 ⊕ · · · ⊕ L−n , L0 = ∑n

i=1[Li, L−i], and 1
k ∈ Φ for every 0 � k � 4n, always contain

nonzero Jordan elements, and therefore, for such Lie algebras Theorem 2.9 reads as follows:

Corollary 2.10. Let L = Ln ⊕ · · ·⊕ L0 ⊕ · · ·⊕ L−n, L0 = ∑n
i=1[Li, L−i], be a nondegenerate Lie algebra with a

finite Z-grading over a ring of scalars Φ with 1
k ∈ Φ for every 0 � k � 4n. Then, the intersection of all strongly

prime ideals of L is zero. Consequently, L is nondegenerate if and only if it is a subdirect product of strongly
prime Lie algebras.

Proof. It is enough to prove that nonzero ideals of L have nonzero Jordan elements: let I be a nonzero
ideal of L and consider the biggest natural k ∈ N such that πs(I) = 0 for all |s| > k. Then, by non-
degeneracy of the ideal π(I) = πk(I) ⊕ · · · ⊕ π0(I) ⊕ · · · ⊕ π−k(I) of L, 0 
= [πk(I), [πk(I),π(I)]] =
[πk(I), [πk(I),π−k(I)]] = [πk(I), [πk(I), I]] ⊂ I ∩ πk(I) consists of Jordan elements, and thus the claim
follows by Theorem 2.9. �
3. Lie algebras over fields of characteristic zero

The results contained in this section were outlined by E. Zelmanov in a private communication
[20] to the authors. We are grateful to him for allowing us to include them in the final version of this
paper.

Lemma 3.1. Given a Lie algebra L over a field of characteristic zero and 0 
= a ∈ L an ad-nilpotent element of
index s > 3, there exists a1 ∈ L such that [a,a1] 
= 0 is ad-nilpotent of index at most 3.

Proof. In characteristic zero every element of the form ads−1
a x ∈ [a, L] is ad-nilpotent of index at

most 3 for any x ∈ L [12]. �
Lemma 9 of [23] gives conditions that guarantee that an element of L belongs to the Kostrikin

radical of L. In the next proposition we weaken these conditions.

Proposition 3.2. Given a Lie algebra L over a field of characteristic zero, if a ∈ L is such that there exists q ∈ N
with

adq
a x0 = adq

[a,x1] x0 = adq
[[a,x1],x2] x0 = 0, for all x0, x1, x2 ∈ L

then a ∈ K (L).

Proof. We can work in L/K (L), assume that L is nondegenerate, and show that a = 0. Suppose that
a 
= 0 and let s be the index of ad-nilpotency of a. If s > 3, take a1 ∈ L given by Lemma 3.1, and
let b = [a,a1] 
= 0, which is ad-nilpotent of index 3; if s � 3, let b = a. Since by hypothesis [x,b] is
ad-nilpotent of index at most q for all x ∈ L, every element x̄ of the Jordan algebra Lb , see 2.1, is
nilpotent of index at most q + 1. Indeed, since x̄(n,b) = x̄ • x̄(n−1,b) , one readily has that

x̄(2,b) = 1

2

[[x,b], x
]
, x̄(3,b) = 1

4

[[x,b], [[x,b], x
]]

, . . . , x̄(n,b) = 1

2n−1
adn−1

[x,b] x.



Author's personal copy

E. García, M. Gómez Lozano / Journal of Algebra 346 (2011) 266–283 275

Therefore Lb is radical in the sense of McCrimmon, see [21, Lemma 17, p. 849]. But the Jordan algebras
of nondegenerate Lie algebras are nondegenerate, see 2.1, so Lb = Mc(Lb) = 0, which implies that
Ker b = L, so [b, [b, L]] = 0, i.e., b is an absolute zero divisor, hence b = 0, a contradiction. �
3.3. Given n ∈ N and a Lie algebra L, let

Bn(L) =
{

n∑
i=1

[[[ai,bi1 ], . . . ,biki

]] ∣∣∣ 0 � ki � n, bi j ∈ L, ad2
ai

= 0

}

be the sums of n monomials in L whose distance to an absolute zero divisor of L is less than or equal
to n. Notice that B1 ⊂ B2 ⊂ · · · ⊂ Bn and K1(L) = ⋃

n Bn .

Lemma 3.4. For each n, r ∈ N there exists f (n, r) ∈ N with f (n, r) � 3 such that for every Lie algebra L over
a field of characteristic zero and for every a ∈ Bn(L)

ad f (n,r)
[[a,b1],...,bk] = 0 for every b1, . . . ,bk ∈ L, 0 � k � r.

Proof. This proof is inspired by [23, Lemma 8]. Let

X := {x0} ∪ {xi | i ∈ N} ∪ {xij | i, j ∈ N} ∪ {yi | i ∈ N}

and consider the free Lie algebra L[X]. Let L̄[X] = L[X]/ IdL[X](ad2
xi

L[X] | i ∈ N), in which every x̄i
is an absolute zero divisor. For every n, r ∈ N, define

An,r :=
{

n∑
i=1

[[[[x̄i, x̄i1], . . . , x̄iki

]
, ȳ1

]
, . . . , ȳk

] ∣∣∣ 0 � ki � n, 0 � k � r

}
.

Notice that An,r ⊂ K1(L̄[X]), and it is a finite set, hence also the set An,r ∪[An,r, x0] ⊂ K1(L̄[X]) has of
a finite number of elements. For fixed n, r ∈ N, the set Dn,r = SubalgL̄[X](An,r ∪ [An,r, x0]) is nilpotent

by a result of Grishkov [13], so there exists f (n, r) � 3 such that D f (n,r)
n,r = 0.

Let now L be a Lie algebra, let a ∈ Bn(L), fix r ∈ N and let b1, . . . ,bk be arbitrary ele-
ments of L, 1 � k � r, and c ∈ L. We want to show that ad f (n,r)

[[a,b1],...,bk] c = 0. Since a ∈ Bn(L),

a = ∑n
i=1[[[ai,bi1 ], . . . ,biki

]] for certain absolute zero divisors ai ∈ L, and certain bij ∈ L, i = 1, . . . ,n,
j = 1, . . . ,ki , 0 � ki � n. There exists a unique homomorphism of Lie algebras ϕ : L[X] → L such that
ϕ(x0) = c; ϕ(xi) = ai if 1 � i � n and ϕ(xi) = 0 otherwise; ϕ(xij) = bij if 1 � i � n, 1 � j � ki , and
ϕ(xij) = 0 otherwise; ϕ(yi) = bi if 1 � i � k and ϕ(yi) = 0 otherwise. Moreover, since

ϕ
(
IdL[X]

(
ad2

xi
L[X] ∣∣ i = 1, . . . ,n

)) ⊂ IdL
(
ad2

ai
L

∣∣ i = 1, . . . ,n
) = 0,

ϕ gives rise to a unique homomorphism of Lie algebras ϕ̄ : L̄[X] → L such that ϕ̄(x̄0) = c, ϕ̄(x̄i) = ai ,
1 � i � n, ϕ̄(x̄i j) = bij , 1 � i � n, 1 � j � ki , and ϕ̄( ȳi) = bi , 1 � i � k. Finally,

ad f (n,r)
[[a,b1],...,bk] c = ϕ̄

(
ad f (n,r)

[[∑n
i=1[[x̄i ,x̄i1],...,x̄iki

], ȳ1],..., ȳk] x̄0
)

= ϕ̄
(
ad f (n,r)∑n

i=1[[[[x̄i ,x̄i1],...,x̄iki
], ȳ1],..., ȳk] x̄0

) ∈ ϕ̄
(
ad f (n,r)−1

An,r
[An,r, x0]

)
⊂ ϕ̄

(
D f (n,r)

n,r
) = 0. �
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3.5. Given a Lie algebra L over a field of characteristic zero, we say that the sequence {ci}i∈N is a
generalized m-sequence of L if c1 ∈ L and each ci+1, i � 1, is an element of the form

adqi
ci

x0, adqi[ci ,x1] x0, or adqi[[ci ,x1],x2] x0

for some x0, x1, x2 ∈ L and qi = f (i,3i + 2).
Notice that for every i, since qi � 3,

adqi
ci

x0 ∈ [
ci,

[
ci, [ci, L]]] ⊂ [[[ci, L], L

]
, L

]
,

adqi[ci ,x1] x0 ∈ [[ci, x1],
[[ci, x1], L

]] ⊂ [[[ci, L], L
]
, L

]
,

adqi[[ci ,x1],x2] x0 ∈ [[[ci, x1], x2
]
, L

] ⊂ [[[ci, L], L
]
, L

]
so in each step ci+1 ∈ [[[ci, L], L], L].

Proposition 3.6. If a generalized m-sequence {ci}i∈N in a Lie algebra L over a field of characteristic zero con-
tains an element ci in K (L), the sequence has finite length.

Proof. Suppose first that ci ∈ K1(L) = ⋃
m Bm , so ci belongs to certain Bn (it can be assumed that

n � i). Let us show that cn+1 = 0: Since ci+1 is an element of the form adqi
ci

x0, adqi[ci ,x1] x0, or

adqi[[ci ,x1],x2] x0 for some x0, x1, x2 ∈ L, it can be expressed as an element ci+1 ∈ [[[ci, L], L], L︸ ︷︷ ︸
3

] by 3.5.

Similarly,

ci+2 ∈ [[[ci+1, L], L
]
, L︸ ︷︷ ︸

3

] ⊂ [[[ci, L], . . . , L
]︸ ︷︷ ︸

3·2

]
.

Finally, cn ∈ [[[ci, L], . . . , L]︸ ︷︷ ︸
3(n−i)

]. Since qn = f (n,3n + 2)

adqn
cn x0 = 0, adqn

[cn,x1] x0 = 0, and adqn
[[cn,x1],x2] x0 = 0

for all x0, x1, x2 ∈ L, so cn+1 = 0.
We will show by transfinite induction that if ci ∈ Kα(L), then the generalized m-sequence {ci}i∈N

has finite length. We have already shown the case α = 1. Now assume that our assertion is true for
every β < α.

If α is a limit ordinal, ci ∈ ⋃
β<α Kβ(L) so there exists some β < α such that ci ∈ Kβ(L) and

the sequence has finite length by the induction hypothesis. Otherwise, α = β + 1 for some β and
we can consider the corresponding generalized m-sequence in L/Kβ(L), {c j + Kβ(L)} j∈N for which
ci + Kβ(L) ∈ K1(L/Kβ(L)). By the case α = 1 this sequence has finite length and there exists ck +
Kβ(L) = 0̄, so ck ∈ Kβ(L) and the result follows by induction. �
Proposition 3.7. Let L be a Lie algebra over a field of characteristic zero, let {ci}i∈N be a generalized m-sequence
of L, and let P be an ideal of L which is maximal among those ideals of L not containing any element of {ci}i∈N .
Then P is a strongly prime ideal of L, i.e., L/P is a strongly prime Lie algebra.

Proof. To see that L/P is prime, if A/P and B/P are two nonzero ideals of L/P , there exist some
c j ∈ A, some ck ∈ B , so cl ∈ A ∩ B for every l � j,k. Then, cmax( j,k)+1 ∈ [A, B] so [A/P , B/P ] 
= 0̄.
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To see that L/P is nondegenerate, suppose on the contrary that K (L/P ) 
= 0. Consider K̂ =
π−1(K (L/P )), where π : L → L/P denotes the canonical projection, which is an ideal of L properly
containing P , so there exists some c j ∈ K̂ , hence c j + P ∈ K (L/P ). By Proposition 3.6 the sequence
{ci + P }i∈N has finite length, so there exists some ck + P = 0̄, i.e., ck ∈ P , a contradiction. �
Proposition 3.8. Given a Lie algebra L over a field of characteristic zero, if a ∈ L does not belong to K (L) then
there exists an infinite generalized m-sequence starting with a.

Proof. Consider 0̄ 
= ā = a + K (L) ∈ L/K (L) and let c̄0 = ā. If c̄i 
= 0̄ then there exists c̄i+1 
= 0̄ since
otherwise it would mean that adqi

c̄i
x̄0 = adqi

[c̄i ,x1] x̄0 = adqi
[[c̄i ,x̄1],x̄2] x̄0 = 0, for all x̄0, x̄1, x̄2 ∈ L/K (L), qi =

f (i,3i + 2), but by Proposition 3.2 this implies that c̄i ∈ K (L/K (L)) = 0̄, a contradiction. The infinite
generalized m-sequence {c̄i} in L/K (L) induces an infinite generalized m-sequence in L. �

By Lemma 3.4 and Proposition 3.8 one readily has

Corollary 3.9. Let L be a Lie algebra over a field of characteristic zero, and let K (L) denote its Kostrikin radical.
Then

K (L) = {x ∈ L | every generalized m-sequence starting with x has finite length}.

Theorem 3.10. The Kostrikin radical K (L) of a Lie algebra L over a field of characteristic zero is the intersection
of all strongly prime ideals of L. Therefore, L/K (L) is isomorphic to a subdirect product of strongly prime Lie
algebras.

Proof. If {Pi} denotes the set of all strongly prime ideals of L, it is clear that K (L) ⊂ Pi for each i
since L/Pi is nondegenerate, so K (L) ⊂ ⋂

Pi . Conversely, let a ∈ L be an element that does not belong
to K (L). By Proposition 3.8 there exists an infinite generalized m-sequence starting with a. Let P be
an ideal of L maximal among those not containing any element of the m-sequence. By Proposition 3.7
P is a strongly prime ideal of L, and a /∈ P , so a /∈ ⋂

Pi . �
4. Lie algebras arising from associative algebras

There are two important ways of producing Lie algebras out of an associative algebra R:

– If R is an associative algebra, R− with product [x, y] := xy − yx is a Lie algebra.
– If R is an associative algebra with involution ∗, the set of skew elements of R , Skew(R,∗) =

{x ∈ R | x∗ = −x}, becomes a Lie subalgebra of R− .

We begin by studying some relations between the Baer radical r(R) of an associative algebra R
and the Kostrikin radical of R− .

Lemma 4.1. Let R be an associative algebra and let x ∈ r(R). Then any m-sequence {an}n∈N of R− with a1 = x
has finite length, i.e., there exists k ∈ N such that ak = 0.

Proof. It is well known that the Baer radical of R can be constructed as in 1.5 or 1.6. Moreover, since
the (associative) ideal generated by all absolute zero divisors of R coincides with the submodule
generated by all absolute zero divisors, we only need to show that the proposition holds when x is
a sum of absolute zero divisors of R . Let x = a1 + · · · + ak where each ai is an absolute zero divisor
of R , i = 1,2, . . . ,k. Then any product of elements of R in which x appears at least k + 1 times is
zero. Therefore, any m-sequence of R− which starts with x has at most length n, for 2n � k. �
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Lemma 4.2. Let R be an associative algebra defined over a ring of scalars Φ with no 2-torsion. If R is semiprime,
the Lie algebra R−/Z(R) is nondegenerate. Furthermore, if R is prime, R−/Z(R) is strongly prime.

Proof. We can suppose that R is not commutative, otherwise R = Z(R) and the result is trivial.
Let us first see that R−/Z(R) is nondegenerate when R is semiprime: Suppose that x ∈ R satisfies

[x, [x, R]] ∈ Z(R). Given any a ∈ R ,

0 = [
a,

[
x, [x, xa]]] = [

a,
[
x, x[x,a]]] = [

a, x
[
x, [x,a]]] = [a, x][x, [x,a]]

since [x, [x,a]] ∈ Z(R), which implies 0 = adx([a, x][x, [x,a]]) = −([x, [x,a]])2 and, therefore,
[x, [x,a]] = 0 because R is semiprime and [x, [x,a]] is a nilpotent element of Z(R); now, by [14,
Sublemma, p. 5], [x, [x, R]] = 0 implies x ∈ Z(R).

Now suppose that R is prime. By [2, Theorem 3.4] if I/Z(R) is a nonzero ideal of R/Z(R) there
exists a nonzero ideal I ′ of R such that [I ′, R] ⊂ I . Let us prove that for every nonzero ideal I ′ of R ,
[I ′, R] is not contained in Z(R). Otherwise, [I ′, [I ′, R]] = 0 which implies 0 
= I ′ ⊂ Z(R) (because
R−/Z(R) is nondegenerate) and this is not possible because in a prime noncommutative associa-
tive algebra there are no nonzero ideals contained in the center. Finally, if I1/Z(R) and I2/Z(R)

are two nonzero ideals of R−/Z(R), there exist two nonzero ideals I ′1, I ′2 of R with [I ′i, R] ⊂ Ii for
i = 1,2. Now, 0 
= [(I ′1 ∩ I ′2) + Z(R)/Z(R), R/Z(R)] ⊂ I1/Z(R) ∩ I2/Z(R), which implies that R−/Z(R)

is prime. �
Theorem 4.3. Let R be an associative algebra defined over a ring of scalars Φ with no 2-torsion, and denote
by K (R−) the Kostrikin radical of R− . Then:

(1) K (R−) coincides with the intersection of all strongly prime ideals of R− .
(2) K (R−) = π−1(Z(R/r(R))) where r(R) is the Baer radical of R and π : R → R/r(R) denotes the (asso-

ciative) canonical projection.
(3) K (R−) = {x ∈ R | every m-sequence starting with x has finite length}.

Proof. The intersection of all prime ideals {Ii}i of R coincides with the Baer radical r(R). For every
prime ideal Ii of R , R/Ii is a prime algebra, and the maps

Ψi : R− → (R/Ii)/Z(R/Ii)

are epimorphisms of Lie algebras, which implies by Lemma 4.2 that Ker(Ψi) is a strongly prime ideal
of R− , and since the Kostrikin radical is contained in every strongly prime ideal of R− , K (R−) ⊂
Ker(Ψi). Now, if x ∈ ⋂

Ker(Ψi), x + Ii ∈ Z(R/Ii) for every prime ideal Ii of R and therefore [x, R] ⊂⋂
Ii = r(R). Hence x ∈ π−1(Z(R/r(R))), and if {Ii} denotes the family of all strongly prime ideals

of R− ,

K
(

R−) ⊂
⋂

Ii ⊂
⋂

Ker(Ψi) ⊂ π−1(Z
(

R/r(R)
))

.

Finally, if x ∈ π−1(Z(R/r(R))), [x, [x,a]] ∈ r(R) for every a ∈ R and therefore, every m-sequence of R−
starting with [x, [x,a]] has finite length by Lemma 4.1, which implies that x ∈ K (R−) by 1.8. �
Corollary 4.4. Let R be a semiprime algebra over a ring of scalars Φ with no 2-torsion, and let us consider the
Lie algebra L = R−/Z(R). Then the intersection of all strongly prime ideals of L is zero.

Now we turn associative algebras with involution and study the relation between the Kostrikin
radical of Skew(R,∗) and the Baer radical of R .
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Lemma 4.5. If Q is a simple Lie algebra with involution ∗ over a ring of scalars Φ with no 2-torsion, ∗ is of the
first kind and dimZ(Q ) Q � 4, then the Lie algebra L = Skew(Q ,∗) is either strongly prime or central and, in
the second case, L has dimension one over Z(Q ).

Proof. Let 0 
= t ∈ L = Skew(Q ,∗) be an element such that [t, [t,Skew(Q ,∗)]] = 0. In [2, Theo-
rem 2.10] it is shown that [t,Skew(Q ,∗)] = 0, and from this we get that t commutes with the
subalgebra Skew(Q ,∗) generated by Skew(Q ,∗). But Herstein in [14, Lemma 2.2] showed that either
Skew(Q ,∗) = Q , leading to t ∈ Z(Q ) ∩ Skew(Q ,∗) = 0, or L is 1-dimensional over its center. Fur-
thermore, if L is nondegenerate, it is prime since dimZ(Q ) Q � 4 and there cannot exist two nonzero
ideals with zero intersection. �
Proposition 4.6. Let R be a ∗-prime associative algebra with involution ∗ over a ring of scalars Φ with no
2-torsion and let L = Skew(R,∗).

• If the involution is of the second kind or the involution is of the first kind and R is not an order in a
simple algebra Q of dimension at most 16 over its center, then L/Z(L) is strongly prime. In these cases,
Z(R) ∩ L = Z(L).

• If the involution is of the first kind and R is an order in a simple algebra Q with dimZ(Q ) Q = 9 or 16,
then Z(R) ∩ L = Z(L) = K (L) = 0 and the intersection of all strongly prime ideals of L/Z(L) is zero.

• If the involution is of the first kind and R is an order in a simple algebra Q with dimZ(Q ) Q � 4, then
either L is abelian or strongly prime.

Proof. If R is a commutative algebra, all the results are trivial, so we can suppose that R is noncom-
mutative.

First, let us suppose that the involution is of the second kind: Let us consider the Lie algebra
L′ := L/(Z(R)∩ L) and let t̄ be an absolute zero divisor of L′ . If [t, [t, L]] = 0, then by [2, Theorem 2.13]
(which also holds for ∗-prime algebras), t ∈ Z(R), so t̄ = 0̄ in L′ . If 0 
= [t, [t, L]] ⊂ Z(R), there exists
x ∈ L such that 0 
= [t, [t, x]] = α. Since α ∈ Z(R), α[t, [t, H(R,∗)]] = [t, [t,αH(R,∗)]] ⊂ [t, [t, L]] ⊂
Z(R), but then also [t, [t, H(R,∗)]] ⊂ Z(R) since R is ∗-prime (notice that in any ∗-prime R , 0 
= α ∈
Z(R) and r ∈ R with αr ∈ Z(R) implies r ∈ Z(R)). Therefore, [t, [t, R]] ⊂ Z(R) and we get that t ∈ Z(R)

by Lemma 4.2, i.e., L′ is nondegenerate. Therefore K (L′) = 0, so K (L) = Z(R) ∩ L, which implies, in
particular, that Z(L) = Z(R) ∩ L.

Now, let us suppose that the involution is of the first kind and R is not an order in a simple
algebra of dimension less than 9 over its center. Then, by [2, Theorem 2.10] (notice that the proof of
this result also works in the ∗-prime setting) the Lie algebra L is nondegenerate. So K (L) = 0 which
implies that Z(R) ∩ L = Z(L) = 0.

Suppose that either the involution is of the second kind, or it is of the first kind but R is not an
order in a simple algebra Q of dimension at most 16 over its center. To show that L/(Z(R) ∩ L) is
strongly prime, assume firstly that R is prime. Then, by [5, Theorem 1(a), p. 525] if ∗ is of the second
kind, or by [5, corollary, p. 533] if ∗ is of the first kind and R is not an order in a simple algebra Q
which is at most 16-dimensional over its center, given a nonzero ideal I ′/(Z(R) ∩ L) of L/(Z(R) ∩ L),
there exists a nonzero ∗-ideal I of R such that [I ∩ Skew(R,∗),Skew(R,∗)] ⊂ I ′ . Let us show that
[I ∩ Skew(R,∗),Skew(R,∗)] 
= 0. Otherwise, I ∩ Skew(R,∗) can be regarded as a nilpotent ideal of the
nondegenerate Lie algebra L, so it is zero modulo Z(R), in which case:

(I) If I ∩ Skew(R,∗) = 0, then for every y ∈ I , y − y∗ ∈ Skew(R,∗) ∩ I = 0, so y = y∗ for every y ∈ I ,
and given r, s ∈ R ,

yrs = (yrs)∗ = s∗r∗ y; yrs = (yr)∗s = r∗ ys = r∗(ys)∗ = r∗s∗ y,

hence (s∗r∗ − r∗s∗)y = 0, and since R is prime, (rs)∗ = (sr)∗ for every r, s ∈ R , which implies R is
commutative, a contradiction.
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(II) If 0 
= I ∩Skew(R,∗) ⊂ Z(R), then there exists α ∈ I ∩Skew(R,∗)∩ Z(R). Since I = I ∩Skew(R,∗)⊕
I ∩ H(R,∗), we have that I ⊂ Z(R) because also I ∩ H(R,∗) ⊂ Z(R) since α(I ∩ H(R,∗)) ⊂ I ∩
Skew(R,∗) ⊂ Z(R). But a noncommutative prime R cannot have nonzero ∗-ideals I contained
in Z(R), a contradiction.

Thus if I/(Z(R) ∩ Skew(R,∗)) and J/(Z(R) ∩ Skew(R,∗)) are ideals of L/(Z(R) ∩ L), there exist
ideals I ′, J ′ of R such that

0 
= [
I ′ ∩ J ′ ∩ Skew(R,∗),Skew(R,∗)

] ⊂ I ∩ J ,

so L/(Z(R) ∩ L) is a prime nondegenerate algebra, i.e., it is strongly prime.
If R is ∗-prime but not prime, there exists a prime ideal I of R such that I ∩ I∗ = 0. The map

f : R → R/I × R/I∗ is a ∗-monomorphism of algebras with exchange involution

∗ : R/I × R/I∗ → R/I × R/I∗

given by (x, y)∗ = (y∗, x∗). Now, f (I ⊕ I∗) is an essential ideal of R/I × R/I∗ and

I ∼= Skew
(

f
(

I ⊕ I∗
))  Skew

(
R/I × R/I∗

) ∼= R/I∗,

which implies that I/(Z(R) ∩ I) ∼= Skew( f (I ⊕ I∗))/(Skew( f (I ⊕ I∗)) ∩ Z( f (R))) is a strongly prime
algebra and, since it is essential in L, L/(Z(R) ∩ L) is strongly prime.

Suppose that R is ∗-prime with involution of the first kind and R is an order in a simple algebra
Q of dimension at most 16 over its center. Since Q is simple and finite dimensional, Q is a PI
algebra, so R is a PI algebra and it is a central order in Q : for every q ∈ Q there exist α ∈ Z(R)

and x ∈ R such that q = α−1x. Now, we can extend the involution to Q and since the center of Q is
the extended centroid of R , we have that the involution on Q is of the first kind. If dimZ(Q ) Q = 16
or 9, by [2, Theorem 2.10], Skew(Q ,∗) is nondegenerate, and if dimZ(Q ) Q = 4 or 1, by Lemma 4.5,
Skew(Q ,∗) is either central or strongly prime. In any case, L is abelian if Skew(Q ,∗) is abelian and
L is strongly prime (nondegenerate) if Skew(Q ,∗) is so: Let us show that L is strongly prime when
Skew(Q ,∗) is strongly prime (the inheritance of nondegeneracy follows analogously). Given x, y ∈ L
such that [x, [y, L]] = 0 we have that for every q ∈ Skew(Q ,∗) there exist α ∈ Z(R) and z ∈ R such
that q = α−1z and therefore [x, [y,q]] = [x, [y,αz]] = α[x, [y, z]] = 0 which implies that x = 0 or
y = 0 and L is strongly prime, see [11, Theorem 1.6]. Finally, if dimZ(Q ) Q = 16 or 9, Z(R) ∩ L ⊂
Z(L) ⊂ K (L) = 0 and by Corollary 5.4 the intersection of all strongly prime ideals of L is zero. �
Theorem 4.7. Let R be an associative algebra with involution ∗ over a ring of scalars Φ with no 2-torsion, let
L = Skew(R,∗), and denote by K (L) its Kostrikin radical. Then:

(1) K (L) coincides with the intersection of all strongly prime ideals of L.
(2) K (L) = π−1(Z(L/(r(R) ∩ L))) where r(R) is the Baer radical of R and π : L → L/(r(R) ∩ L) denotes the

canonical projection.
(3) K (L) = {x ∈ L | every m-sequence starting with x has finite length}.

Proof. The intersection of all ∗-prime ideals of R , {Ii}i∈
 , is equal to the Baer radical r(R). Now, for
every ∗-prime ideal Ii of R , let us consider the epimorphism of Lie algebras

Ψi : Skew(R,∗) → Skew(R/Ii,∗)/Z
(
Skew(R/Ii,∗)

)
.

By Proposition 4.6, KerΨi is either a strongly prime ideal of L, or it is the intersection of strongly
prime Lie algebras, or it is the whole algebra L. Therefore, if x ∈ ⋂

KerΨi (which is an intersection of
strongly prime ideals of L) and a ∈ L, we have that [x,a] ∈ Ii for all i ∈ 
 and therefore, [x,a] ∈ r(R),
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which implies that x ∈ π−1(Z(L/(r(R) ∩ L))). So if {Ii} denotes the family of all strongly prime ideals
of L,

K (L) ⊂
⋂

Ii ⊂ π−1(Z
(
L/

(
r(R) ∩ L

)))
.

Finally, if x ∈ π−1(Z(L/(r(R) ∩ L))), [x, [x,a]] ∈ r(R) for every element a ∈ L and therefore, every
m-sequence of L starting with [x, [x,a]] has finite length, Lemma 4.1, which implies that x ∈ K (L)

by 1.8. �
Corollary 4.8. Let R be a semiprime associative algebra with involution ∗ over a ring of scalars Φ with no 2-
torsion and let L = Skew(R,∗). Then K (L) = Z(L) and it coincides with the intersection of all strongly prime
ideals of L.

Remark 4.9. Since the Kostrikin radical of any ideal I of a Lie algebra L coincides with K (L) ∩ I ,
see [23, Corollary 1, p. 543], Theorems 4.3, 4.7 and Corollaries 4.4, 4.8 also hold for ideals of the
Lie algebras mentioned there. In particular, they hold for the Lie algebras [R, R] and [R, R]/(Z(R) ∩
[R, R]), and for [Skew(R,∗),Skew(R,∗)], [Skew(R,∗),Skew(R,∗)]/(Z(R) ∩ [Skew(R,∗),Skew(R,∗)]).

5. Lie algebras with descending chain conditions

5.1. Recall that the annihilator of an ideal I in a Lie algebra L is defined as AnnL(I) = {x ∈ L | [x, I] = 0}.
If I is an ideal of L which is nondegenerate as a Lie algebra (in particular if L is nondegenerate), then
AnnL(I) = {x ∈ L | [x, [x, I]] = 0} and I ∩ AnnL(I) = 0. Moreover, if I is nondegenerate and AnnL(I) = 0,
L is a nondegenerate Lie algebra, see [6, 2.5].

If L is nondegenerate, AnnL(I) is a nondegenerate ideal of L for every ideal I of L: let x ∈
L/AnnL(I) such that [x, [x, L/AnnL(I)]] = 0. Then [x, [x, L]] ⊂ AnnL(I), so [x, [x, I]] ⊂ I ∩ AnnL(I) = 0,
hence x ∈ AnnL(I).

5.2. We say that a Lie algebra L satisfies the descending chain condition for annihilator ideals if
every descending chain of annihilator ideals {AnnL(Ii)}i , AnnL(Ii) ⊃ AnnL(Ii+1), reaches zero in a
finite number of steps. Since AnnL(AnnL(AnnL(I))) = AnnL(I) for every ideal I of L, we have that L
satisfies the descending chain condition for annihilator ideals if and only if it satisfies the ascending
one.

A nonzero ideal I of L is said to be uniform if for every two nonzero ideals J , J ′ of L such that
J , J ′ ⊂ I we have that J ∩ J ′ 
= 0. If L is semiprime, by [9, Proposition 3.1(i)] I is a uniform ideal
of L if and only if AnnL(I) is maximal among all annihilator ideals of nonzero ideals of L. The next
proposition can be deduced from [9, Theorem 4.1].

Proposition 5.3. If L is nondegenerate and every annihilator ideal of L is contained in a maximal annihilator
ideal, then the intersection of all strongly prime ideals of L is zero. Moreover, if L satisfies the chain condition
for annihilator ideals, then L is an essential subdirect product of finitely many strongly prime Lie algebras.

Proof. Let 0 
= x ∈ L, consider the ideal J of L generated by x and its annihilator AnnL( J ). By hy-
pothesis, there exists a nonzero ideal I of L such that AnnL(I) is a maximal annihilator ideal with
AnnL( J ) ⊂ AnnL(I). Now, if x ∈ AnnL(I), J ⊕ AnnL( J ) ⊂ AnnL(I), a contradiction because J ⊕ AnnL( J )
is an essential ideal of L. Therefore, the intersection of all maximal annihilator ideals of L, which are
strongly prime ideals of L by 5.1 and [9, Proposition 3.1(ii)], is zero.

Now suppose that L satisfies the chain condition for annihilator ideals and consider the set of all
uniform ideals {Ii}i of L. By 5.1 and [9, Proposition 3.1(ii)], L/AnnL(Ii) is strongly prime. Moreover,
since

⋂
i AnnL(Ii) = AnnL(

∑
i I i) and every descending chain of annihilator ideals reaches zero, there

exists a finite number of uniforms ideals {Ii}n
i=1 such that

⋂n
i=1 AnnL(Ii) = 0. Finally, every Ii ∼= (Ii +

AnnL(Ii))/AnnL(Ii) is an essential ideal of the strongly prime Lie algebra L/AnnL(Ii), hence L is an
essential subdirect product of the strongly prime Lie algebras {Li = L/AnnL(Ii)}n

i=1. �
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The following corollary shows that the characterization of the Kostrikin radical of a Lie algebra L
as the intersection of all strongly prime ideals of L holds for Artinian Lie algebras, hence in particular
for finite dimensional Lie algebras.

Corollary 5.4. If L is an Artinian Lie algebra, the Kostrikin radical of L coincides with the intersection of all
strongly prime ideals of L, and L/K (L) is an essential subdirect product of finitely many strongly prime Lie
algebras.

Proof. The nondegenerate Lie algebra L/K (L) remains Artinian and satisfies the chain condition for
annihilator ideals, so the intersection of all strongly prime ideals of L is K (L) and L/K (L) is an
essential subdirect product of finitely many strongly prime Lie algebras. �
5.5. An inner ideal of a Lie algebra L is a Φ-submodule B of L such that [B, [B, L]] ⊂ B . An abelian
inner ideal is an inner ideal B which is also an abelian subalgebra, i.e., [B, B] = 0. If L is defined over
a field of scalars with 1/2,1/3 and 1/5, the socle of a nondegenerate Lie algebra L is an ideal Soc(L)

defined as the sum of all minimal inner ideals of L, and it is a direct sum of simple ideals [4, 2.4, 2.5].

Proposition 5.6. If L is defined over a field of scalars with 1/2,1/3 and 1/5, and L is nondegenerate and has
essential socle, then the intersection of all strongly prime ideals of L is zero and, therefore, L is an essential
subdirect product of strongly prime Lie algebras.

Proof. Let Soc(L) = ⊕
i Li be the decomposition of the socle of L into simple ideals, see [4, 2.5(i)]. It

is easy to see that
⋂

i(AnnL(Li)) = Ann(
⊕

i Li) = Ann(Soc(L)) = 0 because Soc(L) is essential, so the
intersection of all strongly prime ideals of L is zero and L is an essential subdirect product of the
strongly prime Lie algebras {L/AnnL(Li)}i . �
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