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ON QUOTIENT RINGS IN ALTERNATIVE RINGS
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We introduce a notion of left nonsingularity for alternative rings and prove that an
alternative ring is left nonsingular if and only if every essential left ideal is dense, if
and only if its maximal left quotient ring is von Neumann regular (a Johnson-like
Theorem). Finally, we obtain a Gabriel-like Theorem for alternative rings.
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1. INTRODUCTION

The theory of rings of quotients has its origins between 1930 and 1940 in the
works of O. Ore and K. Osano on the construction of the total ring of fractions.
In that decade Ore proved a necessary and sufficient condition for a ring R to
have a (left) classical ring of quotients (the left Ore condition). At the end of the
50’s, Goldie, Lesieur, and Croisot characterized those (associative) rings, which are
classical left orders in semiprime and Artinian rings [6, Chapter IV] (result known
as Goldie’s Theorem).

Later on in 1956, Y. Utumi introduced the notion of left quotient rings [10]
and proved that the rings without absolute right zero divisors are precisely those
which have a maximal left quotient ring. Following Goldie’s idea of characterizing
certain types of rings via a suitable envelope, R. E. Johnson characterized left
nonsingular rings via their maximal left quotient rings [6, 13.36], and P. Gabriel
specialized it further by giving similar characterizations for left nonsingular rings
with finite left Goldie dimension [6, 13.40]. In the setting of Jordan algebras,
F. Montaner and I. Paniello introduce an analogue of Johnson’s associative algebra
of quotients and they proved the existence and described the maximal algebras
of quotients of prime strongly nonsingular Jordan algebras, see [9]. Recently,
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ON QUOTIENT RINGS IN ALTERNATIVE RINGS 5465

F. Montaner constructed a maximal algebra of quotients for any nondegenerate
Jordan algebra, see [8].

It is natural to ask whether similar notions (and results) can be obtained
for alternative rings. The question of Goldie’s Theorems for alternative algebras
was posed by H. Essannouni and A. Kaidi for Noetherian alternative rings,
see [5]. Later, in 1994, the same authors established a Goldie-like theorem for
alternative rings without elements of order three in their associator ideal. In [7],
the second author of this article together with M. Siles Molina introduced the
notion of Fountain-Gould left orders in alternative rings and gave a Goldie-
like characterization of alternative rings, which are Fountain-Gould left orders in
nondegenerate alternative rings that coincide with their socle (this result generalizes
the classical Goldie’s Theorems for alternative rings without additional conditions).
In this work, the authors introduced, as a tool, the notion of general left quotient
rings and related properties of a ring with properties of its general ring of quotients.
They also defined the left singular ideal of an alternative ring and gave a notion
of left nonsingularity for nondegenerate alternative rings. In [1], the authors proved
the existence of the maximal left quotient ring of an alternative ring, which is a left
quotient ring of itself.

In this article, we introduce the notion of left nonsingularity for (general)
alternative rings. We characterize left nonsingular alternative rings as those for
which every essential left ideal is dense. Moreover, we give both a Johnson and a
Gabriel Theorem: an alternative ring is left nonsingular if and only if its maximal
left quotient ring is von Neumann regular (Johnson’s Theorem), and an alternative
ring is left nonsingular with finite left Goldie dimension if and only if its maximal
left quotient ring is nondegenerate and Artinian (Gabriel’s Theorem).

2. PRELIMINARIES

2.1.

The following three basic central subsets can be considered in a non-
associative ring R: the associative center N�R�, the commutative center K�R�, and
the center Z�R�, defined by:

N�R� = �x ∈ R � �x� R�R� = �R� x� R� = �R�R� x� = 0��

K�R� = �x ∈ R � �x� R� = 0��

Z�R� = N�R� ∩ K�R��

where �x� y� = xy − yx denotes the commutator of two elements x� y ∈ R and
�x� y� z� = �xy�z− x�yz� is the associator of three elements x� y� z ∈ R.

2.2.

The defining axioms for an alternative ring R are the left and the right
alternative laws:

�x� x� y� = 0 = �y� x� x��

for every x� y ∈ R. The standard reference for alternative rings is [11].
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5466 CÁRDENAS ET AL.

2.3.

From now on, for a ring R, R1 denotes its unitization: R if it is unital, or
R× � with its abelian group structure and product given by �x�m��y� n� �= �xy +
nx +my�mn� if R is not unital.

2.4.

Let R be an alternative ring. Every ideal contained in the associative center of
R is called a nuclear ideal. The largest nuclear ideal of R is the associative nucleus,
denoted by U�R�. The elements of U�R� can be characterized as the elements x ∈
R such that �R1x� R�R� = 0, see [11, Proposition 8.3.9]. We recall that R is called
purely alternative if U�R� = 0. By D�R� we denote the associator ideal: the ideal of
R generated by ��x� y� z� � x� y� z ∈ R�, the set of all associators.

2.5.

A ring without nonzero nilpotent ideals is called semiprime. By [11, Exercise
9.1.8], every semiprime alternative ring does not contain nonzero nilpotent left
(right) ideals. An element a of an alternative ring R is called an absolute zero divisor
if aRa = �0�. The ring R is called nondegenerate (or strongly semiprime) if R does
not contain nonzero absolute zero divisors.

2.6.

We recall that for every nonempty subset X of an alternative ring R, the left
annihilator of X is defined as lanR�X� �= �a ∈ R � ax = 0 for all x ∈ X�. Similarly
the right annihilator of X is ranR�X� �= �a ∈ R � xa = 0 for all x ∈ X�. We denote
by annR�X� �= lanR�X� ∩ ranR�X�, the annihilator of X. In general the left (right)
annihilator of a subset X of an alternative ring R does not have to be a left (right)
ideal, however, it is true if X is a right (left) ideal of R or if X ⊂ N�R�.

Let R be an alternative ring and consider X ⊂ R. By R�X� we mean the left
ideal of R generated by X. Similarly, �X�R denotes the right ideal of R generated
by X.

2.7.

The notion of left quotient ring of an alternative ring was introduced in [7],
where the relationship among classical, Fountain-Gould and this type of rings of
quotients was established.

Let R be a subring of an alternative ring Q. We recall that Q is a left quotient
ring of R, denoted by R ≤q Q, if:

(1) N�R� ⊂ N�Q� and
(2) for every p� q ∈ Q, with p �= 0, there exists r ∈ N�R� such that rp �= 0 and rq ∈ R.

Note that if Q is a left quotient ring of R, then R is a left quotient ring of itself,
R and Q can be seen as left N�R�-modules, and R is a dense left N�R�-submodule of
Q, see [6, 8.2].
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ON QUOTIENT RINGS IN ALTERNATIVE RINGS 5467

2.8.

We say that an alternative ring R has a maximal left quotient ring if there
exists a ring Q such that:

(i) Q is a left quotient ring of R and
(ii) if S is a left quotient ring of R there exists a unique monomorphism of rings

f � S → Q with f�r� = r for every r ∈ R.

In [1], the authors proved that an alternative ring R has a unique, up
isomorphism, maximal left quotient ring if and only if R is a left quotient ring of
itself.

2.9.

In [4], K. I. Beı̆dar and A. V. Mikhalëv introduced what was called the nearly
classical localization of an algebra. This construction will be useful for us in the case
of a nondegenerate and purely alternative ring R: Let us consider 	 �= Z�D�R�� the
center of D�R� and let us denote by � the set of all essential ideals of 	. We can
define the nearly classical localization of D�R�, D�R�� �= lim−→�Hom	�I�D�R�� � I ∈
� �, the direct limit of the direct system �Hom	�I�D�R�� � I ∈ � �. The elements of
D�R�� can be represented as classes �I� f� of pairs �I� f� where I ∈ � and f ∈
Hom	�I�D�R��, modulo the equivalence relation �I� f� ∼ �I ′� f ′� if and only if f and
f ′ agree on I ∩ I ′. Moreover,

(i) By [2, 1.2], D�R�� is a Cayley-Dickson algebra over its center, its center is von
Neumann regular, see [4, Theorem 2.12(1)], which implies, by [2, Remark 1.8],
that D�R�� is a von Neumann regular ring.

(ii) By [1, 2.15 (5)], D�R�� coincides with the maximal left quotient ring of D�R�
and therefore with the maximal left quotient ring of R (because D�R� is a dense
ideal of R).

3. THE SINGULAR IDEAL OF AN ALTERNATIVE RING

In this section, we study the notions of left singular ideal (and the underlying
idea of left nonsingular ring), left quotient rings and essential or dense left ideals. In
the setting of associative rings these notions are closely related: A left ideal I of a
ring R is dense if and only if R is a left quotient ring of I , a ring R is left nonsingular
if and only if every essential left ideal is dense and, when R is commutative, R is left
(right) nonsingular if and only if it is semiprime, see [6].

The notion of left nonsingularity for nondegenerate alternative rings was
introduced in [7], where it plays a fundamental role in the study of Fountain-Gould
left orders. In this section, we extend this notion to general alternative rings (without
the extra hypothesis of nondegeneracy) and prove that a ring R is left nonsingular
if and only if every essential left ideal is dense.

We recall that a left ideal I of an alternative ring R is essential if it has
nonzero intersection with every nonzero left ideal of R. The left singular ideal of an
alternative ring R is the set:

�l�R� = �x ∈ U�R� � lanR�x� is an essential left ideal of R��
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5468 CÁRDENAS ET AL.

see [7]. A left ideal I of an alternative ring R is dense if for every p� q ∈ R, with
p �= 0, there exists a ∈ N�R� such that ap �= 0 and aq ∈ I . We want to point out that
a left ideal I of an alternative ring R is dense if and only if R is a left quotient ring
of I , see [1, 2.3] (note that a can be taken in N�I�).

Definition 3.1. We say that an alternative ring R is left nonsingular if D�R� is
nondegenerate and �l�R� = 0.

It is clear that this definition agrees with the classical one in the setting of
associative rings and with the definition given in [7] for nondegenerate alternative
rings (because every ideal of a nondegenerate alternative ring is nondegenerate).
Moreover, if R is a purely alternative ring, R is left nonsingular if and only if it is
nondegenerate (a ring with a nondegenerate essential ideal is nondegenerate), which
agrees with the fact that usually purely alternative rings behave like commutative
associative rings.

The following three results are technical lemmas that will be used in the
principal theorems of this section. Note that the first and second lemmas are trivial
in the semiprime case.

Lemma 3.2. Let R be an alternative ring, K an ideal of R and I a left ideal of R such
that K ∩ I = 0. Then �I� R�R� ⊂ annR�K�. Moreover, if I is not contained in U�R� or
if K is contained in D�R� and I �= 0, then I ∩ annR�K� �= 0.

Proof. Since, KI ⊂ K ∩ I = 0, for every y ∈ I , z ∈ K, and a ∈ R,

�y� z� a� = −�a� z� y� = −�az�y + a�zy� = 0
 (1)

Now, the formula �yz� a� b�− �y� za� b�+ �y� z� ab� = y�z� a� b�+ �y� z� a�b, which
holds in any ring and (1) imply

�yz� a� b� = y�z� a� b�� (i)

and the Kleinfeld function [11, Corollary of Lemma 7.1.2], ��z� y�� a� b�+
�z� y� �a� b�� = �zy� a� b�− y�z� a� b�− �y� a� b�z and (1) imply

�yz� a� b� = y�z� a� b�+ �y� a� b�z
 (ii)

Finally, (i) and (ii) prove that �y� a� b�z = 0 for every y ∈ I , z ∈ K and a� b ∈ R, i.e.,
�I� R�R� ⊂ annR�K�.

Now, if I is not contained in U�R�, by 2.4, 0 �= �I� R�R� ⊂ annR�K� ∩ I , and if
K is contained in D�R� (and I is contained in U�R�) [11, Proposition 8.3.10] implies
I ⊂ annR�K�. �

Lemma 3.3. Let R be a purely alternative ring and let K be an ideal of R. Then there
exists a left ideal L of R contained in annR�K� such that K ⊕ L is an essential left ideal
of R.

Proof. By Zorn’s Lemma, there exists a left ideal I of R, which is maximal with
respect to the property K ∩ I = 0. By 3.2, R��I� R�R�� ⊂ annR�K�. Let us show that
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ON QUOTIENT RINGS IN ALTERNATIVE RINGS 5469

K ⊕R ��I� R�R�� is an essential left ideal of R: Let J be a nonzero left ideal of R. If
J ∩ K �= 0 we have finished, otherwise by maximality of I , J ∩ I �= 0 and therefore,
by 2.4, 0 �= �J ∩ I� R� R� ⊂ J ∩R ��I� R�R��. �

Lemma 3.4. Let R be an alternative ring. Then:

(i) For every 0 �= a ∈ R, lanR��a�R� is not a dense left ideal of R.
(ii) U�R� ∩D�R� ⊂ �l�R�.

Proof. (i) Suppose 0 �= a ∈ R such that lanR��a�R� is a dense left ideal of R. So
there exists r ∈ N�R� such that 0 �= ra and r ′ ∈ N�R� such that 0 �= r ′ra with r ′r ∈
lanR��a�R�, a contradiction.

(ii) By [1, 1.10], U�R�+D�R� is an essential left ideal of R which is contained
in lanR�z� for every z ∈ U�R� ∩D�R�, see [11, Proposition 8.3.10]. �

Theorem 3.5. An alternative ring R such that every essential left ideal is dense, is
left nonsingular.

Proof. Given any 0 �= a ∈ �l�R�, lanR�a� = lanR��a�R�, because a ∈ U�R�, is an
essential left ideal of R. Now, by hypothesis it is dense, which is not posible by 3.4(i),
therefore �l�R� = �0�.

Now, we have to prove that D�R� is nondegenerate. Let us suppose first that
R is purely alternative: If K is a nonzero ideal of R such that K2 = 0, then by 3.3
there exists a left ideal L of R contained in annR�K� such that K ⊕ L is an essential
left ideal of R, and by hypotheses, if 0 �= x ∈ K, there exists n1 + n2 ∈ N�K ⊕ L�
(because, by [1, 2.3], R is a left quotient ring of K ⊕ L), which implies n1 ∈ N�K� and
n2 ∈ N�L�, such that

0 �= �n1 + n2�x ∈ �K�2 ⊕ LK = 0�

a contradiction. So R is semiprime. Now, by [1, 1.8] the linear span of all elements
�x ∈ D�R� � xRx = 0� is an ideal of R (denote it by �) such that N��� = 0. And
�⊕ annR��� is an essential (and therefore dense) left ideal of R. So if 0 �= x ∈ �,
there exists n1 + n2 ∈ N��⊕ annR���� (because, by [1, 2.3], R is a left quotient ring
of �⊕ annR���), which implies n1 ∈ N��� and n2 ∈ N�annR����, such that

0 �= �n1 + n2�x = n2x ∈ annR���� = 0�

a contradiction. So � = 0 and D�R� is a nondegenerate ideal of R which implies,
since it is an essential ideal of R, that R is a nondegenerate ring.

Finally let us prove the general case. Let us prove that R �= R/U�R� is a purely
alternative ring such that every essential left ideal is dense: By 3.4(ii)

U�R� ∩D�R� ⊂ �l�R� = �0�
 (1)

Now, if x ∈ U�R�, then �R1x� R�R� = 0, i.e., �R1x� R�R� ⊂ U�R� ∩D�R� = 0, by (1).
So by 2.4, x ∈ U�R� and therefore x = 0. So R is purely alternative.
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5470 CÁRDENAS ET AL.

Let K be an essential left ideal of R. Then K = �−1�K�, where � denotes the
canonical projection from R onto R/U�R�, is an essential left ideal of R. Now, given
p� q ∈ R, with p �= 0, we have that p � U�R�, so by 2.4, there exist r ∈ R1� s� t ∈
R such that �pr� s� t� �= 0, and there exists n ∈ N�R� such that 0 �= n�pr� s� t� =
��np�r� s� t� and nq ∈ K. So np �= 0 and nq ∈ K, i.e., K is a dense ideal of R. So R
is a nondegenerate alternative ring and since D�R� is isomorphic to an ideal of R,
D�R� is nondegenerate. �

Proposition 3.6. Let R be an alternative ring. Then:

(i) In general �l�U�R�� ⊂ �l�R�.
(ii) If U�R� has no total right zero divisors (in particular if U�R� is semiprime or left

nonsingular), then �l�R� = �l�U�R��.

So in any case, �l�U�R�� = 0 if and only if �l�R� = 0.

Proof. (i) If a ∈ �l�U�R��, then lanU�R��a� is an essential left ideal of U�R�.
Observe that lanU�R��a� = lanR�a� ∩ U�R� is a left ideal of R. Now, lanU�R��a�+
D�R� is an essential left ideal of R contained in lanR�a�: Let I be a nonzero left ideal
of R. If �I� R�R� = 0, then I ⊂ U�R�, and therefore I ∩ lanU�R��a� �= 0. Otherwise,
0 �= �I� R�R� ⊂ I ∩D�R�. So a ∈ �l�R�.

(ii) Suppose now that U�R� has no total right zero divisors and take a ∈
�l�R�. Then given a nonzero left ideal I of U�R�, we have that U�R�I is a nonzero
left ideal of R contained in I . So 0 �= U�R�I ∩ lanR�a� ⊂ I ∩ lanU�R��a�, which implies
that a ∈ �l�U�R��. �

Theorem 3.7. Every essential left ideal of a left nonsingular alternative ring is dense.

Proof. Let I be an essential left ideal of R. Given p� q ∈ R, with p �= 0:
If 0 �= �R1p�R�R�, by [7, 5.2], there exists a ∈ Z�D�R�� ⊂ Z�R� with

a�R1p�R�R� �= 0. In particular ap �= 0 and aq ∈ D�R�. Now, by [7, 1.2(iv)], there
exists 0 �= b ∈ Z�I ∩R �ap�� which implies that bap �= 0 (if bap = 0, since b ∈R

�ap� ∩ Z�R�, b = ∑
�ai1�
 
 
 �aini

ap� 
 
 
 � and

b2 = b
∑

�ai1�
 
 
 �aini
ap� 
 
 
 � = ∑

�ai1�
 
 
 �aini
bap� 
 
 
 � = 0�

a contradiction because there are no nonzero nilpotent elements in the center of the
nondegenerate alternative algebra D�R�) and baq = aqb ∈ I .

If �R1p�R�R� = 0, then p ∈ U�R�. Since U�R� is left nonsingular, by 3.6,
there exists a ∈ U�R� such that ap �= 0 (and aq ∈ U�R�). Now, since I ∩ U�R� is an
essential left ideal of U�R� (every nonzero left ideal J of U�R� contains the nonzero
left ideal U�R�J ), by [6, 8.7 (3)], I ∩ U�R� is a dense left ideal of U�R�. So there exists
b ∈ I ∩ U�R� such that bap �= 0 and baq ∈ I ∩ U�R�. �

Proposition 3.8. Let R be a left nonsingular alternative ring.

(i) Every nonzero left ideal of R has nonzero intersection with N�R�.
(ii) The associative ring N�R� is left nonsingular.
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ON QUOTIENT RINGS IN ALTERNATIVE RINGS 5471

Proof. (i) Let I be a nonzero left ideal of R. If 0 �= I ∩D�R�, there exists 0 �=
a ∈ Z�I ∩D�R�� ⊂ N�R� ∩ I , see [7, 5.2]. If I ∩D�R� = 0, then �I� R�R� = 0 which
implies, by 2.4, that I ⊂ U�R� ⊂ N�R�.

(ii) Let a ∈ �l�N�R��. Notice that lanN�R��a� ⊂ lanR�a�. So, if I is a nonzero
left ideal of R, by (i), I ∩ N�R� is a nonzero ideal of N�R�, therefore 0 �= lanN�R��a� ∩
I ∩ N�R� ⊂ lanR�a� ∩ I and lanR�a� has nonzero intersection with every nonzero left
ideal of R. So lanR�a��= lanR��a�R�� is an essential left ideal of R which implies by
3.7 it is dense and therefore, 3.4(i) proves that a = 0. �

4. JOHNSON AND GABRIEL THEOREMS FOR ALTERNATIVE RINGS

In associative rings two of the main results concerning the maximal left
quotient ring are the Johnson’s and the Gabriel’s Theorems, see [6, 13.36 and 13.40].
In this section, we obtain similar results for alternative rings.

Proposition 4.1. Let R be a left nonsingular alternative ring and let us denote by Q
the maximal left quotient ring of R. Then

(i) Q = Ql
max�U�R��⊕Ql

max�D�R��.
(ii) U�Q� = Ql

max�U�R�� and D�Q� = Ql
max�D�R��.

(iii) N�Q� = Ql
max�N�R��.

Proof. (i) By [1, 1.10], 3.4(ii) and 3.7, U�R�⊕D�R� is a dense left ideal of R, so
Q = Ql

max�U�R�⊕D�R�� = Ql
max�U�R��⊕Ql

max�D�R��, see [1, 1.12 (ii) and 2.15 (4)].

(ii) Since D�Q� is an ideal of Q which contains D�R�, it is a dense (left) ideal
of Ql

max�D�R��, so we have Ql
max�D�R�� = Ql

max�D�Q��. Now let C = Z�Ql
max�D�R���,

by [3, 2.12], C = Qmax�Z�D�R���. Then Q�D� is a C-submodule of Ql
max�D�R��, and it

is orthogonally complete by [3, 3.1.18]. Now, since Q�D� is a nonsingular C-module,
it is an injective C-module by [3, 3.1.6], and since it is an essential C-submodule of
Ql

max�D�R�� one gets Q�D� = Ql
max�D�R��.

Moreover, Ql
max�U�R�� is an associative ideal of Q, so it is contained in U�Q�.

Now, if U�Q� is not contained in Ql
max�U�R��, it has nonzero intersection with

Ql
max�D�R��, a contradiction because Ql

max�D�R�� is a purely alternative ring (since
every nonzero ideal of Ql

max�D�R�� has nonzero intersection with D�R�), i.e., U�Q� =
Ql

max�U�R��.

(iii) By (i), Q = Ql
max�U�R��⊕Ql

max�D�R�� and therefore,

N�Q� = N�Ql
max�U�R��⊕Ql

max�D�R��� = N�Ql
max�U�R���⊕ N�Ql

max�D�R���

= �1�Ql
max�U�R��⊕Ql

max�N�D�R��� =�2� Ql
max�U�R�⊕ N�D�R���

= �3�Ql
max�N�R��


(1) Since D�R� is a nondegenerate and purely alternative ring its maximal left
quotient ring coincides with the nearly classical localization, see 2.9(ii). Now,
N�Ql

max�D�R��� = Ql
max�N�D�R��� follows from [4, 2.10 (iii)],

(2) follows from [1, Example 2.15 (4)],
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(3) because U�R�⊕ N�D�R�� is a dense ideal of N�R�: If I is a nonzero left
ideal of N�R� and 0 �= y ∈ I , R1y is a nonzero left ideal of R. Now, �R1y� R�R� = 0
implies 0 �= y ∈ U�R� ∩ I and �R1y� R�R� �= 0 implies, since D�R� is nondegenerate,
that R1y ∩D�R� �= 0. So there exists 0 �= ay ∈ Z�D�R��. Therefore, �ay�2 �= 0, which
implies 0 �= ayy ∈ I ∩D�R�. So U�R�⊕ N�D�R�� is an essential left ideal of N�R� and,
since N�R� is left nonsingular by 3.8, U�R�⊕ N�D�R�� is a dense left ideal of N�R�. �

Definition 4.2. We recall that an element x of an alternative ring R is von
Neumann regular if there exists y ∈ R such that xyx = x (note that R satisfies the
Flexible Law). A ring R is von Neumann regular if every element of R is von
Neumann regular.

Theorem 4.3 (Johnson’s Theorem). Let R be an alternative ring. Then the following
conditions are equivalent:

(i) R is left nonsingular.
(ii) The maximal left quotient ring of R is von Neumann regular.

Proof. Suppose that R is left nonsingular. By 4.1(i), we have that Q �= Ql
max�R� =

Ql
max�U�R��⊕Ql

max�D�R��. On the one hand, by 3.8, N�R� is left nonsingular and,
by 4.1(iii), N�Q� = Ql

max�N�R�� is von Neumann regular, see Johnson’s Theorem for
associative rings, [6, 13.36]. So U�Q� = Ql

max�U�R�� is von Neumann regular. On the
other hand, since D�R� is nondegenerate and purely alternative, Ql

max�D�R�� is von
Neumann regular by 2.9(i).

Now, suppose that Q is von Neumann regular. On the one hand, U�Q� is
von Neumann regular (because it is an ideal of Q), which implies that U�R� is left
nonsingular and, by 3.6, �l�R� = �l�U�R�� = 0. On the other hand, Ql

max�D�R��
is von Neumann regular, in particular it is nondegenerate, and therefore D�R� is
nondegenerate: if x ∈ R is such that xRx = 0, then for every q ∈ Ql

max�D�R�� if
xqx �= 0 there exists n ∈ N�D�R�� = Z�D�R�� such that n�xqx� �= 0 and nq ∈ R but
n�xqx� = x�nq�x ∈ xRx = 0, a contradiction. So, xqx = 0 for every q ∈ Ql

max�D�R��
and x = 0. �

Proposition 4.4. Let R be an alternative ring with finite left Goldie dimension. Then:

(i) If D�R� is nondegenerate then D�R� has finite left Goldie dimension.
(ii) If U�R� has not total right zero divisors (in particular, if R is left nonsingular) then

U�R� has finite left Goldie dimension.

Proof. It follows because in both cases every nonzero left ideal I of U�R� or
D�R� contains a nonzero left ideal of R: If I is contained in D�R�, there exists 0 �=
a ∈ Z�R� ∩ I and therefore 0 �= R1a ⊂ I . If I ⊂ U�R�, I contains U�R�I , which is a
nonzero left ideal of R. �

Theorem 4.5 (Gabriel’s Theorem). Let R be an alternative ring. Then the following
conditions are equivalent.

(i) R is left nonsingular and has finite left Goldie dimension.
(ii) The maximal left quotient ring of R is nondegenerate and Artinian.

Proof. �i� �⇒ �ii�. By 4.1(i), Q �= Ql
max�R� = Ql

max�U�R��⊕Ql
max�D�R��.
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On the one hand, by 4.4(ii), U�R� has finite left Goldie dimension and,
by 3.6(i), it is left nonsingular. So by Gabriel’s Theorem for associative rings,
Ql

max�U�R�� is nondegenerate and Artinian.
On the other hand, D�R� is nondegenerate, purely alternative and by 4.4(i) it

has finite left Goldie dimension. So by Goldie Theorem for alternative rings, see [7],
there exists the classical left quotient ring of D�R�, denote it by Ql

cl�D�R��, which
is nondegenerate and Artinian. Moreover, by [1, Proposition 3.5], Ql

max�D�R�� =
Ql

cl�D�R��. So Q = Ql
max�U�R��⊕Ql

max�D�R�� is a sum of nondegenerate and
Artinian alternative rings, which implies that Q is nondegenerate and Artinian.

�ii� �⇒ �i�. Q is Artinian so it has finite left Goldie dimension. Then
following the proof of [7, 4.5(vi)] we have that R has finite left Goldie dimension
(we do not need the semiprimeness of R since Q is unitary). Moreover, since Q is
von Neumann regular, R is left nonsingular, see 4.3. �
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