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An Elemental Characterization
of Orthogonal Ideals in Lie Algebras

Jose Brox, Esther Garćıa and Miguel Gómez Lozano

Abstract. In this paper, we prove that the ideals generated by two ele-
ments x, y in a nondegenerate Lie algebra L over a ring of scalars Φ with
1
2
, 1

3
are orthogonal if and only if [x, [y, L]] = 0.
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1. Introduction

Elemental characterizations of primeness of nonassociative structures, such
as the Beidar, Mikhalev and Slinko’s elemental characterization of strong
primeness for alternative and linear Jordan algebras [6], its quadratic Jor-
dan systems version [4] by Anquela, Cortés, Loos and McCrimmon, and its
analogue for Lie algebras [12], have proved to be very useful in the study
of such structures. In particular, they are fundamental in the study of the
inheritance of primeness by ideals, and by local algebras and subquotients
[1–3,9,11,15,16].

A Lie algebra L is prime if it does not have orthogonal nonzero ideals,
i.e., if [I, J ] = 0 for ideals I, J of L implies necessarily that I = 0 or J = 0.
Orthogonality in the associative setting has an easy elemental characteri-
zation for semiprime systems: if R is a semiprime associative algebra and
x, y ∈ R, then IdR(x) · IdR(y) = 0 if and only if xRy = 0. This elemen-
tal characterization of orthogonality can be exported to other nonassociative
settings, as long as they accomplish some requisites:
1. They are nondegenerate (remember that nondegeneracy is the useful

extension of semiprimeness for Jordan and Lie structures).
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2. The nondegenerate radical is the intersection of all strongly prime ideals
and therefore a nondegenerate structure is a subdirect product of strongly
prime ones.

3. Strong primeness can be characterized via elements.
Under these hypotheses it is not difficult to show:

Theorem 2.4. Let T be a semiprime associative algebra, nondegenerate alter-
native algebra or nondegenerate (quadratic) Jordan system, or a Lie algebra
which is a subdirect product of strongly prime algebras (in particular, if it is
a Lie algebra over a field of characteristic zero). Then two elements x, y ∈ T
generate orthogonal ideals if and only if:
(a) xTy = 0 if T is an associative algebra.
(b) x(Ty) = 0 or (xT )y = 0 if T is an alternative algebra.
(c) {x, T, y} = 0 if T is a linear Jordan system.
(d) UxUT UyT = 0 if T is a quadratic Jordan system.
(e) [x, [y, T ]] = 0 if T is a Lie algebra.

Hypothesis (2) plays a fundamental role in the proof of this result since
it allows to go from the original nondegenerate structure to its strongly prime
quotients, and then use the above mentioned elemental characterization of
strong primeness.

Lie algebras with a short Z-grading, Lie algebras over fields of charac-
teristic zero, Lie algebras arising from associative algebras and Artinian Lie
algebras satisfy (2) [13, 2.10, 3.10, 4.3, 4.7, 5.4], but in general it is an open
problem to know if a nondegenerate Lie algebra is a subdirect product of
strongly prime Lie algebras.

The aim of this paper is to prove that the property

[IdL(x), IdL(y)] = 0 if and only if [x, [y, L]] = 0

holds for any nondegenerate Lie algebra L over an arbitrary ring of scalars
Φ with 1

2 and 1
3 ∈ Φ. Our proof deeply relies on the ideas and calculations of

[12, Proposition 1.4].

2. Preliminaries

2.1. We will be dealing with Lie algebras L over a ring of scalars Φ with 1
2

and 1
3 . As usual, given a Lie algebra L, [x, y] will denote the Lie bracket, with

adx the adjoint map determined by x. Typical examples of Lie algebras come
from the associative setting: if (R,+, ·) is an associative algebra, then (R,+)
with product [x, y] := x · y − y · x is a Lie algebra, denoted by R−. Moreover,
if R has an involution ∗, then Skew(R, ∗) := {x ∈ R | x = −x∗} is a Lie
subalgebra of R−.

2.2. Given a Lie algebra L, x ∈ L is an absolute zero divisor of L if ad2
x = 0,

L is nondegenerate if it has no nonzero absolute zero divisors, semiprime if
[I, I] �= 0 for every nonzero ideal I of L, and prime if [I, J ] = 0 implies I = 0
or J = 0, for ideals I, J of L. We say that a Lie algebra is strongly prime if
it is prime and nondegenerate.
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2.3. Given a subset S of a Lie algebra L, the annihilator or centralizer of S in
L, AnnL S, consists of the elements x ∈ L such that [x, S] = 0. By the Jacobi
identity, AnnL S is a subalgebra of L and an ideal whenever S is so. Clearly,
AnnL L = Z(L), the center of L. If L is semiprime, then I ∩ AnnL I = 0 for
any ideal I of L. Moreover, if L is a Lie algebra with 1

2 , 1
3 ∈ Φ, the annihilator

of an ideal I of L, which is nondegenerate as a Lie algebra, has the following
nice expression [10, 2.5]:

AnnL I = {a ∈ L | [a, [a, I]] = 0},

which implies that AnnL I is a nondegenerate ideal of L.
The following theorem is the starting point of our work, since it shows

that the elemental characterization of orthogonality we are interested on
holds for many families of nondegenerate Lie algebras, and also for semi-
prime (equiv. nondegenerate) associative algebras, nondegenerate alternative
algebras and nondegenerate Jordan systems.

Theorem 2.4. Let T be a semiprime associative algebra, nondegenerate alter-
native algebra or nondegenerate (quadratic) Jordan system, or a Lie algebra
which is a subdirect product of strongly prime algebras (in particular, if it is
a Lie algebra over a field of characteristic zero). Then two elements x, y ∈ T
generate orthogonal ideals if and only if:

(a) xTy = 0 if T is an associative algebra.
(b) x(Ty) = 0 or (xT )y = 0 if T is an alternative algebra.
(c) {x, T, y} = 0 if T is a linear Jordan system.
(d) UxUT UyT = 0 if T is a quadratic Jordan system (where U denotes the

quadratic operator of the Jordan system).
(e) [x, [y, T ]] = 0 if T is a Lie algebra.

Proof. For any of the (non)associative systems T of the claim, the nondegen-
erate radical (prime radical in the associative setting, McCrimmon radical in
the Jordan setting and Kostrikin radical in the Lie setting) is the intersection
of all strongly prime ideals of T [8,14,17] (in the alternative case, the inter-
section of all prime and nondegenerate ideals of a nondegenerate alternative
algebra is zero by [5, Corollary 2.5 and Lemma 2.17] and [8]).

Without loss of generality, suppose that T is a Lie algebra with
[x, [y, T ]] = 0. Let us show that the ideals IdT (x) and IdT (y) generated
by x and y are orthogonal, i.e., [IdT (x), IdT (y)] = 0. By hypothesis there
exists a family of strongly prime ideals Iα of T such that

⋂
Iα = 0 and such

that if we denote Tα := T/Iα, then there exists a Lie algebra monomorphism
T → ∏

α Tα. Now, in each quotient Tα we have that [x, [y, Tα]] = 0 and
therefore, by [12, 1.6], x = 0 or y = 0, which implies that in each quotient
[IdT (x), IdT (y)] = 0 and therefore [IdT (x), IdT (y)] is contained in each Iα, so
[IdT (x), IdT (y)] = 0.

If T is an associative, an alternative algebra, a linear Jordan system, or
a quadratic Jordan system, the proof follows verbatim using the elemental
characterizations of strong primeness of [6] and [4]. �
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3. Main Result

In this section we are going to prove that if L is a nondegenerate Lie algebra
over an arbitrary ring of scalars Φ with 1

2 , 1
3 ∈ Φ, then [x, [y, L]] = 0 if and

only if [IdL(x), IdL(y)] = 0. Note that in this general setting it is not known
if the Kostrikin radical of L is the intersection of all strongly prime ideals
of L.

We will use capital letters to denote adjoint operators, i.e., X := adx,
A := ada, B := adb, etc.

Theorem 3.1. Let L be a nondegenerate Lie algebra over a ring of scalars
Φ with 1

2 , 1
3 ∈ Φ, and let x, y ∈ L. Then [x, [y, L]] = 0 if and only if

[IdL(x), IdL(y)] = 0.

Proof. We will show that [x, [y, L]] = 0 implies [IdL(x), IdL(y)] = 0. The
converse is trivial.

Let us suppose first that for every u ∈ L we have XUY = 0. Then, by
[12, Proposition 1.3] we have that XY = Y X = Y UX = 0 and [x, y] = 0.
Moreover, for every a, b ∈ L

XABY = X([A,B] + BA)Y = XBAY,

XABY = XA[B, Y ] = X[A, [B, Y ]] = [X, [A, [B, Y ]]] + [A, [B, Y ]]X
= − ad[x,[a,[y,b]]] +ABY X − AY BX − BY AX + Y BAX

= Y BAX,

X2ABCY = X[X,A]BCY + XAXBCY

= X[[X,A], B]CY + XB[X,A]CY + XAY BCX

= XC[[X,A], B]Y + XBXACY = XCXABY = 0,

XABCY 2 = 0 (follows symmetrically), and

X2ABCDY 2 = X[X,A]BCDY 2 = X[[X,A], B]CDY 2 = 0.

Now, for every c, d ∈ L we have:

adad2
x aCD adad2

y a = (X2A + AX2 − 2XAX)CD(Y 2A + AY 2 − 2Y AY )

= X2ACDY 2A + AX2CDY 2A − 2XAXCDY 2A + X2ACDAY 2

+ AX2CDAY 2 − 2XAXCDAY 2 − 2X2ACDY AY − 2AX2CDY AY

+ 4XAXCDY AY = 0.

Finally, by [12, Proposition 1.5] ad2
x a ∈ AnnL(IdL(ad2

y a)), but since
AnnL(IdL(ad2

y a)) is a nondegenerate ideal of L by (2.3), i.e., the Lie alge-

bra L/AnnL(IdL(ad2
y a)) is nondegenerate, we have that ad2

x a = 0 for every
a ∈ L/AnnL(IdL(ad2

y a)), which implies that x = 0. Now, XCD adad2
y(a) =

0; repeating this argument and using [12, Proposition 1.5] again, we get
0 = y in L/AnnL(IdL(x)), i.e., y ∈ AnnL(IdL(x)). Therefore, we get that
[IdL(x), IdL(y)] = 0.

Now, let us suppose that XY = 0. Then for every a, b ∈ L, by [12,
Proposition 1.2], we have that adad3

x(a) BY = 0 and therefore ad3
x(a) ∈

Author's personal copy
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AnnL(IdL(y)) by the above argument. Similarly, ad3
y(a) ∈ AnnL(IdL(x)).

Notice also that Y X = 0 and XAY = −Y AX by [12, Proposition 1.1].
We will now prove some equalities: For every e, f, g ∈ L, X2EY 2 =

XEY 2 = X2EFY 2 = X2EY = 0 and XEFY 2 = XFEY 2, by [12, Proposi-
tion 1.2]. Moreover,

X2EFY = X[X,E]FY + XEXFY = X[[X,E], F ]Y + XF [X,E]Y

+ XEXFY = −Y [[X,E], F ]X + XFXEY + XEXFY

= Y EXFX + Y FXEX − Y EFX2 + XFXEY + XEXFY

= 2Y EXFX + 2Y FXEX − Y EFX2.

Symmetrically,

XEFY 2 = 2XFY EY + 2XEY FY − Y 2FEX, and

X2EFGY 2 = X[X,E]FGY 2 + XEXFGY 2

= X[[X,E], F ]GY 2 + XF [X,E]GY 2 + XEXFGY 2

= XG[[X,E], F ]Y 2 + XFXEGY 2 + XEXFGY 2

= XGXEFY 2 + XFXEGY 2 + XEXFGY 2

= 2XGXEY FY + 2XGXFY EY + 2XFXEY GY

+ 2XFXGY EY + 2XEXFY GY + 2XEXGY FY.

Now, using the formulas above:

adad2
x a adb adad2

y c = (X2A + AX2 − 2XAX)B(Y 2C + CY 2 − 2Y CY )

= X2ABY 2C + AX2BY 2C − 2XAXBY 2C

+ X2ABCY 2 + AX2BCY 2 − 2XAXBCY 2

− 2X2ABY CY − 2AX2BY CY + 4XAXBY CY

= X2ABCY 2 − 2XAXBCY 2 − 2X2ABY CY

+ 4XAXBY CY = 2XAXBY CY + 2XAXCY BY

+ 2XBXAY CY + 2XBXCY AY + 2XCXAY BY

+ 2XCXBY AY − 4XAXBY CY − 4XAXCY BY

− 4XAXBY CY − 4XBXAY CY + 4XAXBY CY

= −2XAXBY CY + 2XCXBY AY − 2XAXCY BY

+ 2XCXAY BY − 2XBXAY CY + 2XBXCY AY.

Note that in the last expression the roles of a and c are skew-symmetrical. So
if we exchange a and c we obtain adad2

x a adb adad2
y c = − adad2

x c adb adad2
y b .

Therefore, if we take a = ad2
u ad2

x v and c = ad2
u′ ad2

y v′, for u, u′, v,
v′ ∈ L,

adad2
x a adb adad2

y c = adad2
x ad2

u ad2
x v adb adad2

y ad2
u′ ad2

y v′

= − adad2
x ad2

u′ ad2
y v′ adb adad2

y ad2
u ad2

x v = 0
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because, by [12, Proposition 1.2], ad2
x ad2

u′ ad2
y v′ = 0. Therefore, for every

u, v, u′, v′ ∈ L we have

adad2
x ad2

u ad2
x v adb adad2

y ad2
u′ ad2

y v′ = 0.

Moreover, since x is an ad-nilpotent element of index ≤ 3 in the quo-
tient algebra L/AnnL(IdL(y)), there exists z ∈ AnnL(IdL(y)) such that
ad2

ad2
x u v = ad2

x ad2
u ad2

x v + z by the Jordan identity [7, Lemma 1.7(iii)]. Sim-
ilarly there exists z′ ∈ AnnL(IdL(x)) such that ad2

ad2
y u′ v′ = ad2

y ad2
u′ ad2

x v′ +
z′. Therefore,

adad2
ad2

x u
v adb adad2

ad2
y u′ v′ = adad2

x ad2
u ad2

x v adb adad2
y ad2

u′ ad2
y v′ = 0.

Thus, for every u, v ∈ L, ad2
ad2

x u v ∈ AnnL(IdL(ad2
ad2

y u′ v′)) and, since

the quotient L/AnnL(IdL(ad2
ad2

y u′ v′)) is nondegenerate by (2.3), ad2
x u ∈

AnnL(IdL(ad2
ad2

y u′ v′)) and x ∈ AnnL(IdL(ad2
ad2

y u′ v′)). So

adx adb adad2
ad2

y u′ v′ = 0.

Similarly, for every u′, v′ ∈ L, ad2
ad2

y u′ v′ ∈ AnnL(IdL(x)) and, since the

quotient L/AnnL(IdL(x)) is nondegenerate by (2.3), ad2
y u′ ∈ AnnL(IdL(x))

and y ∈ AnnL(IdL(x)). By induction, using the Jacobi identity, we get that
[IdL(x), IdL(y)] = 0. �

Corollary 3.2. Let L be a Lie algebra over a ring of scalars Φ with 1
2 , 1

3 ∈ Φ,
and let x, y ∈ L. If [x, [y, L]] ⊂ K(L), where K(L) denotes the Kostrikin
radical of L, then [IdL(x), IdL(y)] ⊂ K(L).
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Departamento de Matemática Aplicada
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