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Abstract. In this note we extend the Lie inner ideal structure of simple Ar-
tinian rings with involution, initiated by Benkart and completed by Benkart
and Fernández López, to centrally closed prime rings with involution of char-
acteristic not 2, 3 or 5. New Lie inner ideals (which we call special) occur
when making this extension. We also give a purely algebraic description of
the so-called Clifford inner ideals, which had only been described in geometric
terms.

1. Introduction

Inner ideals of Lie algebras are the analogues of one-sided ideals in associative
rings and of inner ideals in Jordan algebras ([9], [15]). They are Φ-submodules B
of a Lie algebra L (over a ring of scalars Φ) such that [[B,L], B] ⊆ B. An abelian
inner ideal of L is an inner ideal B which is also an abelian subalgebra, i.e., such
that [B,B] = 0. Since their introduction over 40 years ago ([7],[4]), abelian inner
ideals have proved to be a useful tool for classifying both finite-dimensional and
infinite-dimensional simple Lie algebras. Premet ([16],[17]) showed that every finite-
dimensional simple Lie algebra over an algebraically closed field of characteristic not
2 or 3 must contain one-dimensional inner ideals. Moreover, it follows from [4],[18]
(see also [6]) that when the field is algebraically closed of characteristic p > 5, the
classical Lie algebras (modular versions of the complex finite-dimensional simple
Lie algebras) can be characterized as the finite-dimensional simple Lie algebras
satisfying the following two equivalent conditions:

(i) They are generated by one-dimensional inner ideals.
(ii) They are nondegenerate, that is, they have no nonzero absolute zero divisors

(where by an absolute zero divisor or sandwich element we mean an element
x such that [x, [x, L]] = 0).

Received by the editors April 23, 2014.
2010 Mathematics Subject Classification. Primary 17B60; Secondary 16W10, 17C50.
Key words and phrases. Inner ideals, Lie algebras, associative algebras with involution.
The first author was supported by the Spanish MEC through the FPU grant AP2009-4848,

and by the Junta de Andalućıa FQM264.
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Further evidence of the usefulness of inner ideals comes from [11], where it is
shown that an abelian inner ideal B of finite length in a nondegenerate Lie algebra L
over a ring of scalars Φ such that 2 and 3 are invertible gives rise to a finite Z-grading
L = L−n⊕· · ·⊕L0⊕· · ·⊕Ln with B = Ln. Zelmanov in [21] described the simple Lie
algebras over fields of characteristic 0 or p > 4n+ 1 with such gradings in terms of
finite Z-gradings of simple associative rings with involution. A description of these
associative rings and their gradings was later provided by Smirnov in [19],[20]. As
a result, any nondegenerate simple Lie algebra with a nonzero abelian inner ideal
of finite length comes either from a simple associative ring with a finite Z-grading
by taking the Lie commutator, from the skew-symmetric elements of such a simple
associative ring with involution or from the Tits-Kantor-Koecher construction of a
Jordan algebra of Clifford type, or it is of exceptional type E6, E7, E8, F4 or G2.

In this paper we extend the Lie inner ideal structure of simple Artinian rings
with involution ([3], [5]) to centrally closed prime rings with involution.

Let R be a centrally closed prime ring of characteristic not 2, 3 or 5 with an
involution ∗, and let K be the Lie algebra of the skew elements of R. We prove that
there are at most four types of abelian inner ideals in K. Abelian inner ideals of
the first type, called isotropic inner ideals, consist only of elements of zero square
and are the cornerstone of the classification. Abelian inner ideals of the second
type, called standard inner ideals, are of the form V ⊕ Skew(Z(R), ∗), where V
is an isotropic inner ideal of K and Skew(Z(R), ∗) is the set of skew elements of
the centre of R (notice that Skew(Z(R), ∗) �= 0 if and only if R is unital and the
involution ∗ is of the second kind). The third type of abelian inner ideals is the
most exotic. These abelian inner ideals, called special inner ideals, only occur when
R is unital, the involution ∗ is of the second kind and K contains elements of zero
square which are not von Neumann regular (this is the reason why these inner ideals
do not appear in the Artinian case). Finally, abelian inner ideals of the fourth type,
Clifford inner ideals, only occur in prime rings with nonzero socle and involution
of orthogonal type.

2. Preliminaries

Throughout this section we will be dealing with a not-necessarily unital associa-
tive algebra A with product xy, a Lie algebra L with [x, y] denoting the Lie bracket
and adx the adjoint map determined by x, and a Jordan triple system T ([13]) with
quadratic Jordan operator Px and triple product {x, y, z}, all over a (commutative
and unital) ring of scalars Φ. Since 2Pxy = {x, y, x}, if 1

2 ∈ Φ, then only the triple
product is required to define a Jordan triple system over Φ. Eventually we also
consider linear Jordan pairs (see [13, Notes on page 55] for the definition); in this
case, 1

6 ∈ Φ will be required.

2.1. Assume that A has a Φ-linear involution ∗ and denote by Skew(A, ∗) the set
of skew elements of A. Then:

(i) Skew(A, ∗) is a Lie algebra (over Φ) with Lie bracket given by [x, y] :=
xy − yx.

(ii) Skew(A, ∗) is also a Jordan triple system (over Φ) with Pxy := xyx and
{x, y, z} := xyz + zyx.

2.2. Let R be an (associative) ring such that aR = 0 ⇒ a = 0, a ∈ R (e.g., R
a semiprime ring). Then its centroid Γ := Γ(R) is a commutative unital ring and



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

INNER IDEALS OF LIE ALGEBRAS OF SKEW ELEMENTS 2743

R can be regarded as an associative Γ-algebra. Moreover, any involution ∗ of R
induces an involution in Γ, also denoted by ∗, and K := Skew(R, ∗) is then both
a Lie algebra and a Jordan triple system over the ring of scalars Sym(Γ, ∗), the
symmetric elements of Γ.

2.3. Suppose that 1
2 ∈ Φ. An inner ideal of a Jordan triple system T is a Φ-

submodule B of T such that {B, T,B} ⊆ B. Similarly, an inner ideal of a Lie
algebra L is a Φ-submodule B of L such that [[B,L], B] ⊆ B. An abelian inner
ideal of L is an inner ideal B which is also an abelian subalgebra, i.e., such that
[B,B] = 0.

2.4. To avoid confusion, an abelian inner ideal of the Lie algebra K will be called
a Lie inner ideal of K, while an inner ideal of the Jordan triple system K will be
called a Jordan inner ideal of K.

2.5. Let B be an abelian inner ideal of a Lie algebra L over a ring of scalars Φ in
which 6 is invertible.

(i) The kernel of B is the set kerL B := {a ∈ L : [B, [B, a]] = 0}.
(ii) The pair of Φ-modules SubLB := (B,L/ kerL B) with the triple products

given by

{b, x, c} := [[b, x], c] for every b, c ∈ B and x ∈ L,

{x, b, y} := [[x, b], y] for every b ∈ B and x, y ∈ L,

where x denotes the coset of x relative to the submodule kerL B, is a Jordan
pair called the subquotient of B ([11, Lemma 3.2]). Due to this notion, we
can define a relation between abelian inner ideals of Lie algebras: if B and
B′ are abelian inner ideals of Lie algebras L and L′ respectively, then B and
B′ are said to be Jordan-isomorphic if SubLB and SubL′B′ are isomorphic
as Jordan pairs.

3. Standard inner ideals

Throughout this section R will denote a semiprime ring with an involution ∗ and
with 2idR being invertible in the centroid Γ := Γ(R). Since we do not assume R to
be unital, its centre Z := Z(R) may be equal to zero. As noted previously, Γ is a
commutative unital ring with involution, also denoted by ∗, and K := Skew(R, ∗)
is both a Lie algebra and a Jordan triple system over the ring of scalars Φ :=
Sym(Γ, ∗).

Let V be a Φ-submodule of K such that V V = 0. Then V is a Jordan inner
ideal of K if and only if it is a Lie inner ideal: V is clearly abelian and for u, v ∈ V
and x ∈ K, V V = 0 implies [[u, x], v] = uxv + vxu = {u, x, v}. In this case, V will
be called an isotropic inner ideal of K.

Note that any Lie inner ideal B of K such that b2 = 0 for all b ∈ B is isotropic:
for any b, c ∈ B, 0 = (b+ c)2 = 2bc implies bc = 0, since 1

2 ∈ Φ.
It is also clear that if V is an isotropic inner ideal of K and Ω is a Φ-submodule

of Skew(Z, ∗), then B = V +Ω is a Lie inner ideal of K. Moreover, the sum V +Ω
is direct since Z does not contain nonzero nilpotent elements by semiprimeness of
R.

Definition 3.1. A Lie inner ideal B of K will be called standard if B = V ⊕ Ω,
where V is an isotropic inner ideal of K and Ω is a Φ-submodule of Skew(Z, ∗).
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Given a Lie inner ideal B of K, we denote by VB the subset of all zero square
elements of the abelian subalgebra B + Skew(Z, ∗) of K.

Lemma 3.2. Let B be a Lie inner ideal of K such that B ⊆ VB ⊕ Skew(Z, ∗).
Then:

(i) VB is an isotropic inner ideal of K satisfying [[B,K], B] ⊆ {VB,K, VB} ⊆
B.

(ii) If in addition VB ⊆ B, then B is standard. In particular, this is so if
Skew(Z, ∗) ⊆ B or if every v ∈ VB is von Neumann regular.

Proof. (i) Since B + Skew(Z, ∗) is a Φ-submodule of K,

VB + VB ⊆ B + Skew(Z, ∗) ⊆ VB + Skew(Z, ∗).

Thus for any u, v ∈ VB there exists w ∈ VB and z ∈ Skew(Z, ∗) such that u+ v =
w+z, with z = 0 since u+v−w is a nilpotent central element and R is semiprime.
This proves that VB + VB ⊆ VB, and since VB is clearly invariant under Φ, VB is a
Φ-submodule of K. Then, for any u, v ∈ VB, 2uv = (u + v)2 = 0 implies uv = 0.
Hence, for any x ∈ K, {u, x, v} = uxv + vxu = [[u, x], v] ∈ [[B + Z,K], B + Z] =
[[B,K], B] ⊆ B, with {u, x, v}2 = 0. This proves that VB is an isotropic inner ideal
of K satisfying {VB,K, VB} ⊆ B. Note also that [[B,K], B] ⊆ {VB,K, VB} ⊆ VB.

(ii) Suppose in addition that VB ⊆ B. By the Modular Law we have

B = B ∩ (VB ⊕ Skew(Z, ∗)) = VB ⊕ (Skew(Z, ∗) ∩B),

so B is standard. Note finally that if Skew(Z, ∗) ⊆ B, then VB ⊆ B+Skew(Z, ∗) ⊆
B; the same holds if every v ∈ VB is von Neumann regular, since then VB =
{VB,K, VB} ⊆ B by (i). This completes the proof. �

Theorem 3.3. A Lie inner ideal B of K is standard if and only if the following
condition holds:

(ST) VB ⊆ B ⊆ VB + Skew(Z, ∗).

Proof. By Lemma 3.2, condition (ST) is sufficient for B to be standard. Suppose
then that B is standard, i.e., B = V ⊕ Ω, where V is an isotropic inner ideal of K
and Ω is a Φ-submodule of Skew(Z, ∗). Clearly V ⊆ VB and, by the Modular Law,

VB = VB ∩ (B + Skew(Z, ∗)) = VB ∩ (V ⊕ Skew(Z, ∗)) = V,

since Z does not contain nonzero nilpotent elements. Thus B = VB ⊕ Ω and
therefore it satisfies (ST). �

4. Special inner ideals

Throughout this section R will denote a unital semiprime ring with an involution
∗ which does not act as the identity on the centre Z := Z(R) of R. We will also
assume that Z is a field of characteristic not 2. Then K := Skew(R, ∗) is both a
Lie algebra and a Jordan triple system over the field F := Sym(Z, ∗).

Theorem 4.1. Let V be a nonzero isotropic inner ideal of K and let f : V →
Skew(Z, ∗) be a nonzero F-linear map with [[V,K], V ] ⊆ ker f . Then Inn(V, f) :=
{v + f(v) : v ∈ V } is a Lie inner ideal of K which is not standard.
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Proof. Set B := Inn(V, f). Then:
(1) B is a Lie inner ideal of K.
Indeed, [[B,K], B] = [[V,K], V ] ⊆ ker f ⊆ B since v = v + f(v) ∈ B for every

v ∈ ker f , and [B,B] = [V, V ] = 0.
(2) V ∩B = ker f .
As noted in (1), ker f ⊆ V ∩ B. Conversely, let v ∈ V ∩ B. Then v = u + f(u)

for some u ∈ V . But then v − u = f(u) ∈ V ∩ Z = 0, so v = u ∈ ker f .
(3) VB = V .
By definition of B, V ⊆ B+Skew(Z, ∗), and since V V = 0, V ⊆ VB. Conversely,

let x = b+ z ∈ VB , with b = v + f(v) for some v ∈ V and z ∈ Skew(Z, ∗). Then:
0 = x2 = (b+ z)2 = (v + (f(v) + z))2 = 2(f(v) + z)v + (f(v) + z)2

implies f(v) + z = 0 since the sum V + Z is direct; so x = v ∈ V .
(4) B is not standard.
By Theorem 3.3 and (3), it is enough to see that V is not contained in B. Suppose

otherwise that V ⊆ B. Then, by (2), V = V ∩B = ker f yields a contradiction. �
Definition 4.2. A Lie inner ideal B of K is called special if B = Inn(V, f) for some
isotropic inner ideal V of K and some nonzero F-linear map f : V → Skew(Z, ∗) as
in the theorem above.

Proposition 4.3. K contains a special inner ideal if and only if there exists x ∈ K
such that x2 = 0 and x is not von Neumann regular.

Proof. Let B = Inn(V, f) be a special inner ideal of K. It follows from (3) of
the proof of Theorem 4.1 and Lemma 3.2(i) that {V,K, V } = [[V,K], V ] ⊆ ker f .
Hence V contains an element which is not von Neumann regular, since otherwise
V = {V,K, V } = ker f , which is a contradiction. Note also that any v ∈ V is of
zero square.

Suppose conversely that there exists x ∈ K such that x2 = 0 and x is not
von Neumann regular. Then the sum Fx + xKx is direct and it is easily checked
that V := Fx ⊕ xKx is an isotropic inner ideal of K. Given a nonzero skew-
symmetric element z ∈ Z (which exists because ∗ does not act as the identity in Z
by assumption), define an F-linear map f : V → Skew(Z, ∗) by f(xKx) = 0 and
f(x) = z. Then Inn(V, f) is a special inner ideal of K since [[V,K], V ] = xKx =
ker f . �

In spite of what we have proved in Theorem 4.1, isotropic inner ideals and special
inner ideals are the same kind of thing from the Jordan point of view:

Proposition 4.4. Let V be a nonzero isotropic inner ideal of K and let f : V →
Skew(Z, ∗) be a nonzero F-linear map such that [[V,K], V ] ⊆ ker f . Then the inner
ideals V and Inn(V, f) are Jordan-isomorphic.

Proof. Clearly, kerL B = kerL V . Then K := K/ kerL B = K/ kerL V , SubKV =
(V,K) and SubKB = (B,K). We claim that the pair of linear maps (ϕ, idK) :
SubKV → SubKB is an isomorphism of Jordan pairs, where ϕ(v) = v + f(v) and
idK is the identity on K. Clearly ϕ : V → B is a linear isomorphism, and for
u, v ∈ V and x, y ∈ K, we have

ϕ({u, x, v}) = [[u, x], v] + f([[u, x], v]) = [[u, x], v] = [[u+ f(u), x], v + f(v)]

= {ϕ(u), x, ϕ(v)}
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since [[V,K], V ] ⊆ ker f and f(V ) ⊆ Skew(Z, ∗); and

{x, v, y} = [[x, v], y] = [[x, ϕ(v)], y] = {x, ϕ(v), y},

which completes the proof. �

5. Clifford inner ideals

Throughout this section F will denote a field of characteristic not 2 and X a
vector space of dimension greater than 2 over F with a nondegenerate symmetric
bilinear form denoted by 〈· , ·〉.

Denote by LX(X) the associative F-algebra of linear maps a : X → X having a
(unique) adjoint a∗ : X → X, that is, such that 〈ax, y〉 = 〈x, a∗y〉 for all x, y ∈ X.
Then:

(i) LX(X) is a prime (in fact primitive) algebra ([2, Theorem 4.3.8(ii)]) with
involution ∗ (the adjoint), whose socle is the ideal FX(X) of all a ∈ LX(X)
having finite rank ([2, Theorem 4.3.8(iv)]).

(ii) Skew(LX(X), ∗) is the orthogonal algebra o(X) and Skew(FX(X), ∗) is the
finitary orthogonal algebra fo(X) ([1]).

(iii) 〈bx, x〉 = 0 for every b ∈ o(X) and x ∈ X.

Given x, y ∈ X, write y∗x to denote the linear map on X defined by y∗x(x′) :=
〈x′, y〉x, x′ ∈ X. We also set [x, y] := x∗y − y∗x for all x, y ∈ X. The following
identities (which can be easily checked) will be used in what follows without further
mention:

(i) (y∗x)∗ = x∗y and therefore y∗x ∈ FX(X). In fact, FX(X) is the additive
span of these rank-one linear maps ([2, Theorem 4.3.2]).

(ii) a(y∗x) = y∗ax and (y∗x)b = (b∗y)∗x for all x, y ∈ X, any linear map a on
X and any b ∈ LX(X).

(iii) (y∗x)(z∗v) = 〈v, y〉z∗x, x, y, z, v ∈ X.
(iv) [x, y] ∈ fo(X), x, y ∈ X. In fact, fo(X) = [X,X], the additive span of all

[x, y].

By a hyperbolic pair we mean a pair (x, y) of isotropic vectors of X such that
〈x, y〉 = 1, i.e., such that H = Fx ⊕ Fy is a hyperbolic plane of X. The following
assertions are immediate:

(i) Any nonzero isotropic vector x ∈ X can be extended to a unique hyperbolic
pair (x, y).

(ii) X = H⊕H⊥ for any hyperbolic plane of X, where H⊥ = {z ∈ X : 〈z,H〉 =
0}.

An idempotent e ∈ LX(X) is said to be ∗-orthogonal if ee∗ = 0 = e∗e. Note
that e is a rank-one ∗-orthogonal idempotent if and only if e = x∗y, where (x, y) is
a hyperbolic pair.

Proposition 5.1. Set B := [x,H⊥] = {[x, z] : z ∈ H⊥}, where H is a hyperbolic
plane of X and x is a nonzero isotropic vector of H. Then:

(i) B is a Lie inner ideal of o(X) contained in fo(X), with b3 = 0 for every
b ∈ B and b20 �= 0 for some b0 ∈ B. Hence B is neither standard nor special.

(ii) B coincides with its centralizer in o(X) and hence it is a maximal Lie inner
ideal of o(X).
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Proof. (i) By [10, Lemma 3.7(i)], B is a Lie inner ideal of o(X) contained in fo(X),
and by [10, Lemma 3.7(ii)], b3 = 0 for every b = [x, z] ∈ B, with b2 = 0 if and
only if z ∈ H⊥ is isotropic. Since dimF X > 2, H⊥ must contain some anisotropic
vector, so there exists b0 ∈ B such that b20 �= 0. This implies that B is not standard.
Since the adjoint involution ∗ of LX(X) is of the first kind, B is not special either.

(ii) Let a ∈ o(X) be such that

(1) a(x∗z − z∗x) = (x∗z − z∗x)a, z ∈ H⊥.

The proof will be complete if we prove that, for the isotropic vector y ∈ H such
that 〈x, y〉 = 1, we have ay ∈ H⊥ and a = [x, ay].

Since a∗ = −a, equation (1) can be written as

(2) x∗az − z∗ax = (az)∗x− (ax)∗z, z ∈ H⊥,

which evaluated in y yields

(3) az = 〈y, az〉x− 〈y, ax〉z, z ∈ H⊥.

Take z ∈ H⊥ anisotropic in (3), which is possible because dimF X > 2, and consider
〈z, az〉. Since 〈az, z〉 = 0 because a = −a∗, we get 〈y, ax〉 = 0. Thus

(4) az = 〈y, az〉x, z ∈ H⊥.

Evaluating (2) in z and applying (4), we get that for any z ∈ H⊥,

−〈z, z〉ax = −〈z, ax〉z = 〈az, x〉z = 〈〈y, az〉x, x〉z = 0.

Taking z anisotropic we get

(5) ax = 0.

Then 〈ay, x〉 = −〈y, ax〉 = 0, and since 〈ay, y〉 = 0, we get that ay ∈ H⊥. Using
the decomposition X = H ⊕H⊥ = Fx⊕ Fy ⊕H⊥ we will prove that a = [x, ay] to
complete the proof.

(i) [x, ay]x = 〈x, x〉ay − 〈x, ay〉x = 0 = ax by (5),
(ii) [x, ay]y = 〈y, x〉ay − 〈y, ay〉x = ay, and for z ∈ H⊥,
(iii) [x, ay]z = 〈z, x〉ay − 〈z, ay〉x = −〈z, ay〉x = 〈az, y〉x = az, by (4). �

Definition 5.2. Let L be a subalgebra of o(X) containing fo(X). An abelian inner
ideal B of L is called Clifford if B = [x,H⊥], where H is a hyperbolic plane of X
and x ∈ H is a nonzero isotropic vector. This terminology is motivated by the fact
that the subquotient of B is the Clifford Jordan pair (H⊥, H⊥) (see [5, Proposition
4.4(i)]).

The following proposition is the converse of the statement (i) of Proposition 5.1.

Proposition 5.3. Let L be a subalgebra of o(X) containing fo(X) and let B be an
abelian inner ideal of L. If B contains an element b such that b3 = 0 and b2 has
rank-one, then B is Clifford.

Proof. Since b2 is symmetric and of rank-one, we have that b2 = αx∗x, where both
α ∈ F and x ∈ X are nonzero. Now b3 = 0 implies that 0 = b2b2 = α2〈x, x〉x∗x, so
x is isotropic. Extend x to the hyperbolic pair (x, y) and set H := Fx ⊕ Fy. We
have the following identities:

(i) b2y = (αx∗x)y = α〈y, x〉x = αx,
(ii) 〈by, by〉 = −〈y, b2y〉 = −α, so by is anisotropic,
(iii) by ∈ H⊥, since 〈by, y〉 = 0 and 〈by, x〉 = 〈by, α−1b2y〉 = 〈b3y, α−1y〉 = 0.
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Let w ∈ H⊥ and set a := [y, w]. Then:

(iv) ax = 〈x, y〉w − 〈x,w〉y = w,
(v) b2a = α(x∗x)a = −α(ax)∗x = −αw∗x,
(vi) ab2 = αa(x∗x) = αx∗ax = αx∗w,
(vii) bab = b(y∗w − w∗y)b = (bw)∗by − (by)∗bw = [bw, by], and
(viii) ad2ba = b2a+ ab2 − 2bab = α[x,w]− 2[bw, by].

Taking w = by in (viii), we get by (i) that

ad2b [y, by] = α[x, by]− 2[b2y, by] = α[x, by],

so [x, by] ∈ B. Since by is anisotropic, by [10, Lemma 3.7(iii)] we have [x,H⊥] =
ad2[x,by]fo(X) ⊆ B , and hence B = [x,H⊥] since [x,H⊥] is maximal by Proposition

5.1(ii). This proves that B is Clifford. �

We describe Clifford inner ideals in algebraic terms. To this end we introduce the
following notation, which makes sense for any subset S of a ring R with involution:
κ(S) := {a− a∗ : a ∈ S}.

Proposition 5.4. Let L be a subalgebra of o(X) containing fo(X). An abelian
inner ideal B of L is Clifford if and only if B = κ((1 − e)Re), where R is any
∗-subalgebra of LX(X) containing L such that FX(X) ⊆ R, and e is a rank-one
∗-orthogonal idempotent.

Proof. As previously noted, e = x∗y, where (x, y) is a hyperbolic pair. Let H =
Fx⊕ Fy be the associated hyperbolic plane and set f := e+ e∗. Then

(1) Re = R(x∗y) = x∗Ry = x∗X,

and since 1− f is the orthogonal projection on H⊥, we have by (1) that

(2) (1− f)Re = (1− f)x∗X = x∗(1− f)X = x∗H⊥.

Since 〈by, y〉 = 0 for every b ∈ o(X),

(3) e∗be = (x∗y)∗b(x∗y) = (y∗x)b(x∗y) = (y∗x)(x∗by) = 〈by, y〉x∗x = 0.

Hence, for every a ∈ R,

(4) κ((1− f)ae) = κ((1− e)ae− e∗ae) = κ((1− e)ae)− e∗κ(a)e = κ((1− e)ae).

Then, by (2) and (4), [x,H⊥] = κ(x∗H⊥) = κ((1− f)Re) = κ((1− e)Re). �

6. Centrally closed prime rings with involution

In this section R will be a prime ring. The extended centroid C := C(R) of R
(see [2, 2.3] or [12, 14C] for the definition and basic results) is a field containing
the centroid Γ := Γ(R) of R, and the central closure CR of R is a prime associative
algebra over C. A prime ring R is said to be centrally closed if it is its own central
closure, equivalently, if C(R) = Γ(R). The central closure of a prime ring is centrally
closed and so is any simple ring. Moreover, it follows from [2, Theorem 4.3.7(ix)]
that rings of the form LX(X) are also centrally closed.

Any involution ∗ of R induces an involution in C, also denoted by ∗, and therefore
it can be extended to an involution of CR. The involution ∗ of R is said to be of
the first kind if it acts as the identity on C, otherwise ∗ is said to be of the second
kind.
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We set R̃ := C ⊗C CR, with C denoting the algebraic closure of the field C, and
K := Skew(R, ∗). Recall that K is both a Lie algebra and a Jordan triple system
over the ring of scalars Sym(Γ, ∗).

Proposition 6.1. Let R be a prime ring of characteristic not 2 with an involution
∗ of the first kind and let 〈K〉 be the subring of R generated by K.

(i) If the Lie algebra K is not abelian, then 〈K〉 is prime with C(〈K〉) = C(R).

(ii) If K is abelian, then K = 0 or R̃ = M2(C).

Proof. (i) Taking U = K in [2, Theorem 9.1.13(d)], we have that [K,K] �= 0 implies
[K,K]2 �= 0. Let I be the ideal of R generated by [K,K]2. By [2, Lemma 9.1.4],
0 �= I ⊆ 〈K〉 and hence it follows from [12, Theorem 14.14 and subsequent Remark]
that 〈K〉 is prime with C(〈K〉) = C(R).

(ii) Take U = K in [2, Theorem 9.1.13(a)]. �
Proposition 6.2. Let R be a centrally closed prime ring of characteristic not 2, 3
or 5 with an involution ∗ of the first kind such that [K,K] �= 0. If B is a Lie inner
ideal of K, then (i) b3 = 0 for every b ∈ B. Moreover, if b2 �= 0 for some b ∈ B,
then (ii) K is a subalgebra of o(X) containing fo(X), where X is a vector space of
dimension greater than 2 with a nondegenerate symmetric bilinear form over the
field C, and (iii) B is a Clifford inner ideal of K.

Proof. (i) By Proposition 6.1(i), 〈K〉 is a centrally closed prime ring of characteristic

not 2, 3 or 5 with C(〈K〉) = C(R). For any b ∈ B, ad3bK ∈ [B, [B, [B,K]]] ⊆ [B,B] =
0, and since 〈K〉 is spanned by the elements of K and their squares ([2, Lemma
9.1.5]), we have (using the Leibniz rule) that ad5b〈K〉 = 0. Then it follows from
[14, Corollary 1] that (b−α)3 = 0 for some α ∈ C (the formula making sense in the
unitization of 〈K〉). But as observed in the proof of [3, Lemma 4.22], the involution
∗ being of the first kind forces α = 0. Thus b3 = 0 for every b ∈ B.

(ii) Suppose that there exists b ∈ B such that b2 �= 0. Then ad3bK = 0, and
since b3 = 0, we have 0 = ad4bK = 6b2Kb2, which implies b2Kb2 = 0 because
char(R) �= 2, 3. Put c := b2 ∈ Sym(R, ∗). For every x ∈ R we have c(x− x∗)c = 0,
and hence, for all x, y ∈ R,

(cxc)yc = c(xcy)c = c(xcy)∗c = cy∗cx∗c = cycxc = cy(cxc).

Then we have by [2, Theorem 2.3.4] that for every x ∈ R there exists λx ∈ C such
that cxc = λxc, which proves that cRc = Cc, since cRc �= 0 by primeness of R. This
implies that cR is a minimal right ideal of R, so R has nonzero socle. Let cR = eR
where e = ca is a minimal idempotent of R ([2, Proposition 4.3.3]). We have

eRe = cRe = (cRc)a = Cca = Ce,
which proves that C itself is the division ring of R. Now it follows from Kaplansky’s
Theorem ([2, Theorem 4.6.8]) that the involution ∗ of R is either of transpose type
or of symplectic type; but the latter cannot occur because c is a symmetric rank-one
element, so ∗ is of transpose type. Since ∗ is of the first kind by hypothesis, we
have (again by Kaplansky’s Theorem) that it is actually of orthogonal type, i.e.,
∗ is the adjoint involution coming from a nondegenerate symmetric bilinear form
〈·, ·〉 of a vector space X over the field C, R is a C-subalgebra of LX(X) containing
FX(X), and K is a subalgebra of o(X) containing fo(X), with dimC X > 2 since
[K,K] �= 0.

(iii) It follows from Proposition 5.3. �
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Theorem 6.3 (Main Theorem). Let R be a centrally closed prime ring of char-
acteristic not 2, 3 or 5 with an involution ∗, let C be the algebraic closure of the
extended centroid C of R, and suppose that C ⊗C R is not the full matrix algebra
M2(C) with the transpose involution. If B is a Lie inner ideal of K, then either

(i) B = V is an isotropic inner ideal,
(ii) B = V ⊕ Skew(Z(R), ∗) is a standard inner ideal,
(iii) B = Inn(V, f) is special, or
(iv) B = κ((1− e)Re) is Clifford.

Moreover, in cases (ii) and (iii) R is unital and ∗ is of the second kind, while in
case (iv) R has nonzero socle and ∗ is of orthogonal type.

Proof. Suppose first that ∗ is of the second kind and let ξ be a nonzero skew-
symmetric element of C. Then R = K⊕ξK. Set C := B⊕ξB. It is straightforward
to see that C is an abelian inner ideal of the Lie algebra R−. By [8, Theorem 5.4],
either (i) C = U , where U is an inner ideal of R− with UU = 0; or R is unital
and either (ii) C = U ⊕ Z(R), where U is as in (i), or (iii) C = {u + g(u) : u ∈
U}, where U is as in (i) and g : U → Z(R) is a nonzero linear form such that
[[U,R], U ] ⊆ ker g. If C = U as in (i), then B = Skew(U, ∗) is an isotropic inner
ideal of K. Suppose then that C is as in (ii) or (iii). In both cases U is ∗-invariant:
U∗ ⊆ C∗ = C ⊆ U⊕Z(R) and hence [U∗, U ] = 0 since UU = 0. Thus for any u ∈ U ,
u∗ = v + z where u, v ∈ U and z ∈ Z(R). Since u∗ − v is nilpotent, u∗ − v = 0,
so u∗ = v ∈ U as claimed. If (ii), then B = Skew(U, ∗) ⊕ Skew(Z(R), ∗), with
Skew(U, ∗) being an isotropic inner ideal of K; if (iii), then B = {v+f(v) : v ∈ V },
where V = Skew(U, ∗) is an isotropic inner ideal of K and f : V → Skew(Z(R), ∗)
is the restriction of g to V , which satisfies [[V,K], V ] ⊆ ker f .

Suppose now that the involution ∗ is of the first kind. If b2 = 0 for every b ∈ B,
then B is an isotropic inner ideal. Thus we may assume that b20 �= 0 for some
b0 ∈ B. Then we have by Proposition 6.2 that B is a Clifford inner ideal. �

Remark 6.4. (1) The Lie algebra Skew(M2(F), ∗), where F is a field of characteristic
not 2 and ∗ is the transpose involution, is an abelian inner ideal in itself which does
not lie in any of the four cases of the theorem above. Thus the exception in the
statement is not superfluous.

(2) Let B be a Lie inner ideal of K = Skew(R, ∗), where R is still prime but not-
necessarily centrally closed. Then Sym(C, ∗)B is a Lie inner ideal of Skew(CR, ∗)
and therefore one of those described in Theorem 6.3.
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