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Abstract. We show that, unlike alternative algebras, prime quotients of
a nondegenerate Jordan system or a Lie algebra need not be nondegen-
erate, even if the original Jordan system is primitive, or the Lie algebra
is strongly prime, both with nonzero simple hearts. Nevertheless, for
Jordan systems and Lie algebras directly linked to associative systems,
we prove that even semiprime quotients are necessarily nondegenerate.
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1. Introduction

Absolute zero divisors in associative algebras generate nilpotent ideals: if
x ∈ R satisfies xRx = 0, then the ideal I generated by x has zero cube. As
a consequence, every semiprime associative algebra is nondegenerate (does
not have nonzero absolute zero divisors). These elementary assertions, which
fail when we drop the associativity condition, have been traditionally used
to measure the distance between a given variety of algebras and the variety
of associative algebras. As examples:

(i) Shestakov [28] proves that, for finitely generated alternative algebras,
absolute zero divisors generate nilpotent ideals, while McCrimmon [21]
establishes the local nilpotency of alternative algebras generated by ab-
solute zero divisors.
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(ii) In [11], Beidar, Mikhalev and Shestakov prove that any prime quotient
of a nondegenerate alternative algebra is nondegenerate, extending Kle-
infeld’s result [33, Ch. 9, Sect. 2, Th. 5].
Similar results for Jordan systems as those mentioned in (i) are due to

Zelmanov [32] and Medevedev [25], while for Lie algebras, one can mention
the papers by Kostrikin [18] and Zelmanov [31]. However, no analogue of (ii)
for Jordan systems or Lie algebras was known.

This paper is devoted to settling this question: It will be shown that an
analogue of (ii) for Jordan systems or Lie algebras is false in general, but it
turns out to be true if we restrict to cases when the Jordan system or the Lie
algebra is directly linked to an associative system.

The paper starts with a preliminary section devoted to recalling basic
facts and terminology. After that, we show in the first section that there are
nondegenerate Jordan systems and Lie algebras that have prime degenerate
quotients. Using free special Jordan systems and special Pchelintsev mon-
sters [27,29] yields examples of strongly prime Jordan systems having prime
degenerate quotients. Similar examples of Lie algebras can be obtained us-
ing the free Lie algebra. The constructions given in [6,9] are used to show
the existence of primitive Jordan systems and strongly prime Lie algebras,
both with simple nondegenerate hearts, that have prime degenerate quotients
nevertheless.

The second section is devoted to studying Jordan systems which are
ample subsystems H0(R, ∗) of an associative system R with involution and
even quotients of those. Using Herstein’s constructions [7], we can give precise
descriptions of semiprime and prime ideals of H0(R, ∗), showing that, in par-
ticular, they are nondegenerate and strongly prime, respectively. As a conse-
quence, we obtain similar results for Jordan systems obtained by symmetriza-
tion R(+) of an associative system R. In this section, no assumption is made
on the associative systems under consideration, nor on the rings of scalars.

The third section deals with Lie algebras of skew-symmetric elements of
an associative algebra R with involution over a ring of scalars Φ, with 1

2 ∈ Φ,
and, more generally, with their quotients. In the particular case when the
Lie algebra is of the form R(−), for an associative algebra R, a description
of semiprime ideals is provided. The general case is far more involved. The
study of semiprime ideals is reduced to that of prime ideals, where another
reduction can be made. Indeed, R can be assumed to be ∗-prime, so that
we can apply Martindale and Miers’ Herstein’s Lie theory if the ∗-central
closure of R is not of type A2 or BD4. The remaining cases require different
techniques, but, finally, full Lie analogues of the main results of the previous
section are obtained.

2. Preliminaries

2.1 We will deal with associative, Jordan systems (algebras, triple systems
and pairs) and Lie algebras over an arbitrary ring of scalars Φ. The reader
is referred to [3,15–17,19,22,23] for basic facts and notions not explicitly
mentioned in this section.
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– Given a Jordan algebra J , its products will be denoted by x2, Uxy, for
x, y ∈ J . They are quadratic in x and linear in y and have linearizations
denoted x ◦ y, Ux,zy = {x, y, z} = Vx,yz, respectively.

– For a Jordan pair V = (V +, V −), we have products Qxy ∈ V ε, for any
x ∈ V ε, y ∈ V −ε, ε = ±, with linearizations Qx,zy = {x, y, z} = Dx,yz.

– A Jordan triple system J is given by its products Pxy, for any x, y ∈ J ,
with linearizations denoted by Px,zy = {x, y, z} = Lx,yz.

– For a Lie algebra L, the (bilinear) product of the elements x, y ∈ L will
be denoted [x, y]. The map adx : L −→ L is given by adx(y) = [x, y].

2.2 A Jordan algebra gives rise to a Jordan triple system by simply
forgetting the squaring and letting P = U . By doubling any Jordan triple
system T , one obtains the double Jordan pair V (T ) = (T, T ) with products
Qxy = Pxy, for any x, y ∈ T . From a Jordan pair V = (V +, V −), one
can get a (polarized) Jordan triple system T (V ) = V + ⊕ V − by defining
Px+⊕x−(y+ ⊕ y−) = Qx+y− ⊕ Qx−y+ [19, 1.13, 1.14].

2.3 An ideal of a Jordan triple system J is a Φ-submodule I of J such
that it is both an inner ideal (PIJ ⊆ I) and an outer ideal (PJI + {J, J, I} ⊆
I). Similar notions are defined for Jordan algebras and pairs. An ideal of a
Lie algebra L is a Φ-submodule I of L such that [I, L] ⊆ I.

2.4 Given an associative or Jordan system, or a Lie algebra M , the heart
Heart(M) of M is the intersection of all nonzero ideals of M .

2.5 An associative system R gives rise to a Jordan system R(+) by
symmetrization: over the same Φ-module (the same pair of Φ-modules, in the
pair case), we define x2 = xx, Uxy = xyx, for any x, y ∈ R in the case of
algebras, Pxy = xyx in the case of triple systems, and Qxσy−σ = xσy−σxσ,
σ = ± in the pair case, where juxtaposition denotes the associative product
in R.

Similarly, given an associative algebra R, we can build its antisym-
metrization R(−), which turns out to be a Lie algebra: it is the same Φ-
module, with a new product given by [x, y] = xy − yx.

2.6 The center Z(R) of an associative algebra R is the set Z(R) = {z ∈
R | zx = xz, for any x ∈ R}, which turns out to be subalgebra of R, and an
ideal of R(−). The center Z(L) of any Lie algebra L is Z(L) = {z ∈ L | [z, x] =
0, for any x ∈ L} which is always an ideal of L. Clearly, Z(R) = Z(R(−)).

2.7 A Jordan system J is said to be special if there exists an associative
system R such that J is a subsystem of R(+). A Jordan system which is not
special is called exceptional. For a Lie algebra L, over a field Φ of characteristic
not two, the Poincare–Birkhoff–Witt theorem [15, Cor. 17.3 B; 17, Cor. 1,
p. 160] shows that there exists an associative Φ-algebra R such that L is a
subalgebra of R(−).

2.8 A particularly important family of special Jordan systems is that of
ample subsystems of associative systems with involution:

– If R is an associative algebra with involution ∗, a Φ-submodule H0(R, ∗)
contained in the set of symmetric elements H(R, ∗) is said to be an
ample subspace of R if it contains all traces and norms of elements of R
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(x + x∗, xx∗ ∈ H0(R, ∗) for any x ∈ R) and xH0(R, ∗)x∗ ⊆ H0(R, ∗) for
any x ∈ R [20, p. 387; 23, Sect. 0.8′].

– If R = (R+, R−) is an associative pair with polarized involution ∗, an
ample subpair H0(R, ∗) = (H+

0 ,H−
0 ) is a pair of Φ-submodules of sym-

metric elements (Hσ
0 ⊆ H(Rσ, ∗)) containing all traces (x + x∗ ∈ Hσ

0 for
any x ∈ Rσ) and satisfying xH−σ

0 x∗ ⊆ Hσ
0 for any x ∈ Rσ, σ = ± [8,

Sect. 1.7].
– If R is an associative triple system with involution ∗, a Φ-submodule

H0(R, ∗) contained in the set of symmetric elements H(R, ∗) is said to
be an ample subsystem of R if V (H0(R, ∗)) is an ample subpair of V (R)
equipped with the polarized involution induced by ∗ [2, pp. 209–210].
2.9 An important subalgebra of the Lie algebra R(−), when R is an

associative algebra with involution ∗, is given by the set Skew(R, ∗) of skew-
symmetric elements of R with respect to ∗.

2.10 A Jordan system or a Lie algebra M is said to be nondegenerate
if zero is the only absolute zero divisor. An absolute zero divisor of a Jordan
algebra J is an element x ∈ J such that Ux = 0 (similar definitions are given
for Jordan pairs and triple systems), while an absolute zero divisor x ∈ L,
where L is a Lie algebra, is defined by ad2

x = 0.
2.11 We say that a Jordan algebra J is semiprime if I3 �= 0, for any

nonzero ideal I of J , and say that J is prime if UIK �= 0, for any nonzero
ideals I, K of J . Similarly, we can define semiprime and prime Jordan pairs
and triple systems.

A Lie algebra L is said to be semiprime if [I, I] �= 0 for any nonzero
ideal I of L, and is said to be prime if [I,K] �= 0 for any nonzero ideals I, K
of L.

A Jordan system or a Lie algebra is said to be strongly prime if it is
prime and nondegenerate.

An ideal I of a Jordan or associative system or a Lie algebra M is
said to be semiprime, prime, nondegenerate, or strongly prime if the quotient
M/I is semiprime, prime, nondegenerate, or strongly prime, respectively. For
an associative system with involution ∗, we also have the notion of ∗-prime
∗-ideal of R, with obvious meaning.

3. Counterexamples

3.1 We can find prime quotients of strongly prime Jordan systems that are
degenerate.

(i) Indeed, examples of prime degenerate Jordan algebras can be found
in [26,27,29]. The examples given in [27] are special, over a field Φ
of characteristic zero. Let J be such an algebra. In particular, J is
the quotient of the free special Jordan Φ-algebra ˜J = FSJalg[X] on an
infinite set of variables X.

(ii) Let FAssalg[X] be the free associative Φ-algebra on X. Recall that
FSJalg[X] is the subalgebra of FAssalg[X](+) generated by X. If Φ is an
integral domain (for example, when Φ is a field), it is readily seen that
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FSJalg[X] is even strongly prime since, for elements a, b ∈ FSJalg[X],
Uab = aba = 0 implies that either a = 0 or b = 0 because FAssalg[X]
does not have nonzero zero divisors.

(iii) By applying the functors given in (2.2) to the algebras given in (i) and
(ii), together with the transfer of regularity [4, 0.3(ii)(iii)], one can get
special Jordan pairs and triple systems ˜J over a field Φ that are strongly
prime but have prime degenerate quotients J .

3.2 There are also examples of prime quotients of strongly prime Lie
algebras that are degenerate.

(i) In fact, there exist Lie algebras of Cartan type over fields of prime
characteristic that are simple and degenerate (cf. [30, page 1]). If we
want examples over fields of characteristic zero, we can take a prime
degenerate algebra J as in [27], which is a Jordan algebra over a field Φ
of characteristic zero so that the duplicated Jordan pair V := (J, J) is
also prime and degenerate [4, 0.3(iii)], hence the Lie algebra TKK(V )
is prime and degenerate by [12, 1.2, 2.2, 2.6]. Let us take one of those
Lie algebras L over a field Φ which are prime and degenerate. Such an
algebra is a quotient of the free Lie algebra FLiealg[X] on a sufficiently
big set of variables X, and we can always take X to be infinite.

(ii) If we work over fields, FLiealg[X] is just the subalgebra of FAssalg[X](−)

generated by X [17, Th. 7, p. 168]. We claim that
(a) FLiealg[X] is prime if X is infinite: if I, K were nonzero ideals of

zero product, we could take nonzero elements a ∈ I, b ∈ K and
a variable x ∈ X not involved either in a or in b. Now [[a, x], b] ∈
[[I, L],K] ⊆ [I,K] = 0, but [[a, x], b] = axb−xab−bax+bxa, which
implies that xab = 0 since xab is just the sum of all associative
monomials of [[a, x], b] starting with the variable x. However, xab =
0 is impossible since FAssalg[X] does not have nonzero zero divisors
if Φ is a field.

(b) FLiealg[X] is nondegenerate if X is infinite: if a ∈ FLiealg[X] is an
absolute zero divisor, we can take a variable x ∈ X not involved
in a, and 0 = [a, [a, x]] = aax− 2axa + xaa implies xaa = 0, hence
a = 0, due to the absence of nonzero zero divisors in FAssalg[X].

3.3 We can get wilder examples using the following results:

(I) [9, 1.4] Let J be a special Jordan system over a field Φ. There exists a
special Jordan system ˜J over Φ such that:

(i) J is isomorphic to a subsystem M of ˜J ,
(ii) ˜J is a primitive system, hence it is strongly prime,
(iii) Heart( ˜J) is simple and primitive,
(iv) ˜J = M ⊕ Heart( ˜J), hence ˜J/Heart( ˜J) ∼= J .

(II) [6, 3.2] Let L be a Lie algebra over a field Φ of characteristic not two.
There exists a Lie algebra ˜L over Φ such that:

(i) L is isomorphic to a subalgebra M of ˜L,
(ii) ˜L is strongly prime,
(iii) Heart(˜L) is simple and nondegenerate,
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(iv) ˜L = M ⊕ Heart(˜L), hence ˜L/Heart(˜L) ∼= L.

Indeed, if we take a prime degenerate special Jordan system over a field
as in (3.1), we can apply (I) to obtain a primitive Jordan system ˜J with
nonzero simple primitive heart, such that J is a quotient of ˜J .

Similarly, if we take a prime degenerate Lie algebra L over a field of
characteristic not two, as in (3.2), we can apply (II) to obtain a strongly
prime Lie algebra ˜L with nonzero simple nondegenerate heart, such that L

is a quotient of ˜L.

4. Jordan Systems Linked to Associative Systems

This section is devoted to showing that prime quotients of a Jordan system
J are automatically nondegenerate when J is an ample subsystem of an
associative system with involution (2.8). This is based on Herstein’s second
construction [7].

4.1 Let (R, ∗) be an associative system (algebra, pair, or triple system)
with involution, H0 := H0(R, ∗) an ample subsystem of R, and B be a ∗-ideal
of R.

– If R is an algebra, we define

K(B,H0)

=

⎧

⎨

⎩

b + b∗ +
∑

i

λibib
∗
i +

∑

j

bjhjb
∗
j | b, bi, bj ∈ B, hj ∈ H0, λi ∈ Φ

⎫

⎬

⎭

,

which turns out to be an ideal of H0 contained in B ∩ H0 [7, 2.2].
– If R = (R+, R−) is a pair, we define

K(Bσ,H0) =

{

b + b∗ +
∑

i

bihib
∗
i | b, bi ∈ Bσ, hi ∈ H−σ

0

}

,

which is a semi-ideal of H0 contained in Bσ ∩Hσ
0 , σ = ± [7, 3.2]. We will

write K(B,H0) = (K(B+,H0),K(B−,H0)).
– If R is a triple system, we define

K(B,H0) =

{

b + b∗ +
∑

i

bihib
∗
i | b, bi,∈ B, hi ∈ H0

}

,

which is a semi-ideal of H0 contained in B ∩ H0 [7, 3.10].

We have adopted a uniform notation K(B,H0) for algebras, pairs, and triple
systems, unlike in [7], to simplify the phrasing of the next results.

Lemma 4.1. Let (R, ∗) be an associative system with involution, H0 := H0

(R, ∗) an ample subsystem of R, and P an ideal of H0. Let I be the set
of ∗-ideals I of R such that K(I,H0) ⊆ P . Then, I is closed under sums
(I1 + I2 ∈ I for any I1, I2 ∈ I) so that the maximum of the elements of I
exist.
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Proof. Let us assume first that we are dealing with algebras.
Let a ∈ I1 and b ∈ I2, I1, I2 ∈ I,

(1) (a + b) + (a + b)∗ = a + a∗ + b + b∗ ∈ K(I1,H0) + K(I2,H0) ⊆ P ,
(2) (a + b)(a + b)∗ = aa∗ + bb∗ + ab∗ + ba∗ = aa∗ + bb∗ + ab∗ + (ab∗)∗ ∈

K(I1,H0) + K(I2,H0) ⊆ P since ab∗ ∈ I1,
(3) for any h ∈ H0, (a + b)h(a + b)∗ = aha∗ + bhb∗ + ahb∗ + bha∗ = aha∗ +

bhb∗ + ahb∗ + (ahb∗)∗ ∈ K(I1,H0) + K(I2,H0) ⊆ P since ahb∗ ∈ I1.

The above assertions (1–3) show that K(I1 + I2,H0) ⊆ P , i.e. I1 + I2 ∈ I.
The above work applies verbatim to triple systems just forgetting (2), and it
can be easily adapted to pairs too.

Now since a sum of ideals is just a union of finite sums, I is closed for
arbitrary (not necessarily finite) sums of ideals. In particular, the sum of all
ideals of I is the maximum in I we were looking for. �

When P is a semiprime ideal of R, we have an alternative description
of the elements of I in Lemma 4.1.

Lemma 4.2. Let (R, ∗) be an associative system with involution, H0 := H0

(R, ∗) an ample subsystem of R, P a semiprime ideal of H0, and I a ∗-ideal
of R. Then, K(I,H0) ⊆ P if and only if I ∩ H0 ⊆ P .

Proof. Clearly I ∩ H0 ⊆ P implies K(I,H0) ⊆ P , since K(I,H0) ⊆ I ∩ H0

(4.1).
If, conversely, K(I,H0) ⊆ P , and we are dealing with algebras, we have

UI∩H0(I ∩ H0) ⊆ K(I,H0) ⊆ P (1)

since, for any a, b ∈ I ∩ H0, Uab = aba = aba∗ ∈ aH0a
∗ ⊆ K(I,H0).

Now (1) implies that the ideal ((I ∩H0)+P )/P of H0/P has zero cube,
which implies ((I ∩H0)+P )/P = 0, i.e. I ∩H0 ⊆ P since H0/P is semiprime.

The above argument can be easily adapted to the cases of pairs and
triple systems. �

Theorem 4.3. If (R, ∗) is an associative system with involution, H0 := H0

(R, ∗) is an ample subsystem of R, and P is a semiprime (resp. prime) ideal
of H0, then there exists a semiprime (resp. ∗-prime) ∗-ideal I of R such that
P = I ∩ H0. Moreover, P is a nondegenerate (resp. strongly prime) ideal of
H0.

Proof. Let us start with the case when P is a semiprime ideal of H0.
By Lemmas 4.1 and 4.2,

I = {B ∗-ideal of R|K(B,H0) ⊆ P} = {B ∗ -ideal of R|B ∩ H0 ⊆ P}
and there exists a maximum I of the elements of I.

We claim that

(1) I is a semiprime ideal of R, i.e. ˜R := R/I is semiprime,

which is well known to be equivalent to R/I being ∗-semiprime. Indeed, if
N is a ∗-ideal of R such that N3 ⊆ I, then the cube of N in R(+), which is
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spanned by elements of the form aba, for a, b ∈ N (for a ∈ Nσ, b ∈ N−σ,
σ = ±, in the pair case), is also contained in I. In particular, we have

UN∩H0(N ∩ H0) ⊆ I ∩ H0 ⊆ P

in the algebra case, and similar properties in the pair and triple system cases,
which yields, as in the proof of Lemma 4.2, that ((N ∩H0)+P )/P is an ideal
of zero cube in the semiprime system H0/P , hence N ∩ H0 ⊆ P , i.e. N ∈ I,
which implies N ⊆ I.

Let ϕ: R −→ R/I = ˜R be the natural projection.
It is straightforward to check that ϕ(H0) is an ample subsystem of ˜R.

By (1), ˜R is a semiprime associative system with involution, hence any of its
ample subsystems is nondegenerate [7, 0.7(ii)]. In particular,

(2) ϕ(H0) is nondegenerate.
Now, ϕ(P ) is an ideal of ϕ(H0), and we claim that

(3) ϕ(H0)/ϕ(P ) ∼= H0/P , so that ϕ(P ) is a semiprime ideal of ϕ(H0).

Indeed the composition ψ: H0

ϕ
−→ ϕ(H0) −→ ϕ(H0)/ϕ(P ) is surjective and

Ker ψ = {x ∈ H0|x + I ∈ ϕ(P )}
= {x ∈ H0|x − p ∈ I, for some p ∈ P} = P

since x − p = y ∈ I implies y ∈ I ∩ H0 ⊆ P , hence x ∈ P , and, conversely,
x ∈ P implies x − x = 0 ∈ I.

If ϕ(P ) �= 0, then we can use [7, 2.6, 3.6, 3.14], and there exists a nonzero
∗-ideal ˜B of ˜R such that K( ˜B,ϕ(H0)) ⊆ ϕ(P ). Now Lemma 4.2 yields

(4) ˜B ∩ ϕ(H0) ⊆ ϕ(P ).

But ˜B = B/I for some ∗-ideal B of R strictly containing I, hence (4) and the
fact that I ∩ H0 ⊆ P imply B ∩ H0 ⊆ P [for example, in the case of algebras
or triple systems, for any b ∈ B ∩ H0, b + I ∈ ˜B ∩ ϕ(H0) ⊆ ϕ(P ), which
implies b − p ∈ I for some p ∈ P , hence b − p ∈ I ∩ H0 ⊆ P , and b ∈ P ], i.e.
B ∈ I, and B ⊆ I, which is a contradiction.

We have shown that ϕ(P ) = 0, which implies P ⊆ I, hence P ⊆ H0∩I ⊆
P .

Moreover, (3) reads H0/P ∼= ϕ(H0), hence H0/P is nondegenerate by
(2), i.e. P is a nondegenerate ideal.

If P is a prime ideal of H0, the above is still valid, and we just need
to show that I is a ∗-prime ∗-ideal of R. Indeed, if A and B are ∗-ideals of
R such that ABA ⊆ I (AB ⊆ I in the algebra case), then aba ∈ I, for any
a ∈ A, b ∈ B (aba ∈ Iσ, for any a ∈ Aσ, b ∈ B−σ, σ = ±, in the pair case).
In particular, we have

UA∩H0(B ∩ H0) ⊆ I ∩ H0 ⊆ P

in the algebra case, and similar properties in the pair and triple system cases,
which yields, as above, that ((A ∩ H0) + P )/P and ((B ∩ H0) + P )/P are
orthogonal ideals of the prime system H0/P , hence either A ∩ H0 ⊆ P , or
B ∩ H0 ⊆ P , i.e. either A ∈ I, or B ∈ I, which implies A ⊆ I or B ⊆ I. �
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As a consequence, we can get a similar result for Jordan systems ob-
tained from associative systems by symmetrization.

Corollary 4.4. If R is an associative system, and P is a semiprime (resp.
prime) ideal of R(+), then P is a semiprime (resp. prime) ideal of R. More-
over, P is a nondegenerate (resp. strongly prime) ideal of R(+).

Proof. Take the associative system S = R⊕Rop, equipped with the exchange
involution ∗ given by (x, y)∗ = (y, x). It is well known and straightforward
that
(1) ψ : R(+) −→ H(S, ∗), given by ψ(x) = (x, x) is an isomorphism of

Jordan systems.
Thus, R(+)/P ∼= H(S, ∗)/ψ(P ), and ψ(P ) is a semiprime (resp. prime) ideal
of H(S, ∗).

By Theorem 4.3, ψ(P ) = M ∩ H(S, ∗), for some semiprime (resp. ∗-
prime) ∗-ideal M of S, and ψ(P ) is a nondegenerate (resp. strongly prime)
ideal, which implies that P is a nondegenerate (resp. strongly prime) ideal of
R(+).

Moreover, a semiprime ∗-ideal M of S has necessarily the form M =
I ⊕ I, for some ideal I of R

[I = π1(M) = π2(M), where πi: S −→ R, i = 1, 2, is the natural
projection: Clearly M ⊆ I ⊕ I, but we also claim that

S(I ⊕ I)S ⊆ M. (2)

Indeed, for any a ∈ I, x, y ∈ R, there exists b ∈ I with (a, b) ∈ M , hence
(x, 0)(a, b)(y, 0) = (xay, 0) ∈ M , and we have RIR ⊕ 0 ⊆ M . Similarly,
0 ⊕ RIR ⊆ M , which implies (1) because S(I ⊕ I)S = RIR ⊕ RIR. On
the other hand, (2) implies (I ⊕ I)3 ⊆ M , and hence I ⊕ I ⊆ M since
M is a semiprime ideal of S].

Now, the equality ψ(P ) = M ∩H(S, ∗) readily implies P = I, and semiprime-
ness (resp. ∗-primeness) of M as a ∗-ideal of S is easily seen to be equivalent to
semiprimeness (resp. primeness) of I as an ideal of R [S/M ∼= R/I ⊕(R/I)op,
hence we can use [5, 3.6]]. �

The third isomorphism theorem applied to Theorem 4.3 produces the
following corollary, which, by Corollary 4.4(1), also applies to Jordan systems
J which are quotients of R(+), where R is an associative system.

Corollary 4.5. Let J be a Jordan system which is a quotient of H0(R, ∗),
where (R, ∗) is an associative system with involution. If P is a semiprime
(resp. prime) ideal of J , then P is a nondegenerate (resp. strongly prime)
ideal of J .

5. Lie Algebras Linked to Associative Algebras

5.1 We will start this section with the study of Lie algebras of the form R(−),
for an associative algebra R (2.5). Every such an algebra is isomorphic to
Skew(S, ∗) (2.9), for the associative algebra S = R ⊕ Rop and the exchange
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involution ∗, and we will study algebras of the form Skew(S, ∗) later on in
the section. However, we have decided to deal with algebras of the form R(−)

independently, because a much more accurate description of semiprime ideals
can be obtained in this case.

5.2 Given an associative Φ-algebra R, ̂R will denote the unital hull of
R. We will make extensive use of ̂R to abbreviate the description of the ideal
I of R generated by a subset S ⊆ R: I = ̂RS ̂R.

Lemma 5.1. If R is an associative algebra over a ring of scalars Φ with 1
2 ∈ Φ,

and P is a semiprime ideal of R(−), then ̂R[P, P ] ̂R ⊂ P .

Proof. For any p ∈ P and a ∈ R,

[p, a2] = [p, a]a + a[p, a] = 2a[p, a] + [[p, a], a],

hence

2a[p, a] = [p, a2] − [[p, a], a] ∈ P.

Therefore, since 1
2 ∈ Φ, a[p, a] ∈ P , and

a[p, b] + b[p, a] ∈ P, for any p ∈ P , a, b ∈ R (1)

by linearization. Moreover, if “≡” denotes congruence modulo P ,

[p2, a] = [p, a]p + p[p, a] = [[p, a], p] + 2p[p, a] ≡(1) [[p, a], p] − 2a[p, p]
= [[p, a], p] ∈ P.

We have shown p2 + P ∈ Z(R(−)/P ), but Z(R(−)/P ) = 0 since R(−)/P is a
semiprime Lie algebra and, therefore, p2 ∈ P for every p ∈ P . By lineariza-
tion, pq + qp ∈ P , for any p, q ∈ P . Since we also have [p, q] ∈ P , we have
2pq ∈ P , which implies

pq ∈ P, for any p, q ∈ P. (2)

Now, for any a ∈ ̂R, [ap, q] = [a, q]p + a[p, q] implies that

a[p, q] = [ap, q] − [a, q]p ∈ P + PP ⊆(2) P,

and we have shown that ̂R[P, P ] ⊆ P . Finally, for any a, b ∈ ̂R, a[p, q]b =
a[[p, q], b] + ab[p, q] = a[[p, b], q] + a[p, [q, b]] + ab[p, q] ∈ ̂R[P, P ] ⊂ P . �

5.3 Let R be an associative algebra, and P be an ideal of R(−). The
set I of the ideals of R contained in P is closed under the sum, so that
I :=

∑

M∈I M is the maximum of the elements in I.

Proposition 5.2. Let R be an associative algebra over a ring of scalars Φ
with 1/2 ∈ Φ, and let P be a semiprime (resp. prime) ideal of R(−). Let I
be the maximum of the ideals of R contained in P . Then, I is a semiprime
(resp. prime) ideal of R, P/I = Z((R/I)(−)), and P is a nondegenerate (resp.
strongly prime) ideal of R(−).

Proof. Let us assume that P is a semiprime ideal of R(−). If a ∈ R satisfies
that ( ̂Ra ̂R)2 ⊂ I, then [ ̂Ra ̂R, ̂Ra ̂R] ⊂ I ⊂ P , so, ̂Ra ̂R ⊂ P by semiprimeness
of P as an ideal of R(−), which implies that a ∈ I. We have shown that I is
a semiprime ideal of R.
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If a + I ∈ Z(R/I), then [a,R] ⊂ I ⊂ P , which implies that a + P ∈
Z(R(−)/P ) but, Z(R(−)/P ) = 0 by semiprimeness of P again, and a ∈ P .
Conversely, if a ∈ P , then [a, [a,R]] ⊂ [P, P ] ⊂ I by (5.1), which implies that
a+ I is an absolute zero divisor of (R/I)(−), hence a+ I lies in the Kostrikin
radical Kos((R/I)(−)) of (R/I)(−). But Kos((R/I)(−)) = Z((R/I)(−)) [13,
4.3(2)].

We have that P/I = Z((R/I)(−)) = Kos((R/I)(−)), hence

R(−)/P ∼= (R/I)(−)/P/I = (R/I)(−)/Kos
(

(R/I)(−)
)

is a nondegenerate Lie algebra, i.e. P is a nondegenerate ideal.
If P is a prime ideal of R(−), P is, in particular, semiprime, and I is

semiprime. Now, if a, b ∈ R satisfy a ̂Rb ⊆ I, then b ̂Ra ̂Rb ̂Ra ⊆ I, and b ̂Ra ⊆ I

by semiprimeness of I. Thus, [ ̂Ra ̂R, ̂Rb ̂R] ⊆ I ⊆ P , and either ̂Ra ̂R ⊆ P or
̂Rb ̂R ⊆ P by primeness of P . Therefore, either ̂Ra ̂R ⊆ I or ̂Rb ̂R ⊆ I, hence
either a ∈ I or b ∈ I, which shows that I is a prime ideal of R. �

The rest of the section is devoted to taking care of Lie algebras of the
form Skew(R, ∗), for an associative algebra with involution (R, ∗).

5.4 Given an associative algebra with involution (R, ∗), quotients of R
by a ∗-ideal I of R are called ∗-quotients. They inherit the involution which
will be denoted also ∗, so that the canonical projection π: R −→ R/I becomes
a ∗-epimorphism: π(x∗) = (π(x))∗, for any x ∈ R.

5.5 Let (R, ∗) be an associative algebra with involution over a ring of
scalars Φ with 1

2 ∈ Φ, and P be an ideal of K = Skew(R, ∗). The set I of
the ∗-ideals I of R such that K ∩ I = Skew(I, ∗) ⊆ P is closed under the
sum, so that I :=

∑

M∈I M is the maximum of the elements in I. Indeed,
every element x in a sum of ideals of I has the form x = x1 + . . . xn, where
x1 ∈ I1, . . . , xn ∈ In, for some I1, . . . , In ∈ I. If, in addition x ∈ K, then
x = 1

2 (x − x∗) = 1
2 [(x1 + · · · + xn) − (x1 + · · · + xn)∗] = 1

2 (x1 − x∗
1) + · · · +

1
2 (xn − x∗

n) ∈ (K ∩ I1) + · · · + (K ∩ I1) ⊆ P .
The next result is aimed at reducing the study of a prime ideal P of

Skew(R, ∗) to the particular case in which R is ∗-prime and, at the same
time, no nonzero ∗-ideal I of R satisfies Skew(I, ∗) ⊆ P .

Lemma 5.3. Let (R, ∗) be an associative algebra with involution over a ring
of scalars Φ with 1

2 ∈ Φ. Let I be a ∗-ideal of R and π : R −→ R/I the
canonical projection. Then

(i) Skew(I, ∗) is an ideal of Skew(R, ∗), and we have Skew(R, ∗)/Skew(I, ∗)
∼= π(Skew(R, ∗)) = Skew(R/I, ∗).

Let P be an ideal of K = Skew(R, ∗), and I be the maximum of the elements
of I, as in (5.5).
(ii) If P is a prime (respectively, semiprime) ideal of K, then I is a ∗-prime

(respectively, semiprime) ideal of R, and K/P ∼= Skew(R/I, ∗)/π(P ),
which implies that π(P ) is a prime (respectively, semiprime) ideal of
Skew(R/I, ∗). Moreover, there is no nonzero ∗-ideal of R/I whose skew-
symmetric elements are contained in π(P ).
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Proof. (i) Idealness of Skew(I, ∗) in Skew(R, ∗), and the isomorphism follow
from the fact that

Ker(π|Skew(R,∗)) = Kerπ ∩ Skew(R, ∗) = I ∩ Skew(R, ∗) = Skew(I, ∗).

Given any x ∈ Skew(R, ∗), π(x) = x + I ∈ Skew(R/I, ∗) since (x + I)∗ =
x∗+I = (−x)+I = −(x+I). Conversely, if x+I ∈ Skew(R/I, ∗), then we have
x+I = 1

2 [(x+I)−(x+I)∗] = 1
2 [(x+I)−(x∗+I)] = 1

2 (x−x∗)+I = π( 1
2 (x−x∗)),

where 1
2 (x − x∗) ∈ Skew(R, ∗). This shows the second equality.

(ii) Let us assume that P is prime, and consider M1,M2, ∗-ideals of R such
that M1M2 ⊆ I. Then also M2M1 = M∗

2 M∗
1 = (M1M2)∗ ⊆ I∗ = I since

M1,M2, I are ∗-invariant, and, then

[Skew(M1, ∗),Skew(M2, ∗)] ⊆ (M1M2 + M2M1) ∩ Skew(R, ∗)
⊆ I ∩ Skew(R, ∗) ⊆ P,

which implies, since P is a prime ideal of K, that either Skew(M1, ∗) ⊆ P or
Skew(M2, ∗) ⊆ P and, therefore, either M1 ⊆ I or M2 ⊆ I. This shows that
I is a ∗-prime ∗-ideal of R.

If P is semiprime, the argument above can be adapted, taking M1 = M2,
to show that I is a ∗-semiprime ideal of R and, therefore, a semiprime ideal
of R.

On the other hand, using (i), π(P ) is an ideal of π(Skew(R, ∗)) =
Skew(R/I, ∗), and, since Ker(π|Skew(R,∗)) = Skew(I, ∗) ⊆ P ,

K/P ∼= (

K/Skew(I, ∗)
)/(

P/Skew(I, ∗)
) ∼= Skew(R/I, ∗)/π(P ).

Finally, a nonzero ∗-ideal of R/I has the form M/I, where M is a ∗-ideal
of R strictly containing I, hence, there exists x ∈ Skew(M, ∗) \ P , therefore
x+ I ∈ Skew(M/I, ∗), but x+ I �∈ π(P ) = (P + I)/I [otherwise x+ I = p+ I
for some p ∈ P , hence x − p ∈ I ∩ K = Skew(I, ∗) ⊆ P , and x ∈ P , which is
a contradiction]. �

5.6 Let (R, ∗) be an associative algebra with involution over an alge-
braically closed field F, and let K = Skew(R, ∗). We say that K or (R, ∗) (or
R, for short) is of class
An if R = T ⊕T op with the exchange involution, where T = Mn(F), so that

K ∼= Mn(F)(−).
BDn if R = Mn(F) under the transpose involution.

Cn if R = Mn(F) under the symplectic involution (necessarily n = 2m is
even).
5.7 Let (R, ∗) be a ∗-prime associative algebra with involution with ex-

tended centroid C, ∗-extended centroid C∗ (notice that C∗ ⊂ C), centroid Γ
and ∗-centroid Γ∗ (Γ∗ ⊂ Γ). We define ˜R := RC∗ ⊗C∗ F where F is the alge-
braic closure of the field C∗. By [10, Theorem 8] and [24, Theorem 2.11(b)],
˜R is a ∗-closed ∗-prime algebra over F with skew elements ˜K = KC∗ ⊗C∗ F

(cf. [24, Section 5]).
In [24], it is shown that the classes listed in (5.6) correspond to PI

algebras R, producing PI algebras ˜R. Some of those classes for small n’s are
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exceptions to the general results proved in [24]. Therefore, those cases will
need to be treated separately.

Lemma 5.4. Let (R, ∗) be an associative algebra with involution over a ring of
scalars Φ with 1

2 ∈ Φ. Let K = Skew(R, ∗) and P be a prime ideal of K such
that no nonzero ∗-ideal M of R satisfies Skew(M, ∗) = M ∩ K ⊆ P . Then,
R is ∗-prime. If, in addition, ˜R is not of class A2 or BD4, then P = Z(K),
and P is a nondegenerate ideal of K.

Proof. The greatest ∗-ideal of R whose skew symmetric elements are con-
tained in P is zero, hence R is ∗-prime by Lemma 5.3(ii).

Since [Z(K), Z(K)] = 0 ⊆ P , and P is a semiprime ideal of K, Z(K)
⊆ P .

Since R is ∗-prime, R itself provides a way to express R as a subdirect
product of ∗-prime rings, hence [24, Theorem 6.4] applies, yielding that either
0 ≡ P in the notation of [24, page 26], which means P ⊆ Z(K), as we wanted
to prove, or there exists a nonzero standard Lie ideal of K contained in P ,
i.e. there exists a ∗-ideal M of R such that 0 �= [M ∩K,K] ⊆ P . In this latter
situation, M ∩ K = Skew(M, ∗) ⊆ P by semiprimeness of P as an ideal of
K, which is a contradiction.

We have shown P = Z(K), but Z(K) = Kos(K) by [13, 4.8], hence
K/P = K/Kos(K) is a nondegenerate Lie algebra. �

We will next study the cases not covered by Lemma 5.4.
The following technical result is mostly a part of the Lie folklore.

Lemma 5.5. (i) If a is an absolute zero divisor in a Lie algebra L over a
ring of scalars Φ with 1

2 ∈ Φ, then ad[a,x1] ad[a,x2] ad[a,x3] = 0, for any
x1, x2, x3 ∈ L. In particular, ad3

[a,x] = 0, for any x ∈ L.
(ii) If, in addition, L is a subalgebra of R(−), where R is an associative

Φ-algebra, and y = ra +
∑n

i=1 si[a, xi], for some r, si ∈ Ẑ(R), xi ∈ L,
then ad3

y(L) = 0.
(iii) If a is an element in a Lie algebra L over a ring of scalars Φ with 1

2 ∈ Φ
such that [a, [a, L]] ⊆ P , for an ideal P of L, then ad[a,x1] ad[a,x2] ad[a,x3]

(L) ⊆ P , for any x1, x2, x3 ∈ L. In particular, ad3
[a,x](L) ⊆ P , for any

x ∈ L.
(iv) If, in addition, L is a subalgebra of R(−), where R is an associative

Φ-algebra, and y = ra +
∑n

i=1 si[a, xi], for some r, si ∈ Ẑ(R), xi ∈ L,
then ad3

y(L) ⊆ SP , where S ⊆ Ẑ(R) is the linear span over Φ of the
monomials of degree less than or equal to three in the elements r and
si, i = 1, . . . , n.

Proof. In this proof, for any x ∈ L, we will write X := adx : L −→ L. Thus,
a being an absolute zero divisor of L just means

A2 = 0. (1)

Since ad : L −→ EndΦ(L)(−) is a Lie algebra homomorphism

0 = ad[a,[a,x]] = [A, [A,X]] = AAX + XAA − 2AXA,
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hence, using (1), for any x ∈ L,

AXA = 0, (2)

and

ad[a,x1] ad[a,x2] ad[a,x3] = [A,X1][A,X2][A,X3]
= (AX1 − X1A)(AX2 − X2A)(AX3 − X3A)
= (1)(2) − AX1X2A(AX3 − X3A) =(1)(2) 0,

which shows (i).
To prove (ii), first notice that y is not necessarily an element of L, hence

ady is a map defined on R(−), but we just want to show that the restriction
of ad3

y to L vanishes. This fact, taking into account that r, si ∈ Ẑ(R), can be
obtained as a consequence of (1), (i), and

A[A,Xi] = AAXi − AXiA =(1)(2) 0,

[A,Xi]A = AXiA − XiAA =(1)(2) 0.

Now, (iii) follows from (i) applied to L/P , while (iv) can be obtained
by slightly modifying the proof of (ii). �

The following lemma is aimed at dealing with those cases not covered
by Lemma 5.4.

Proposition 5.6. Let R be an associative algebra over a ring of scalars Φ with
1
2 ∈ Φ. If L is a Lie subalgebra of R(−) such that for every a ∈ L, a2 ∈ Z(R),
then every prime ideal of L is nondegenerate.

Proof. Before going into studying prime ideals of L, we will establish some
consequences of the fact that a2 ∈ Z(R) for any a ∈ L. To begin with, it can
be readily checked that, for any a, b ∈ L,

ad3
a(b) = 4a2[a, b] ∈ Ia2 , (1)

where Ia2 = a2L ∩ L is an ideal of L. This is the first step to show, by
induction on n, that

ad2n+1
a (b) = (4a2)n [a, b] ∈ Ia2n , (2)

where Ia2n = a2nL ∩ L is also an ideal of L.
For any x ∈ L, IdL(x) will denote the ideal of L generated by x. Ex-

tending the notation introduced in (1), for any x ∈ R, Ix will denote the
set xL ∩ L. Notice that Iz is an ideal of L if z ∈ Z(R). Moreover, for any
z ∈ Z(R) and x, y ∈ L and any operator f in the multiplication algebra of
L, [zy, f(x)] = z[y, f(x)]. This shows

[zL, IdL(x)] ⊆ z IdL(x) = IdL(zx), (3)

where the last equality makes sense when zx ∈ L. Since an element of Iz has
the form zy for some y ∈ L, (3) also shows that, when zx ∈ L, [Iz, IdL(x)] ⊆
z IdL(x) = IdL(zx) and, by induction, for any positive integer n, when
znx ∈ L,

adn
Iz

(IdL(x)) ⊆ zn IdL(x) = IdL(znx). (4)
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Let P be a prime ideal of L.
(5) If a ∈ L\P is ad-nilpotent modulo P , then Ia2 ⊂ P and, in particular,
1
4 ad3

a(b) =(1) a2[a, b] ∈ P for every b ∈ L:
Since a is ad-nilpotent module P , there exists a positive integer n such that,
for every b ∈ L, ad2n+1

a (b) =(2) (4a2)n[a, b] ∈ P . Since a �∈ P , IdL(a) �⊆ P ,
hence [IdL(a), IdL(a)] �⊆ P because P is a semiprime ideal of L. Semiprime-
ness of P also implies that there must be b ∈ L such that [a, b] �∈ P , hence
IdL([a, b]) �⊆ P . Therefore,

adn
Ia2

(IdL([a, b])) ⊆(4) IdL(a2n[a, b]) ⊆ P

implies Ia2 ⊂ P by primeness of P as an ideal of L.
Let x ∈ L.
(6) If a and [a, x] are ad-nilpotent module P with [a, x] ∈ L \ P (this
implies a ∈ L\P ), then Iax+xa ⊂ P :

Notice that ax + xa = (a + x)2 − a2 − x2 ∈ Z(R), so that Iax+xa is an ideal
of L. By semiprimeness of P , the fact that [a, x] �∈ P implies the existence of
y ∈ L such that [[a, x], y] �∈ P , as above. Now, two elements in Iax+xa have
the form (ax + xa)t1, (ax + xa)t2, for some t1, t2 ∈ L. For any operator f in
the multiplication algebra of L
[

(ax+ xa)t1,
[

(ax+ xa)t2, f([[a, x], y])
]

]

= (ax+ xa)2
[

t1,
[

t2, f([[a, x], y])
]

]

(because ax+ xa ∈ Z(R))

=
[

t1,
[

t2, f((ax+ xa)2[[a, x], y])
]

]

(because ax+ xa ∈ Z(R))

=
[

t1,
[

t2, f
(

([a, x]2 + 4a2x2)[[a, x], y]
)]

]

(because (ax+ xa)2 = [a, x]2 + 4a2x2 since x2, a2 ∈ Z(R))

=
[

t1,
[

t2, f([a, x]
2[[a, x], y])

]

]

+
[

t1,
[

t2, f(4a
2x2[[a, x], y])

]

]

=
[

t1,
[

t2, f([a, x]
2[[a, x], y])

]

]

+
[

t1,
[

t2, f(4a
2[x2[a, x], y])

]

]

(because x2 ∈ Z(R))

=
[

t1,
[

t2, f([a, x]
2[[a, x], y])

]

]

+
[

t1,
[

t2, f(a
2[ad2

x([a, x]), y])
]

]

(using (1))

=
[

t1,
[

t2, f([a, x]
2[[a, x], y])

]

]

+
[

t1,
[

t2, f([ad
2
x(a

2[a, x]), y])
]

]

(using a2 ∈ Z(R))

∈
[

t1,
[

t2, f(P )
]

]

+
[

t1,
[

t2, f([ad
2
x(P ), y])

]

]

(using (5)) ⊆ P.

We have shown
[

Iax+xa,
[

Iax+xa, IdL([a, x], y])
]] ⊆ P , which implies Iax+xa ⊆

P by primeness of P since IdL([a, x], y]) �⊆ P .
(7) Given xi, yi ∈ L, i = 1, 2, . . . , n there exists an ideal I of L such that

[(xi1yi1 + yi1xi1) · · · (xir
yir

+ yir
xir

)L, I] ⊆
r

⋂

j=1

Ixij
yij

+yij
xij

,

for any subset {i1, . . . , ir} ⊆ {1, . . . , n}. Moreover, if xi, yi ∈ L\P , for all
i = 1, . . . , n, the ideal I can be chosen not contained in P :
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For any x, y ∈ L, the equalities xy + yx = (x + y)2 − x2 − y2 and xy + yx =
−(x − y)2 + x2 + y2 allow us to use (1) and (3) to obtain

[

(xy + yx)L,
[

[IdL([x,L]), IdL([y, L])], IdL([x + y, L])
]

]

⊆ [

(xy + yx)L, IdL([x,L]) ∩ IdL([y, L]) ∩ IdL([x + y, L])
] ⊆ L,

and
[

(xy + yx)L,
[

[IdL([x,L]), IdL([y, L])], IdL([x − y, L])
]

]

⊆ [

(xy + yx)L, IdL([x,L]) ∩ IdL([y, L]) ∩ IdL([x − y, L])
] ⊆ L.

If x, y ∈ L\P , then either x + y ∈ L\P or x − y ∈ L\P , and then we
can define either

M =
[

[IdL([x,L]), IdL([y, L])], IdL([x + y, L])
]

or

M =
[

[IdL([x,L]), IdL([y, L])], IdL([x − y, L])
]

,

respectively, and M will be an ideal of L not contained in P , by primeness
of P [the elements x, y and x + y or x − y are not contained in P , so their
Lie products with L cannot be contained in P by semiprimeness of P , as in
(5); thus M is the product of three ideals, each one not contained in P ].

Applying the above to every pair of elements xi, yi ∈ L, we obtain, for
any i = 1, . . . , n, an ideal Mi of L such that

[(xiyi + yixi)L,Mi] ⊆ L, (8)

and if, in addition, xi, yi ∈ L\P , then Mi �⊆ P .
We define

N =
[

M1,
[

M2, . . . , [Mn−1,Mn] · · · ]
]

.

and

I = N (n).

Notice that I is an ideal of L, and, by primeness of P , I �⊆ P if xi, yi ∈ L\P ,
for all i = 1, . . . , n.

We will now show by induction on r that, for any 1 ≤ r ≤ n, and any
subset {i1, . . . , ir} ⊆ {1, . . . , n},

[(xi1yi1 + yi1xi1) · · · (xir
yir

+ yir
xir

)L,N (r)] ⊆
r

⋂

j=1

Ixij
yij

+yij
xij

, (9)

which will prove (3) since I ⊆ N (r) for any 1 ≤ r ≤ n.
For r = 1,

[(xi1yi1 + yi1xi1)L,N (1)] = (xi1yi1 + yi1xi1)[L,N (1)] ⊆ (xi1yi1 + yi1xi1)L
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since xi1yi1 + yi1xi1 ∈ Z(R), and also

[(xi1yi1 + yi1xi1)L,N (1)] ⊆ [(xi1yi1 + yi1xi1)L,N ]
⊆ [(xi1yi1 + yi1xi1)L,Mi1 ] ⊆ L

by (8). Thus, we have shown

[(xi1yi1 + yi1xi1)L,N (1)] ⊆ Ixi1yi1+yi1xi1
.

If we assume that (9) is true for some 1 ≤ r < n, then using that xir+1yir+1 +
yir+1xir+1 ∈ Z(R),
[

(xi1yi1 + yi1xi1) . . . (xiryir + yirxir )(xir+1yir+1 + yir+1xir+1)L,N
(r+1)

]

⊆ (xir+1yir+1 + yir+1xir+1)
[

(xi1yi1 + yi1xi1) . . . (xiryir + yirxir )L,N
(r+1)

]

= (xir+1yir+1 + yir+1xir+1)
[

(xi1yi1+yi1xi1) . . . (xiryir + yirxir )L, [N
(r), N (r)]

]

⊆ (xir+1yir+1 + yir+1xir+1)
[

[(xi1yi1 + yi1xi1) . . . (xiryir +yirxir )L,N
(r)], N (r)

]

=
[[

(xi1yi1 + yi1xi1) . . . (xiryir + yirxir )L,N
(r)

]

, (xir+1yir+1+yir+1xir+1)N
(r)

]

⊆
(

r
⋂

j=1

Ixij
yij

+yij
xij

)

∩ Ixir+1yir+1+yir+1xir+1
=

r+1
⋂

j=1

Ixij
yij

+yij
xij

,

by the induction assumption and the fact that

(xir+1yir+1 + yir+1xir+1)N
(r) = (xir+1yir+1 + yir+1xir+1)[N

(r−1), N (r−1)]

⊆ (xir+1yir+1 + yir+1xir+1)[N
(0), N (0)] = [(xir+1yir+1 + yir+1xir+1)N,N ]

⊆ [(xir+1yir+1 + yir+1xir+1)L,Mr+1]
⊆ L ∩ (xir+1yir+1 + yir+1xir+1)L = Ixir+1yir+1+yir+1xir+1

by (8).
The final part of the proof consists of showing that having nonzero

absolute zero divisors of L/P yields a contradiction.
Let a ∈ L\P such that [a, [a, L]] ⊆ P , i.e. 0 �= a + P ∈ L/P is an

absolute zero divisor of L/P .
(10) If x ∈ L satisfies [a, x] �∈ P , then Iax+xa ⊂ P :

By Lemma 5.5(iii) ad3
[a,x](L) ⊂ P , and we can apply (6).

(11) Every element of IdL(a) is ad-nilpotent of index ≤ 3 module P :
Given any y1, y2 ∈ L, [y2, a] = y2a − ay2 = 2y2a − (ay2 + y2a), and using the
fact that ay2 + y2a ∈ Z(R),

[y1, [y2, a]] = [y1, 2y2a − (ay2 + y2a)] = 2[y1, y2a] = 2y1y2a − 2y2ay1

= 2(y1y2 + y2y1)a − 2y2(ay1 + y1a)
= 2(y1y2 + y2y1)a − 2(ay1 + y1a)y2

since ay1 + y1a ∈ Z(R). Now, by induction on n, any product
[

y1,
[

y2, . . . , [yn, a] . . .
]

]

= ady1 ady2 . . . adyn
(a),
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for y1, . . . , yn ∈ L has the form

ady1 ady2 . . . adyn
(a) = λa +

h
∑

k=1

μk[a, bk] +
m

∑

l=1

γlcl

where bk ∈ {y1, . . . , yn}, cl ∈ L, λ, μk, γl ∈ Ẑ(R) are products of elements of
the form ayi + yia and yjyi + yiyj , and al least one of the factors of each γl

is of the form ayi + yia. If some yi ∈ P , then ady1 ady2 . . . adyn
(a) ∈ P , and,

if [yi, a] ∈ P for some i, then we can use the fact that adyi
is a derivation to

write

ady1 ady2 . . . adyn
(a) = ady1 . . . adyi−1 adyi

(

adyi+1 . . . adyn
(a)

)

= ady1 . . . adyi−1 ad[yi,yi+1] adyi+2 . . . adyn
(a)

+ ady1 . . . adyi−1 adyi+1 ad[yi,yi+2] . . . adyn
(a)

...

+ ady1 . . . adyi−1 adyi+1 . . . adyn−1 ad[yi,yn](a)

+ ady1 . . . adyi−1 adyi+1 . . . adyn
([yi, a]),

where the last term lies in P , i.e. we can write ady1 ady2 . . . adyn
(a) as a

sum of similar elements of smaller length modulo P . Therefore, any element
t ∈ IdL(a) has the form

t = λa +
h

∑

k=1

μk[a, bk] +
m

∑

l=1

γlcl + p

where bk ∈ {y1, . . . , yn}, cl ∈ L, p ∈ P , λ, μk, γl ∈ Ẑ(R) are products of
elements of the form ayi + yia and yjyi + yiyj , and at least one of the factors
of each γl is of the form ayi + yia, for some set {y1, . . . , yn} of elements in L
such that all yi, [yi, a] ∈ L\P . By (7), there exists an ideal I of L such that
I �⊆ P and

[λL, I] ⊆ L, [μkL, I] ⊆ L, [γlL, I] ⊆ L, [πL, I] ⊆ L (12)

for any monomial π of degree less than or equal to three in λ, μk, and γl,
and any k = 1, . . . , h, l = 1, . . . ,m. Also, using (3) and (9),

[γlL, I] ⊆ P, (13)

for all l = 1, . . . , m. Hence, for any y ∈ I

[t, y] =

[

λa +
h

∑

k=1

μk[a, bk] +
m

∑

l=1

γlcl + p, y

]

⊆(13)

[

λa +
h

∑

k=1

μk[a, bk], y

]

+ P = ads(y) + P, (14)
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where p ∈ P , s = λa +
∑h

k=1 μk[a, bk] ∈ R, and ads(I) ⊆ L by (12). This
latter fact implies that, for r ≥ 1, we also have

ads(I(r)) = ads([I(r−1), I(r−1)]) ⊆ [ads(I(r−1)), I(r−1)] ⊆ [L, I(r−1)]

⊆ I(r−1), (15)

using that ads is a derivation.
For any x ∈ L, y ∈ I,

[

[t, x], y
]

=
[

[t, y], x
]

+
[

t, [x, y]
] ⊆ [

[s, y], x
]

+
[

s, [x, y]
]

+ P =
[

[s, x], y
]

+ P

(16)

using (14) on y and [x, y]. We will prove by induction on n that for any x ∈ L,
y ∈ I(n),

[adn
t (x), y] ⊆ [adn

s (x), y] + P. (17)

The case n = 1 is (16), so let us assume that (17) is true for some n ≥ 0 and
prove it for n + 1: If we assume that y ∈ I(n+1), then
[

adn+1
t (x), y

]

=
[

[t, adn
t (x)], y

]

⊆(16)

[

[s, adn
t (x)], y

]

+ P =
[

ads

(

adn
t (x)

)

, y
]

+ P

= ads

(

[adn
t (x), y]

) − [

adn
t (x), ads(y)

]

+ P

(using ads is a derivation)

⊆ ads

(

[adn
s (x), y]

) − [

adn
s (x), ads(y)

]

+ P

(by the induction assumption since ads(y) ∈ I(n) by (15))

= [adn+1
s (x), y] + P,

using again that ads is a derivation.
In particular, we have

[

ad3
t (L), I(3)

]

⊆(17)

[

ad3
s(L), I(3)

]

+ P ⊆Lemma 5.5(iv) [SP, I(3)] + P,

where S ⊆ Ẑ(R) is the span over Φ of the monomials of degree less than or
equal to three in the elements λ, μk, k = 1, . . . , n, appearing in the description
of t, but

[SP, I(3)] + P =
(S⊆ ̂Z(R))

[P, SI(3)] + P =
[

P, S[I(2), I(2)]
]

+ P

=
(S⊆ ̂Z(R))

[

P, [SI(2), I(2)]
]

+ P ⊆ [

P, [SL, I]
]

+ P ⊆(12) [P,L] + P ⊆ P,

and we havee shown that [ad3
t (L), I(3)]⊆P , which readily implies [IdL(ad3

t (L)),
I(3)] ⊆ P . Hence IdL(ad3

t (L)) ⊆ P by primeness of P , using that I �⊆ P
yields I(3) �⊆ P by semiprimeness of P . This shows that ad3

t (L) ⊆ P , proving
(11).

(18) IdL(a) ⊆ P , which is a contradiction since we were assuming a ∈
L\P :
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Given b, c, d ∈ IdL(a), [c, d] = cd − dc = 2cd − (cd + dc), and, using the fact
that cd + dc ∈ Z(R),

[b, [c, d]] = [b, 2cd − (cd + dc)] = 2[b, cd] = 2bcd − 2cdb

= 2(bc + cb)d − 2c(db + bd)
= 2(bc + cb)d − 2(db + bd)c (19)

since db+bd ∈ Z(R). On the other hand, if IdL(a) �⊆ P , then [IdL(a), IdL(a)] �⊆
P by semiprimeness of P , and we can find c, d ∈ IdL(a) such that [c, d] �∈ P ,
which implies c �∈ P , and d �∈ P . Since [x, IdL(a)] ⊆ P readily implies
[IdL(x), IdL(a)] ⊆ P , which yields IdL(x) ⊆ P by primeness of P , the sub-
modules

A1 := {y ∈ IdL(a) | [c, y] ∈ P},

A2 := {y ∈ IdL(a) | [d, y] ∈ P},

A3 := {y ∈ IdL(a) | [

[c, d], y
] ∈ P}

of IdL(a) are proper. Hence A1 ∪ A2 ∪ A3 �= IdL(a), because 1
2 ∈ Φ, and we

can find b ∈ IdL(a) such that

[b, c], [b, d],
[

[b, [c, d]
] ∈ L\P. (20)

In particular b, c, d ∈ L\P , and we can apply (3) to find an ideal I of L not
contained in P , such that

[

[

b, [c, d]
]

, I
]

⊆(19) Ibc+cb + Ibd+db. (21)

Because of (11) and (20), we can apply (6) to obtain that Ibc+cb ⊆ P and
Ibd+db ⊆ P . Therefore, (21) yields

[

[

b, [c, d]
]

, I
]

⊆ P , which readily implies
[

IdL

([

b, [c, d]
])

, I
]

⊆ P , and this is impossible by primeness of P .
We have shown that L/P is a nondegenerate Lie algebra. �

Lemma 5.7. If L is a subalgebra of Skew(R, ∗), for a ∗-prime associative
algebra R over a ring of scalars Φ with 1

2 ∈ Φ, such that ˜R is of class A2 or
BD4, and P is a prime ideal of L, then L/P is nondegenerate.

Proof. If ˜R is of class A2, L is a Φ-subalgebra of M := M2(F)(−), for an
algebraically closed field F and L/(L ∩ Z(M)) imbeds in M/Z(M) ∼= sl2(F)
[the epimorphism M −→ sl2(F) given by A �→ A− 1

2 t(A)I2 has kernel Z(M)].
Thus, we can see L/(L∩Z(M)) as a subalgebra of sl2(F) ≤ M2(F)(−) =: R

(−)
1

and, for any a ∈ L/(L ∩ Z(M)), a2 ∈ Z(R1), so that Proposition 5.6 applies
to L/(L ∩ Z(M)).

Now, given a prime ideal P of L, since [L ∩ Z(M), L ∩ Z(M)] = 0 ⊆ P ,
L ∩ Z(M) ⊆ P , and
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L/P ∼= (L/(L ∩ Z(M)))
/

(P/(L ∩ Z(M)).

Hence, P/(L ∩ Z(M)) is a prime ideal of L/(L ∩ Z(M)), and L/P is nonde-
generate by Proposition 5.6.

If ˜R is of class BD4, L is a Φ-subalgebra of Skew(Q, ∗), where Q =
M4(F), and ∗ is the transpose involution, for an algebraically closed field
F. For any 1 ≤ i, j,≤ 4, i �= j, let Eij = eij − eji, where eij is the usual
matrix unit. Then, it can be readily seen that Skew(Q, ∗) is the direct sum of
the ideals I1 and I2 where (there is a misprint in Herstein’s counterexample
[14, page 40]) I1 is the vector subspace spanned by {a := E12 − E34, b :=
E13 + E24, c := E14 − E23} and I2 is the vector subspace spanned by {â :=
E12 + E34,̂b := E13 − E24, ĉ := E14 + E23}. Moreover, Ii is isomorphic to
sl2(F), and hence it is simple:

By direct computation, the multiplication table of I1 is given by [a, b] =
2c, [a, c] = −2b, [b, c] = 2a, so that the basis h = ia, e = 1

2 (ib − c),
f = 1

2 (ib + c), where i is an element in F such that i2 = −1, behaves
like the natural basis of sl2(F) ([h, e] = 2e, [h, f ] = −2f , [e, f ] = h).
Analogously, the multiplication table of I2 is given by [â,̂b] = −2ĉ,
[â, ĉ] = 2̂b, [̂b, ĉ] = −2â, and we can take h = iâ, e = 1

2 (îb + ĉ), f =
1
2 (îb − ĉ) to show I2

∼= sl2(F).

Thus, L can be seen as a subalgebra of sl2(F)⊕ sl2(F) ≤ (

M2(F)⊕M2(F)
)(−)

=: R
(−)
1 , and, for any a ∈ L, a2 ∈ Z(R1). Therefore, Proposition 5.6 applies

to L, and L/P is nondegenerate, for any prime ideal P of L. �

The next result is a consequence of Lemmas 5.4 and 5.7.

Theorem 5.8. Let (R, ∗) be an associative algebra with involution over a ring
of scalars Φ with 1

2 ∈ Φ. If L = Skew(R, ∗) and P a semiprime (resp. prime)
ideal of L, then P is a nondegenerate (resp. strongly prime) ideal of L.

Proof. By [1, Th. 1.1], every semiprime Lie algebra is a subdirect product of
prime Lie algebras, hence, given a semiprime ideal P of L, there exist prime
ideals Pα of L such that P = ∩α∈APα and L/P is a subdirect product of
the algebras L/Pα. Since a subdirect product of nondegenerate Lie algebras
is nondegenerate, we just need to prove the theorem in the case when P is a
prime ideal of L.

Thus, since P is prime, we can use Lemma 5.3 and assume that R is
∗-prime with no non nonzero ∗-ideal of R whose skew-symmetric elements are
contained in P . If R̃ is not of class A2 or BC4, then L/P is nondegenerate by
Lemma 5.4. Otherwise, Lemma 5.7 applies, and L/P is also nondegenerate.

�

As in the previous section, we can extend Theorem 5.8 to quotients of
algebras of the form Skew(R, ∗). By (5.1), it also applies to Lie algebras L
which are quotients of R(−), for an associative algebra R.
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Corollary 5.9. Let L be a Lie algebra over a ring of scalars Φ with 1
2 ∈

Φ which is a quotient of Skew(R, ∗), where (R, ∗) is an associative algebra
with involution. If P is a semiprime (resp. prime) ideal of L, then P is a
nondegenerate (resp. strongly prime) ideal of L.
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Universidad de Oviedo
C/Calvo Sotelo s/n
33007 Oviedo, Spain
e-mail: anque@orion.ciencias.uniovi.es

Teresa Cortés
e-mail: cortes@orion.ciencias.uniovi.es

Esther Garćıa
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