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1. Introduction

The possibility of embedding a Jordan system into an associative system has been 
considered from the very beginning of the Jordan Theory. Jordan algebras were invented 
in the 1930s in the search for an exceptional algebraic setting for quantum mechanics 
(exceptional in the sense that its structure was not determined by some unobservable 
associative algebra). In their seminal paper of 1933, Jordan, von Neumann, and Wigner 
classified the finite-dimensional formally real linear Jordan algebras [12]. Already in 
1934 A. A. Albert showed that the only simple algebra in the list which was exceptional 
was a certain 27-dimensional algebra of 3 × 3 hermitian matrices with entries from an 8-
dimensional Cayley algebra [1]. Afterwards, several authors dealt with this problem until 
1979 when Zelmanov published his outstanding result that the only simple exceptional 
linear Jordan algebra was the 27-dimensional Albert algebra [16].

Some Jordan algebras come attached to ad-nilpotent elements in Lie algebras. In their 
paper [7] the first-named two authors of this work together with A. Fernández gave a 
construction that mimics the construction of local algebras in Jordan systems. Given any 
Jordan system J and any element a ∈ J , we can consider the Jordan algebra Ja which 
is a quotient of the a-homotope algebra J (a) by the set Ker a. When this construction 
is carried to the Lie setting, an extra condition must be imposed on the element a – it 
must be ad-nilpotent of index less than or equal to three – and the structure La obtained 
after quotienting out the kernel of a turns out to be a Jordan algebra.

In this paper we investigate some conditions under which the Jordan algebras La

attached to strongly prime Lie algebras are special. These conditions are related to the 
kernel of a. Notice that for any nondegenerate Lie algebra L and any nonzero ad-nilpotent 
element a of index three, Ker a is always nonzero (because it contains [a, L]). The key 
point for the speciality of La will be related to Ker a not being a Lie subalgebra. Our 
main result is the following (see Corollary 2.5):

For a strongly prime Lie algebra L and an ad-nilpotent element 0 �= a ∈ L of index 3 
with Ker a not being a subalgebra of L, the Jordan algebra La is special.

Our proof directly gives a specialization of La. We want to point out that our result 
gives just a sufficient condition for the speciality of La. There exist Lie algebras L and 
elements a ∈ L with ad3

a(L) = 0 and Ker a being a subalgebra such that La is special: 
for example if L = sl(2) :=< {e, h, f} > over a field F , then Ker e =< {e, h} >, which is 
a subalgebra of L and Le

∼= F which is special.
Our proof is based on the fact that any ad-nilpotent element a ∈ L with ad3

a L = 0
gives rise to a filtration F−2 ⊂ F−1 ⊂ F0 ⊂ F1 ⊂ F2 with F−2 = Φa + [a, [a, L]], 
F1 = Ker a and F2 = L, inducing a 5-grading

L̂ = F−2 ⊕F−1/F−2 ⊕F0/F−1 ⊕F1/F0 ⊕F2/F1.

For any 5-graded Lie algebra L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2, one can define a pair 
of Jordan homomorphisms Ψ1 : L−2 → Hom(L1, L−1), Ψ−1 : L2 → Hom(L−1, L1) by 
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Ψσ1(x) = adx. We will impose conditions to assure the injectivity of (Ψ1, Ψ−1) for the 
particular case of the 5-grading induced by an ad-nilpotent element a ∈ L with ad3

a L = 0. 
In particular, if L is simple, the Jordan pair (L−2, L2) is simple (see [5, Theorem 11.32], 
[17, Lemma 1.5]) and it is special as soon as (Ψ1, Ψ−1) is nonzero. As an example of this 
situation, let us consider a strongly prime Lie algebra L with an ad-nilpotent element 
a ∈ L of index 3 such that there exists b ∈ L with [a, [a, b]] = −2a. We can define 
h := [a, b]; adh is a semisimple element with eigenvalues 0, ±1, ±2, and L is a 5-graded 
Lie algebra, L = L−2⊕L−1⊕L0⊕L1⊕L2, where each Li is the eigenspace of L associated 
to the eigenvalue i, i = 0, ±1, ±2, see [2, Lemma 2.1]. If L−1 or L1 are nonzero, (L−1, L1)
is a module for the Jordan pair (L−2, L2) via the maps (Ψ1, Ψ−1). In particular, if L is 
simple, the Jordan pair (L−2, L2) is simple, and (Ψ1, Ψ−1) is injective since it cannot be 
zero (the map Ψ1(a) = ada is a bijection between L1 and L−1, see [2, Lemma 2.1(3)]).

The last section is devoted to studying conditions under which the subquotients as-
sociated to abelian inner ideals B of a strongly prime Lie algebra L are special. Since 
filtrations associated to abelian inner ideals are not known, we directly construct the Jor-
dan homomorphisms between the subquotients and the pairs of homomorphisms. The 
conditions we require to get injectivity include [B, KerB] being nilpotent (which holds 
directly in the case of ad-nilpotent elements) and KerB not being a subalgebra. Our 
main result in this section is the following (see Corollary 3.4):

Given a strongly prime Lie algebra L and an abelian inner ideal B of L, if [B, KerB]
is nilpotent and KerB is not a subalgebra, the subquotient (B, L/ KerB) is a special 
Jordan pair.

In the particular case of L = R− for a prime associative algebra R, we will show that 
[B, KerB] is always nilpotent of index less than or equal to three. Moreover, any abelian 
inner ideal B can be enlarged to another abelian inner ideal B∗ of R̂− (the central closure 
of R) that gives rise to a filtration of R̂−: F−2 ⊂ F−1 ⊂ F0 ⊂ F1 ⊂ F2, with F−2 = B∗, 
F1 = KerB and F2 = R̂.

2. Speciality of the Jordan algebras of a Lie algebra

Throughout this paper and unless otherwise specified, we will be dealing with Lie 
algebras, rings and Jordan systems over a ring of scalars Φ with 1

2 , 
1
3 ∈ Φ. The reader is 

referred to [11,15] for basic results, notation and terminology on Lie algebras and Jordan 
systems, respectively.

In this section we will give a sufficient condition for the speciality of the Jordan algebra 
La at a Jordan element a. We remark that although La is a Jordan algebra, the condition 
for its speciality will be a Lie condition: [Ker a, Ker a] �⊂ Ker a.

Lemma 2.1. Let L = L−n ⊕· · ·⊕ L−1 ⊕ L0 ⊕L1 ⊕· · ·⊕ Ln be a (2n +1) −Z-graded Lie 
algebra. Then the pair V := (L−n, Ln) with product {x, y, z} := [x, [y, z]] for x, z ∈ Lσn

and y ∈ L−σn, σ = ± is a Jordan pair. Moreover, for any i ∈ 1, 2, . . . , n− 1 the pair of 
linear maps (Ψi, Ψ−i)
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Ψi : L−n → Hom(Li, Li−n) Ψ−i : Ln → Hom(Li−n, Li)

defined by Ψσi(x)(y) = adx y for any x ∈ L−σn and any y ∈ Li if σ = + or y ∈ Li−n

if σ = − is a homomorphism of Jordan pairs between V and the special Jordan pair 
(Hom(Li, Li−n), Hom(Li−n, Li))(+).

Proof. V is a Jordan pair by [17, p. 351].
Moreover, as mentioned in the proof of [5, Theorem 11.34] it is routine to verify that, 

for any i = 1, . . . , n − 1, the pair of maps (Ψi, Ψ−i) is a Jordan pair homomorphism. �
2.2. Let L be a Lie algebra over a ring of scalars Φ with 1

2 , 
1
3 ∈ Φ. Ad-nilpotent elements 

of index less than or equal to 3 will be called Jordan elements. Given a Jordan element 
a ∈ L, define Ker a = {x ∈ L | [a, [a, x]] = 0}. Then La := L/ Ker a with product 
x̄ ◦ ȳ = [[x, a], y] becomes a Jordan algebra, called the Jordan algebra of L at a, see [7].

Associated to a Jordan element a of L we can consider a filtration

Fi = 0, i ≤ −3, F−2 = Φa + [a, [a, L]] F−1 = Φa + [a,Ker a]

F0 = {x ∈ L | [x, a] ∈ [a, [a, L]]} F1 = Ker a Fj = L, j ≥ 2.

Then {Fi}i is a bounded filtration of L, called the principal filtration of L defined by a, 
see [10, 1.2, 1.3]. Furthermore,

L̂ = F−2 ⊕F−1/F−2 ⊕F0/F−1 ⊕F1/F0 ⊕F2/F1

is a 5-graded Lie algebra. In particular, V = (F−2, F2/F1) is a Jordan pair associated 
to a.

When L is nondegenerate, the set Ker a coincides with

Ker(a) = {x ∈ L | [(a), [(a), x]] = 0}

for (a) = Φa + [a, [a, L]], see [13, 3.7]. Then V is the subquotient of L induced by the 
abelian inner ideal (a), [13, 3.2], and the Jordan algebra La can be regarded as the 
a-homotope of the Jordan pair V at a, see [13, 3.6].

In the following result we will use Lemma 2.1 to define a specialization homomorphism.

Lemma 2.3. Let L be a Lie algebra over a ring of scalars Φ with 1
2 , 

1
3 ∈ Φ, let a ∈ L be a 

Jordan element, and let {Fi}i be the principal filtration of L defined by a. Then the pair 
of maps (Ψ1, Ψ−1)

Ψ1 : Φa + [a, [a, L]] → Hom(F1/F0, F−1/F−2)

Ψ−1 : L/Ker a → Hom(F−1/F−2, F1/F0)
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given by Ψ1(b) = adb, b ∈ Φa + [a, [a, L]], and Ψ−1(x + Ker a) = adx+Ker a, x + Ker a ∈
L/ Ker a, is a homomorphism of Jordan pairs between

V = (F−2, F2/F1) and (Hom(F1/F0, F−1/F−2),Hom(F−1/F−2, F1/F0))(+).

Proof. Consider the graded Lie algebra

L̂ = F−2 ⊕F−1/F−2 ⊕F0/F−1 ⊕F1/F0 ⊕F2/F1.

The maps Ψ1, Ψ−1 are well defined and (Ψ1, Ψ−1) is a Jordan pair homomorphism be-
tween V = (Φa + [a, [a, L]], L/ Ker a) and the special Jordan pair

(Hom(F1/F0, F−1/F−2),Hom(F−1/F−2, F1/F0))(+),

by Lemma 2.1. �
Proposition 2.4. Let L be a Lie algebra over a ring of scalars Φ with 1

2 , 
1
3 ∈ Φ and let 

a ∈ L be a Jordan element. The pair

I = (I+, I−) = ([a, [a, [Ker a,Ker a]]], ([Ker a,Ker a] + Ker a)/Ker a)

is an ideal of the Jordan pair V = (V +, V −) = (Φa + [a, [a, L]], L/ Ker a).
Moreover, if L is nondegenerate,

(Ker Ψ1,Ker Ψ−1) ⊂ AnnV (I).

Proof. Let us check that I = (I+, I−) is an ideal of V : For any k1, k2 ∈ Ker a, any x, y ∈
L and any λ ∈ Φ, if we use the Jacobi identity and take into account the multiplication 
properties of the filtration,

[[a, [a, [k1, k2]]], [x, ([a, [a, y]] + λa)]] ∈ [[a, [a, [k1, k2]]], [F2,F−2]] ⊂
⊂ [[a, [a, [F1,F1]]],F0] ⊂
⊂ [[a,F0], [a, [F1,F1]]] + [a, [[a,F0], [F1,F1]]] + [a, [a, [F1,F1]] ⊂
⊂ [F−2, [a, [F1,F1]]] + [a, [F−2, [F1,F1]] + [a, [a, [F1,F1]]] ⊂
⊂ [a, [F−1,F1]] + [a, [a, [F1,F1]]] ⊂ [F−1,F−1] =

= [Φa + [a,Ker a],Φa + [a,Ker a]] ⊂ [[a,Ker a], [a,Ker a]] ⊂ [a, [a, [Ker a,Ker a]]]

because [[a, k], [a, l]] = 1
2 [a, [a, [k, l]]] for every k, l ∈ Ker a. This proves that

{I+, V −, V +} ⊂ I+.

Moreover, using the Jacobi identity and the multiplication properties of the filtration,
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[x,[[a, [a, [k1, k2]]], y]] = 2 [x, [[[a, k1], [a, k2]], y]] ⊂ [x, [Ker a, [a,Ker a]]] ⊂

⊂ [[x,Ker a], [a,Ker a]] + [Ker a, [x, [a,Ker a]] ⊂

⊂ [[F2,F1], [F−2,F1]] + [F1, [F2, [F−2,F1]]] ⊂

⊂ [F2,F−1] + [F1,F1] ⊂ Ker a + [Ker a,Ker a], so

{V −, I+, V −} ⊂ I−.

Finally

(1) [[k1, k2], [[a, [a, x]], y]] ∈ [[Ker a,Ker a],F0] ⊂ [Ker a,Ker a],

(2) [[k1, k2], [a, y]] ∈ [[Ker a,Ker a],F0] ⊂ [Ker a,Ker a],

(3) [[a, [a, x]], [[k1, k2], [a, [a, y]]]] ∈ [F−2, [[F1,F1],F−2]] ⊂ [F−2, [F−1,F1]] ⊂

⊂ [F−1,F−1] ⊂ [[a,Ker a], [a,Ker a]] ⊂ [a, [a, [Ker a,Ker a]]],

and similarly [a, [[k1, k2], [a, [a, y]]]] ∈ [a, [a, [Ker a,Ker a]],

and [a, [[k1, k2], a]] ∈ [a, [a, [Ker a,Ker a]]],

so (1) and (2) give

{I−, V +, V −} ⊂ I−,

and (3) implies

{V +, I−, V +} ⊂ I+.

Now we are going to prove that (Ker Ψ1, Ker Ψ−1) ⊂ AnnV (I). We will use the 
characterization of the annihilator of an ideal as those elements z such that {z, I, z} =
0, which holds when V is nondegenerate [14, Proposition 1.7]. Remember that V is 
nondegenerate because we are assuming that L is nondegenerate.

If u ∈ Ker Ψ1 (u ∈ F−2), then [u, Ker a] ⊂ F−2 and, therefore for every k1, k2 ∈ Ker a

{u, [k1, k2], u} = [[u, [k1, k2]], u] = [[[u, k1], k2], u] + [[k1, [u, k2]], u] ∈ [[F−2,F1],F−2] = 0,

which shows that u belongs to the annihilator of I.
Take x̄ = x + Ker a ∈ Ker Ψ−1, which means that [x, [a, Ker a]] ⊂ F0. To see that x̄

belongs to the annihilator of I let us see that

{x̄, [a, [a, [Ker a,Ker a]]], x̄} = 0̄,

which is equivalent to prove that ad2
a[x, [[a, [a, [Ker a, Ker a]]], x]] = 0: for any k1, k2 ∈

Ker a
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[a,[a, [x, [x, [a, [a, [k1, k2]]]]]]] ⊂ [a, [a, [x, [x, [[a,Ker a], [a,Ker a]]]]]] ⊂
⊂ [a, [a, [x, [F0, [a,Ker a]]]]] ⊂ [a, [a, [x, [a,Ker a]]]] ⊂ [a, [a,F0]] = 0. �

Corollary 2.5. Let L be a strongly prime Lie algebra over a ring of scalars Φ with 12 , 
1
3 ∈ Φ

and let a ∈ L be a Jordan element. If Ker a is not a subalgebra of L, i.e., [Ker a, Ker a] �⊂
Ker a, then La is a special strongly prime Jordan algebra.

Proof. The Jordan pair V = (Φa +[a, [a, L]], L/ Ker a) is the subquotient of L determined 
by the abelian inner ideal Φa +[a, [a, L]], so it is strongly prime by [13, 3.5(iii)]. If Ker a is 
not a subalgebra of L then the ideal I of V is nonzero. Therefore, it has zero annihilator, 
thus (Ψ1, Ψ−1) is a monomorphism of Jordan pairs between V and the special Jordan 
pair

(Hom(F1/F0, F−1/F−2),Hom(F−1/F−2, F1/F0))(+),

i.e., V is special.
As we have mentioned in 2.2, the Jordan algebra La can be regarded as the a-homotope 

of the Jordan pair V at a. Thus the speciality of V implies that of La. Moreover, La is 
strongly prime by [8, 2.2]. �
3. Speciality of subquotients of a Lie algebra

In this section we will deal with subquotients associated to abelian inner ideals B
of L. Recall that a Φ-module B of L is an abelian inner ideal if [B, [B, L]] ⊂ B and 
[B, B] = 0. The kernel of an abelian inner ideal is

KerB = {x ∈ L | [B, [B, x]] = 0}.

Associated to an abelian inner ideal B of L we can consider the subquotient 
(B, L/ KerB), which is a Jordan pair with products

{b1, x̄, b2} = [[b1, x], b2] {x̄, b1, ȳ} = [[x, b1], y]

for every b1, b2 ∈ B and every x̄, ȳ ∈ L/ KerB, see [13, 3.2].
In the following proposition we define a specialization homomorphism.

Proposition 3.1. Let L be a Lie algebra over a ring of scalars Φ and let B be an abelian 
inner ideal of L. Let us consider the Φ-submodules

V−1 : = [B,KerB]/A1 where A1 := [[B,KerB], [B,KerB]] + [B, [B,L]]

V1 : = KerB/A2 where A2 := [[B,KerB],KerB] + [B,L]

Then the pair of maps (Ψ−1, Ψ1) defined by



E. García et al. / Journal of Algebra 563 (2020) 426–441 433
Ψ−1 : B → Hom(V1, V−1)
b �→ Ψb

where Ψb : V1 → V−1

z �→ [b, z]

Ψ1 : L/KerB → Hom(V−1, V1)
a �→ Ψa

where Ψa : V−1 → V1

w �→ [a,w]

where ā = a + KerB, z̄ = z + A2 and w̄ = w + A1, is a homomorphism of Jordan pairs 
between

(B,L/KerB) and (Hom(V1, V−1),Hom(V−1, V1))(+).

Proof. Let us first see that V−1 and V1 are well defined:
• A1 ⊂ [B, KerB]: for any b, b′ ∈ B and any z, z′ ∈ KerB, [[b, z], [b′, z′]] = [b, [z, [b′, z′]]] ∈
[B, KerB]. Moreover, [B, [B, L]] ⊂ [B, KerB] because [B, L] ⊂ KerB.
• A2 ⊂ KerB: for any b ∈ B and z, z′ ∈ KerB we have that [[b, z′], z] ∈ KerB because, 
by the Jacoby identity, for any b′, b′′ ∈ B we have [b′, [b′′, [[b, z′], z]]] = 0. Moreover, 
[B, L] ⊂ KerB.

Now we will show that the maps Ψ−1 and Ψ1 are well defined:
(1). Let us prove that for any b ∈ B the linear map Ψb : V1 → V−1 is well defined: Let 
z ∈ V1, then [b, z] ∈ [B, KerB] and, by above, if z ∈ A2, [b, z] ∈ A1.
(2). Let us prove that for any a ∈ L/ KerB the linear map Ψa : V−1 → V1 does not 
depend on the representative element of the equivalence class a and is well defined: Let 
w ∈ V−1, then [a, w] ∈ KerB, because [L, [B, KerB]] ⊂ KerB and,

• If a ∈ KerB, [a, w] ∈ [KerB, [B, KerB]] ⊂ A2.
• If w ∈ A1 and a ∈ L,

– If w ∈ [[B, KerB], [B, KerB]],

[a, [[B,KerB], [B,KerB]]] ⊂ [[a, [B,KerB]], [B,KerB]] ⊂ A2.

– If w ∈ [B, [B, L]],

[a, [B, [B,L]]] ⊂ [B,L] ⊂ A2.

Now, let us prove that the map (Ψ−1, Ψ1) is a homomorphism of Jordan pairs. Let 
us consider b, b′ ∈ B, a, c ∈ L, z ∈ KerB and w ∈ [B, KerB], and let us denote 
ā = a + KerB, c̄ = c + KerB ∈ L/ KerB, z̄ = z + A2 ∈ KerB/A2, and w̄ = w + A1 ∈
[B, KerB]/A1:

Ψ[b,[a,b′]](z) = [[b, [a, b′]], z] = [[b, z], [a, b′]] + [b, [[a, b′], z]]

= [[[b, z], a], b′] + [a, [[b, z], b′]] + [b, [[a, z], b′]] + [b, [a, [b′, z]]]

=(1) [b′, [a, [b, z]]] + 0 − [b, [b′, [a, z]]] + [b, [a, [b′, z]]]

=(2) [b′, [a, [b, z]]] + 0 + [b, [a, [b′, z]]] = {Ψb,Ψa,Ψb′}(z)
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Ψ[a,[b,c]](w) = [[a, [b, c]], w] = [[a,w], [b, c]] + [a, [[b, c], w]]

= [[[a,w], b], c] + [b, [[a,w], c]] + [a, [[b, w], c]] + [a, [b, [c, w]]]

= [c, [b, [a,w]]] − [b, [c, [a,w]]] − [a, [c, [b, w]]] + [a, [b, [c, w]]]

=(3) [c, [b, [a,w]]] + 0 − [a, [c, [b, w]]] + [a, [b, [c, w]]]

=(4) [c, [b, [a,w]]] + 0 + [a, [b, [c, w]]] = {Ψa,Ψb,Ψc}(w)

where (1) holds because [[b, z], b′] = 0, (2) is true since [b, [b′, [a, z]]] ∈ [B, [B, L]], we have 

(3) because [b, [c, [a, w]]] ∈ [B, L], and (4) is due to [b, w] ∈ [B, [B, KerB]] = 0. �
Lemma 3.2. The pair

I = (I+, I−) = ([B, [B, [KerB,KerB]]], [KerB,KerB])

is an ideal of the Jordan pair V = (V +, V −) = (B, L/ KerB).

Proof. This proof is analogous to the first part of the proof of Proposition 2.4, where 
we showed that I = ([a, [a, [Ker a, Ker a]]], ([Ker a, Ker a] + Ker a)/ Ker a) is an ideal 
of the Jordan pair V = (Φa + [a, [a, L]], L/ Ker a). We include it here for the sake of 
completeness.

Set K = KerB.

• {I+, V −, V +} ⊂ I+: for any b1, b2, b3 ∈ B, k1, k2 ∈ K, x̄ ∈ L/K,

{[b1,[b2, [k1, k2]]], x̄, b3} = [[b1, [b2, [k1, k2]]], x], b3] = [[b1, [b2, [k1, k2]]], [x, b3]] =

= [[b1, [x, b3]], [b2, [k1, k2]]] + [b1, [[b2, [x, b3]], [k1, k2]]]+

+ [b1, [b2, [[k1, k2], [x, b3]]]] ∈ [B, [B, [K,K]]

because [[k1, k2], [x, b3]] = [[k1, [x, b3]], k2] + [k1, [k2, [x, b3]]] ∈ [K, K].

• {V −, I+, V −} ⊂ I−: Let b1, b2 ∈ B, k1, k2 ∈ K, x̄, ȳ ∈ L/K

{x̄,[b1, [b2, [k1, k2]]], ȳ} = [[x, [b1, [b2, [k1, k2]]]], y] ∈ [L, [L, [B, [B, [K,K]]]]] ⊂
⊂ [L, [[L,B], [B, [K,K]]]] + [L, [B, [[L,B], [K,K]] ⊂
⊂ [L, [B, [K,K]] + [L, [B, [[L,B], [K,K]]]] + [[L,B], [[L,B], [K,K]]] + [B,L] ⊂
⊂ [[L,B], [K,K]] + [B,L] + [[L,B], [[L,B], [K,K]]] ⊂ [K,K]

since [[L, B], [K, K]] ⊂ [K, K] and [B,L] = 0̄ because B is an abelian inner ideal.

• {I−, V +, V −} ⊂ I−: Let b1 ∈ B, k1, k2 ∈ K, x̄ ∈ L/K

{[k1, k2], b1, x̄} = [[[k1, k2], b1], x] = [[k1, k2], [b1, x]] + [[[k1, k2], x], b1] ∈
∈ [[K,K], [B,L]] ⊂ [K,K] using again that [B,L] = 0̄.
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• {V +, I−, V +} ⊂ I+: Let b1, b2 ∈ B, k1, k2 ∈ K,

{b1, [k1, k2], b2} = [[b1, [k1, k2]], b2] ∈ [B, [B, [K,K]]]. �
In the following proposition we will consider powers of Jordan ideals of the Jordan 

pair V = (B, L/ KerB). For any Jordan ideal J = (J+, J−) of V we will define

J 3 = ((J 3)+, (J 3)−) = ({J +,J−,J +}, {J−,J +,J−}),

and J 3m+1 = ((J 3m+1)+, (J 3m+1)−) with

(J 3m+1
)+ = {(J 3m

)+, (J 3m

)−, (J 3m

)+}

(J 3m+1
)− = {(J 3m

)−, (J 3m

)+, (J 3m

)−}

for m ≥ 1.

Proposition 3.3. Consider the ideal J = (J+, J−) = (Ker Ψ−1, Ker Ψ1) of V =
(B, L/ KerB). Then

(J 3m

)+ ⊂ {b ∈ B | [b,KerB] ⊂ [B,KerB]m+2 + B}.

Moreover, if L is nondegenerate and [B, KerB] is nilpotent with [B, KerB]n = 0, then

(J 3m

)+ ⊂ AnnV (I)+ for m + 2 ≥ n
2 ,

where I = ([B, [B, [KerB, KerB]]], [KerB,KerB]).

Proof. Let us denote K = KerB. We will prove by induction on m ≥ 0 that (J 3m)+ ⊂
{b ∈ B | [b, K] ⊂ [B, K]m+2 + B}:
• If m = 0 then J+ = Ker Ψ−1 and every b ∈ Ker Ψ−1 satisfies [b, K] ⊂ [[B, K], [B, K]] +
[B, [B, L]] ⊂ [B, K]2 + B.
• Now suppose that it is true for m − 1 and take b1, b2 ∈ (J 3m−1)+ and ā ∈ (J 3m)−. By 
hypothesis [b1, K] + [b2, K] ⊂ [B, K]m+1 + B. We will show that b3 = {b1, ̄a, b2} ∈ {b ∈
B | [b, K] ⊂ [B, K]m+2 + B}: for every k ∈ K,

[b3, k] = [[[b1, a], b2], k] = [[b1, k], [a, b2]] + [b1, [[a, k], b2]] + [[b1, a], [b2, k]] ∈
∈ [[b1, k], [a, b2]] + [[b1, a], [b2, k]] + B ⊂
⊂ [[B,K]m+1, [a, b2]] + [[b1, a], [B,K]m+1] + B ⊂
⊂ [[[B,K]m+1, a], b2] + [b1, [a, [B,K]m+1]] + B ⊂
⊂(1) [[[B,K],K], b2] + [b1, [[B,K],K]] + B ⊂
⊂ [[B,K], [K, b2]] + [[B,K], [b1,K]] + B ⊂
⊂ [B,K]m+2 + B
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where (1) holds because [[B, K]m+1, L] = [[[B, K], [B, K]m], L] ⊂ [K, [B, K]m] +
[[B, K], K] ⊂ [[B, K], K].

Now suppose that L is nondegenerate and that there exists n such that [B, K]n = 0. 
Recall that V is nondegenerate by [13, 3.5(ii)]. Then if b ∈ (J 3m)+ for m + 2 ≥ n/2, for 
every k1, k2 ∈ K we have that

[b, [b, [k1, k2]]] = 2[[b, k1], [b, k2]] ⊂ [[B,K]m+2 + B, [B,K]m+2 + B] ⊂ [B,K]n = 0,

so (J 3m)+ ⊂ AnnV (I)+ by the characterization of annihilators of ideals for nondegen-
erate Jordan pairs. �
Corollary 3.4. If L is strongly prime, [B, KerB] is nilpotent and KerB is not a subalgebra 
of L, then the subquotient (B, L/ KerB) is a special strongly prime Jordan pair.

Proof. The Jordan pair (B, L/ KerB) is strongly prime by [13, 3.5(ii)]. If KerB is not 
a subalgebra of L, the ideal

I = ([B, [B, [KerB,KerB]]], [KerB,KerB])

of V is nonzero. Thus the annihilator of I in V is zero, hence

J = (Ker Ψ−1,Ker Ψ1) = 0

by 3.3, i.e., the homomorphism (Ψ−1, Ψ1) is a monomorphism of Jordan pairs, proving 
that (B, L/ KerB) is a special Jordan pair. �

The nilpotency of [B, KerB] given in Corollary 3.4 is not a too restrictive condition. 
Indeed, if L = R− for a prime ring, or if L is finite dimensional, this is always the case 
for any inner ideal B of L, as can be seen in the following results.

Proposition 3.5. Let R be a prime ring, R̂ the central closure of R and let B be an abelian 
inner ideal of R−. Then

(a) For every b ∈ B there exists a unique λb in the extended centroid C(R) of R such 
that (b − λb)2 = 0.

(b) B′ := {b − λb | b ∈ B} is an abelian inner ideal of R̂− such that B′B′ = {0}.
(c) B∗ := B + B′RB′ is an abelian inner ideal of R̂− such that KerB = KerB∗ and 

B′ KerBB′ = 0.
(d) [[B∗, KerB], [B∗, KerB]] ⊂ B∗ so [B∗, KerB] and [B, KerB] are nilpotent of index 

less than or equal to 3.
(e) The chain

F−2 ⊂ F−1 ⊂ F0 ⊂ F1 ⊂ F2
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given by

F−2 = B∗, F−1 = [B∗,KerB] + B∗,

F0 = [B∗, R̂] + [KerB, [B∗,KerB]], F1 = KerB, F2 = R̂

is a filtration of R̂−.

Proof. (a) is [3, Theorem 3.2].
(b) For any b ∈ B, let us denote by b′ := b − λb where λb is the unique element of 

C(R) given in (a). It is clear that B′ = {b − λb | b ∈ B} satisfies [B′, [B′, R̂]] ⊂ B′. Let 
us see that B′B′ = 0: For every b, c ∈ B, and x ∈ R we have that

0 = [b, c] = [b′, c′] = b′c′ − c′b′

and

0 = [c, [b, [b, x]]] = −2[c′, b′xb′] = −2(c′b′xb′ − b′xb′c′).

Therefore, by [3, Corollary 2.14], there exists λ1 ∈ C(R) such that c′b′ = λ1b
′. Arguing 

similarly, there exists λ2 ∈ C(R) such that b′c′ = λ2c
′. Then 0 = λ1b

′b′ = b′c′b′ = λ2c
′b′, 

and since C(R) is a field, c′b′ = b′c′ = 0.
Finally, B′ is a submodule of R̂ because for every b, c ∈ B, (b + c − λb − λc)2 =

(b′ + c′)2 = b′ 2 + c′ 2 + 2b′c′ = 0, so b′ + c′ = (b + c)′ ∈ B′.
(c) For every b, c ∈ B, b′1, b′2, c′1, c′2 ∈ B′ and x, y, u ∈ R we have that

[b + b′1xb
′
2, [c + c′1yc

′
2, u]] = [b′ + b′1xb

′
2, [c′ + c′1yc

′
2, u]] = −(b′ + b′1xb

′
2)u(c′ + c′1yc

′
2)

− (c′ + c′1yc
′
2)u(b′ + b′1xb

′
2) ∈ B′RB′

Moreover, if z ∈ KerB,

0 = [b, [c, z]] = [b′, [c′, z]] = −b′zc′ − c′zb′

so

b′zc′ = −c′zb′ (∗)

and

0 = −1
2 [c, [[b, [b, x]], z]] = −1

2 [c′, [[b′, [b′, x]], z]] = [c′, [b′xb′, z]] =

= −c′zb′xb′ − b′xb′zc′ = b′zc′xb′ + b′xc′zb′ (by (∗)),

so b′zc′xb′ = −b′xc′zb′ for every x ∈ R. By [3, Corollary 2.14], there exists μ1 ∈ C(R)
such that b′zc′ = μ1b

′, and if we change b′ by c′ in the above argument, there exists μ2
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with b′zc′ = −c′zb′ = μ2c
′. If {b′, c′} are linearly independent over C(R), b′zc′ = 0, but 

if c′ = αb′ for some α ∈ C(R) then

0 = α[b, [b, z]] = α[b′, [b′, z]] = α(−2b′zb′) = −2(αb′)zb′ = −2c′zb′ = 2b′zc′

giving again b′zc′ = 0. Now, if z ∈ KerB, for every b, c ∈ B, b′1, b′2, c′1, c′2 ∈ B′ we have 
that

[b + b′1xb
′
2, [c + c′1yc

′
2, z]] = [b′ + b′1xb

′
2, [c′ + c′1yc

′
2, z]] = 0

and KerB ⊂ KerB∗. The containment KerB∗ ⊂ KerB is trivial.
(d) [B∗, [KerB, [B∗, KerB]]] = [[B∗, KerB], [B∗, KerB]]. Take b, c ∈ B∗ and u, v ∈

KerB. By (a) for every b ∈ B∗ there exists λb ∈ C(R) such that b − λb ∈ B′ + B′RB′; 
let us denoted it by b′. Then

(1) [[b, u], [c, u]] = [[b′, u], [c′, u]] = b′uc′u −b′u2c′−u′bc′u +ub′uc′−c′ub′u +c′u2b′+uc′b′u −
uc′ub′ = b′(−u2)c′ + c′u2b′ ∈ B∗, because B′B′ = 0 by (b) and B′ KerBB′ = 0 by 
(c).

(2) 2[[b, u], [b, v]] = [b, [b, [u, v]]] ∈ B∗.
(3) 2([[b, u], [c, v]] +[[c, u], [b, v]]) = [b +c, [b +c, [u, v]]] −2[b, [b, [u, v]]] −2[c, [c, [u, v]]] ∈ B∗

by (2). So [[b, u], [c, v]] − [[b, v], [c, u]] = [[b, u], [c, v]] + [[c, u], [b, v]] ∈ B∗.
(4) [[b, u], [c, v]] + [[b, v], [c, u]] = [[b, u + v], [c, u + v]] − [[b, u], [c, u]] − [[b, v], [c, v]] ∈ B∗

using (1).
(5) [[b, u], [c, v]] −[[b, v], [c, u]] ∈ B∗ and [[b, u], [c, v]] +[[b, v], [c, u]] ∈ B∗, so [[b, u], [c, v]] ∈

B∗, i.e., [[B∗, KerB], [B∗, KerB]] ⊂ B∗.

Therefore

[[B∗,KerB], [[B∗,KerB], [B∗,KerB]]] ⊂ [[B∗,KerB], B∗] = 0.

(e) Let us prove that the chain

F−2 ⊂ F−1 ⊂ F0 ⊂ F1 ⊂ F2

given by

F−2 = B∗, F−1 = [B∗,KerB] + B∗,

F0 = [B∗, R̂] + [KerB, [B∗,KerB]], F1 = KerB, F2 = R̂

is a filtration:
(1) [F−2, F−2] = [B∗, B∗] = 0, because B∗ is an abelian inner ideal of R̂−.
(2) [F−2, F−1] = [B∗, [B∗, KerB]] = 0 because KerB = KerB∗.
(3) [F−2, F0] = [B∗, [B∗, R̂] + [KerB, [B∗, KerB]]] ⊂ B∗ by (d).
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(4) [F−2, F1] ⊂ F−1 and [F−2, F2] ⊂ F0 follow by definition of F−1 and F0.
(5) [F−1, F−1] = [[B∗, KerB] + B∗, [B∗, KerB] + B∗] ⊂ B∗ = F−2 by (d).
(6) [F−1, F0] ⊂ F−1:

• [[B∗, [B∗, R̂]] ⊂ B∗

• [B∗, [KerB, [KerB, B∗]]] ⊂ B∗ by (d)
• [[B∗, KerB], [B∗, R̂]] ⊂ [B∗, KerB].
• [[B∗, KerB], [[B∗, KerB], [B∗, KerB]]] = 0 implies

[KerB, [KerB, [B∗, KerB]]] ⊂ KerB, so

[[B∗,KerB],[KerB, [B∗,KerB]]] ⊂ [B∗, [KerB, [KerB, [B∗,KerB]]]]

+ [[B∗, [KerB, [B∗,KerB]]],KerB] ⊂ [B∗,KerB]

(7) [F−1, F1] = [[B∗, KerB] + B∗, KerB] ⊂ [B∗, R] + [KerB, [B∗, KerB]] = F0.
(8) [F−1, F2] = [[B∗, KerB] + B∗, R] ⊂ KerB.
(9) [F0, F0] ⊂ F0:

[[B∗, R̂] + [KerB, [B∗,KerB]], [B∗, R̂] + [KerB, [B∗,KerB]]] ⊂

⊂ [[B∗, R̂], [B∗, R̂]] + [[B∗, R̂], [KerB, [B∗,KerB]]]+

+ [[KerB, [B∗,KerB]], [KerB, [B∗,KerB]]] ⊂

⊂ [B∗, R̂] + [[[B∗, R̂],KerB], [B∗,KerB]] + [KerB, [[B∗, R̂], [B∗,KerB]]+

+ [[KerB, [KerB, [B∗,KerB]]], [B∗,KerB]]+

+ [KerB, [[B∗,KerB], [KerB, [B∗,KerB]]]] ⊂

⊂ [B∗, R̂] + [KerB, [KerB,B∗]] = F0.

(10) [F0, F1] = [[B∗, R̂] + [KerB, [B∗, KerB]], KerB] ⊂ KerB = F1.
(11) [F0, F2] ⊂ F2, [F1, F1] ⊂ F2 and [F1, F2] ⊂ F2 because F2 = R̂. �
The next lemma is a consequence of [6, Theorem 5.4]. We will show that in the context 

of centrally closed prime rings, every abelian inner ideal B of the quotient R/Z(R) comes 
from an abelian inner ideal B′ of R− satisfying B′B′ = 0.

Lemma 3.6. Let R be a centrally closed prime associative ring and let B be an abelian 
inner ideal of R/Z(R). Then there exists an abelian inner ideal B′ of R− such that 
B′B′ = 0 and π(B′) = B, where π : R− → R−/Z(R) denotes the canonical projection. 
In particular, B′ ∩ Z(R) = 0.

Proof. Let us prove that B := π−1(B) is an inner ideal of R−: π([B, [B, R]]) ⊂
[B, [B, R/Z(R)]] ⊂ B, so [B, [B, R]] ⊂ B. Moreover, B is abelian: if a ∈ B, ad3

a(R) ⊂
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Z(R), and by [3, Lemma 3.1] ad3
a(R) = 0; now for any b ∈ B, [a, b] ∈ Z(R) hence 

0 = ad3
a(b3) = 6[a, b]3, which implies, by primeness of R, that [a, b] = 0.

Finally, let B′ be the abelian inner ideal of R− associated to B, given in Propo-
sition 3.5(b), for which we also have π(B′) = B. It is clear that B′B′ = 0 implies 
B′ ∩ Z(R) = 0. �
Corollary 3.7. Let R be a prime ring and let B be an abelian inner ideal of the strongly 
prime Lie algebra L := R−/Z(R). Then if KerB is not a subalgebra of L, the subquotient 
(B, L/ KerB) is a strongly prime special Jordan pair.

Proof. The Lie algebra L is a strongly prime by [9, Lemma 4.2] and the subquotient 
(B, L/ KerB) is strongly prime by [13, 3.5(ii)]. Let us consider the central closure R̂ of 
R, L̂ := R̂−/Z(R̂), and let B̂ be the scalar extension of B on L̂. By 3.6, we can suppose 
that B̂ = π(B′) where B′ is an abelian inner ideal of R̂− with B′B′ = 0 and where π
denotes the canonical projection of R̂ onto R̂/Z(R̂). By Proposition 3.5(d) we have that 
[B′, KerB′] is a nilpotent subalgebra of R̂− and therefore π([B′, KerB′]) = [B̂, Ker B̂] is 
a nilpotent subalgebra of L̂. Then Corollary 3.4 applies and (B̂, L̂/ Ker B̂) is special, so 
also (B, L/ KerB) is special. �
3.8. Remark. Let L be a nondegenerate Lie algebra with 1

2 , 
1
3 , 

1
5 ∈ Φ. For every nonzero 

abelian inner ideal B of finite length of L there exists a finite Z-grading L = L−n⊕· · ·⊕
L0 ⊕ · · · ⊕ Ln such that B = Ln [13, Corollary 6.2]. This is always the case when L is 
nodegenerate finite dimensional. With respect to this grading, KerB = L−n+1 ⊕ · · · ⊕
L0 ⊕ · · · ⊕ Ln and [B, KerB] ⊂ L1 ⊕ · · · ⊕ Ln is nilpotent.

When the grading is a 3-grading, L = L−n⊕L0⊕Ln, KerB is always a subalgebra. In 
this situation Corollary 3.4 gives no information about the speciality of the subquotient 
(B, L/ KerB) ∼= (L−n, Ln). If we review the list of abelian inner ideals of the simple 
finite dimensional Lie algebras over an algebraically closed field of characteristic zero 
given in [4], only when L = E6 or E7 one finds exceptional subquotients: if L is E6, 
the subquotient associated to the abelian inner ideal B{1} (with the notation of [4]) is 
isomorphic to the exceptional BiCayley pair; if L is E7, the subquotient associated to the 
abelian inner ideal B{7} (with the notation of [4]) is isomorphic to the exceptional Albert 
pair. The rest of subquotients of abelian inner ideals of the simple finite dimensional Lie 
algebras over an algebraically closed field of characteristic zero are all special.
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