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Abstract.  The inner ideals of the simple finite dimensional Lie algebras over
an algebraically closed field of characteristic 0 are classified up to conjugation
by automorphisms of the Lie algebra, and up to Jordan isomorphisms of their
corresponding subquotients (any proper inner ideal of such an algebra is abelian
and therefore it has a subquotient which is a simple Jordan pair). While the
description of the inner ideals of the Lie algebras of types A;, B;, C; and D,
can be obtained from the Lie inner ideal structure of the simple Artinian rings
and simple Artinian rings with involution, the description of the inner ideals of
the exceptional Lie algebras (types G2, Fy, Eg, E; and Ejg) remained open.
The method we use here to classify inner ideals is based on the relationship
between abelian inner ideals and Z-gradings, obtained in a recent paper of the
last three named authors with E. Neher, This reduces the question to deal with
root systems.
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Introduction

Let L be a Lie algebra over a ring of scalars ®. A ®-submodule B of
L is an inner ideal if [B,[B,L]] C B, and B is abelian if [B,B] = 0. The
initial motivation to study inner ideals in Lie algebras was due to the fact that
inner ideals are closely related to ad-nilpotent elements, and certain restrictions
of these elements yield an elementary criterion for distinguishing the nonclassical
from classical (finite dimensional) simple Lie algebras over an algebraically closed
field of characteristic greater than 5 [2].

*The first author was partially supported by the MEC and Fondos FEDER, MTM2007-60333,
by the MICINN and Fondos FEDER, MTM2010-15223, and by the Junta de Andalucfa FQM336,
FQM1215 and FQM2467. The second author was partially supported by the MEC and Fondos
FEDER, MTM2007-61978, and by the MICINN and Fondos FEDER, MTM2010-19482. The
third author was partially supported by the MEC and Fondos FEDER, MTM2007-61978, by the
MICINN and Fondos FEDER, MTM2010-16153, and by the Junta de Andalucfa FQM264. The
last author was partially supported by the MEC and Fondos FEDER, MTM2007-61978, by the
MICINN and Fondos FEDER, MTM2010-19482, and by the Junta de Andalucia FQM264 and
FQM3737.

ISSN 0949-5932 / $2.50 (© Heldermann Verlag



908 DRAPER, FERNANDEZ, GARCIA, AND GOMEZ

Abelian inner ideals and their associated notions of kernel and subquotient
became a key notion to develop a socle theory for nondegenerate Lie algebras [5],
and were used in [7] to construct gradings of Lie algebras: it requires the existence
of abelian inner ideals whose subquotient is a Jordan pair covered by a finite grid,
and this produces a grading of the Lie algebra by the weight lattice of the root
system associated to the covering grid.

In [1}, G. Benkart examined the Lie inner ideal structure of semiprime
associative rings, and of the skew elements of prime rings with involution. An
extension of these results was carried out by the last three named authors in [6],
where the inner ideals of infinite dimensional finitary simple Lie algebras were
described. However, in both of these works, a type of inner ideals, the so-called
point spaces, was omitted. This description has been recently completed by G.
Benkart and A. Ferndndez Lépez in [3].

In this paper we adopt a different approach to determine the inner ideals
of the simple finite-dimensional Lie algebras over an algebraically closed field F
of characteristic 0 based on the connection between abelian inner ideals and Z-
gradings mentioned above. For any proper inner ideal B of such an algebra L there
exists a finite Z-grading L = L_,®---®L_1@Ly®L,®---® L, with B = L,,, also
called the extreme of the grading. As the Z-gradings are always compatible with a
root decomposition, B can be expressed as sum of root spaces. More precisely, any
Z-grading is the diagonalization relative to ady, for a semisimple element A in a
Cartan subalgebra such that the coordinates relative to a basis of the root system
o;(h) are nonnegative integers, and in such case the extreme is determined by the
indices 7 such that a;(h) # 0. This provides us an easy procedure to determine
the inner ideals, which produces a classification (called the Lie classification) of the
inner ideals of L up to conjugation by automorphisms of L. On the other hand,
the subquotient of any proper (equivalently, abelian) inner ideal of L is a classical
Jordan pair (7). This yields another classification (the Jordan classification) of the
proper inner ideals of L up to Jordan pair isomorphisms of their subquotients.
It must be noted that while two abelian inner ideals which are conjugate by an
automorphism of L have necessarily isomorphic subquotients, the converse is not
true, so the Lie classification is finer than the Jordan onc.

Finally, by using methods of classical theory of Lie algebras, we give in the
appendix an alternative proof to the fact that every abelian inner ideal coincides
with the extreme of a finite Z-grading.

1. Lie algebras and Jordan pairs

1.1.  Throughout this paper we will deal with finite dimensional Lie algebras L
[9], [10], with [z,3] denoting the Lie bracket and ad, the adjoint map determined
by z, and finite dimensional Jordan pairs V = (V*+,V~) [11], with Jordan
products @,y and linearizations {z,y,z2} := Q,.y, for 2,2 € Vo, y € V7,
o = %, over an algebraically closed field F of characteristic zero.

1.2.  An inner ideal of a Jordan pair V is an F-subspace B of V° such that
{B,V=°,B} C B. We say that two inner ideals B and B’ of V are conjugate
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if there exists an automorphism of V' sending B to B’. An F-subspace B of a
Lie algebra L is an inner ideal if [B,[B, L]] C B, and B is abelian if [B, B] = 0.
Two inner ideals B and B’ of a Lie algebra L are conjugate if there exists an
automorphism ¢ of L such that ¢(B) = B’.

1.3. Let B C V* be an inner ideal of V. The kernel of B is the set Kery B =
{zr € V7 | @z = 0}. Then (0,Kery B) is an ideal of the Jordan pair (B,V ™)
and the quotient Suby B = (B,V~)/(0,Kery B) = (B,V~/Kery B) is called the
subquotient of B [12]. The kernel and the corresponding subquotient of an inner
ideal B ¢ V~ are defined similarly.

Let V and V' be two Jordan pairs over F', and let B and B’ be inner
ideals of V' and V”’ respectively. We say that B is isomorphic to B’ if Suby B =
Subys B'.

The analogous versions of all these results hold for abelian inner ideals of
a Lie algebra, if we replace the Jordan triple product {z,y, 2} by the left double
commutator [[z,y],z]: Any abelian inner ideal B of a Lie algebra L gives rise to
a Jordan pair, which is called the subquotient of B in L [7]; the kernel of B
is the set Ker, B = {z € L | [B,[B,z]] = 0}, and the pair of F-vector spaces
Suby B = (B, L/ Ker, B) with the triple products given by

{b,Z,b'} : = [[b,z],b]] forevery b,b’ € Band z € L,
{z,0,7} : = {[z,b],y] foreverybe Bandz,y € L,

where @ denotes the coset of a relative to the subspace Kery B, is a Jordan pair
called the subgquotient of B. Due to this notion, we can define a new relation
between inner ideals of Lie algebras: if B and B’ are abelian inner ideals of
Lie algebras L and L' respectively, then B and B’ are said to be isomorphic
if Suby, B = Suby, B’ as Jordan pairs. In the particular case of a simple finite
dimensional Lie algebra, every proper inner ideal is abelian [2, 1.13], so it makes
sense to associate a Jordan pair Suby, B to any proper inner ideal B of L. Notice
that in this case such a subquotient Sub; B is always a simple Jordan pair,
according to {7, 3.5(vi)].

It turns out that an F-subspace C of B is an inner ideal of L if and only
if it is an inner ideal of Sub, B [7, 3.5(i)).

1.4. An important class of inner ideals of Jordan pairs and Lie algebras are
the so called point spaces. For a Jordan pair V = (V*,V ™), a subspace P of
V7, 0 = &, is called a point space if Q.V~° = Fzx for any nonzero r € P.
A subspace P of a Lie algebra L is called a point space if [P, P] = 0 and every
nonzero element z € P is extremal, i.e., ad2 L = Fz. If P is a point space of L,
then P is an abelian inner ideal, P is a point space of the Jordan pair Sub; P,
and any subspace @ of P is also a point space. All point spaces of the same
dimension are isomorphic [3, 4.6].

1.5.  As a general rule, we will use the same symbol to denote inner ideals of
Jordan pairs and abelian inner ideals of Lie algebras which belong to the same
class of isomorphy. Thus, P, will denote a point space (both of a Jordan pair
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or a Lie algebra) of dimension r over F. When required, we will use accents to
distinguish between inner ideals which are isomorphic but not conjugate.

2. The inner ideal structure of the classical Jordan pairs revisited

By a classical Jordan pair we mean a finite-dimensional simple Jordan pair over
an algebraically closed field F'. In this section we review the classification of the
inner ideals of the classical Jordan pairs over F'. By {11, 17.4], any classical Jordan
pair is isomorphic to one of the following:

(I) The Jordan pair Mpxq == (Mpxq(F), Mgxp(F)), Qzy = zyx, of pXq and gxp
matrices with entries in F, and where p < q. The nonzero inner ideals of My,
contained in M,.,(F) are, up to conjugation, of the form

1<5<s
M.y, = Z Flij], with r <p,s<gq, and r <s

1<i<r
where [ij] denotes the (4,7)-matrix unit. Moreover, the subquotient of M,xs is
isomorphic to M,,. This can be obtained from the classification of inner ideals
in Jordan pairs covered by grids [14, 3.2], or from the geometric description of
the inner ideals of Jordan pairs of finite rank continuous operators [8, Prop. 2.4].
Note that for each positive integer r, M)y, is a point space of dimension 7, so,
according to our notation criterion above, Sub P, = M.

(I) The Jordan pair K, := (K.(F), K,(F)), Q:y = —zyz, of skew-symmetric
n X n matrices with entries in F (n > 4). It follows from [14, 3.2(e)] that K,
contains two types of nonzero inner ideals up to conjugation:

(i) K, = eKn(F)e,, for 2 < s < n, where e, = [11] + --- + [s5], with
subquotient K, and

(ii) the point spaces P. = Z;Z; F(15] = [j1]) for 1 <r<n-—1.

Note that K, is a point space if and only if s <3 (K. = P1).

(1) The Jordan pair S, = (Sp(F), Sn(F)), Qy = zyx, of symmetric n x n
matrices with entries in F (n > 2). By [14, 3.2(c)] or [13, Theorem 3], every
nonzero inner ideal of S, is (up to conjugation) of the form S, := e.S.(F)e,, for
1 <r <n, where e, = [11] + - -+ + [rr], with subquotient S,.

(IV) The Clifford Jordan pair Qn = (X, X), Q:y = q(z,y)z — q(z)y, defined by
a nondegenerate quadratic form q on an n-dimensional vector space X over F.
By [13, Theorem 6], the inner ideals of Q, are @, := X (with subquotient Q)
and the totally isotropic subspaces of X. Hence, if n =2m or n =2m +1, Q,
contains a maximal point space of dimension m. Moreover, by Witt’s Theorem,
two inner ideals of @, are conjugate if and only if they have the same dimension.

(V) The Albert pair A := (H5(C), H3(C)), defined by the exceptional Jordan algebra
H3(C) over F. By [13, Main Theorem|, \A contains two maximal (proper) inner
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ideals up to conjugation: the 6-dimensional point space Ps = F[11] + eC[12] +
Fe[13], where ¢ is a primitive idempotent of the Cayley algebra C (see also [13,
p. 457]) and the Peirce-2-space determined by the Jordan algebra idempotent
e = [11] + [22], i.e, QeH3(C). Since Q.H3(C) is a 10-dimensional simple Jordan
algebra of capacity 2 over F, it is the Jordan algebra defined by a nondegenerate
quadratic form on a 10-dimensional vector space over F, so Suby Q.H3(C) =
O10, and so we can put Qo = Q.H3(C) according to our notation criterion 1.5.
Moreover, A contains two 5-dimensional point spaces which are not conjugate:
Py = F[11] 4 €C[12] € PsN Q10 and P4 = F[11] +C[12]€ C @10, which is also a
maximal point space.

(VI) The Bi-Cayley pair B := (Mix2(C), M2x1(C)), Qab = (ab)a, where C is the
Cayley algebra over F. The inner ideals of B are, up to conjugation, Mixs(C),
C[11], and the linear spans of the +-parts of the families of collinear idempotents,
following [14, 3.2] and the notations therein. In fact, the subquotient of C[11]
is isomorphic to Qg and the inner ideals determined by the families of collinear
idempotents are the point spaces of B [14, 3.3(1)]. By [L1, 12.10], B is isomorphic
to the Peirce-1-space of the Albert pair A with respect to the idempotent e; = [11],
hence the families of collinear idempotents of B are those of A contained in the
Peirce-1-space with respect to e;, so we can apply the results obtained for the
Albert pair to get the point spaces of the Bi-Cayley pair. Thus B contains a
maximal point space of dimension 5 (the one obtained by eliminating the [11]-
part of the inner ideal Fg of the Albert pair), and two point spaces of dimension 4
which are not conjugate (those obtained by eliminating the [11])-part of the inner
ideals Ps and P. of the Albert pair.)

3. The inner ideal structure of simple Lie algebras over algebraically
closed fields of characteristic zero.

In this section we determine the inner ideal structure of the simple Lie algebras
over algebraically closed fields of characteristic zero, both from the Lie and Jordan
point of view.

3.1. Z-gradings.
A Z-grading of a Lie algebra L is a decomposition in vector subspaces

L= é}Li, L_,+L,#0,

i=—n

such that. [L;, L;] C Liy; for all 4,7, with the understanding that Liy; =0 if
i + j| > n. This is called a (2n + 1)-grading, and it is said that L is (2n +1)-
graded.

A standard example of a Lie algebra with a 3-grading is that given by the
TKK-algebra of a Jordan pair: For any Jordan pair V, there exists a Lie algebra
with a 3-grading TKK(V) = L_; @ Lo ® Ly, the Tits-Kantor-Koecher algebra of
V, uniquely determined by the following conditions, cf. (15, 1.5(6)):

(TKK1) The associated Jordan pair (L;, L) is isomorphic to V.
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(TKK2) [Li,L_1] = Lo.

(TKK3) [zo, L1 ® L_1} = 0 implies zo = 0, for any xo € Lo-

In general, by a TKK-algebra we mean a Lie algebra of the form TKK(V') for some
Jordan pair V.

Recall some basic facts about gradings. If we have a Z-grading L =
L.®---®L,, themap D: L — L such that D(z) = kx for any = € L,
k = —n,...,n, is a derivation of L. As any derivation is inner, D = ads
for some semisimple h which belongs to a Cartan subalgebra H of L. Let
L = H® (.o La) be the root decomposition of L relative to H. Note that
a(h) € Z for any root «, because ady, gives rise to the Z-grading above. Take a
basis A = {a1,...,} of the associated root system, and for each i = 1,...,1,
define h; € H by a;(h;) = &;. As {h1,...,l} isabasisof H and h = 3 a;(h)hs,
there exist nonnegative integers (p1,...,p;) such that h = > p;h;. The root space
Lq, for o = 3" m;0;, is contained in the homogeneous component Ly~ m,p, of the
Z-grading of L, and the Cartan subalgebra H is contained in Lo. In particular, the
Z-gradings of L are in correspondence with the labels (pi,...,p;) of nonnegative
integers. Moreover, two Z-gradings can be taken into one another by an outer
automorphism if and only if the corresponding sets of labels can be taken into one
another by an automorphism of the Dynkin diagram, [16].

3.2. Inner ideals and Z-gradings.

The Z-gradings are closely related to abelian inner ideals: For any Z-grading
L=o_,L;, L, and L_, (also called the ertremes of the grading) are abelian
inner ideals of L. Conversely, every abelian inner ideal whose subquotient is
covered by a finite grid produces a grading of the Lie algebra by the weight
lattice of the root system associated to the covering grid [7, 6.1]. As L is a finite
dimensional simple Lie algebra, every proper inner ideal B of L is abelian and
its associated subquotient is covered by a finite grid, so it gives rise to a grading
L=L_,.® - ®Ly® - @ L, for which B = L,. In the appendix, we prove that
every abelian inner ideal is the extreme of a Z-grading by using Lie techniques,
that is, a proof independent of that of [7, 6.1].
Suppose we have a Z-grading of L,

L.®&  -@Ly® - --®L,

determined by (py,...,p:) € N, as in 3.1. The extremes of this grading are easy
to determine: If we denote by & = Zi=1 n;a; the maximal root relative to A, the
root space associated to the maximal root L is contained in the extreme L, , and
n = Y ngp;. Now note that for any root a = Y m;a; € ®, the root spacc Lo is
contained in L, if and only if 3 m;p; = 3 n;p;; that is, if and only if m; = n;
for all j such that p; # 0. Therefore, denoting by I = {j € {1,...,1} | p; # 0},
we have that L, = B; for

B, = @{La | o = Z m;o; with m; =n; for all]EI}

a€d 1<i<i

To summarize, for H and A as above,
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Theorem 3.1.  Let B be a nonzero abelian inner ideal of a simple Lie algebra
L over an algebraically closed field of characteristic zero. Then there is a subset
Ic{1,...,1} and an inner automorphism ¢ such that ¢(B) = B;.

A straightforward observation is that, for I C J, the abelian inner ideal
B; C B;. In particular, the maximal abelian inner ideals are conjugate to By
for some i € {1,...,1}, although not conversely. Another interesting fact is that
every chain of abelian inner ideals of L has length not greater than [. Moreover
there is always a chain of abelian inner ideals of L with length just {. This is clear
by recalling that for each o € ®+\ A thereis i € {1,...,1} such that o —o; € ®.

3.3.  For each simple finite-dimensional Lie algebra L over an algebraically
closed ficld of characteristic cero, we classify its abelian (equivalently, proper)
inner ideals: up to conjugation (Lie classification) and up to isomorphism (Jordan
classification).

- The Lie classification. We will apply the method described in 3.2 to find
the abelian inner ideals of L. After choosing a Cartan subalgebra and a
basis of the related root system, each inner ideal will be conjugate to B
for some nonempty subset I C {1,2,---,l}. Further conjugations will be
obtained by means of diagram automorphisms and some special cases will
be dealt separately using techniques related to eigenvalues and traces of ad-
semisimple elements.

- The Jordan classification. To determine the subquotient of an abelian inner
ideal B of L, we compare the lattice of the inner ideals of L contained in B
(provided by the Lie classification) with the lattices of the inner ideals of the
classical Jordan pairs (cf. Section 2). While in most cases this information is
enough to determine Suby, B, in others, as those of the Lie algebras of type
E; and Ej, additional information about the inner ideal structure of L, as
the eventual existence of outer automorphisms, is required.

3.4.  The tnner ideal structure of An, n > 1.
The Lie classification of the inner ideals of A,. Choose the set of positive roots
of A, described in [4, Planche I (II)], that is,
Pt ={ar+arp+-+a, |1 <r<s<n},

whose maximal root is & = a1 + -+ + @,. Following the process described in
3.2, take the nonzero abelian inner ideals B; for I ¢ {1,...,n}. Note that for
k=minl and j = (maxI) — k, B; = B, x+j}, which coincides with the sum of
the root spaces for the following roots

{fortorp+ o dag+--tapyj+ota, |[1<r<k<k+j<s<n},
which is a set of cardinal k(n+1 -k — j).

Recall also that By, x4} is conjugate to Bi{nt+1-k-j...n+1-k} » because there
is a diagram automorphism interchanging the nodes s and n+1~s in the Dynkin
diagram of A,. Hence any abelian inner ideal of A, is conjugate to one of the
By’s in the following diagram:
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~ A, ’
/

The Jordan classification of the inner ideals of A,. As above, every nonzero
abelian inner ideal of A, has the form By 44j3 for 1 < k < [(n+1)/2] and
J <n—2k+1, whose dimension is k(n + 1 — k — j). The subquotient associated
to each abelian inner ideal Bik,..k+j) of A, is a classical Jordan pair, hence, by
comparing the dimensions of these abelian inner ideals with the dimensions of the
inner ideals of the classical simple Jordan pairs, we conclude that the subquotient
of Bx,..k+;) is a Jordan pair of type Mix(n+1-k—-j). In particular, the inner ideals
in the set {B .. r4sy | 1 <k < [(n+1)/2], 5 < n—2k+ 1} are not isomorphic
and therefore not conjugate, so we can assure the previous diagram covers the

abelian inner ideals of A, up to conjugation. We get the following diagram of
subquotients of A,:

This information about inner ideals and subquotients, together with their
corresponding TKK-algebras, is collected in the next table, 1 < k < [(n+ 1)/2]:

| Abelian inner ideals dimension | subquotients | TKK algebras |
Bx) k(n —k+1) Mix(n—k+1) An
Bk p+1) k(n — k) M (n-k) Any
Blk....k+5) k(n+1~k—3) | Mixmi1-k—3 Anj
Bik,..n—k+1) k* Mk Agi_1

3.5.  The inner ideal structure of B,, n > 2.

The Lie classification of the inner ideals of B, . Consider the set of positive roots
of B, given in [4, Planche II (II)], that is,
Pt ={or+om1+ - +a, |1 <r<s<nlu
U{ar + arg1+ -+ gy + 20+ + 20, | 1 <r<t<n},
whose maximal root is & = a; + 20 - - - + 20, . Following the process described in
3.2, take the nonzero abelian inner ideals By for I C {1,...,n}.
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- If I = {1}, the roots related to By are those a = > m;a; with m; = 1, that
is By @ {aa+--+a, |1 <s<n}U{on+ -+ a1+ 20+ + 20 |
1 < t < n} (identifying B; with the related roots), of dimension 2n — 1.

- If I D {1}, take s = min{I \ {1}), and then B; = Bp,,.n} =
{ar+- + a1+ 2+ -+ 20, |1 <t < s <n},
that is, the roots verifying m; = 1 and m, = 2. It has dimension s — 1.

.....

{ar+ - Fa1+20+-+20 |1 <k<t <1},
that is, the roots verifying m, = 2. It has dimension (}). Note that
B{s,.ny = By,....n}» SO We can consider r > 3.

It is also worth noting that for n > 4 the inner ideals Bys,..n} and B{14,..n}
are 3-dimensional point spaces, which are not conjugate under any automorphism
of B,. In fact, for n > 4, By, .. ») is a maximal point space, while By 4,.n} 18
contained in the 4-dimensional point space By, ) [3, Corollary 5.15].

However, for n = 4, both B34 and By 4 are maximal point spaces,
although yet they are not conjugate. In fact, while By 4 is the extreme of a 7-
grading of L = By (the one given by the label (1,0,0,1)), B(s4) cannot be extreme
of any 7-grading of L. Suppose on the contrary that Bys4; = L3 for a 7-grading of
L,and let s € L be an ad-semisimple element such that L, = {z € L : [s, z] = nx}
for n = £3,£2,+1,0. If L = H ® (,co Lo) is the root decomposition of L
relative to H (our fixed Cartan subalgebra), of course s ¢ H, since the grading
would correspond to a label (0,0,ps,ps) but 2(ps + ps) # 3. To eliminate the
possibility s = h+ Y ,coWa, h € H and w, € Lo not all of them zero,
consider U the sum of the root spaces related to the roots oy + 20 + 2a3 + 204,
a; + az + 203 + 204, Qg + 203 + 204, 0y + 0 + a3 + 204, 0 + g+ a3+ aq and
o1 +as+0a3. By using that w, vanishes if a+vy € ® for some v € B4}, and that
2(ag 4+ 04)(h) = 3, it is routine to show that U is invariant under ads, and that
the trace of the restriction of ad, to U is non-integer, which is a contradiction.
Therefore, any abelian inner ideal of B, is conjugate to one (and only one) of the
By’s in the following diagram:

o B
B(1 A
B(1,m.i€)~\
‘.“.
BH.S n}

The Jordan classification of the inner ideals of B,. The inner ideal structure of
the classical Jordan pairs given in Section 2, together with the dimensions of the
inner ideals of the Lie classification above, allow us to determine the subquotients
of the abelian inner ideals of B,. We get

- The subquotient of the abelian inner ideal Byyy is isomorphic to Qgpn-1.
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- The subquotient of an abelian inner ideal of the form Byr....n} s isomorphic
to K,.

- The subquotient of an abelian inner ideal of the form By1s,...n} 1s isomorphic
to Mix(s-1y-

.....

and therefore give rise to the same subquotient.

Therefore, the diagram of subquotients of B, is:

Qant X,
Myt Kot
M, (2], KCs
My 2
My
M
My

This information about inner ideals and subquotients, together with their corre-
sponding TKK-algebras, is collected in the next table, for 3 <r < n,2<s<n:

Abelian inner ideals | dimension || subquotients | TKK algebras |
By 2n—1 Qon-1 B,
Bir...n) (2) K, D,
B{l,s,...,n} s—1 Mixs_1 As_y

3.6.  The inner ideal structure of C,, n > 3.

The Lie classification of the inner ideals of C,. Consider the set of positive roots
for Cp, of [4, Planche III (II)] given by &+ = {a;++ -+ ai_1+20;++ - -+20n_1 + 0 |
l<ji<i<npU{oy+- -4+ |1<j<i<n—1}, whose maximal root is
=20 +--+2an.1+a,. For I C{1,...,n}, take 7 = minJ and observe that
By :B{r,...,n} = {aj+"'+ai—1+2ai+"’+2an—1+an | 1 S] <1 Sr}a with
dimension ("}'). Therefore any nonzero abelian inner ideal of C, is conjugated
to one of the B;’s in the following diagram:

Moreover, this is the diagram up to conjugation, since all the dimensions are
different.
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The Jordan classification of the inner ideals of C,,. Since the subquotient of each
Byr,...ny is a classical Jordan pair V' whose inner ideals coincide with the abelian
inner ideals of C, contained in By, n}, V is isomorphic to a Jordan pair S, of
symmetric 7 x 7 matrices over F'. Thus the subquotients of C,, are:

This information about inner ideals and subquotients, together with their
corresponding TKK-algebras, is collected in the next table, for 1 < r < n,

| Abelian inner ideals | dimension [| subquotients | TKK algebras |

L Bl L &) [ s [ & |

3.7.  The inner ideal structure of D,, n > 4.
The Lie classification of the inner ideals of D,. Consider the set of n? —n positive
roots of D, given in [4, V1.§4.8, Planche IV (II})], that is, &+ =

{Oli—i----+aj_1+2aj+"'+201n—2+an—1+O‘nli<j<n"1}
U {ai++oy|i<j<n—-1}
U {ait+-+a,|i<n—2}
U {an}

U {ai++anato,|i<n—2},

whose maximal root is & = ay+2ag + - + +20tn—2 + @5 -1 + . Following the process
described in 3.2, take the nonzero abelian inner ideals By for I C {1,...,n}:

- If I = {1}, the related roots are By = {oy+- - +2a5+- - -+ 20n2+an_1+
o |l<j<n-1}U{ag+---+ao;|1<j<n}U{og+ 4 an2+enl,
of dimension 2n — 2. -

- If I D {1}, take s = min(J \ {1}). If s <n -1, then By = By,
Biis..my E{on+-+2a;+ -+ 2an-2+an-1+an | 1 < j < s}, which has
dimension s—1. Moreover, B n-1y = {1 +- - -+205+ - +20n—_g2Fan-1+a |
l<j<n-1}U{o1+ -+ an-1,01 + -+ + ap-1 + an }, with dimension
n—1; Buay € {og+ -+ 20+ + 20 tapg+a, [1 <J<
n—1}U{a1+-- -+ an_2+an, 01+ + an_1 + @, }, with dimension n —1;
and B{l,n—-l,n} = {al + e+ 2aj + -+ 2040 + Op1 + l 1 < _] <
n—1}U{a;+ -+ an_y + @y}, with dimension n — 2.

-If 1 ¢ I, take r = minJ. If r < n — 1, then By = By, .}, and
Bg,.ny E{ai+ - +2a;+ -+ 20n-2+ a1 +an | i < j <1}, which has
dimension (}). Moreover, Bpp-1} = {@; +-+-+ 20 + ++ + 203 + Qpy +
Qny Op - F 0oy, O+ Fapto, li<j<n-1,7<n-1,s<n-2}
has dimension (3); Bny = {0+ -+ + 20 4 -+ + 202 + Qg + O, @ +
coebQp, Qg FQpoatom,on |1 < j<n—1, 7 s <n—2} has dimension
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(5);and Bipiny = {ai+- - +205+ -+ 20n2+an 1+ 0, 0r -+ 0 |

i<j<n-—1,r <n-—2} has dimension (";1).
Hence any abelian inner ideal of D, is conjugate to one of the B;’s in the following
list: {Bp}, Bin-1}» Bin}» Biin}» Bim-1}1 Bltn—1n}s Binc1n}s Bis,..n} B,y |
2 <rs <n-—2}. We can consider 7 > 3 because B{s,. . .n} = Bpi,.ny = {é}.
Furthermore, note that we can fold the diagram by means of the order two outer
automorphism which interchanges the nodes n — 1 and n, so any abelian inner
ideal is conjugate to one of the next diagram:

Bm B(n) = B(n_“

‘§(n-1 .n}

B(1,n)E B(1.n-1

By et o,

Besides, in the case n = 4 there is an order three automorphism mapping
Lq, to Loy, and Lq, to L,,, so in this case not only Bysy and B4 are conjugate,
but also By}, and the diagram becomes

B(1.2.3.4)

The Jordan classification of the inner ideals of D,,. Again we can use the informa-
tion on the inner ideal structure of the classical Jordan pairs provided in Section 2
to compute the subquotients of the abelian inner ideals of D,,. We obtain:

- The subquotient of the abelian inner ideal By is isomorphic to Qzn—2.

- The subquotient of an abelian inner ideal of the form By, n} is isomorphic
to K,.

- The subquotient of an abelian inner ideal of the form By, ..} is isomorphic
to Mlx( s=1) -

Hence, for n > 4, the inner ideals of the diagram above are not isomorphic,
up to Byia,.n} and Bis,.. .} which are isomorphic (both are point spaces of the
same dimension), but not conjugate: Bis, .} is & maximal point space, but
B{14,..n} is contained in the 4-dimensional point space Biis,..n}, [3, Corollary
5.15]. Therefore, the diagram of subquotients of D, is
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QZn-Z Kn
Mu(m K:n 1
M i) " Ks
M2 2
M 1x3
Mo
M 1x1

(For n = 4, the inner ideals By;) and By are conjugate in Dy, so they yield
isomorphic subquotients. This fact also follows from the Jordan theory: the Jordan
pairs Qg and X4 are isomorphic [11, 17.11 (V)].)

All this information is collected in the next table, for 3<r <n, 2<s <n,

| Abelian inner ideals | dimension || subquotients | TKK algebras |

By 2n — 2 Qan—2 D,
B{_r,...,n} (;) }Cr DT
B{l,s,...,n} s—1 Mlx(s—-l) As—l

3.8.  The inner ideal structure of Es.

We choose the system of positive roots for Fg given in [4, Planche V (II)], with
maximal root a; + 20 + 203 + 304 + 205 + 2. Following the process described
in 3.2, every nonzero abelian inner ideal of Eg is conjugate to one in the next
diagram:

B(1 .3,5,8)

B(1 3,456}

B(1 12,3,4,5,6}

By folding the Dynkin diagram we get that Bye is conjugate to By, as well
as Bisgy to By, and Bise to Bise. The remaining cases correspond to
not conjugate inner ideals because the dimensions are different. Therefore we
conclude that the nonzero abelian inner ideals of Fg up to conjugation and their
corresponding subquotients are:
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B(1.3) Qs Mus

Biiag Mg

B(\,a.s,a) M1,3
B

113.4.58) Mz
B(1 2,3,4,5.8) M 1
The Lie classification The Jordan classification

It is worth noting that the order two outer automorphism of Eg connect-
ing the inner ideals By;y and Byg) yields two conjugate copies of the inner ideal
structure of the Bi-Cayley pair B within Eg. This explains the apparently contra-
dictory fact that while in B there are two 4-dimensional point spaces which are
not conjugate, in Eg there is a unique 4-dimensional inner ideal up to conjugation.

The information about the inner ideals of Eg and of their subquotients,
together with their corresponding TKK-algebras, is collected in the next table:

| Abelian inner ideals | dimension [ subquotients | TKK algebras

B 16 B Ee

Bii6) 8 Qg Dy

B{l,s} 3 Mixs As

B{136) 4 Mixy Ay
B(135.6) 3 Mixs Az
B134,56) 2 My A
B(1,2.3.4,5.6) 1 Mixi Ay

3.9.  The inner ideal structure of E;.

We choose the system of positive roots for E; given in [4, Planche VI (II)].
Following the process described in 3.2 and 3.3, the nonzero abelian inner ideals of
E7 (up to conjugation), and their associated subquotients are:

A
M3
M\M<>Qm
Mius
B(2.5.5.7) Mh(d
Baasen My
B(2.3,4.5.o.7) My
B(1.2,3.4.5.6.7) M1x1
The Lie classification The Jordan classification

Notice that the 5-dimensional inner ideals Bys67 and Bs67y are not
conjugate since Bys7) is the extreme of a 7-grading of L, while Byy67) cannot
be expressed as L3 for a 7-grading L3 @ - - ® Lo ® --- @ L. If fact, if this
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was the case, this grading would be induced by an ad-semisimple element s =
h+Y we, h € H and w, € L, for all @ € ® such.that (e + Bpagny) NP = 0,
relative to the root space decomposition L = H @& (@P,ece La). Then the 5-
dimensional invariant subspace of L generated by the root space corresponding
to oy + az + 2a3 + 3ay + 3as + 2as + a7 would have an eigenvalue of the form
3 — ag(h), for ag(h) € {1,...,6}, while the 7-dimensional invariant subspace of L
generated by the root a; + 202 +2a3 + 3a4 + 2a5 + ag would have two eigenvalues
with value at most 2 whose sum would be 34-2a,(h), a contradiction. Nevertheless,
both Byse7 and Byser yield the same subquotient, Miys, as point spaces of
the same dimension 1.4.

This information about the inner ideals of E; and of their subquotients,
together with their corresponding TKK-algebras, is collected in the next table:

[ Abelian inner ideals | dimension || subquotients | TKK algebras |

B 27 A 2
By 7 Mixr Ay
Bsn) 10 Q1o Ds
By my 6 Mixe Ag
Bya6,7) 3 Mixs As
Bis6.7)
Bias6,1) 4 Mixq Ay
Basen 3 Mixs Az
Bi23.456.7) 2 Mixz Ay
B1,2,3.4,56,7) 1 Mix1 A,

3.10.  The inner ideal structure of Ej.

We choose the system of positive roots for Eg given in [4, Planche VII (II)].
Following the process described in3.2 and 3.3, the nonzero abelian inner ideals of
Eg (up to conjugation), together with their associated subquotients are:

1 T Qu\/Mns
Bir.a Bu.g Mu
{1.2.3} M1x6
Bu2aa Mis
Bl12345 My
B(1.2.3.4.5.6) M1x3
B(1.2.3.4.5.G,T) M1x2
Bi23as678) Mo
The Lie classification The Jordan classification

The inner ideals By and By are not conjugate. In fact, Byjz; can
be expressed as the extreme of a 11-grading, but if this were the case for By},
this last grading would be induced by an ad-semisimple element s = A + > w,,
h € H and w, € L, for all a € @, relative to the root space decomposition
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L = H& (D,.0La). Consider the invariant 8-dimensional subspace U of L
generated by the root space related to 2a; +3ag + 303 + 5ay +4as + 3ag + 207+ 0g .
The trace of ad s restricted to U would be 30+ 15/2 and this is not possible since
ad s is semisimple with eigenvalues 0, +1,42, +3, £4,4+5. However, both B(; g}
and By 3) yield the same subquotient, M 7.

This information about inner ideals and subquotients, together with their
corresponding TKK-algebras, is collected in the next table:

| Abelian inner ideals | dimension || subquotients | TKK algebras |

By 14 Q4 Dg
By 8 Mixs Ag
B9 7 Mixq A7
B
Byi23) 6 Mixs Ag
B{1,23,4) 3 Mys As
B{1.23.45) 4 Mixy Ay
B{1,2.3.4,56) 3 Mixs Az
B(123456.7) 2 Mixe Ay
B{12345.6.78} 1 My Ay

3.11.  The inner ideal structure of Fy.

We choose the system of positive roots for Fy described in [4, Planche VIII (IT)].
Following the process described in 3.2, the nonzero abelian inner ideals of Fy, up
to conjugation, jointly with their associated subquotients are:

B <
8(3‘4) M 1%3
B(2.3.4) Ml x2
Bn 2,34} Mix

The Lie classification

The Jordan classification

This information about inner ideals and subquotients, together with their

corresponding TKK-algebras, is collected in the next table:

3.12,

Abelian inner ideals | dimension || subquotients | TKK algebras
B{4} 7 Q7 B4
B34 3 Miys Az
Bia 3.4 2 Mg Ay
Bi123.4) 1 Miys Ay

The inner tdeal structure of Gs.

We choose the system of positive roots for G, described in [4, Planche IX (II)].
Following the process described in 3.2 and 3.3, the nonzero abelian inner ideals of
G> (up to conjugation), together with their associated subquotients are:
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Bz [M,,,
The Lie classification The Jordan classification

This information about inner ideals and subquotients, together with their
corresponding TKK-algebras, is collected in the next table:

[ Abelian inner ideals | dimension || subquotients | TKK algebras |
By 2 Mixa(F) Ay
B12) 1 My (F) Ay

4. Appendix: Structure of the inner ideals

In this section we prove that every abelian inner ideal can be obtained by the
process described in 3.2. Our proof uses well-known notions of the classical theory
of Lie algebras (see for instance [9, §9,§10 and §14]) and a graded version of the
Jacobson-Morozov theorem [7, Proposition 5.2], which, in Seligman words “is really
a summary of certain results of Jacobson”. It provides an alternative proof to the
fact that every abelian inner ideal B of a finite dimensional Lie algebra L coincides
with L,, for some Z-grading L=L_,® - ® Lo ® - ® L, c.f. (7).

4.1. Let L be a finite dimensional simple Lie algebra over an algebraically
closed field F of characteristic zero. Let H be a Cartan subalgebra of L and let

L=H & (P,cs La) be the root decomposition of L relative to H. Take a basis

A = {ay,...,a} of the root system &, and let & = Zi=1 n;o; be the maximal

root relative to A. For each nonempty set I C {1,...,l}, denote

Pyar=Pr={a= Zizlkiai €dlki=nViel} C9,
Byar=Br=@,cp, La < L.

To show that B; is an abelian inner ideal of L is an easy exercise left to the
reader. Our goal is to prove that for any abelian inner ideal B there exist a
Cartan subalgebra H, a basis A of the associated root system, and a set I in the
above conditions such that B is equal to By a,;. We begin by finding the Cartan
subalgebra.

Lemma 4.1.  If B is an abelian inner ideal, there exists a Cartan subalgebra H
of L such that B = @,y LaNB, where L = H®(Doep La) 15 the decomposition
in root spaces relative to H.

Proof.  Assume 0 # B and take 0 # e; € B. Since e; is ad-nilpotent of index
3, by Jacobson-Morozov Theorem, see [17, V.8.3], there exists a standard triple

{e1, hy, f1} of L ([h1,e1] = 2e1, [h, fi] = —2f1 and [er, fi] = Ry, with f also
ad-nilpotent of index 3) such that ad h; diagonalizes L as

L=L L 10L& L, ® Ly,
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that is, [hy, ;] = iz; for any z; € L;, s = 0,+1,+2. Note that e; € le1, [e1, L]]
and that B is a homogeneous subspace, B = @,(B N L;), since [hy,B] =
[ler, f1], B] < [[B, L], B] C B. Moreover, by [5, 1.18(iii)] or [2, Lemma 2.1(3)],
Ly = [eq,[e1, L]] C B.

Note that if {e;, h;, fi};., is a family of standard triples such that e; € B
and [hi,hj] = 0 for all 4,57 = 1,...,s, there exists a grading of L, which can
be considered a grading by a subgroup I' of Z*, L = @®uerl, such that B =
Oacr(La N B).

Let us consider {e;, h;, f;}¥., a family of standard triples such that in
the associated grading, L = ®4erv Lo, the number of homogeneous components
L, C B is maximal and let us prove that if b € B is homogeneous with b € L.,
then L, C B: if there exists an homogeneous element 0 # ex+1 € BN Ly for some
homogeneous component Lg not contained in B, as above exy1 € [ex+1, [€k+1, L]].
An easy adaptation of [17, V.8.3] (details can be consulted in {7, Proposition 5.2])
shows that there is a standard triple {ex+1, Ak+1, fe1} Of L such that fey € L_g.
Indeed, taking the grading into account, there exists a homogeneous element f €
L_p such that [ex41, [ek+1, f]] = —2€k+1. The endomorphism E = ad ex,; € End L
is homogeneous, so Ker E' is a homogeneous submodule, invariant for # = adh
if h = [ex+1, f], and such that H(H — 1)(H — 2)|kere = 0. Hence Hlkerpnr_, is
diagonalizable with eigenvalues 0, 1 and 2, and (H +2)|ker EnL_, is invertible. As
lexs1, [R, f1] = [[€k+1, R, f]1+ [y h] = —2[exs1, f], then (H+2)f € Ker ENL_g and
there is v € Ker ENL_g such that (H +2)f = (H +2)v. Now take fi41 = f—v
and hxr = [€xs1, ferr]

Therefore hyx1 € [Lg, L_g] C Lo, so that [hgsy,h) =0fori=1,...,k, and
the homogeneous component L. of the simultaneous diagonalization of L relative
to the family {h;}**! containing ey, is contained in B, because ad hi4) actsin L.,
with eigenvalue 2 (and again by [2, Lemma 2.1(3)], {z € L | [hx+1,2] = 2z} C B),
a contradiction with the choice of the family {e;, hi, fi}£_,. In particular, B is the
sum of the homogeneous components L, such that BNL, # 0. Note that h; € Lo
fori=1,...,n.

Under these conditions, take any Cartan subalgebra H containing ) ;" ; Fh;.
Since BN L, is either L, or 0, B is still homogeneous for the simultaneous di-
agonalization relative to H. Besides BN H = 0, since, in other case, as H C Lg
(H is abelian), then Ly C B and 0 # —2e; = [hy,e1) € [Lo, B] C [B,B]=0. =

4.2. For H and B as in the above lemma, we denote by P := {a € ® | L, C B}
the set of roots related to B. That B is an abelian inner ideal of L is equivalent
to the following conditions for P:

(i) (P+P)Nn(®U{0})=10
i) (P+((P+@)Nn@®)NdCP

The length of the longest chain of nonempty subsets of & contained in P and
verifying the conditions (i) and (ii) will be called the rank of P, and denoted by
rank P. The following theorem will show that the rank of P coincides with the
length of the longest chain of nonzero abelian inner ideals contained in B and that
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the length of the longest chain of nonzero abelian inner ideals contained in L is I,
the rank of L as a Lie algebra.

If B # 0 (equivalently, P # 0), P always contains long roots according to
the following lemma:

Lemma 4.2. If 8 € P is a short root, then P contains any long root oo €
such that (o, B) > 0. Moreover, ||al|?/||8]|*> = 2 for any long root o € ®.

Proof. If « is a long root with (o, 8) > 0, then {(a,8) = 2,3 by [9, §9]
and {o,a — B, — 28} C ®,s0 a = B+ (B8 + (o —2B)) € P, by 4.2(ii). If
lle|i2/ilBl1? = 3, then @ ~ 38 € &,50 a — 8 =B+ (B+ (e —3B)) € P by 4.2(ii)
and hence a = §+ (a — ) € (P+ P)Nn® = { by 4.2(i), which is not possible. =

Proposition 4.3.  Suppose that there exist a basis A = {ay,..., .} of the root
system ® relative to H and a permutation {i1,...,u} of {1,...,1} such that for
1<k<l,

Bliy,..iy & Bliyiio} & - & Biin,nind & B C Biginoa}-
Then
1. Ligy ©++ ® Lia, C[B,I],
2. B= B, i1}

Proof. Denote by & = Zli=1 n;o; the maximal root relative to A. We proceed
by induction on n =1+ 1 — k. The case n = 1, i.e., | = k, is left to the reader.
For the general case, applying the induction hypothesis to

B{zl !!!! "} g B{ilv'"cil—l} g T g B{ilv'"vik-{»-l} g B{ilw-uik}’

we get that Lia"lc+1 e L:tai, C [B{il,...,ik},L] C [B, L]

Firstly, let us see that also L_,, C [B,L], that is, that —oy € P+ @:
Take a maximal element 8 in P\ Py, ;- Then 8 = 3" kioy with ki; = n;; if
j<k-1, ki, #n; (ki €[-nyn] for all i). Since B # &, we can take s such
that B+a, € ® (necessarily s ¢ {iy,...,4%k-1}). Butif s € {ix41,...,%} we would
have a, € P+ ®, 8 € P and 8+ a, € &, consequently by 4.2(ii) S+ a, € P
and B+a, € P\ P4} is >~ B, a contradiction with the choice of 3. Therefore
o, = a;, and we have proved f+a;, € ®. Then —a;, = f+(-B—0y,) € P+ ®.

Secondly, let us show that By,,.:._,) C B, or equivalently, that every
v € P, i, satisfles v € P: For such v € Py,,..4_,} We can choose indices
Jis---rJs € {1,...,1} such that y+a;, +- -+, = & and y+ay, +-++a; € @ for
all r=1,...,5. As the coordinates of v corresponding to the indices ;,...,%5-1
are maximum, we have that {j;,...,7} C {é,...,u}, and according to the
previous paragraph, —aj,,...,—¢o;, € P+ ®. But @ € P,so @ —ay, € P
(taking into account that & — o, € ®, —a;, € P+ & and 4.2(ii)), and with the
same argument & — o, —aj, € Pand y=a -, — - —ay, € P.
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Finally, let us prove that «;, also belongs to P+ ®: Take v € P\ Py,
and as before choose {ji,...,7,} C {ik,..., 0} € {1,...1} such that
{vry+a,..,v+ay++ aj, = @} C P. Since the i, ’th coordinate of v is
not n;, i € {j1,...,7s}, and we have found ' € P such that Y+o, € P. In
particular a;, = (v + a;,) + (—4') € P+ @, and this finishes our proof. ]

ik}

Theorem 4.4. Let B be a nonzero abelian inner ideal of a finite dimensional
simple Lie algebra L over an algebraically closed field of characteristic zero. Then
there erist a Cartan subalgebra H, a basis A of the root system ® relative to H ,
and o nonempty subset I C {1,...,1} such that B= By ;.

Proof. According to Lemma 4.1, we can take a Cartan subalgebra H of L
such that B = @ ,c4 Lo N B, where ® denotes the root system relative to H. As
before let P = {o € ® | L, C B}. Take an arbitrary basis A = {oa,..., ¢} of
® and let & = ) n;q; be the maximal root relative to A. We are going to prove
by induction on n = rank P that there exist {i1,-.yiam1} € {1,...,1} and an
element ¢ in the Weyl group W of L such that

In such case, for any automorphism & € aut L satisfying 6(H) = H and 6(Ly) =
Lsa) asin [9, §14], we get 6(B) = By g for I = {1,...,3\ {i1,42,...,4,_1} and
hence B = By ,-1(a)1 -

We begin with the case n = 1. By Lemma 4.2 the set P contains some
long root. Since all the long roots are conjugate, there exists ¢ € W such that
& € o(P), and so o(P) = Py, 3.

Suppose now that P has rank n > 1 and that n <. Take P’ C P of rank
n —~ 1 satisfying 4.2(i)-(ii) (the n — 1'th term of the chain of nonempty subsets
of P satisfying 4.2(i)-(ii)). By the induction hypothesis there exist ¢ € W and
{i1,...1ing} such that 0 ¢ Py 5y € Puapgi) G -+ & P, i \iryin_a) =
o(P'). Let us denote J = {1,...,1} \ {i1,...,%n-2}. Consider the sets

K = {ie{l,_,,,l}la’yEPJ suchthat'y—aiE@},
Gi=gr{{oa |ig KNJ}H) < W

where if a € ®, o, is the reflection given by oa(7) = v - (v,0)a for every
7 € ®. Note that w(P;) ¢ Py forall u € G: if v € P; and i ¢ J, then
0a:(7) =7 — (7, %)0; € P; because 04; does not move the coordinates of J; and
ifi€ J\K, y—o; ¢ & by definition of K, and v+ «; ¢ ® by definition of J,
hence (v,0;) =0 and o,,(y) =y € P;.

We will find 4 € G and i € K N J such that Pu, . iW\firin_a} @
Pl iW\(i1inad) = po(P): If o(P)\ P; contains some long root, take 8 €
o(P)\ Py a long root, otherwise take 8 € o(P)\ P, arbitrarily. Take a max-
imal element 3 in {u(B) | 4 € G}. Let u € G be such that u(8) = §. No-
tice that P; U {8} C po(P). We claim that there exists i € K N J such that

B+ a; € &. Otherwise, S+ o; ¢ @ for all i € KN J, hence (8,04) > 0

for all i € K NJ. Besides 0o,(8) ¥ B ifi ¢ KNJ (by the maximal-
ity of B), so we also get (8,a;) > 0 when i ¢ K N J. This means that
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Be{se T Rai|(d,04) 20Vi=1,...,1} = C(A), the closure of the fundamen-
tal Weyl chamber relative to A. Hence n(B) < B for all n € W and K is either
the maximal (long) root & of A (which is not possible since & € Py but B & Py)
or the maximal short root of A (in particular, 3 is a short root). According to our
choice of B (long if possible), ua(P)\ P; does not contain long roots. Applying
now Lemma 4.2 to po(P), (&,B) = 2 so that 28 — & is a long root belonging
to po(P)\ Py, which is a contradiction. Therefore, there exists 7 € K N J such
that B +a; €9 Since 1 € K, there is 4 € Py such that v — a; € ®. Note that
y—a; = y+f+(~B—a:) € (uo(P)+((uo(P)+2)N®))Nd C po(P) by 4.2(ii). But
v —a; € Pngy \ Pr, since i € J. Consequently v—a; € (uo(P)NPpgiy) \ Pr and
P; ¢ ,uU(P)ﬂPJ\{i} C PJ\{i}- By Proposition 4.3, ,U,O'(P)ﬂp_]\{,;} = PJ\{i}, so that
Py C po(P). Moreover, Py & Pngy C po(P), and again by Proposition 4.3,
1o (P) = Pngiy = P{1,.)\{i1,in-asi} » 8 Searched.

Finally let us see that it is not possible that rank P > [. Otherwise take
P’ ¢ P verifying 4.2(i)-(ii) with rank P’ = [ (the [’th term of the chain of
nonempty subsets of P satisfying 4.2(i)-(ii)). We have already proved that there
is o € W and a permutation {i1,...,%} such that

{a} = Pa,.;y = Pty & Plinyoiey & 7 & Pliy = a(P') ¢ o(P).

According to Proposition 4.3, +¢a; € o(P')+ ® C o(P) + ® if j #41. By taking
a maximal element 3 in o(P)\ Py} and s € {1,...,1} such that 8+ as € @,
it is not difficult to check that s = iy, so in particular —o;, € o(P) + ®. Take
{j1,-..,Js} such that {8, +a;, = B+ eu,....0B+ay +--+oy = &} C o.
Since & € o(P) and —a; € o(P) + ® for any j € {1,...,1}, the above set of
roots is contained in o(P), 8 + a;, € o(P) and oy € o(P) + ®. From here,
&+ C o(P). This condition, jointly with 4.2(i), would force % = o(P) = {m},
but then 1 =rank P > ! =1, which is a contradiction. =

4.3. Remark: Theorem 4.4 provides an alternative proof to [7, Corollary 6.2]
when L is a finite dimensional Lie algebra over an algebraically closed field because
every nonzero abelian inner ideal B of L can be expressed as By a  for a certain
Cartan subalgebra H, a basis A = {a1,..., oy} of the root system associated to
H and a nonempty set I C {1,...,1}, and we have already explained in 3.1 and
3.2 how any set of nonnegative integers (p1,...,p:) satisfying that p;=01if i ¢ I
induces a Z-gradingon L=L_,® - ® LoD - D L, with n =" n;p; (where
n; are the coordinates of the maximal root) and B = Ly.

4.4. Remark: Note that, as a consequence of the previous sections, we have
proved that, for nonempty subsets I and J of {1,...,1} (H and A fixed as before)
such that B; # By, then By and B are nonconjugate by an inner automorphism
of L.
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