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Abstract. The inner ideals of the simple finite dimensional Lie algebras over
an algebraically closed field of characteristic 0 are classified up to conjugation
by automorphisms of the Lie algebra, and up to Jordan isomorphisms of their
corresponding subquotients (any proper inner ideal of a classical Lie algebra is
abelian and therefore it has a subquotient which is a simple Jordan pair). While
the description of the inner ideals of the Lie algebras of types Al , Bl , Cl and Dl

can be obtained from the Lie inner ideal structure of the simple Artinian rings
and simple Artinian rings with involution, the description of the inner ideals of
the exceptional Lie algebras (types G2 , F4 , E6 , E7 and E8 ) remained open.
The method we use here to classify inner ideals is based on the relationship
between abelian inner ideals and Z-gradings, obtained in a recent paper of the
last three named authors with E. Neher. This reduces the question to deal with
root systems.
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Introduction

Let L be a Lie algebra over a ring of scalars Φ. A Φ-submodule B of
L is an inner ideal if [B, [B, L]] ⊂ B , and B is abelian if [B, B] = 0. The
initial motivation to study inner ideals in Lie algebras was due to the fact that
inner ideals are closely related to ad-nilpotent elements, and certain restrictions
of these elements yield an elementary criterion for distinguishing the nonclassical
from classical (finite dimensional) simple Lie algebras over an algebraically closed
field of characteristic greater than 5 [2].

Abelian inner ideals and their associated notions of kernel and subquotient
became a key notion to develop a socle theory for nondegenerate Lie algebras [5],
and were used in [7] to construct gradings of Lie algebras: it requires the existence
of abelian inner ideals whose subquotient is a Jordan pair covered by a finite grid,
and this produces a grading of the Lie algebra by the weight lattice of the root
system associated to the covering grid.

In [1], G. Benkart examined the Lie inner ideal structure of semiprime
associative rings, and of the skew elements of prime rings with involution. An
extension of these results was carried out by the authors in [6], where the inner
ideals of infinite dimensional finitary simple Lie algebras were described. However,

∗Partially supported by the MEC and Fondos FEDER, MTM2007-60333, and by the Junta
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in both of these works, a type of inner ideals, the so-called point spaces, was
omitted. This description has been recently completed by G. Benkart and A.
Fernández López in [3].

In this paper we adopt a different approach to determine the inner ideals
of the classical Lie algebras (simple finite-dimensional Lie algebras over an al-
gebraically closed field F of characteristic 0) based on the connection between
abelian inner ideals and Z-gradings commented above. Any proper inner ideal B
of a classical Lie algebra L is “extreme” of a Z-grading of L . As the Z-gradings
are always compatible with a root decomposition, B can be expressed as sum of
root spaces. More precisely, any Z-grading is the diagonalization relative to adh ,
for a semisimple element h in a Cartan subalgebra such that the coordinates rela-
tive to a basis of the root system αi(h) are integers, and in such case the extreme
is determined by the indices i such that αi(h) 6= 0. This provides us an easy pro-
cedure to determine the inner ideals, which produces a classification (called the
Lie classification) of the inner ideals of L up to conjugation by automorphisms of
L . On the other hand, the subquotient of any proper (equivalently, abelian) inner
ideal of L is a classical Jordan pair [7]. This yields another classification (the Jor-
dan classification) of the proper inner ideals of L up to Jordan pair isomorphisms
of their subquotients. It must be noted that while two abelian inner ideals which
are conjugate by an automorphism of L have necessarily isomorphic subquotients,
the converse is not true, so the Lie classification is finer than the Jordan one.

Finally, by using only elementary methods of classical theory of Lie algebras,
we give in the Appendix an alternative proof to the fact that every abelian inner
ideal coincides with the extreme of a finite Z-grading.

1. Lie algebras and Jordan pairs

1.1. Throughout this paper we will deal with finite dimensional Lie algebras
L with [x, y] denoting the Lie bracket and adx the adjoint map determined by
x , and finite dimensional Jordan pairs V = (V +, V −) with Jordan products Qxy
and linearizations {x, y, z} := Qx,zy , for x, z ∈ V σ , y ∈ V −σ , σ = ± (see [10] and
[11]) over an algebraically closed field F of characteristic zero.

1.2. An inner ideal of a Jordan pair V is an F -subspace B of V σ such that
{B, V −σ, B} ⊂ B . We say that two inner ideals B and B′ of V are conjugate
if there exists an automorphism of V sending B to B′ . An F -subspace B of a
Lie algebra L is an inner ideal if [B, [B, L]] ⊂ B , and B is abelian if [B,B] = 0.
Two inner ideals B and B′ of a Lie algebra L are conjugate if there exists an
automorphism ϕ of L such that ϕ(B) = B′ .

1.3. Let B ⊂ V + be an inner ideal of V . The kernel of B is the set
KerV B = {x ∈ V − | QBx = 0} . Then (0, KerV B) is an ideal of the Jordan
pair (B, V −) and the quotient SubV B = (B, V −)/(0, KerV B) = (B, V −/ KerV B)
is called the subquotient of B [12]. The kernel and the corresponding subquotient
of an inner ideal B ⊂ V − are defined similarly.

Let V and V ′ be two Jordan pairs over F , and let B and B′ be inner
ideals of V and V ′ respectively. We say that B is isomorphic to B′ if SubV B ∼=
SubV ′ B

′ .
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The analogous versions of all these results hold for abelian inner ideals of
a Lie algebra, if we replace the Jordan triple product {x, y, z} by the left double
commutator [[x, y], z] : Any abelian inner ideal B of a Lie algebra L gives rise
to a Jordan pair, which is called the subquotient of B in L [7]; the kernel of
B is the set KerL B = {x ∈ L | [B, [B, x]] = 0} , and the pair of F -modules
SubL B = (B, L/ KerL B) with the triple products given by

{b, x, b′} : = [[b, x], b′] for every b, b′ ∈ B and x ∈ L,

{x, b, y} : = [[x, b], y] for every b ∈ B and x, y ∈ L,

where a denotes the coset of a relative to the subspace KerL B , is a Jordan pair
called the subquotient of B . Due to this notion, we can define a new relation
between inner ideals of Lie algebras: if B and B′ are abelian inner ideals of
Lie algebras L and L′ respectively, then B and B′ are said to be isomorphic
if SubL B ∼= SubL′ B

′ as Jordan pairs. In the particular case of a simple finite
dimensional Lie algebra, every proper inner ideal is abelian [2, 1.13], so it makes
sense to associate a Jordan pair SubL B to any proper inner ideal B of L . Notice
that in this case such subquotient SubL B is always a simple Jordan pair, according
to [7, 3.5(vi)].

It turns out that an F -subspace C of B is an inner ideal of L if and only
if it is an inner ideal of SubL B [7, 3.5(i)].

1.4. An important class of inner ideals of Jordan pairs and Lie algebras are
the so called point spaces. For a Jordan pair V = (V +, V −), a subspace P of
V σ , σ = ± , is called a point space if QxV

−σ = Fx for any nonzero x ∈ P .
A subspace P of a Lie algebra L is called a point space if [P, P ] = 0 and every
nonzero element x ∈ P is extremal, i.e., ad2

x L = Fx . If P is a point space of L ,
then P is an abelian inner ideal, P is a point space of the Jordan pair SubL P ,
and any subspace Q of P is also a point space. All point spaces of the same
dimension are isomorphic [3, 4.6].

1.5. As a general rule, we will use the same symbol to denote inner ideals of
Jordan pairs and abelian inner ideals of Lie algebras which belong to the same
class of isomorphy. Thus, Pr will denote a point space (both of a Jordan pair
or a Lie algebra) of dimension r over F . When required, we will use accents to
distinguish between inner ideals which are isomorphic but not conjugate.

2. The inner ideal structure of the classical Jordan pairs revisited

By a classical Jordan pair we mean a finite-dimensional simple Jordan pair over
an algebraically closed field of characteristic 0. In this section we review the
classification of the inner ideals of the classical Jordan pairs over F . By [11, 17.4],
any classical Jordan pair is isomorphic to one of the following:

(I) The Jordan pair Mp×q := (Mp×q(F ),Mq×p(F )), Qxy = xyx, of p×q and q×p
matrices with entries in F , and where p ≤ q . The nonzero inner ideals of Mp×q

contained in Mp×q(F ) are, up to conjugation, of the form
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Mr×s :=

1≤j≤s∑
1≤i≤r

F [ij], with r ≤ p, s ≤ q, and r ≤ s

where [ij] denotes the (i, j)-unit matrix. Moreover, the subquotient of Mr×s is
isomorphic to Mr×s . This can be obtained from the classification of inner ideals
in Jordan pairs covered by grids [14, 3.2], or from the geometric description of
the inner ideals of Jordan pairs of finite rank continuous operators [8, Prop. 2.4].
Note that for each positive integer r , M1×r is a point space of dimension r , so,
according to our notation criterion above, Sub Pr

∼= M1×r .

(II) The Jordan pair Kn := (Kn(F ), Kn(F )), Qxy = −xyx, of skew-symmetric
n × n matrices with entries in F (n ≥ 4). It follows from [14, 3.2(e)] that Kn

contains two types of nonzero inner ideals up to conjugation:

(i) Ks := esKn(F )es , for 2 ≤ s ≤ n , where es = [11] + · · · + [ss] , with
subquotient Ks and

(ii) the point spaces Pr =
∑r+1

j=2 F ([1j]− [j1]) for 1 ≤ r ≤ n− 1.

Note that Ks is a point space if and only if s ≤ 3 (K2 = P1 ).

(III) The Jordan pair Sn := (Sn(F ), Sn(F )), Qxy = xyx, of symmetric n × n
matrices with entries in F (n ≥ 2). By [14, 3.2(c)] or [13, Theorem 3], every
nonzero inner ideal of Sn is (up to conjugation) of the form Sr := erSn(F )er , for
1 ≤ r ≤ n , where er = [11] + · · ·+ [rr] , with subquotient Sr .

(IV) The Clifford Jordan pair Qn := (X, X), Qxy = q(x, y)x − q(x)y , defined by
a nondegenerate quadratic form q on an n-dimensional vector space X over F .
By [13, Theorem 6], the inner ideals of Qn are Qn := X (with subquotient Qn )
and the totally isotropic subspaces of X . Hence, if n = 2m or n = 2m + 1, Qn

contains a maximal point space of dimension m . Moreover, by Witt’s Theorem,
two inner ideals of Qn are conjugate if and only if they have the same dimension.

(V) The Albert pair A := (H3(C), H3(C)), defined by the exceptional Jordan algebra
H3(C) over F . By [13, Main Theorem], A contains two maximal (proper) inner
ideals up to conjugation: the 6-dimensional point space P6 = F [11] + ε C[12] +
Fε[13], where ε is a primitive idempotent of the Cayley algebra C (see also [13,
p. 457]), and the Peirce-2-space determined by the Jordan algebra idempotent
e := [11] + [22], i.e, QeH3(C). Since QeH3(C) is a 10-dimensional simple Jordan
algebra of capacity 2 over F , it is the Jordan algebra defined by a nondegenerate
quadratic form on a 10-dimensional vector space over F , so SubAQeH3(C) ∼= Q10 ,
and so we can put Q10 = QeH3(C) according to our notation criterion (1.5).
Moreover, A contains two 5-dimensional point spaces which are not conjugate:
P5 = F [11] + ε C[12] ⊂ P6 ∩ Q10 and P ′

5 = F [11] + C[12] ε ⊂ Q10 , which is also a
maximal point space.

(VI) The Bi-Cayley pair B := (M1×2(C),M2×1(C)), Qab = (ab)a, where C is the
Cayley algebra over F . The inner ideals of B are, up to conjugation, M1×2(C),
C[11], and the linear spans of the +-parts of the families of collinear idempotents,
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following [14, 3.2] and the notations therein. In fact, the subquotient of C[11]
is isomorphic to Q8 and the inner ideals determined by the families of collinear
idempotents are the point spaces of B [14, 3.3(1)]. By [11, 12.10], B is isomorphic
to the Peirce-1-space of the Albert pair A with respect to the idempotent e1 = [11],
hence the families of collinear idempotents of B are those of A contained in the
Peirce-1-space with respect to e1 , so we can apply the results obtained for the
Albert pair to get the point spaces of the Bi-Cayley pair. Thus B contains a
maximal point space of dimension 5 (the one obtained by eliminating the [11]-
part of the inner ideal P6 of the Albert pair), and two point spaces of dimension 4
which are not conjugate (those obtained by eliminating the [11]-part of the inner
ideals P5 and P ′

5 of the Albert pair.)

3. The inner ideal structure of the classical Lie algebras.

By a classical Lie algebra we mean a finite-dimensional simple Lie algebra over an
algebraically closed field F of characteristic 0. In this section we determine the
inner ideal structure of the classical Lie algebras, both from the Lie and Jordan
point of view.

3.1. Z-gradings.

A Z-grading of a Lie algebra L is a decomposition in vector subspaces

L =
n⊕

i=−n

Li, L−n + Ln 6= 0,

such that [Li, Lj] ⊂ Li+j for all i, j , with the understanding that Li+j = 0 if
|i + j| > n . This is called a (2n + 1)-grading, and it is said that L is (2n + 1)-
graded.

A standard example of a Lie algebra with a 3-grading is that given by the
TKK-algebra of a Jordan pair: For any Jordan pair V , there exists a Lie algebra
with a 3-grading TKK(V ) = L−1 ⊕ L0 ⊕ L1 , the Tits-Kantor-Koecher algebra of
V , uniquely determined by the following conditions (cf. [15, 1.5(6)]):

(TKK1) The associated Jordan pair (L1, L−1) is isomorphic to V .

(TKK2) [L1, L−1] = L0 .

(TKK3) [x0, L1 ⊕ L−1] = 0 implies x0 = 0, for any x0 ∈ L0 .

In general, by a TKK-algebra we mean a Lie algebra of the form TKK(V ) for some
Jordan pair V .

Recall some basic facts about gradings. If we have a Z-grading L =
L−k ⊕ · · · ⊕ Lk , the map D : L → L such that D(x) = nx for any x ∈ Ln ,
n = −k, . . . , k , is a derivation of L . As any derivation is inner, D = adh

for some semisimple h which belongs to a Cartan subalgebra H of L . Let
L = H ⊕ (

⊕
α∈Φ Lα) be the root decomposition of L relative to H . Note that

α(h) ∈ Z for any root α . Take a basis ∆ = {α1, . . . , αl} of the associated root
system, and for each i = 1, . . . , l , define hi ∈ H by αj(hi) = δij . As {h1, . . . , hl}
is a basis of H and h =

∑
αi(h)hi , there exist nonnegative integers (p1, . . . , pl)

such that h =
∑

pihi . The root space Lα , for α =
∑

miαi , is contained in
the homogeneous component L∑

mipi
of the Z-grading of L , and the Cartan

subalgebra H is contained in L0 . In particular, the Z-gradings of L are in
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correspondence with the labels (p1, . . . , pl) of nonnegative integers. Moreover, two
Z-gradings can be taken into one another by an outer automorphism if and only if
the corresponding sets of labels can be taken into one another by an automorphism
of the Dynkin diagram, [16, 3.5].

3.2. Inner ideals and Z-gradings.

The Z-gradings are closely related to abelian inner ideals: For any Z-grading
L = ⊕n

i=−nLi , Ln and L−n (also called the extremes of the grading) are abelian
inner ideals of L . Conversely, every abelian inner ideal whose subquotient is
covered by a finite grid produces a grading of the Lie algebra by the weight
lattice of the root system associated to the covering grid [7, 6.1]. As L is a finite
dimensional simple Lie algebra, every proper inner ideal B of L is abelian and
its associated subquotient is covered by a finite grid, so it gives rise to a grading
L = L−n ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln for which B = Ln . In the Appendix, we prove
that every abelian inner ideal is the extreme of a Z-grading by using elemental
Lie techniques, that is, a proof independent of that of [7, 6.1].

Suppose we have a Z-grading of L ,

L−n ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln

determined by (p1, . . . , pl) ∈ Nl , as above. The extremes of this grading are easy
to determine: If we denote by α̃ =

∑l
i=1 niαi the maximal root relative to ∆, the

root space associated to the maximal root Lα̃ is contained in the extreme Ln , and
n =

∑
nipi . Now note that for any root α =

∑
miαi ∈ Φ, the root space Lα is

contained in Ln if and only if
∑

mipi =
∑

nipi ; that is, if and only if mj = nj

for all j such that pj 6= 0. Therefore, denoting by I = {j ∈ {1, . . . , l} | pj 6= 0} ,
we have that Ln = BI for

BI :=
⊕
α∈Φ

{Lα | α =
∑

1≤i≤l

miαi with mj = nj for all j ∈ I}.

To summarize, for H and ∆ as above,

Theorem 3.1. Let B be a nonzero abelian inner ideal of a classical Lie algebra
L. Then there is a subset I ⊂ {1, . . . , l} and an inner automorphism ϕ such that
ϕ(B) = BI .

A straightforward observation is that, for I ⊂ J , the abelian inner ideal
BJ ⊂ BI . In particular, the maximal abelian inner ideals are conjugated to B{i}
for some i ∈ {1, . . . , l} , although not conversely. Another interesting fact is that
every chain of abelian inner ideals of L has length not greater than l . Moreover
there is always a chain of abelian inner ideals of L with length just l . This is clear
by recalling that for each α ∈ Φ+ \∆ there is i ∈ {1, . . . , l} such that α−αi ∈ Φ.

3.3. For each classical simple Lie algebra L , we will compute its diagrams of
abelian inner ideals and subquotients, and will organize this information in what
we call the Lie classification of L and the Jordan classification of L :

- The Lie classification. We will apply the method described in 3.2 to find
the abelian inner ideals of L . After choosing a Cartan subalgebra and a
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basis of the related root system, each inner ideal will be conjugated to BI

for some nonempty subset I ⊂ {1, 2, · · · , l} . Further conjugations will be
obtained by means of diagram automorphisms and some special cases will
be dealt separately using techniques related to eigenvalues and traces of ad-
semisimple elements.

- The Jordan classification. In order to identify the subquotient of each abelian
inner ideal B of a classical Lie algebra L we will first observe the diagram
of the inner ideals of L contained in B , then compute their dimensions,
and finally compare this information with the inner ideal structure of the
classical Jordan pairs obtained in the previous section, since the inner ideals
C contained in B are precisely the inner ideals of SubLB ([7, 3.5]), and C
and C ′ are isomorphic as abelian inner ideals of L if and only if they are
isomorphic as abelian inner ideals of SubL(B) ([3, 1.8]).

3.4. The inner ideal structure of An , n ≥ 1.

The Lie classification of the inner ideals of An . Choose the set of positive roots of
An described in [4, Planche I (II)], that is, Φ+ = {αr + αr+1 + · · · + αs | 1 ≤ r ≤
s ≤ n} , whose maximal root is α̃ = α1 + · · ·+αn . Following the process described
in (3.2), take the nonzero abelian inner ideals BI for I ⊂ {1, . . . , n} . Note that for
k = min I and j = (max I)− k , BI = B{k,...,k+j} , which coincides with the sum of
the root spaces for the following roots {αr +αr+1 + · · ·+αk + · · ·+αk+j + · · ·+αs |
1 ≤ r ≤ k ≤ k + j ≤ s ≤ n} , which is a set of cardinal k(n + 1− k − j).

Recall also that B{k,...,k+j} is conjugated to B{n+1−k−j,...,n+1−k} , because
there is a diagram automorphism interchanging the nodes s and n + 1− s in the
Dynkin diagram of An . Hence any abelian inner ideal of An is conjugated to one
of the BI ’s in the following diagram:

B{1,…,n}

B{1,…,n-1}

B{1,…,n-2}

B{1,…,n-3}

B{1,…,n-4}

B{2,…,n-1}

B{2,…,n-2}

B{3,…,n-2}B{2,…,n-3}

B{1,…,n-5} B{3,…,n-3}B{2,…,n-4}

The Jordan classification of the inner ideals of An . As above, every nonzero
abelian inner ideal of An has the form B{k,...,k+j} for 1 ≤ k ≤ [(n + 1)/2] and
j ≤ n− 2k + 1, whose dimension is k(n + 1− k − j). The subquotient associated
to each abelian inner ideal B{k,...,k+j} of An is a classical Jordan pair, hence, by
comparing the dimensions of these abelian inner ideals with the dimensions of the
inner ideals of the classical simple Jordan pairs, we conclude that the subquotient
of B{k,...,k+j} is a Jordan pair of type Mk×(n+1−k−j) . In particular, the inner ideals
in the set {B{k,...,k+j} | 1 ≤ k ≤ [(n + 1)/2], j ≤ n − 2k + 1} are not isomorphic
and therefore not conjugate, so we can assure the previous diagram covers the
abelian inner ideals of An up to conjugation. We get the following diagram of
subquotients of An :
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1×5

M
1×4

M
1×3

M
1×2

M
2×5

M
2×4

M
3×4

M
2×3

M
3×3

M
2×2

M
1×1

M
1×6

This information about inner ideals and subquotients, together with their
corresponding TKK-algebras, is collected in the next table, 1 ≤ k ≤ [(n + 1)/2]:

Abelian inner ideals dimension subquotients TKK algebras

B{k} k(n− k + 1) Mk×(n−k+1) An

B{k,k+1} k(n− k) Mk×(n−k) An−1

...
...

...
...

B{k,...,k+j} k(n + 1− k − j) Mk×(n+1−k−j) An−j

...
...

...
...

B{k,...,n−k+1} k2 Mk×k A2k−1

3.5. The inner ideal structure of Bn , n ≥ 2.

The Lie classification of the inner ideals of Bn . Consider the set of positive roots
of Bn given in [4, Planche II (II)], that is, Φ+ = {αr + αr+1 + · · · + αs | 1 ≤ r ≤
s ≤ n}∪{αr +αr+1 + · · ·+αt−1 +2αt + · · ·+2αn | 1 ≤ r < t ≤ n} , whose maximal
root is α̃ = α1 + 2α2 · · ·+ 2αn . Following the process described in (3.2), take the
nonzero abelian inner ideals BI for I ⊂ {1, . . . , n} .

- If I = {1} , the roots related to BI are those α =
∑

miαi with m1 = 1, that
is B{1} ∼= {α1 + · · ·+ αs | 1 ≤ s ≤ n} ∪ {α1 + · · ·+ αt−1 + 2αt + · · ·+ 2αn |
1 < t ≤ n} (identifying BI with the related roots), of dimension 2n− 1.

- If I ! {1} , take s = min(I \ {1}), and then BI = B{1,s,...,n} ∼= {α1 + · · · +
αt−1 + 2αt + · · · + 2αn | 1 < t ≤ s ≤ n} , that is, the roots verifying m1 = 1
and ms = 2. It has dimension s− 1.

- If 1 /∈ I , take r = min I . Then BI = B{r,...,n} ∼= {αk + · · ·+αt−1 +2αt + · · ·+
2αn | 1 ≤ k < t ≤ r} , that is, the roots verifying mr = 2. It has dimension(

r
2

)
. Note that B{2,...,n} = B{1,...,n} , so we can consider r ≥ 3.

It is also worth noting that for n ≥ 4 the inner ideals B{3,...,n} and B{1,4,...,n}
are 3-dimensional point spaces, which are not conjugate under any automorphism
of Bn . In fact, for n > 4, B{3,...,n} is a maximal point space, while B{1,4,...,n} is
contained in the 4-dimensional point space B{1,5,...,n} [3, Corollary 5.15].

However, for n = 4, both B{3,4} and B{1,4} are maximal point spaces,
although yet they are not conjugate. In fact, while B{1,4} is the extreme of a 7-
grading of L = B4 (the one given by the label (1,0,0,1)), B{3,4} cannot be extreme
of any 7-grading of L . Suppose on the contrary that B{3,4} = L3 for a 7-grading of
L , and let s ∈ L be an ad-semisimple element such that Ln = {x ∈ L : [s, x] = nx}
for n = ±3,±2,±1, 0. If L = H ⊕ (

⊕
α∈Φ Lα) is the root decomposition of L

relative to H (our fixed Cartan subalgebra), of course s /∈ H , since the grading
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would correspond to a label (0, 0, p3, p4) but 2(p3 + p4) 6= 3. To eliminate the
possibility s = h +

∑
α∈Φ wα , h ∈ H and wα ∈ Lα not all of them zero,

consider U the sum of the root spaces related to the roots α1 + 2α2 + 2α3 + 2α4 ,
α1 + α2 + 2α3 + 2α4 , α2 + 2α3 + 2α4 , α1 + α2 + α3 + 2α4 , α1 + α2 + α3 + α4 and
α1+α2+α3 . By using that wα vanishes if α+γ ∈ Φ for some γ ∈ B{3,4} , and that
2(α3 + α4)(h) = 3, it is routine to show that U is invariant under ads , and that
the trace of the restriction of ads to U is non-integer, which is a contradiction.
Therefore, any abelian inner ideal of Bn is conjugate to one (and only one) of the
BI ’s in the following diagram:

B{1} B{n}

B{1,n}

B{n-1, n}

B{1,n-1,n}

B{1,2,...,n}

B{1,3,...,n}

B{3,...,n}

B{4,...,n}

B{5,...,n}

B{1,4,...,n}

B{1,5,...,n}

The Jordan classification of the inner ideals of Bn . The inner ideal structure of
the classical Jordan pairs given in Section 2, together with the dimensions of the
inner ideals of the Lie classification above, allow us to determine the subquotients
of the abelian inner ideals of Bn . We get

- The subquotient of the abelian inner ideal B{1} is isomorphic to Q2n−1 .

- The subquotient of an abelian inner ideal of the form B{r,...,n} is isomorphic
to Kr .

- The subquotient of an abelian inner ideal of the form B{1,s,...,n} is isomorphic
to M1×(s−1) .

- Both the inner ideals B{1,4,...,n} and B{3,...,n} are 3-dimensional point spaces,
and therefore give rise to the same subquotient.

Therefore, the diagram of subquotients of Bn is:

Q2n-1
Kn

M1×(n-2)

M1×4

M1×3

M1×2

M1×1

M1×(n-1)
Kn-1

K4

K5

This information about inner ideals and subquotients, together with their corre-
sponding TKK-algebras, is collected in the next table, for 3 ≤ r ≤ n , 2 ≤ s ≤ n :
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Abelian inner ideals dimension subquotients TKK algebras

B{1} 2n− 1 Q2n−1 Bn

B{r,...,n}
(

r
2

) Kr Dr

B{1,s,...,n} s− 1 M1×s−1 As−1

3.6. The inner ideal structure of Cn , n ≥ 3.

The Lie classification of the inner ideals of Cn . Consider the set of positive roots
for Cn of [4, Planche III (II)] given by Φ+ = {αj+· · ·+αi−1+2αi+· · ·+2αn−1+αn |
1 ≤ j ≤ i ≤ n} ∪ {αj + · · · + αi | 1 ≤ j ≤ i ≤ n − 1} , whose maximal root is
α̃ = 2α1 + · · ·+ 2αn−1 + αn . For I ⊂ {1, . . . , n} , take r = min I and observe that
BI = B{r,...,n} = {αj + · · · + αi−1 + 2αi + · · · + 2αn−1 + αn | 1 ≤ j ≤ i ≤ r} , with
dimension

(
r+1
2

)
. Therefore any nonzero abelian inner ideal of Cn is conjugated

to one of the BI ’s in the following diagram:

B{n}

B{n-1,n}

B{2,…,n-1,n}

B{1,…,n-1,n}

Moreover, this is the diagram up to conjugation, since all the dimensions are
different.

The Jordan classification of the inner ideals of Cn . Since the subquotient of each
B{r,...,n} is a classical Jordan pair V whose inner ideals coincide with the abelian
inner ideals of Cn contained in B{r,...,n} , V is isomorphic to a Jordan pair Sr of
symmetric r × r matrices over F . Thus the subquotients of Cn are:

S
n

S
n-1

S
2

S
1

This information about inner ideals and subquotients, together with their
corresponding TKK-algebras, is collected in the next table, for 1 ≤ r ≤ n ,

Abelian inner ideals dimension subquotients TKK algebras

B{r,...,n}
(

r+1
2

) Sr Cr

3.7. The inner ideal structure of Dn , n ≥ 4.

The Lie classification of the inner ideals of Dn . Consider the set of n2−n positive
roots of Dn given in [4, VI.§4.8, Planche IV (II)], that is, Φ+ = {αi + · · ·+αj−1 +
2αj + · · · + 2αn−2 + αn−1 + αn | i < j < n − 1} ∪ {αi + · · · + αj | i ≤ j ≤
n− 1} ∪ {αi + · · · + αn | i ≤ n− 2} ∪ {αn} ∪ {αi + · · · + αn−2 + αn | i ≤ n− 2} ,
whose maximal root is α̃ = α1 +2α2 · · ·+2αn−2 +αn−1 +αn . Following the process
described in (3.2), take the nonzero abelian inner ideals BI for I ⊂ {1, . . . , n} :

- If I = {1} , the related roots are B{1} ∼= {α1+ · · ·+2αj + · · ·+2αn−2+αn−1+
αn | 1 < j < n− 1} ∪ {α1 + · · ·+ αj | 1 ≤ j ≤ n} ∪ {α1 + · · ·+ αn−2 + αn} ,
of dimension 2n− 2.
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- If I ! {1} , take s = min(I \ {1}). If s < n − 1, then BI = B{1,s,...,n} and
B{1,s,...,n} ∼= {α1 + · · ·+2αj + · · ·+2αn−2 +αn−1 +αn | 1 < j ≤ s} , which has
dimension s−1. Moreover, B{1,n−1} ∼= {α1+· · ·+2αj+· · ·+2αn−2+αn−1+αn |
1 < j < n − 1} ∪ {α1 + · · · + αn−1, α1 + · · · + αn−1 + αn} , with dimension
n − 1; B{1,n} ∼= {α1 + · · · + 2αj + · · · + 2αn−2 + αn−1 + αn | 1 < j <
n− 1}∪ {α1 + · · ·+ αn−2 + αn, α1 + · · ·+ αn−1 + αn} , with dimension n− 1;
and B{1,n−1,n} ∼= {α1 + · · · + 2αj + · · · + 2αn−2 + αn−1 + αn | 1 < j <
n− 1} ∪ {α1 + · · ·+ αn−1 + αn} , with dimension n− 2.

- If 1 /∈ I , take r = min I . If r < n − 1, then BI = B{r,...,n} , and
B{r,...,n} ∼= {αi + · · ·+ 2αj + · · ·+ 2αn−2 + αn−1 + αn | i < j ≤ r} , which has
dimension

(
r
2

)
. Moreover, B{n−1} = {αi + · · · + 2αj + · · · + 2αn−2 + αn−1 +

αn, αr + · · ·+αn−1, αs + · · ·+αn−1 +αn | i < j < n−1, r ≤ n−1, s ≤ n−2}
has dimension

(
n
2

)
; B{n} = {αi + · · ·+ 2αj + · · ·+ 2αn−2 + αn−1 + αn, αr +

· · ·+αn, αs + · · ·+αn−2 +αn, αn | i < j < n−1, r, s ≤ n−2} has dimension(
n
2

)
; and B{n−1,n} = {αi + · · ·+2αj + · · ·+2αn−2 +αn−1 +αn, αr + · · ·+αn |

i < j < n− 1, r ≤ n− 2} has dimension
(

n−1
2

)
.

Hence any abelian inner ideal of Dn is conjugated to one of the BI ’s in the following
list: {B{1}, B{n−1}, B{n}, B{1,n}, B{1,n−1}, B{1,n−1,n}, B{n−1,n}, B{1,s,...,n}, B{r,...,n} |
2 ≤ r, s ≤ n − 2} . We can consider r ≥ 3 because B{2,...,n} = B{1,...,n} = {α̃} .
Furthermore, note that we can fold the diagram by means of the order two outer
automorphism which interchanges the nodes n − 1 and n , so any abelian inner
ideal is conjugated to one of the next diagram:

B{3,...,n}

B{1} B{n} B{n-1} 

B{1,n} B{1,n-1}

B{n-1, n}

B{1,n-1,n}

B{1,2,...,n}

B{1,3,...,n}

B{4,...,n}

B{5,...,n}

B{1,4,...,n}

B{1,5,...,n}

Besides, in the case n = 4 there is an order three automorphism mapping
Lα1 to Lα3 , and Lα3 to Lα4 , so in this case not only B{3} and B{4} are conjugate,
but also B{1} , and the diagram becomes

B{1}

B{1,4}

B{1,3,4}

B{1,2,3,4}

The Jordan classification of the inner ideals of Dn . Again we can use the informa-
tion on the inner ideal structure of the classical Jordan pairs provided in Section 2
to compute the subquotients of the abelian inner ideals of Dn . We obtain:

- The subquotient of the abelian inner ideal B{1} is isomorphic to Q2n−2 .
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- The subquotient of an abelian inner ideal of the form B{r,...,n} is isomorphic
to Kr .

- The subquotient of an abelian inner ideal of the form B{1,s,...,n} is isomorphic
to M1×(s−1) .

Hence, for n > 4, the inner ideals of the diagram above are not isomorphic,
up to B{1,4,...,n} and B{3,...,n} which are isomorphic (both are point spaces of the
same dimension), but not conjugate: B{3,...,n} is a maximal point space, but
B{1,4,...,n} is contained in the 4-dimensional point space B{1,5,...,n} , [3, Corollary
5.15]. Therefore, the diagram of subquotients of Dn is

Q2n-2

K4

M1×1

M1×(n-1)

M1×(n-2)

M1×4

M1×3

M1×2

Kn

Kn-1

K5

(For n = 4, the inner ideals B{1} and B{4} are conjugate in D4 , so they yield
isomorphic subquotients. This fact also follows from the Jordan theory: the Jordan
pairs Q6 and K4 are isomorphic [11, 17.11 (V)].)

All this information is collected in the next table, for 3 ≤ r ≤ n , 2 ≤ s ≤ n ,

Abelian inner ideals dimension subquotients TKK algebras

B{1} 2n− 2 Q2n−2 Dn

B{r,...,n}
(

r
2

) Kr Dr

B{1,s,...,n} s− 1 M1×(s−1) As−1

3.8. The inner ideal structure of E6 .

We choose the system of positive roots for E6 given in [4, Planche V (II)], with
maximal root α1 + 2α2 + 2α3 + 3α4 + 2α5 + 2α6 . Following the process described
in (3.2), every nonzero abelian inner ideal of E6 is conjugated to one in the next
diagram:

B{1,2,3,4,5,6}

B{1}

B{1,6} B{1,3}

B{1,3,5,6}

B{1,3,4,5,6}

B{5,6}

B{1,5,6} B{1,3,6}

B{6}

By folding the Dynkin diagram we get that B{6} is conjugated to B{1} , as well
as B{5,6} to B{1,3} , and B{1,5,6} to B{1,3,6} . The remaining cases correspond to

12



not conjugate inner ideals because the dimensions are different. Therefore we
conclude that the nonzero abelian inner ideals of E6 up to conjugation and their
corresponding subquotients are:

B{1,3,4,5,6}

B{1,2,3,4,5,6}

B{1}

B{1,6} B{1,3}

B{1,3,6}

B{1,3,5,6}

B

M
1×5

M
1×4

M
1×3

M
1×1

M
1×2

Q
8

The Lie classification The Jordan classification

It is worth noting that the order two outer automorphism of E6 connect-
ing the inner ideals B{1} and B{6} yields two conjugate copies of the inner ideal
structure of the Bi-Cayley pair B within E6 . This explains the apparently contra-
dictory fact that while in B there are two 4-dimensional point spaces which are
not conjugate, in E6 there is a unique 4-dimensional inner ideal up to conjugation.

The information about the inner ideals of E6 and of their subquotients,
together with their corresponding TKK-algebras, is collected in the next table:

Abelian inner ideals dimension subquotients TKK algebras

B{1} 16 B E6

B{1,6} 8 Q8 D5

B{1,3} 5 M1×5 A5

B{1,3,6} 4 M1×4 A4

B{1,3,5,6} 3 M1×3 A3

B{1,3,4,5,6} 2 M1×2 A2

B{1,2,3,4,5,6} 1 M1×1 A1

3.9. The inner ideal structure of E7 .

We choose the system of positive roots for E7 given in [4, Planche VI (II)].
Following the process described in (3.2) and (3.3), the nonzero abelian inner ideals
of E7 (up to conjugation), and their associated subquotients are:

B{2}

B{2,5,6,7}

B{2,4,5,6,7}

B{2,3,4,5,6,7}

B{1,2,3,4,5,6,7}

B{5,6,7}B{2,6,7}

B{6,7}B{2,7}

B{7}

Q
10

A

M
1×7

M
1×6

M
1×5

M
1×4

M
1×3

M
1×2

M
1×1

The Lie classification The Jordan classification
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Notice that the 5-dimensional inner ideals B{2,6,7} and B{5,6,7} are not
conjugate since B{5,6,7} is the extreme of a 7-grading of L , while B{2,6,7} cannot
be expressed as L3 for a 7-grading L−3 ⊕ · · · ⊕ L0 ⊕ · · · ⊕ L3 . If fact, if this
was the case, this grading would be induced by an ad-semisimple element s =
h +

∑
wα , h ∈ H and wα ∈ Lα for all α ∈ Φ such that (α + B{2,6,7}) ∩ Φ = Ø,

relative to the root space decomposition L = H ⊕ (
⊕

α∈Φ Lα). Then the 5-
dimensional invariant subspace of L generated by the root space corresponding
to α1 + α2 + 2α3 + 3α4 + 3α5 + 2α6 + α7 would have an eigenvalue of the form
3−α2(h), for α2(h) ∈ {1, . . . , 6} , while the 7-dimensional invariant subspace of L
generated by the root α1 +2α2 +2α3 +3α4 +2α5 +α6 would have two eigenvalues
with value at most 2 whose sum would be 3+2α2(h), a contradiction. Nevertheless,
both B{2,6,7} and B{5,6,7} yield the same subquotient, M1×5 , as point spaces of
the same dimension (1.4).

This information about the inner ideals of E7 and of their subquotients,
together with their corresponding TKK-algebras, is collected in the next table:

Abelian inner ideals dimension subquotients TKK algebras

B{7} 27 A E7

B{2} 7 M1×7 A7

B{6,7} 10 Q10 D6

B{2,7} 6 M1×6 A6

B{2,6,7} 5 M1×5 A5

B{5,6,7}
B{2,5,6,7} 4 M1×4 A4

B{2,4,5,6,7} 3 M1×3 A3

B{2,3,4,5,6,7} 2 M1×2 A2

B{1,2,3,4,5,6,7} 1 M1×1 A1

3.10. The inner ideal structure of E8 .

We choose the system of positive roots for E8 given in [4, Planche VII (II)].
Following the process described in (3.2) and (3.3), the nonzero abelian inner ideals
of E8 (up to conjugation), together with their associated subquotients are:

B{1} B{2}

B{1,3} B{1,2}

B{1,2,3}

B{1,2,3,4}

B{1,2,3,4,5}

B{1,2,3,4,5,6}

B{1,2,3,4,5,6,7}

B{1,2,3,4,5,6,7,8}

Q
14

M
1×8

M
1×6

M
1×7

M
1×5

M
1×4

M
1×3

M
1×2

M
1×1

The Lie classification The Jordan classification

The inner ideals B{1,2} and B{1,3} are not conjugate. In fact, B{1,2} can
be expressed as the extreme of a 11-grading, but if this were the case for B{1,3} ,
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this last grading would be induced by an ad-semisimple element s = h +
∑

wα ,
h ∈ H and wα ∈ Lα for all α ∈ Φ, relative to the root space decomposition
L = H ⊕ (

⊕
α∈Φ Lα). Consider the invariant 8-dimensional subspace U of L

generated by the root space related to 2α1+3α2+3α3+5α4+4α5+3α6+2α7+α8 .
The trace of ad s restricted to U would be 30+15/2 and this is not possible since
ad s is semisimple with eigenvalues 0,±1,±2,±3,±4,±5. However, both B{1,2}
and B{1,3} yield the same subquotient, M1×7 .

This information about inner ideals and subquotients, together with their
corresponding TKK-algebras, is collected in the next table:

Abelian inner ideals dimension subquotients TKK algebras

B{1} 14 Q14 D8

B{2} 8 M1×8 A8

B{1,2} 7 M1×7 A7

B{1,3}
B{1,2,3} 6 M1×6 A6

B{1,2,3,4} 5 M1×5 A5

B{1,2,3,4,5} 4 M1×4 A4

B{1,2,3,4,5,6} 3 M1×3 A3

B{1,2,3,4,5,6,7} 2 M1×2 A2

B{1,2,3,4,5,6,7,8} 1 M1×1 A1

3.11. The inner ideal structure of F4 .

We choose the system of positive roots for F4 described in [4, Planche VIII (II)].
Following the process described in (3.2), the nonzero abelian inner ideals of F4 ,
up to conjugation, jointly with their associated subquotients are:

B{4}

B{3,4}

B{2,3,4}

B{1,2,3,4}

Q
7

M
1×3

M
1×2

M
1×1

The Lie classification The Jordan classification

This information about inner ideals and subquotients, together with their
corresponding TKK-algebras, is collected in the next table:

Abelian inner ideals dimension subquotients TKK algebras

B{4} 7 Q7 B4

B{3,4} 3 M1×3 A3

B{2,3,4} 2 M1×2 A2

B{1,2,3,4} 1 M1×2 A1

3.12. The inner ideal structure of G2 .

We choose the system of positive roots for G2 described in [4, Planche IX (II)].
Following the process described in (3.2) and (3.3), the nonzero abelian inner ideals
of G2 (up to conjugation), together with their associated subquotients are:
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B{1}

B{1,2}
{1,2}

M1×2

M1×1

The Lie classification The Jordan classification

This information about inner ideals and subquotients, together with their
corresponding TKK-algebras, is collected in the next table:

Abelian inner ideals dimension subquotients TKK algebras

B{1} 2 M1×2(F ) A2

B{1,2} 1 M1×1(F ) A1

4. Appendix: Structure of the inner ideals

In this section we prove that every abelian inner ideal can be obtained by the
process described in (3.2). Our proof only uses elementary notions of classical
theory of Lie algebras, which can be found for instance in [9, §9 and §10]. It
provides an alternative proof to the fact that every abelian inner ideal B of a
finite dimensional Lie algebra L coincides with Ln , for some Z-grading L =
L−n ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln , c.f. [7].

4.1. Let L be a finite dimensional simple Lie algebra over an algebraically
closed field F of characteristic zero. Let H be a Cartan subalgebra of L and let
L = H ⊕ (

⊕
α∈Φ Lα) be the root decomposition of L relative to H . Take a basis

∆ = {α1, . . . , αl} of the root system Φ, and let α̃ =
∑l

i=1 niαi be the maximal
root relative to ∆. For each nonempty set I ⊂ {1, . . . , l} , denote

PH,∆,I = PI = {α =
∑l

i=1 kiαi ∈ Φ | ki = ni ∀i ∈ I} ⊂ Φ,
BH,∆,I = BI =

⊕
α∈PI

Lα ≤ L.

To show that BI is an abelian inner ideal of L is an easy exercise left to the
reader. Our goal is to prove that for any abelian inner ideal 0 6= B there exist a
Cartan subalgebra H , a basis ∆ of the associated root system, and a set I in the
above conditions such that B is equal to BH,∆,I . We begin by finding the Cartan
subalgebra.

Lemma 4.1. If B is a nonzero abelian inner ideal, there exists a Cartan sub-
algebra H of L such that B =

⊕
α∈Φ Lα ∩ B , where L = H ⊕ (

⊕
α∈Φ Lα) is the

decomposition in root spaces relative to H .

Proof. Take 0 6= e1 ∈ B . Since e1 is ad-nilpotent of index 3, there exists a
standard triple {e1, h1, f1} of L ([h1, e1] = 2e1 , [h1, f1] = −2f1 and [e1, f1] = h1 )
such that h1 diagonalizes L as

L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2

with L2 = Fe1 and [h1, xi] = ixi for any xi ∈ Li , i = 0,±1,±2. Moreover B =⊕
i(B ∩ Li) since [h1, B] = [[e1, f1], B] ⊂ [[B,L], B] ⊂ B . Now, let us assume we

have found standard triples {ei, hi, fi}k
i=1 with ad-semisimple elements hi verifying

16



Fei = {x ∈ L | [hi, x] = 2x} ⊂ B and [hi, hj] = 0 for all i, j = 1, . . . , k . Note that

B is homogeneous for the simultaneous diagonalization of L relative to
∑k

i=1 Fhi .
If B is not spanned by {ei}k

i=1 , by the graded version of the Jacobson-Morosov
theorem [7, Prop. 5.2], we can find a standard triple {ek+1, hk+1, fk+1} of L , with
homogeneous elements ek+1 ∈ B \ ∑k

i=1 Fei and fk+1 and ad-semisimple hk+1 .
That implies that [hk+1, hj] = 0 for all j and then the process can follow.

When B is spanned by a set {ei}n
i=1 in the above conditions, take any

Cartan subalgebra H containing H ′ =
∑n

i=1 Fhi . Observe that Fei is a one-
dimensional homogeneous component of the simultaneous diagonalization of L
relative to H ′ , so that it must remain invariant by H , and thus B is H -invariant.
Besides B ∩H = 0, since ei /∈ H .

4.2. For H and B as in the above lemma, we denote by P := {α ∈ Φ |
Lα ⊂ B} the set of roots related to B . That B is an abelian inner ideal of L is
equivalent to the following conditions for P :

(i) (P + P ) ∩ (Φ ∪ {0}) = Ø

(ii) (P + ((P + Φ) ∩ Φ)) ∩ Φ ⊂ P

The length of the longest chain of nonempty subsets of Φ contained in P verifying
the conditions (i) and (ii) will be called the rank of P , and denoted by rank P .
The following theorems will show that the rank of P coincides with the length
of the longest chain of nonzero abelian inner ideals contained in B and that the
length of the longest chain of nonzero abelian inner ideals contained in L is l , the
rank of L as a Lie algebra.

If B 6= 0 (equivalently, P 6= Ø), P always contains long roots according to
the following lemma:

Lemma 4.2. If β ∈ P is a short root, then P contains any long root α ∈ Φ
such that (α, β) > 0. Moreover, ‖α‖2/‖β‖2 = 2 for any long root α ∈ Φ.

Proof. If α is a long root with (α, β) > 0, then 〈α, β〉 = 2, 3 by [9, §9]
and {α, α − β, α − 2β} ⊂ Φ, so α = β + (β + (α − 2β)) ∈ P , by (4.2)(ii). If
‖α‖2/‖β‖2 = 3, then α− 3β ∈ Φ, so α− β = β + (β + (α− 3β)) ∈ P by (4.2)(ii)
and hence α = β + (α− β) ∈ (P + P ) ∩ Φ = Ø by (4.2)(i), which is not possible.

Proposition 4.3. Suppose that there exist a basis ∆ = {α1, . . . , αl} of the root
system Φ relative to H and a permutation {i1, . . . , il} of {1, . . . , l} such that

B{i1,...,il}  B{i1,...,il−1}  · · ·  B{i1,...,ik}  B ⊂ B{i1,...,ik−1}.

Then

1. L±αik
⊕ · · · ⊕ L±αil

⊂ [B,L],

2. B = B{i1,...,ik−1} .
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Proof. Denote by α̃ =
∑l

i=1 niαi the maximal root relative to ∆. We proceed
by induction on n = l + 1 − k . The case n = 1, i.e., l = k , is left to the reader.
For the general case, applying the induction hypothesis to

B{i1,...,il}  B{i1,...,il−1}  · · ·  B{i1,...,ik+1}  B{i1,...,ik},

we get that L±αik+1
⊕ · · · ⊕ L±αil

⊂ [B{i1,...,ik}, L] ⊂ [B, L] .

Firstly, let us see that also L−αik
⊂ [B, L] , that is, that −αik ∈ P + Φ:

Take a maximal element β in P \ P{i1,...,ik} . Then β =
∑

kiαi with kij = nij if
j ≤ k − 1, kik 6= nik (ki ∈ [−ni, ni] for all i). Since β 6= α̃ , we can take s such
that β+αs ∈ Φ (necessarily s /∈ {i1, . . . , ik−1}). But if s ∈ {ik+1, . . . , il} we would
have αs ∈ P + Φ, β ∈ P and β + αs ∈ Φ, consequently (by (4.2)(ii)) β + αs ∈ P
and β +αs ∈ P \P{i1,...,ik} is Â β , a contradiction with the choice of β . Therefore
αs = αik and we have proved β + αik ∈ Φ. Then −αik = β + (−β−αik) ∈ P + Φ.

Secondly, let us show that B{i1,...,ik−1} ⊂ B , or equivalently, that every
γ ∈ P{i1,...,ik−1} satisfies γ ∈ P : For such γ ∈ P{i1,...,ik−1} we can choose indices
j1, . . . , js ∈ {1, . . . , l} such that γ+αj1+· · ·+αjs = α̃ and γ+αj1+· · ·+αjr ∈ Φ for
all r = 1, . . . , s . As the coordinates of γ corresponding to the indices i1, . . . , ik−1

are maximum, we have that {j1, . . . , js} ⊂ {ik, . . . , il} , and according to the
previous paragraph, −αj1 , . . . ,−αjs ∈ P + Φ. But α̃ ∈ P , so α̃ − αjs ∈ P
(taking into account that α̃− αjs ∈ Φ, −αjs ∈ P + Φ and (4.2)(ii)), and with the
same argument α̃− αjs − αjs−1 ∈ P and γ = α̃− αjs − · · · − αj1 ∈ P .

Finally, let us prove that αik also belongs to P +Φ: Take γ ∈ P \P{i1,...,ik} ,
and as before choose {j1, . . . , js} ⊂ {ik, . . . , il} ⊂ {1, . . . l} such that {γ, γ +
αj1 , . . . , γ + αj1 + · · · + αjs = α̃} ⊂ P . Since the ik ’th coordinate of γ is not ni ,
ik ∈ {j1, . . . , js} , and we have found γ′ ∈ P such that γ′ + αik ∈ P . In particular
αik = (γ′ + αik) + (−γ′) ∈ P + Φ, and this finishes our proof.

Theorem 4.4. Let B be a nonzero abelian inner ideal of a finite dimensional
simple Lie algebra L over an algebraically closed field of characteristic zero. Then
there exist a Cartan subalgebra H , a basis ∆ of the root system Φ relative to H ,
and a nonempty subset I ⊂ {1, . . . , l} such that B = BH,∆,I .

Proof. According to Lemma 4.1, we can take a Cartan subalgebra H of L
such that B =

⊕
α∈Φ Lα ∩B , where Φ denotes the root system relative to H . As

before let P = {α ∈ Φ | Lα ⊂ B} . Take an arbitrary basis ∆ = {α1, . . . , αl} of
Φ and let α̃ =

∑
niαi be the maximal root relative to ∆. We are going to prove

by induction on n = rank P that there exist {i1, . . . , in−1} ⊂ {1, . . . , l} and an
element σ in the Weyl group W of L such that

Ø  P{1,...,l}  P{1,...,l}\{i1}  · · ·  P{1,...,l}\{i1,i2,...,in−1} = σ(P ).

In such case, for any automorphism σ̂ ∈ aut L satisfying σ̂(H) = H and σ̂(Lα) =
Lσ(α) as in [9, §14], we get σ̂(B) = BH,∆,I for I = {1, . . . , l}\{i1, i2, . . . , in−1} and
hence B = BH,σ−1(∆),I .

We begin with the case n = 1. By Lemma 4.2 the set P contains some
long root. Since all the long roots are conjugate, there exists σ ∈ W such that
α̃ ∈ σ(P ), and so σ(P ) = P{1,...,l} .
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Suppose now that P has rank n > 1 and that n ≤ l . Take P ′ ⊂ P of rank
n− 1 satisfying (4.2)(i)-(ii). By the induction hypothesis there exist σ ∈ W and
{i1, . . . , in−2} such that Ø  P{1,...,l}  P{1,...,l}\{i1}  · · ·  P{1,...,l}\{i1,...,in−2} =
σ(P ′). Let us denote J = {1, . . . , l} \ {i1, . . . , in−2} . Consider the sets

K := {i ∈ {1, . . . , l} | ∃γ ∈ PJ such that γ − αi ∈ Φ},
G := gr〈{σαi

| i /∈ K ∩ J}〉 ≤ W

where if α ∈ Φ, σα is the reflection given by σα(γ) := γ − 〈γ, α〉α for every
γ ∈ Φ. Note that µ(PJ) ⊂ PJ for all µ ∈ G : if γ ∈ PJ and i /∈ J , then
σαi

(γ) = γ − 〈γ, αi〉αi ∈ PJ because σαi
does not move the coordinates of J ; and

if i ∈ J \K , γ − αi /∈ Φ by definition of K , and γ + αi /∈ Φ by definition of J ,
hence 〈γ, αi〉 = 0 and σαi

(γ) = γ ∈ PJ .

We will find µ ∈ G and i ∈ K ∩ J such that P{1,...,l}\{i1,...,in−2}  
P{1,...,l}\{i1,...,in−2,i} = µσ(P ): If σ(P ) \ PJ contains some long root, take β ∈
σ(P ) \ PJ a long root, otherwise take β ∈ σ(P ) \ PJ arbitrarily. Take a max-
imal element β̃ in {µ(β) | µ ∈ G} . Let µ ∈ G be such that µ(β) = β̃ . No-
tice that PJ ∪ {β̃} ⊂ µσ(P ). We claim that there exists i ∈ K ∩ J such that
β̃ + αi ∈ Φ. Otherwise, β̃ + αi /∈ Φ for all i ∈ K ∩ J , hence (β̃, αi) ≥ 0
for all i ∈ K ∩ J . Besides σαi

(β̃) � β̃ if i /∈ K ∩ J (by the maximal-
ity of β̃ ), so we also get (β̃, αi) ≥ 0 when i /∈ K ∩ J . This means that
β̃ ∈ {δ ∈ ∑

Rαi | (δ, αi) ≥ 0 ∀i = 1, . . . , l} =: C(∆), the closure of the fundamen-
tal Weyl chamber relative to ∆. Hence η(β̃) ≺ β̃ for all η ∈ W and β̃ is either
the maximal (long) root α̃ of ∆ (which is not possible since α̃ ∈ PJ but β̃ 6∈ PJ )
or the maximal short root of ∆ (in particular, β is a short root). According to our
choice of β (long if possible), µσ(P ) \ PJ does not contain long roots. Applying
now Lemma 4.2 to µσ(P ), 〈α̃, β̃〉 = 2 so that 2β̃ − α̃ is a long root belonging
to µσ(P ) \ PJ , which is a contradiction. Therefore, there exists i ∈ K ∩ J such
that β̃ + αi ∈ Φ. Since i ∈ K , there is γ ∈ PJ such that γ − αi ∈ Φ. Note that
γ−αi = γ+ β̃+(−β̃−αi) ∈ (µσ(P )+((µσ(P )+Φ)∩Φ))∩Φ ⊂ µσ(P ) by (4.2)(ii).
But γ−αi ∈ PJ\{i} \PJ , since i ∈ J . Consequently γ−αi ∈ (µσ(P )∩PJ\{i}) \PJ

and PJ  µσ(P ) ∩ PJ\{i} ⊂ PJ\{i} . By Proposition 4.3, µσ(P ) ∩ PJ\{i} = PJ\{i} ,
so that PJ\{i} ⊂ µσ(P ). Moreover, PJ  PJ\{i} ⊂ µσ(P ), and again by Proposi-
tion 4.3, µσ(P ) = PJ\{i} = P{1,...,l}\{i1,...,in−2,i} , as searched.

Finally let us see that it is not possible that rank P > l . Otherwise take
P ′  P verifying (4.2)(i)-(ii) with rank P ′ = l . We have already proved that there
is σ ∈ W and a permutation {i1, . . . , il} such that

{α̃} = P{1,...,l} = P{i1,...,il}  P{i1,...,il−1}  · · ·  P{i1} = σ(P ′)  σ(P ).

According to Proposition 4.3, ±αj ∈ σ(P ′) + Φ ⊂ σ(P ) + Φ if j 6= i1 . By taking
a maximal element β in σ(P ) \ P{i1} and s ∈ {1, . . . , l} such that β + αs ∈ Φ,
it is not difficult to check that s = i1 , so in particular −αi1 ∈ σ(P ) + Φ. Take
{j1, . . . , js} such that {β, β+αj1 = β+αi1 , . . . , β+αj1 + · · ·+αjs = α̃} ⊂ Φ. Since
α̃ ∈ σ(P ) and −αj ∈ σ(P ) + Φ for any j ∈ {1, . . . , l} , the above set of roots is
contained in σ(P ), β + αi1 ∈ σ(P ) and αi1 ∈ σ(P ) + Φ. From here, Φ+ ⊂ σ(P ).
This condition, jointly with (4.2)(i), would force Φ+ = σ(P ) = {α1} , but then
1 = rank P > l = 1, which is a contradiction.
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4.3. Remark: Theorem 4.4 provides an alternative proof to [7, Corollary 6.2]
when L is a finite dimensional Lie algebra over an algebraically closed field because
every nonzero abelian inner ideal B of L can be expressed as BH,∆,I for a certain
Cartan subalgebra H , a basis ∆ = {α1, . . . , αl} of the root system associated to
H and a nonempty set I ⊂ {1, . . . , l} , and we have already explained in 3.1 and
3.2 how any set of nonnegative integers (p1, . . . , pl) satisfying that pi = 0 if i /∈ I
induces a Z-grading on L = L−n ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln with n =

∑
nipi (where

ni are the coordinates of the maximal root) and B = Ln .

4.4. Remark: Note that, as a consequence of the previous sections, we have
proved that, for I and J nonempty subsets of {1, . . . , l} (H and ∆ fixed as before)
such that BI 6= BJ , then BI and BJ are nonconjugated by an inner automorphism
of L .

References

[1] Georgia Benkart, The Lie inner ideal structure of associative rings, J.
Algebra, 43(2) (1976), 561–584.

[2] Georgia Benkart, On inner ideals and ad-nilpotent elements of Lie alge-
bras, Trans. Amer. Math. Soc., 232 (1977), 61–81.

[3] Georgia Benkart and Antonio Fernández López, The Lie inner ideal struc-
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