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Preface

The Workshop series “Lie Theory and Its Applications in Physics” is designed
to serve the community of theoretical physicists, mathematical physicists, and
mathematicians working on mathematical models for physical systems based on
geometrical methods and in the field of Lie theory.

The series reflects the trend toward a geometrization of the mathematical descrip-
tion of physical systems and objects. A geometric approach to a system yields in
general some notion of symmetry which is very helpful in understanding its struc-
ture. Geometrization and symmetries are meant in their widest sense, i.e., represen-
tation theory, algebraic geometry, number theory infinite-dimensional Lie algebras
and groups, superalgebras and supergroups, groups and quantum groups, noncom-
mutative geometry, symmetries of linear and nonlinear PDE, special functions, and
functional analysis. This is a big interdisciplinary and interrelated field.

The first three workshops were organized in Clausthal (1995, 1997, 1999), the
4th was part of the 2nd Symposium “Quantum Theory and Symmetries” in Cracow
(2001), the 5th, 7th, 8th, 9th, 11th, and 13th were organized in Varna (2003, 2007,
2009, 2011, 2013, 2015, 2019), the 6th and the 12th were part of the 4th, resp., 10th,
Symposium “Quantum Theory and Symmetries” in Varna (2005, 2017).

The 14-th Workshop of the series (LT-14) was organized by the Organizing
Committee from the Institute of Nuclear Research and Nuclear Energy of the
Bulgarian Academy of Sciences (BAS) in June 2021 (21–25). Due to the COVID-19
restrictions it was organized online, based in Sofia.

The overall number of participants was 97 and they came from 25 countries. The
number of talks was 87.

The scientific level was very high as can be judged by the plenary speakers:
Toshiyuki Kobayashi (Tokyo), Yang-Hui He (london & Tianjin), Ivan Todorov
(Sofia), Patrizia Vitale (Napoli), Paolo Aschieri (Alessandria & Torino), Nikolay
Bobev (Leuven), TomaszBrzezinski (Swansea&Bialystok),MalteHenkel (Nancy&
Lisboa), Volodymyr Mazorchuk (Uppsala), and George Zoupanos (Athens &
CERN).
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vi Preface

The topics covered the most modern trends in the field of the Workshop: Symme-
tries in String Theories, (Super-)Gravity Theories, Conformal Field Theory, Inte-
grable Systems, Representation Theory, Quantum Computing and Deep Learning,
Applications to Quantum Theory. Gauge Theories and Applications, Structures on
Lie Groups and Lie Algebras.

The International Steering Committee was: C. Burdik (Prague) V. K. Dobrev
(Sofia, Chair), H. D. Doebner (Clausthal), B. Dragovich (Belgrade), and G. S.
Pogosyan (Yerevan & Guadalajara & Dubna).

The Organizing Committee was: V. K. Dobrev (Chair), L. K. Anguelova, V. I.
Doseva, V. G. Filev, A. Ch. Ganchev, D. T. Nedanovski, S. J. Pacheva, T. V. Popov,
D. R. Staicova, N. I. Stoilova, and S. T. Stoimenov.

Sofia, Bulgaria
May 2022

Vladimir Dobrev

Acknowledgments We express our gratitude to the Publisher, Springer Japan, represented by Mr.
Masayuki Nakamura (Editor, Mathematics), for assistance in the publication. Last but not least,
I thank the members of the Local Organizing Committee who, through their efforts, made the
workshop run smoothly and efficiently.
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Čestmír Burdík, CTU in Prague Czech Republic and BLTP JINR
Marijana Butorac, Department of Mathematics, University of Rijeka, Croatia
Guillem Cazassus, University of Oxford
Hadewijch De Clercq, Ghent University, Belgium
Vladimir Dobrev, INRNE, BAS
Branko Dragovich, Institute of Physics Belgrade and Mathematical Institute of the
Serbian Academy of Sciences and Arts
Ferruccio Feruglio, University of Padova
Veselin Filev, Institute of Mathematics and Informatics, BAS
Tamar Friedmann, Colby College, Waterville ME, USA
Chih-Hao Fu, Shaanxi Normal University, China
Alexander Ganchev, AUBG and INRNE, BAS
Richard Garavuso, Kingsborough Community College, CUNY, USA
Esther Garca, Universidad Rey Juan Carlos, Madrid
Miguel Angel Gómez Lozano, Universidad de Málaga, Spain
Falk Hassler, Texas A and M University

xiii



xiv List of Registered LT-14 Participants

Malte Henkel, LPCT, Universite de Lorraine and Universidade de Lisboa
Yang-Hui He, London Institute for Mathematical Sciences and Oxford University
Jir

∧

í Hrivnák, Czech Technical University in Prague
Kwalombota Ilwale, Linköping University, Sweden
Tsukasa Ishibashi, RIMS, Kyoto University
Palle Jorgensen, University of Iowa
Tekin Karadag, Texas A and M University
Mariana Kirchbach, INRNE, BAS and IF-UASLP, Mexico
Roland Kirschner, ITP, University Leipzig, Germany
Toshiyuki Kobayashi, The University of Tokyo
Ralf Köhl, Justus-Liebig-Universität Giessen
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Multiplicity in Restricting Minimal
Representations

Toshiyuki Kobayashi

Abstract We discuss the action of a subgroup on small nilpotent orbits, and prove
a bounded multiplicity property for the restriction of minimal representations of real
reductive Lie groups with respect to arbitrary reductive symmetric pairs.

Keywords Minimal representation · Branching law · Reductive group ·
Symmetric pair · Coisotropic action · Multiplicity · Coadjoint orbit
2020 MSC Primary 22E46 · Secondary 22E45 · 53D50 · 58J42 · 53C50

1 Statement of Main Results

This article is a continuation of our work [9, 13, 15, 17, 18, 21, 23] that concerns the
restriction of irreducible representations Π of reductive Lie groups G to reductive
subgroups G ′ with focus on the bounded multiplicity property of the restrictionΠ |G ′

(Definition 2). In this article we highlight the following specific setting:

• (G, G ′) is an arbitrary reductive symmetric pair;
• Π is of the smallest Gelfand–Kirillov dimension.

We refer to [14] for some motivation and perspectives in the general branching
problems, see also Sect. 2 for some aspects regarding finite/bounded multiplicity
properties of the restriction.

To be rigorous about “multiplicities” for infinite-dimensional representations, we
need to fix the topology of the representation spaces. For this, let G be a real reductive
Lie group, M(G) the category of smooth admissible representations of G of finite
length with moderate growth, which are defined on Fréchet topological vector spaces
[32, Chap.11]. We denote by Irr(G) the set of irreducible objects in M(G).

T. Kobayashi (B)
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Tokyo
153-8914, Japan
e-mail: toshi@ms.u-tokyo.ac.jp
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4 T. Kobayashi

Suppose that G ′ is a reductive subgroup in G. For Π ∈ M(G), the multiplicity
of π ∈ Irr(G ′) in the restriction Π |G ′ is defined by

[Π |G ′ : π] := dimC HomG ′(Π |G ′,π) ∈ N ∪ {∞},

where HomG ′(Π |G ′,π) denotes the space of symmetry breaking operators, i.e., con-
tinuous G ′-homomorphisms between the Fréchet representations. For non-compact
G ′, the multiplicity [Π |G ′ : π] may be infinite even when G ′ is a maximal subgroup
of G, see Example 1 below.

By a reductive symmetric pair (G, G ′), we mean that G is a real reductive Lie
group and that G ′ is an open subgroup in the fixed point group Gσ of an invo-
lutive automorphism σ of G. The pairs (SL(n,R), SO(p, q)) with p + q = n,
(O(p, q), O(p1, q1) × O(p2, q2)) with p1 + p2 = p, q1 + q2 = q, and the group
manifold case (�G × �G, diag(�G)) are examples. For a reductive symmetric pair
(G, G ′), the subgroup G ′ is maximal amongst reductive subgroups of G.

One may ask for which pair (G, G ′) the finite multiplicity property

[Π |G ′ : π] < ∞, ∀Π ∈ Irr(G), ∀π ∈ Irr(G ′) (1)

holds. Here are examples when (G, G ′) is a reductive symmetric pair:

Example 1 ([9, 19]) (1) For the symmetric pair (SL(n,R), SO(p, q)) (p + q =
n), the finite multiplicity property (1) holds if and only if one of the following
conditions holds: p = 0, q = 0, or p = q = 1.
(2) For the pair (O(p, q), O(p1, q1) × O(p2, q2)) (p1 + p2 = p, q1 + q2 = q), the
finite multiplicity property (1) holds if and only if one of the following conditions
holds: p1 + q1 = 1, p2 + q2 = 1, p = 1, or q = 1.
(3) For the groupmanifold case (�G × �G, diag(�G))where �G is a simple Lie group,
the finite multiplicity property (1) holds if and only if �G is compact or is locally
isomorphic to SO(n, 1).

See Fact 15 (2) for a geometric criterion of the pair (G, G ′) to have the finite
multiplicity property (1). A complete classification of such symmetric pairs (G, G ′)
was accomplished in Kobayashi–Matsuki [19].

On the other hand, if we confine ourselves only to “small” representations Π of
G, there will be amore chance that themultiplicity [Π |G ′ : π] becomes finite, or even
stronger, the restriction Π |G ′ has the bounded multiplicity property in the following
sense:

Definition 2 Let Π ∈ M(G). We say the restriction Π |G ′ has the bounded multi-
plicity property if m(Π |G ′) < ∞, where we set

m(Π |G ′) := sup
π∈Irr(G ′)

dimC HomG ′(Π |G ′,π) ∈ N ∪ {∞}. (2)

In the series of the papers, we have explored the bounded multiplicity property of
the restriction Π |G ′ not only uniformly with respect to π ∈ Irr(G ′) for the subgroup
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G ′ but also uniformly with respect to Π ∈ M(G), e.g., either Π runs over the
whole set Irr(G) [9, 13, 23] or Π belongs to certain family of “relatively small”
representations of the group G [15, 17, 18, 21]. See Sect. 2 for some general results,
which tell that the smaller Π is, the more subgroups G ′ tends to satisfy the bounded
multiplicity property Π |G ′ . In this article, we highlight the extremal case where Π is
the “smallest”, and give the bounded multiplicity theorems for all symmetric pairs
(G, G ′).

What are “small representations” amongst infinite-dimensional representations?
For this, the Gelfand–Kirillov dimension serves as a coarse measure of the “size”
of representations. We recall that for Π ∈ M(G) the Gelfand–Kirillov dimension
DIM(Π) is defined as half the dimension of the associated variety of I where I is
the annihilator of Π in the universal enveloping algebra U (gC) of the complexified
Lie algebra gC. The associated variety of I is a finite union of nilpotent coadjoint
orbits in g∗

C
.

We recall for a complex simple Lie algebra gC, there exists a unique non-zero
minimal nilpotent (Int gC)-orbit in g∗

C
, which we denote byOmin,C. The dimension of

Omin,C is known as below, see [2] for example. We set n(gC) to be half the dimension
of Omin,C.

gC An Bn (n ≥ 2) Cn Dn gC2 fC4 eC6 eC7 eC8
n(gC) n 2n − 2 n 2n − 3 3 8 11 17 29

For the rest of this section, let G be a non-compact connected simple Lie group
without complex structure. This means that the complexified Lie algebra gC is still
a simple Lie algebra. By the definition, the Gelfand–Kirillov dimension has the
following property: DIM(Π) = 0 ⇐⇒ Π is finite-dimensional, and

n(gC) ≤ DIM(Π) ≤ 1

2
(dim g − rank g), (3)

for any infinite-dimensional Π ∈ Irr(G). In this sense, if Π ∈ Irr(G) satisfies
DIM(Π) = n(gC), then such Π is thought of as the “smallest” amongst infinite-
dimensional irreducible representations of G.

In this article, we prove the following bounded multiplicity theorem of the restric-
tion:

Theorem 3 If the Gelfand–Kirillov dimension of Π ∈ Irr(G) is n(gC), then
m(Π |G ′) < ∞ for any symmetric pair (G, G ′).

For Π1,Π2 ∈ Irr(G), we consider the tensor product representation Π1 ⊗ Π2,
and define the upper bound of the multiplicity in Π1 ⊗ Π2 by

m(Π1 ⊗ Π2) := sup
Π∈Irr(G)

dimC HomG(Π1 ⊗ Π2,Π) ∈ N ∪ {∞}.
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The tensor product representation of two representations is a special case of the
restriction with respect to symmetric pairs. We also prove the bounded multiplicity
property of the tensor product:

Theorem 4 If the Gelfand–Kirillov dimensions of Π1,Π2 ∈ Irr(G) are n(gC), then
one has m(Π1 ⊗ Π2) < ∞.

Remark 5 Since the upper bound of the multiplicity m(Π |G ′) is defined in the
category of admissible representations of moderate growth, m(Π |G ′) also gives an
upper bound in the category of unitary representations where the multiplicity in
the direct integral of irreducible unitary representations is defined as a measurable
function on the unitary dual of the subgroup G ′.

These results apply to “minimal representations” of G, which we recall now.
For a complex simple Lie algebra gC other than sl(n,C), Joseph [6] constructed a
completely prime two-sided primitive ideal J in U (gC), whose associated variety is
the closure of the minimal nilpotent orbit Omin,C. See also [3].

Definition 6 (minimal representation, see [4]) An irreducible admissible represen-
tation Π of G is called a minimal representation if the annihilator of the U (gC)-
module Π is the Joseph ideal J of U (gC).

The two irreducible components of the Segal–Shale–Weil representation are clas-
sical examples of a minimal representation of the metaplectic group Mp(n,R),
the connected double cover of the real symplectic group Sp(n,R), which play a
prominent role in number theory. The solution space of the Yamabe Laplacian on
Sp × Sq gives the minimal representation of the conformal transformation group
O(p + 1, q + 1) when p + q (≥ 6) is even ([20]). In general, there are at most four
minimal representations for each connected simple Lie group G if exist, and they
were classified [4, 30].

By the definition of the Joseph ideal, one has DIM(Π) = n(gC) ifΠ is a minimal
representation. Thus Theorems 3 and 4 imply the following:

Theorem 7 Let Π be a minimal representation of G. Then the restriction Π |G ′ has
the bounded multiplicity property m(Π |G ′) < ∞ for any symmetric pair (G, G ′).

Theorem 8 Let Π1, Π2 be minimal representations of G. Then the tensor product
representation has the bounded multiplicity property m(Π1 ⊗ Π2) < ∞.

Example 9 The tensor product representation of the two copies of the Segal–Shale–
Weil representations of the metaplectic group Mp(n,R) is unitarily equivalent to the
phase space representation of Sp(n,R) on L2(R2n) via the Wigner transform, see
[22, Sect. 2] for instance.

In general, it is rare that the restriction Π |G ′ of Π ∈ M(G) is almost irreducible
in the sense that the G ′-module Π |G ′ remains irreducible or a direct sum of finitely
many irreducible representations of G ′. In [12, Sect. 5], we discussed such rare phe-
nomena and gave a list of the triples (G, G ′,Π) where the restriction Π |G ′ is almost
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irreducible, in particular, in the following settings: Π ∈ M(G) is a degenerate prin-
cipal series representation or Zuckerman’s derived functor module Aq(λ), which
is supposed to be a “geometric quantization” of a hyperbolic coadjoint orbit or an
elliptic coadjoint orbit, respectively, in the orbit philosophy, see [12, Theorems3.8
and 3.5]. As a corollary of Theorem 7, we also prove the following theorem where
Π is “attached to” the minimal nilpotent coadjoint orbit Omin,C.

Theorem 10 Suppose that (G, G ′) is a symmetric pair such that the complexified
Lie algebras (gC, g′

C
) is in the list of Proposition 30 (vi). Then the restriction Π |G ′

is almost irreducible if Π is a minimal representation of G.

Example 11 For the following symmetric pairs (g, g′), there exists a minimal rep-
resentation Π of some Lie group G with Lie algebra g (e.g., G = Mp(n,R) for
g = sp(n,R)), and Theorem 10 applies to (G, G ′,Π),
• (sp(p + q,R), sp(p,R) ⊕ sp(q,R)),

• (so(p, q), so(p − 1, q)) or (so(p, q), so(p, q − 1)) for “p ≥ q ≥ 4 and p ≡ q
mod 2”, “p ≥ 5 and q = 2”, or “p ≥ 4 and q = 3”.
• (f4(4), so(5, 4)),
• (e6(6), f4(4)), or (e6(−14), f4(−20)).

We note that the upper bound m(Π |G ′) or m(Π1 ⊗ Π2) of the multiplicity can be
larger than 1 in Theorems 3 and 4, see e.g. [21] for an explicit branching law of the
restriction Π |G ′ when (G, G ′) = (SL(n,R), SO(p, q)) with p + q = n. However,
it is plausible that a multiplicity-free theorem holds in Theorems 7 and 8:

Conjecture 12 m(Π |G ′) = 1 in Theorem 7, and m(Π1 ⊗ Π2) = 1 in Theorem 8.

Conjecture 12 holds when (G, G ′) is a Riemannian symmetric pair (G, K ), see
[4, Proposition4.10].

Remark 13 (1) The Joseph ideal is not defined for sl(n,C), hence there is no min-
imal representation in the sense of Definition 6 for G = SL(n,R), for instance.
However there exist continuously many Π ∈ Irr(G) (e.g., degenerate principal
series representations induced from a mirabolic subgroup) for G = SL(n,R) such
that DIM(Π) = n(gC), and Theorems 3 and 4 apply to these representations. The
Plancherel-type theorem for the restriction Π |G ′ is proved in [21] for all symmetric
pairs (G, G ′) when Π is a unitarily induced representation. See also Example 16
below.
(2) The inequality (3) depends only on the complexification gC, and is not necessarily
optimal for specific real forms g. In fact, one has a better inequality n(g) ≤ DIM(Π)

where n(g) depends on the real form g, see Sect. 3.2. Formost of real Lie algebras one
has n(g) = n(gC), but there are a few simple Lie algebras g satisfying n(g) > n(gC).
For example, if G = Sp(p, q), n(g) = 2(p + q) − 1 > n(gC) = p + q, hence there
is noΠ ∈ Irr(G)with DIM(Π) = n(gC), however, there exists a countable family of
Π ∈ Irr(G) with DIM(Π) = n(g), to which another bounded multiplicity theorem
(Theorem 34 in Sect. 3) applies.
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(3) Concerning Theorem 3, the bounded property of the multiplicity in the tensor
product representations Π1 ⊗ Π2 still holds for some other “small representations”
Π1 and Π2 whose Gelfand–Kirillov dimensions are greater than n(gC). See [17,
Theorem1.5 and Corollary4.10] for example.

This paper is organized as follows. In Sect. 2 we give a brief review of some
background of the problem, examples, and known theorems. Section3 is devoted to
the proof of Theorems 3, 4 and 10.

2 Background and Motivation

In this section, we explain some background, examples, and known theorems in
relation to our main results.

If Π is an irreducible unitary representation of a group G, then one may consider
the irreducible decomposition (branching law) of the restriction Π |G ′ to a subgroup
G ′ by using the direct integral of Hilbert spaces. For non-unitary representations
Π , such an irreducible decomposition does not make sense, but the computation
of the multiplicity [Π |G ′ : π] for all π ∈ Irr(G ′) may be thought of as a variant of
branching laws. Here we recall from Sect. 1 that for Π ∈ M(G) and π ∈ Irr(G ′)
that the multiplicity [Π |G ′ : π] is the dimension of the space HomG ′(Π |G ′,π) of
symmetry breaking operators.

By branching problems in representation theory, we mean the broad problem of
understanding how irreducible (not necessarily, unitary) representations of a group
behavewhen restricted to a subgroup.As viewed in [14],wemay divide the branching
problems into the following three stages:
Stage A. Abstract features of the restriction;
Stage B. Branching law;
Stage C. Construction of symmetry breaking operators.

The role of Stage A is to develop a theory on the restriction of representations
as generally as possible. In turn, we may expect a detailed study of the restriction
in Stages B (decomposition of representations) and C (decomposition of vectors) in
the “promising” settings that are suggested by the general theory in Stage A.

The study of the upper estimate of the multiplicity in this article is considered as
a question in Stage A of branching problems.

For a detailed analysis on the restriction Π |G ′ in Stages B and C, it is desirable to
have the bounded multiplicity property m(Π |G ′) < ∞ (see Definition 2), or at least
to have the finite multiplicity property

[Π |G ′ : π] < ∞ forπ ∈ Irr(G ′). (4)

In the previous papers [10, 13, 16–18, 23] we proved some general theorems for
bounded/finite multiplicities of the restriction Π |G ′ , which we review briefly now.
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2.1 Bounded Multiplicity Pairs (G, K ′) with K ′ Compact

Harish-Chandra’s admissibility theorem tells the finiteness property (4) holds for
any Π ∈ M(G) if G ′ is a maximal compact subgroup K of G. More generally,
the finiteness property (4) for a compact subgroup plays a crucial role in the study
of discretely decomposable restriction with respect to reductive subgroups [8, 10,
11, 16]. We review briefly the necessary and sufficient condition for (4) when G ′ is
compact. In this subsection, we use the letter K ′ instead of G ′ to emphasize that G ′
is compact. Without loss of generality, we may and do assume that K ′ is contained
in K .

Fact 14 ([10, 16]) Suppose that K ′ is a compact subgroup of a real reductive group
G. Let Π ∈ M(G). Then the following two conditions on the triple (G, K ′,Π) are
equivalent:
(i) The finite multiplicity property (4) holds.
(ii) ASK (Π) ∩ CK (K ′) = {0}.

Here ASK (Π) is the asymptotic K -support of Π , and CK (K ′) is the momentum
set for the natural action on the cotangent bundle T ∗(K/K ′). There are two proofs
for the implication (ii) ⇒ (i): by using the singularity spectrum (or the wave front
set) [10] and by using symplectic geometry [16]. The proof for the implication (i)
⇒ (ii) is given in [16]. See [24] for some classification theory.

2.2 Bounded/Finite Multiplicity Pairs (G,G′)

We now consider the general case where G ′ is not necessarily compact. In [13] and
[23, Theorems C and D] we proved the following geometric criteria that concern all
Π ∈ Irr(G) and all π ∈ Irr(G ′):

Fact 15 Let G ⊃ G ′ be a pair of real reductive algebraic Lie groups.
(1) Bounded multiplicity for a pair (G, G ′):

sup
Π∈Irr(G)

sup
π∈Irr(G ′)

[Π |G ′ : π] < ∞ (5)

if and only if (GC × G ′
C
)/ diag G ′

C
is spherical.

(2) Finite multiplicity for a pair (G, G ′):

[Π |G ′ : π] < ∞, ∀Π ∈ Irr(G), ∀π ∈ Irr(G ′)

if and only if (G × G ′)/ diagG ′ is real spherical.

Here we recall that a complex GC-manifold X is called spherical if a Borel
subgroup of GC has an open orbit in X , and that a G-manifold Y is called real
spherical if a minimal parabolic subgroup of G has an open orbit in Y .
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A remarkable discovery in Fact 15 (1) was that the bounded multiplicity property
(5) is determined only by the complexified Lie algebras gC and g′

C
. In particular, the

classification of such pairs (G, G ′) is very simple, because it is reduced to a classical
result when G is compact [27]: the pair (gC, g′

C
) is the direct sum of the following

ones up to Abelian ideals:

(sln, gln−1), (son, son−1), or (so8, spin7). (6)

See [25, 26] e.g., for some recent developments in Stage C such as detailed
analysis on symmetry breaking operators for some non-compact real forms of the
pairs (6).

On the other hand, the finite multiplicity property in Fact 15 (2) depends on real
forms G and G ′. It is fulfilled for any Riemannian symmetric pair, which is Harish-
Chandra’s admissibility theorem. More generally for non-compact G ′, the finite-
multiplicity property (4) often holdswhen the restrictionΠ |G ′ decomposes discretely,
see [8, 10, 11] for the general theory of “G ′-admissible restriction”. However, for
some reductive symmetric pairs such as (G, G ′) = (SL(p + q,R), SO(p, q)), there
existsΠ ∈ Irr(G) for which the finite multiplicity property (4) of the restrictionΠ |G ′

fails, as we have seen in Example 1. Such Π is fairly “large”.

2.3 Uniform Estimates for a Family of Small Representations

The classification in [19] tells that the class of the reductive symmetric pairs (G, G ′)
satisfying the finite multiplicity property (1) is much broader than that of real forms
(G, G ′) corresponding to those complex pairs in (5). However, there also exist pairs
(G, G ′) beyond the list of [19] for which we can still expect fruitful branching laws
of the restriction Π |G ′ in Stages B and C for some Π ∈ Irr(G). Such Π must be a
“small representation”. Here are some known examples:

Example 16 (1) (Stage B) See-saw dual pairs ([28]) yield explicit formulæ of the
multiplicity for the restriction of small representations, with respect to some classical
symmetric pairs (G, G ′).
(2) (Stage C) For G = SL(n,R), any degenerate representation Π = IndG

P (Cλ)

induced from a “mirabolic subgroup” P of G has the smallest Gelfand–Kirillov
dimension n(gC). For a unitary character Cλ, the Plancherel-type formula of the
restriction Π |G ′ is determined in [21] for all symmetric pairs (G, G ′). The feature
of the restriction Π |G ′ is summarized as follows: let p + q = n, and when n is even
we write n = 2m.
• G ′ = S(GL(p,R) × GL(q,R)).

· · · Only continuous spectrum appears with multiplicity one.
• G ′ = SL(m,C) · T.

· · · Only discrete spectrum appears with multiplicity one.
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• G ′ = SO(p, q).
· · · Discrete spectrum appears with multiplicity one,

and continuous spectrum appears with multiplicity two.
• G ′ = Sp(m,R)

· · · Almost irreducible (See also Theorem 10).

The uniform bounded multiplicity property in all these cases (Stage A) is guaranteed
by Theorem 3 in this article because DIM(Π) attains n(gC), and alternatively, by
another general result [17, Theorem4.2].
(3) (Stage C) For the symmetric pair (G, G ′) = (O(p, q), O(p1, q1) × O(p2, q2))

with p1 + p2 = p and q1 + q2 = q, by using the Yamabe operator in conformal
geometry, discrete spectrum in the restriction Π |G ′ of the minimal representation Π

was obtained geometrically in [20]. Moreover, for the same pair (G, G ′), discrete
spectrum in the restriction Π |G ′ was explicitly constructed and classified when Π

belongs to cohomologically parabolic induced representation Aq(λ) from amaximal
θ-stable parabolic subalgebra q in [15]. In contrast to Example 1 (2), the multiplicity
is one for any p1, q1, p2, and q2.

In view of these nice cases, and also in search for further broader settings in
which we could expect a detailed study of the restriction Π |G ′ in Stages B and C, we
addressed the following:

Problem 17 ([14, Problem6.2], [17, Problem1.1]) Given a pair G ⊃ G ′, find a
subset Ω ofM(G) such that sup

Π∈Ω

m(Π |G ′) < ∞.

Since branching problems often arise for a family of representations Π , the for-
mulation of Problem 17 is to work with the triple (G, G ′,Ω) rather than the pair
(G, G ′) for the finer study of multiplicity estimates of the restriction Π |G ′ . Fact 15
(1) deals with the case Ω = Irr(G). In [15, 17], we have considered Problem 17
including the following cases:

(1) Ω = Irr(G)H , the set of H -distinguished irreducible representations of G where
(G, H) is a reductive symmetric pair;

(2) Ω = ΩP , the set of induced representations from characters of a parabolic sub-
group P of G;

(3) Ω = ΩP,q, certain families of (vector-bundle valued) degenerate principal series
representations.

For the readers’ convenience, we give a flavor of the solutions to Problem 17 in
the above cases by quoting the criteria from [17]. See [18] for a brief survey.

We write GC for the complexified Lie group G, and GU for the compact real
form of GC. For a reductive symmetric pair (G, H), one can define a Borel subgroup
BG/H which is a parabolic subgroup in GC, see [18, Definition3.1]. Note that BG/H

is not necessarily solvable. For Ω = Irr(G)H when (G, H) is a reductive symmetric
pair, one has the following answer to Problem 17:
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Fact 18 ([17, Theorem1.4]) Let BG/H be a Borel subgroup for G/H. Suppose G ′
is an algebraic reductive subgroup of G. Then the following three conditions on the
triple (G, H, G ′) are equivalent:

(i) sup
Π∈Irr(G)H

m(Π |G ′) < ∞.

(ii) GC/BG/H is G ′
U -strongly visible.

(iii) GC/BG/H is G ′
C

-spherical.

For Ω = ΩP , one has the following answer to Problem 17:

Fact 19 ([17, Example4.5], [31]) Let G ⊃ G ′ be a pair of real reductive algebraic
Lie groups, and P a parabolic subgroup of G. Then one has the equivalence on the
triple (G, G ′; P) :
(i) sup

Π∈ΩP

m(Π |G ′) < ∞.

(ii) GC/PC is strongly G ′
U -visible.

(iii) GC/PC is G ′
C

-spherical.

The following is a useful extension of Fact 19.

Fact 20 ([17, Theorem4.2]) Let G ⊃ G ′ be a pair of real reductive algebraic Lie
groups, P a parabolic subgroup of G, and Q a complex parabolic subgroup of GC

such that q ⊂ pC. One defines a subset ΩP,q in M(G) that contains ΩP (see [17]
for details). Then the following three conditions on (G, G ′; P, Q) are equivalent:

(i) sup
Π∈ΩP,q

m(Π |G ′) < ∞.

(ii) GC/Q is G ′
U -strongly visible.

(iii) GC/Q is G ′
C

-spherical.

These criteria lead us to classification results for the triples (G, G ′,Ω), see
[15, 17, 18] and references therein.

The representations Π in Ω = Irr(G)H or ΩP , ΩP,q are fairly small, however,
the classification results in [17] indicate that some symmetric pairs (G, G ′) still
do not appear for such a family Ω . A clear distinction from these previous results
is that Theorem 3 allows all symmetric pairs (G, G ′) for an affirmative answer to
Problem 17 in the extremal case where Ω = {Π} with DIM(Π) = n(gC).

Concerning the method of the proof, we utilized in [23] hyperfunction boundary
maps for the “if” part (i.e., the sufficiency of the boundedmultiplicity property) and a
generalized Poisson transform [13] for the “only if” part in the proof of Fact 15. The
proof in [17, 31] used a theory of holonomic D-modules for the “if” part. Our proof
in this article still uses a theory of D-modules, and more precisely, the following:

Fact 21 ([7]) Let I be the annihilator of Π ∈ M(G) in the enveloping algebra
U (gC). Assume that the G ′

C
-action on the associated variety of I is coisotropic

(Definition 22). Then the restriction Π |G ′ has the bounded multiplicity property
(Definition 2).
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We note that the assumption in Fact 21 depends only on the complexification of
the pair (g, g′) of the Lie algebras. Thus the proof of Theorems 3 and 4 is reduced
to a geometric question on holomorphic coisotropic actions on complex nilpotent
coadjoint orbits, which will be proved in Theorem 23.

3 Coisotropic Action on Coadjoint Orbits

Let V be a vector space endowed with a symplectic form Ω . A subspace W is called
coisotropic if W ⊥ ⊂ W , where

W ⊥ := {v ∈ V : Ω(v, ·) vanishes on W }.

The concept of coisotropic actions is defined infinitesimally as follows.

Definition 22 (Huckleberry–Wurzbacher [5]) Let H be a connected Lie group, and
X a Hamiltonian H -manifold. The H -action is called coisotropic if there is an H -
stable open dense subset U of X such that Tx (H · x) is a coisotropic subspace in the
tangent space Tx X for all x ∈ U .

Any coadjoint orbit of a Lie group G is a Hamiltonian G-manifold with the
Kirillov–Kostant–Souriau symplectic form. The main result of this section is the
following:

Theorem 23 Let Omin,C be the minimal nilpotent coadjoint orbit of a connected
complex simple Lie group GC.

(1) The diagonal action of GC on Omin,C × Omin,C is coisotropic.
(2) For any symmetric pair (GC, KC), the KC-action on Omin,C is coisotropic.

3.1 Generalities: Coisotropic Actions on Coadjoint Orbits

Webeginwith a general setting for a realLie group. Suppose thatO is a coadjoint orbit
of a connected Lie group G through λ ∈ g∗. Denote by Gλ the stabilizer subgroup of
λ in G, and by Zg(λ) its Lie algebra. Then the Kirillov–Kostant–Souriau symplectic
form Ω on the coadjoint orbit O = Ad∗(G) � G/Gλ is given at the tangent space
TλO � g/Zg(λ) by

Ω : g/Zg(λ) × g/Zg(λ) → R, (X, Y ) �→ λ([X, Y ]). (7)

Suppose that H is a connected subgroup with Lie algebra h. For λ ∈ g∗, we define
a subspace of the Lie algebra g by

Zg(h;λ) := {Y ∈ g : λ([X, Y ]) = 0 for all X ∈ h}. (8)
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Clearly, Zg(h;λ) contains the Lie algebra Zg(λ) ≡ Zg(g;λ) of Gλ.
We shall use the following:

Lemma 24 The H-action on a coadjoint orbit O in g∗ is coisotropic if there exists
a subset S (slice) in O with the following two properties:

Ad∗(H)S is open dense inO,

Zg(h;λ) ⊂ h + Zg(λ) for any λ ∈ S. (9)

Proof It suffices to verify that Tλ(Ad∗(H)λ) is a coisotropic subspace in TλO

for any λ ∈ S because the condition (9) is H -invariant. Via the identification
TλO � g/Zg(λ), one has Tλ(Ad∗(H)λ) � (h + Zg(λ))/Zg(λ). By the formula (7)
of the symplectic form Ω on O, one has Tλ(Ad∗(H)λ)⊥ � Zg(h;λ)/Zg(λ). Hence
Tλ(Ad∗(H)λ) is a coisotropic subspace in TλO if and only if Zg(h;λ) ⊂ h + Zg(λ),
whence the lemma.

For semisimple g, the Killing form B induces the following G-isomorphism

g∗ � g, λ �→ Xλ. (10)

By definition, one has λ([X, Y ]) = B(Xλ, [X, Y ]) = B([Xλ, X ], Y ), and thus

Zg(h;λ) = [Xλ, h]⊥B,

where the right-hand side stands for the orthogonal complement subspace of
[Xλ, h] := {[Xλ, X ] : X ∈ h} in g with respect to the Killing form B. Hence we
have the following.

Lemma 25 For semisimple g, one may replace the condition (9) in Lemma 24 by

(h + Zg(λ))⊥B ⊂ [Xλ, h] for any λ. (11)

3.2 Real Minimal Nilpotent Orbits

Let G be a connected non-compact simple Lie group without complex structure.
Denote by N the nilpotent cone in g, and N /G the set of nilpotent orbits, which
may be identifiedwith nilpotent coadjoint orbits in g∗ via (10). The finite setN /G is a
poset with respect to the closure ordering, and there are atmost twominimal elements
in (N \ {0})/G, which we refer to as real minimal nilpotent (coadjoint) orbits. See
[1, 24, 29] for details. The relationship with the complex minimal nilpotent orbits
Omin,C in the complexified Lie algebra gC := g ⊗R C is given as below. Let K be a
maximal compact subgroup of G modulo center.
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Lemma 26 In the setting above, exactly one of the following cases occurs.

(1) (g, k) is not of Hermitian type, and Omin,C ∩ g = ∅.
(2) (g, k) is not of Hermitian type, and Omin,C ∩ g is a single orbit of G.
(3) (g, k) is of Hermitian type, and Omin,C ∩ g consists of two orbits of G.

As the G-orbit decomposition of Omin,C ∩ g, we write Omin,C ∩ g = {Omin,R}
in Case (2), Omin,C ∩ g = {O+

min,R,O−
min,R} in Case (3). Then they exhaust all real

minimal nilpotent orbits inCases (2) and (3). Realminimal nilpotent orbits are unique
in Case (1), to be denoted by Omin,R. We set

n(g) :=
{

1
2 dimOmin,R in Cases (1) and (2),
1
2 dimO

+
min,R = 1

2 dimO
−
min,R in Case (3).

(12)

Then n(g) = n(gC) in Cases (2) and (3), and n(g) > n(gC) in Case (1). The formula
of n(g) in Case (1) is given in [29] as follows:

g su∗(2n) so(n − 1, 1) sp(m, n) f4(−20) e6(−26)

n(g) 4n − 4 n − 2 2(m + n) − 1 11 16

For any Π ∈ Irr(G), the Gelfand–Kirillov dimension DIM(Π) satisfies n(g) ≤
DIM(Π), which is equivalent to n(gC) ≤ DIM(Π) in Cases (2) and (3). We shall
give a brief review of several conditions that are equivalent to n(g) > n(gC) in
Proposition 30.

We prove the following.

Theorem 27 Let O be a real minimal nilpotent coadjoint orbit in g∗. Then the K -
action on O is coisotropic.

For the proof, we recall some basic facts on real minimal nilpotent orbits.
Let g = k + p be the Cartan decomposition, and θ the corresponding Cartan invo-

lution.We take amaximalAbelian subspace a of p, and fix a positive systemΣ+(g, a)
of the restricted root systemΣ(g, a).Wedenote byμ the highest element inΣ+(g, a),
and Aμ ∈ a the coroot of μ. It is known (e.g., [29]) that any minimal nilpotent coad-
joint orbitO is of the formO = Ad(G)X via the identification g∗ � g for some non-
zero element X ∈ g(a;μ) := {X ∈ g : [H, X ] = μ(H)X for all H ∈ a}. Let G X be
the stabilizer subgroup of X in G. Then one has the decomposition:

Lemma 28 G = K exp(RAμ)G X .

Proof We set a⊥μ := {H ∈ a : μ(H) = 0}, n = ⊕
ν∈Σ+(g,a) g(a; ν), and m :=

Zk(a), the centralizer of a in k. We note that a = RAμ ⊕ a⊥μ is the orthogonal
direct sum decomposition with respect to the Killing form.

Since μ is the highest element in Σ+(g, a), the Lie algebra Zg(X) of G X con-
tains a⊥μ ⊕ n. In particular, G X contains the subgroup exp(a⊥μ)N . Since A =
exp(RAμ) exp(a⊥μ), the Iwasawa decomposition G = K AN implies G =
K exp(RAμ)G X .
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Proof (Proof of Theorem 27) Retain the above notation and convention. In particular,
we write as O = Ad∗(G)X . By Lemmas 25 and 28, it suffices to verify

(k + Zg(X ′))⊥ ⊂ [X ′, k] for any X ′ ∈ Ad(expRAμ)X. (13)

Since X ∈ g(a;μ), any X ′ ∈ Ad(expRAβ)X is of the form X ′ = cX for some
c > 0. Thus it is enough to show (13) when X ′ = X . Since Zg(X) ⊃ a⊥μ ⊕ n, one
has k + Zg(X) ⊃ θn ⊕ a⊥μ ⊕ m ⊕ n, hence (k + Zg(X))⊥μ ⊂ RAμ. In view that
(Aμ, X, c′θX) forms an sl2(R)-triple for some c′ ∈ R, one has Aμ ∈ [X, k]. Thus
(13) is verified for X ′ = X . Hence the K -action on O is coisotropic by Lemma 24.

3.3 Complex Minimal Nilpotent Orbit

In this section we give a proof of Theorem 23.
Suppose that GC is a connected complex simple Lie group. We take a Cartan

subalgebra hC of the Lie algebra gC of GC, choose a positive system Δ+(gC, hC),
and set n+

C
:= ⊕

α∈Δ+(gC,hC) gC(hC;α), n−
C

:= ⊕
α∈Δ+(gC,hC) gC(hC;−α). Let β be

the highest root in Δ+(gC, hC), and Hβ ∈ hC the coroot of β. Then one has the
direct sum decomposition hC = CHβ ⊕ h

⊥β
C

where h
⊥β
C

:= {H ∈ hC : β(H) = 0}.
The minimal nilpotent coadjoint orbit Omin,C is of the form Omin,C = Ad(GC)X �
GC/(GC)X for any non-zero X ∈ g(hC;β) via the identification g∗

C
� gC. One can

also write as Omin,C = Ad(GC)Y � GC/(GC)Y for any non-zero Y ∈ g(hC;−β).
By an elementary representation theory of sl2, one sees (e.g., [2]) that the Lie

algebras ZgC
(X) and ZgC

(Y ) of the isotropy subgroups (GC)X and (GC)Y are given
respectively by

ZgC
(X) =

⊕
α∈Δ+(gC,hC)

α⊥β

gC(hC;−α) ⊕ h
⊥β
C

⊕ n+
C
, (14)

ZgC
(Y ) =n−

C
⊕ h

⊥β
C

⊕
⊕

α∈Δ+(gC,hC)
α⊥β

gC(hC;α).

Proof (Proof of Theorem 23 (1))
We set S := expC(Hβ,−Hβ) · (X, Y ) in Omin,C × Omin,C. We claim that

diag(GC)S is open dense in Omin,C × Omin,C. To see this, we observe that
(GC)X exp(CHβ)(GC)Y contains the open Bruhat cell N+

C
HCN−

C
= N+

C
exp(h⊥β

C
)

exp(CHβ)N−
C
in GC as is seen from (14), and thus

diag(GC) expC(Hβ, 0)((GC)X × (GC)Y )
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is opendense in thedirect product groupGC × GC via the identificationdiag(GC)\(GC

× GC) � GC, (x, y) �→ x−1y.
By Lemma 25, Theorem 23 (1) will follow if we show

(diag(gC) + ZgC⊕gC
(Ad(a)X,Ad(a)−1Y ))⊥B ⊂ [(Ad(a)X,Ad(a)−1Y ), diag(gC)]

(15)
for any a ∈ exp(CHβ). Since Ad(a)X = cX and Ad(a)−1Y = c−1Y for some c ∈
C

×, and since X and Y are arbitrary non-zero elements in gC(hC;β) and gC(hC;−β),
respectively, it suffices to verify (15) for a = e. By (14), one has

(diag(gC) + (ZgC
(X) ⊕ ZgC

(Y )))⊥B = C(Hβ,−Hβ).

Since [X, Y ] = c′ Hβ for some c′ ∈ C
×, one has [(X, Y ), (X + Y, X + Y )] =

c′(Hβ,−Hβ), showing (Hβ,−Hβ) ∈ [(X, Y ), diag(gC)]. Thus Theorem 23 (1) is
proved.

Next, we consider the setting in Theorem 23 (2). Let (GC, KC) be a symmetric
pair defined by a holomorphic involutive automorphism θ of GC. Then there is a real
form gR of the Lie algebra gC of GC such that θ|gR

defines the Cartan decomposition
gR = kR + pR of the real simple Lie algebra gR with kR ⊗R C being the Lie algebra
kC of KC. We denote by GR the analytic subgroup of GC with Lie algebra gR.

We take a maximal Abelian subspace aR in pR, and apply the results of Sect. 3.2
by replacing the notation g, k, p, a, · · · with gR, kR, pR, aR, etc.

Let NC be the nilpotent cone in gC, and NR,C := {X ∈ NC : Ad(GC)X ∩ gR �=
∅}. Then there exists a unique GC-orbit, to be denoted by O

C

min,R, which is minimal
in (NR,C \ {0})/GC with respect to the closure relation, andOC

min,R = Ad(GC)X for
any non-zero X ∈ gR(aR;β) ([29]).

We extend aR to a maximally split Cartan subalgebra hR = tR + aR of gR where
tR := hR ∩ kR, write hC = tC + aC for the complexification, and take a positive sys-
tem Δ+(gC, hC) which is compatible with Σ+(gR, aR).

The proof of Theorem 27 shows its complexified version as follows.

Theorem 29 The action of KC on O
C

min,R is coisotropic.

This confirms Theorem 23 (2) when Omin,C = O
C

min,R, or equivalently, in Cases
(2) and (3) of Lemma 26.

Let us verify Theorem 23 (2) in the case Omin,C �= O
C

min,R.
We need the following:

Proposition 30 ([24, Corollary5.9], [29, Proposition4.1]) Let gR be a real form
of a complex simple Lie algebra gC, and kC the complexified Lie algebra of kR, the
Lie algebra kR of a maximal compact subgroup KR of the analytic subgroup GR in
Int gC. Then the following six conditions on gR are equivalent:

(i) Omin ∩ gR = ∅.
(ii) Omin,C �= O

C

min,R.
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(iii) θβ �= −β.
(iv) n(g) > n(gC).
(v) gR is compact or is isomorphic to su∗(2n), so(n − 1, 1) (n ≥ 5), sp(m, n),

f4(−20), or e6(−26).
(vi) gC = kC or the pair (gC, kC) is isomorphic to (sl(2n,C), sp(n,C)), (so(n,C),

so(n − 1,C)) (n ≥ 5), (sp(m + n,C), sp(m,C) ⊕ sp(n,C)), (fC4 , so(9,C)), or
(eC6 , fC4 ).

Remark 31 The equivalence (i) ⇐⇒ (v) was stated in [1, Proposition4.1] without
proof, and Okuda [29] supplied a complete proof.

Lemma 32 Suppose X is a highest root vector, namely, 0 �= X ∈ gC(hC;β). If θβ �=
−β, then Hβ ∈ kC + ZgC

(X).

Proof Since θβ �= −β, one has β|tC �≡ 0, namely, tC �⊂ h
⊥β
C

. Since h⊥β
C

is of codi-
mension one in hC, we get tC + h

⊥β
C

= hC. Thus Hβ ∈ hC ⊂ kC + ZgC
(X).

Proposition 33 If one of (and therefore any of) the equivalent conditions in
Proposition 30 holds, then KC has a Zariski open orbit in Omin,C. In particular,
the KC-action on Omin,C is coisotropic.

Proof Since Omin,C = Ad(GC)X for a non-zero X ∈ gC(hC;β), the proposition is
clear.

Proof (Proof of Theorem 23 (2)) The Case (1) in Lemma 26 is proved in Proposi-
tion 33, and the Cases (2) and (3) are proved in Theorem 29.

3.4 Proof of Theorems in Sect. 1

As we saw at the end of Sect. 2, Theorems 3 and 4 are derived from the geometric
result, namely, from Theorem 23, and thus the proof of these theorems has been
completed.

In the same manner, one can deduce readily from Theorem 29 the following
bounded multiplicity property which is not covered by Theorem 3 for the five cases
in Proposition 30 where n(g) > n(gC).

Theorem 34 Suppose that the Gelfand–Kirillov dimension of Π ∈ Irr(G) is n(g).
If (G, G ′) is a symmetric pair such that g′

C
is conjugate to kC by Int gC, then

m(Π |G ′) < ∞.

Proof We write G ′
C
and KC for the analytic subgroups of GC = Int gC with Lie

algebras g′
C
and kC, respectively. Then the KC-action on O

C

min,R is coisotropic by
Theorem 29, and so is the G ′

C
-action on O

C

min,R because G ′
C
and KC are conjugate

by an element of GC. Hence the theorem follows from Fact 21.
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Finally, we give a proof of Theorem 10.

Proof (Proof of Theorem 10) Let J be the Joseph ideal. Let (U (gC)/J )g
′
C be the

algebra of g′
C
-invariant elements in U (gC)/J via the adjoint action. Then one has

(U (gC)/J )g
′
C = C

if one of (therefore, all of) the equivalent conditions in Proposition 30 is satisfied, see
[30, Lemma3.4]. In particular, the center Z(g′

C
) of the enveloping algebra U (g′

C
) of

the subalgebra g′
C
acts as scalars on the minimal representationΠ because the action

factors through the following composition of homomorphisms:

Z(g′
C
) → U (gC)/J → EndC(Π).

Since any minimal representation is unitarizable by the classification [30], and since
there are at most finitely many elements in Irr(G ′) having a fixed Z(g′

C
)-infinitesimal

character, the restriction Π |G ′ splits into a direct sum of at most finitely many irre-
ducible representations of G ′, with multiplicity being finite by Theorem 7. Thus the
proof of Theorem 10 is completed.
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From the String Landscape to the
Mathematical Landscape: A
Machine-Learning Outlook

Yang-Hui He

Abstract We review the recent programme of using machine-learning to explore
the landscape of mathematical problems. With this paradigm as a model for human
intuition—complementary to and in contrast with the more formalistic approach of
automated theorem proving—we highlight some experiments on how AI helps with
conjecture formulation, pattern recognition and computation.

Keywords Machine-learning · AI · Mathematical structures · String theory

1 The String Landscape

Perhaps the greatest theoretical challenge to string theory as a theory of everything
is the vast proliferation of possible vacuum solutions, each of which is a possible 4-
dimensional “universe” that descends from the 10 spacetime dimensions of the super-
string. This is the so-called “vacuum degeneracy problem”, or the “string landscape
problem”. The reason for this multitude is the vast number of possible geometries
for the missing 6 dimensions. Whether we consider compactification, where the a
Calabi–Yaumanifold constitutes themissing dimensions, or configurations of branes
whose world-volumes complement these dimensions, we are inevitably confronted
with the heart of the problem: geometrical structures, often due to an underlying
combinatorial problem, tend to grow exponentially with dimension.

We can see this from estimates of possible vacua, which engender such astronom-
ical numbers as 10500 to 1010

5
[1–3]. These estimates come from tallying “typical”
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number of topologies of “typical” manifolds, as governed by the number of holes
(or more strictly, algebraic cycles) of various dimensions within the manifolds. Such
topological quantities are immanently combinatorial in nature.

Lacking a fundamental “selection principle” [4]—which would find our universe
among the myriad—the traditional approaches have been statistical valuations [5],
or brute-force searching for the Standard Model [6–11] as a needle in the haystack.
Whilst these approaches havemet some success, the overwhelming complexity (espe-
cially in the computational sense [12]) of, and the want of a canonical measure [19]
on, the string landscape, beckon for a prismatically different method of attack.

As the Zeitgeist of Artificial Intelligence (AI) breathes over all disciplines of
science [13] in recent times, and as we firmly enter the era of Big Data andMachine-
Learning (ML), it is only natural that such a perspective be undertaken to explore the
string landscape. This was indeed done in 2017 when ML was introduced into string
theory [14–18]. In particular, the proposal of [14] was to see whether ML could be
used to study the databases in algebraic geometry, which have been compiled over
the last few decades for the sake of studying string theory in physics and concepts
such as mirror symmetry in mathematics. To some details of this programme let us
now turn.

1.1 Calabi–Yau Manifolds: From Geometry to Physics

The classification of (compact, smooth, boundary-less) surfaces Σ goes back to at
least Euler, who realized that a single integer, called genus, completely characterizes
the topological type of Σ . Roughly, the genus g counts the number of “holes”:
a sphere S2 has genus 0, a torus T 2 = S1 × S1 has genus 1, etc. The Theorema
Egregium of Gauss then relates topology to metric geometry:

2 − 2g = 1

2π

∫
Σ

R . (1)

In the above, the combinationχ = 2 − 2g is theEuler number and R is the (Gaussian)
curvature.We therefore see a natural trichotomy of surfaces, as summarized in Fig. 1:
negative, zero and positive curvature, with the boundary case of R = 0, or Ricci-
flatness, being the torus T 2.

With Riemann enters complex geometry:Σ is not merely a real dimension 2man-
ifold, but a complex dimension 1 manifold. The trichotomy in this context manifests
as Riemann Uniformization. Complexification allows us to employ the powers of
algebraic geometry over C and Σ can thus be realized as a complex algebraic curve.
For instance, it can be the vanishing locus of a complex polynomial in the three
projective variables [x : y : z] of CP2. The torus, in particular, can be realized as the
famous cubic elliptic curve. In modern parlance, the Gaussian integral is thought of
as the intersection theory between homology (the class [Σ]) with cohomology (the
first Chern class c1(Σ)). Likewise, χ, by the index theorem, is the alternating sum
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Fig. 1 The trichotomy of
(smooth, compact,
boundary-less) surfaces,
organized according to
topological type and related
curvature

Fig. 2 The index theorem
relating differential/algebraic
geometry/toplogy for
surfaces as complex
algebraic curves

of dimensions of appropriate (co-)homology groups. We summarize this beautiful
story, spanning the two centuries from Euler to Chern, Atiyah, Singer et al., in Fig. 2.

Generalizing Figs. 1 and 2 to complex dimension higher than 1 is, understandably,
difficult. However, at least for a class of complex manifolds, called Kähler, whose
(Hermitian) metric gμ̄ν comes from a single scalar potential K as gμ̄ν = ∂μ̄∂νK , the
story does extend nicely: the Chern class governs the curvature. This is roughly the
content and significance of the Calabi conjecture [21], which Yau proved some 20
years later in his Fields-Medal-winning work [22].

It is serendipitous that when string theorists worked out the conditions for com-
pactification in the incipience of string phenomenology [23], one of the solutions
(and today still standard) for the extra 6-dimensions is a complex, Kähler, Ricci-
flat 3-fold. Furthermore, Strominger, one of the authors, was Yau’s visitor at the
IAS. And thus the world of high-energy theoretical physics intermingled with the
world of complex algebraic geometry. In fact, the physicists named such manifolds
“Calabi–Yau” (CY), and the rest, was history. The torus T 2, is thus a premium exam-
ple of a Calabi–Yau 1-fold, of complex dimension 1. The reader interested in further
details of the Calabi–Yau landscape as a confluence between physics, mathematics
and modern data science, is referred to the pedagogical book [24].

Over the decades since the mid-1980s, a host of activity ensued in creating large
data-bases of CY manifolds for the intention of sifting through to find the Standard
Model. Perhaps it was unexpected that the number1 of CY 3-folds reached billions
by the turn of the century (and still growing!) [25]. Furthermore, the sophisticated
machinery of modern geometry, much of which was inherited from the Bourbaki
School, was used to compute the various quantities (q.v. the classic [26] and for

1 By contrast, a CY 1-fold can only be T 2, a CY 2-fold can only be T 4 and K3. We therefore see
the aforementioned exponential growth of possibilities as we increase in dimension. Nevertheless,
it is a standing conjecture of Yau that the number of possible topological types of CY in every
dimension is finite.
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physicists, [27]), particularly the topological ones such as Euler, Betti and Hodge
numbers, which have precise interpretation as Standard Model particles.

1.2 Machine-Learning Algebraic Geometry

The point d’appui of [14] was that these large sets of CY manifolds constituted
labelled datasets ripe for machine-learning. In fact, the situation is even more general
and anymathematical computation can be thought of this way.We shall not delve into
the details of CY topological invariants or string phenomenology, but the idea can be
construed as follows. The purpose of algebraic geometry is to realize a manifold as
the vanishing loci of a system of multi-variate polynomials where the variables are
the coordinates of some appropriate ambient space such as projective space. We can
thus represent a manifold as a list (tensor) of coefficients.2 Traditional methods such
as exact sequences and Gröbner bases (q.v. [20] for ML on selecting S-pairs) then
computes desired geometrical quantities such as Hilbert series or Betti numbers. In
the special case of extracting topological quantities, the coefficients are irrelevant
(topology does not depend on shape) and we have even simpler representations. For
instance, one could record just the degrees of the various defining polynomials.

But a tensor can naturally be interpreted as a pixelated image (up to some nor-
malization and padding if necessary), and thus the general statement of [14, 15] is
that

Observation 1 Computation in algebraic geometry is an image—recognition prob-
lem.

Tomake this observation concrete, let us give an example. Supposewe are given aCY
3-fold,3 defined by the intersection of 8 polynomials in a product (CP1)6 × (CP2)2

of projective spaces given by the configuration below.4 The topological quantity, a
so-called Hodge number h2,1 was computed (see [27]) to be 22 using long exact
sequence in cohomology induced by an Euler sequence (quite a difficult and expen-
sive computation!). However, we could associate 0 to, say, purple, green to 1 and
red to 2. After padding with 0 (to normalize over the full CY dataset of which this

2 These coefficients determine the “shape” of the manifold. InMathematica, there is a convenient
command for this, viz., CoefficientList[ ].
3 Strictly, this is a family of manifolds since we are not specifying the coefficient which dictate
complex structure (shape).
4 This is an example of a complete intersection CY in product of project spaces (CICY), which
was possibly the first database in algebraic geometry [28]. To read it, each column is a defining
polynomial. For example, the first column corresponds to a polynomial which is multi-linear in the
first and second CP

1 factors and also linear in the first CP2 factor.
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is one case), and the computation of h2,1 becomes an image-processing problem no
different than hand-writing recognition:

h2,1(
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 0 2 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 0 0 1 1 0 0 1

) = 22 becomes −→ 22 . (2)

A surprising result of [14] is that such labeled data, consisting of typically around
105 ∼ 106 points, when fed into a standard ML algorithm, such as a fairly shallow
feed-forward neural network (otherwise known as an MLP) with sigmoid activation
functions, or a support vector machine (SVP), achieves over 90% accuracy in a
standard 80-20 cross-validation5 in a matter of seconds on an ordinary laptop. Since
then, more sophisticated neural networks (NNs) have achieved over 99.9% accuracy
[29–32] (q.v. recognition of elliptic fibration within the data using ML [33]). How
could a relatively simpleML algorithm guess at a cohomology computation, without
any knowledge of the underlying mathematics? At some level, this is the Universal
Approximation Theorem of NNs at work [34], which states that at sufficiently large
depth/width, aNNcan approximate almost anymap,much like theway aTaylor series
can approximate any analytic function. Yet, the relative simplicity of the architecture
of the NN is highly suggestive of a method which bypasses the sophistication and
computational complexity of the standard algorithms of algebraic geometry. To this
point let us now turn.

2 The Landscape of Mathematics

The great utility of our paradigm to the string landscape, and indeed to problems in
theoretical physics, is obvious. Even when not reaching 100% accuracy, a rapid and
highly accurate NN estimate could reduce practical computations, say, of searching
the exact Standard Model within string, many orders of magnitude faster. Utility
aside, the unexpected success of machine learning of algebraic geometry beckons
a deeper question: can one machine learn mathematics [24, 35]? By this we mean
several levels: can ML/AI (1) extract patterns from mathematical data, supervised
and unsupervised, patterns which have not been noted by the human eye? (2) help
formulate new conjectures and find easier formulae (q.v. recent collaboration on
how AI can help with mathematical intuition [36])? (3) help with new pathways in
a proof? (4) help understand the structure of mathematics across the disciplines?

It is expedient to digress momentarily on some speculations upon the nature
of mathematics whilst we are planning to explore Her landscape. The turn of the

5 Inmachine-learning, thismeanswe take the full labelled data, train on 80% randomly selected, and
validate—meaning we check what the output is as predicted by the NN versus the actual value—on
the unseen 20%.
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20th century witnessed a tension between two Schools of thought: (i) the logicism-
formalism of Hilbert and (ii) the intuitionism-constructivism of Poincaré. The first,
rested in the tradition of Leibniz, Frege, Peano, Russell–Whitehead, Wittgenstein et
al., and attempted to logically build all ofmathematics,without contradiction, symbol
by symbol. The second, propelled by Brouwer, Heyting, Poincaré et al., sought for
a more “human” and experiential element to mathematics.

The advent of computers inmathematics has dawned a new era.More importantly,
they are becoming more than a mere aid to computation. There is a growing number
of major results—championed by e.g., the 4-colour theorem, or the classification of
finite simple groups—which could not have been possible without computer work.
The reason is simple: the rate of growth of mathematical knowledge and the requisite
length of many a proof have perhaps already exceeded the capacity of the human
mind. The full details of the proof of Fermat is hundreds of pages of highly technical
mathematics understandable by a small community, that of the classificationof simple
groups, thousands. It is entirely conceivable that the proof of theRiemannHypothesis
will take longer than several human lifetimes to construct or digest, even if we take
into account the cumulative nature of research.

Consequently, Buzzard, Davenport et al. [37, 38] have been emphasising how
essential the Automated Theorem Proving programme (ATP) is to the future of
mathematics. Software such as Lean is currently constructing all statements and
proofs of mathematics, symbol by symbol, line by line. Their optimistic estimate
is that within 10 years, all of undergraduate level mathematics will be built from
scratch automatically. More strikingly, some at Google Deepmind suspect that as
computers defeated humans at chess in the 1990s and Go in the 2010s, they will beat
us at producing new mathematics by 2030.

The ATP programme can be thought of as being along the formalistic skein of
Hilbert, and, to borrow terminology from physics, one could call this “bottom-up
mathematics” [35]. Our foregoing discussion of using ML which attempts to extract
patterns from data or extrapolate methods from heuristics, on the other hand, is much
more along the intuitionistic line of Poincaré. Again, to borrow from physics, one
could call this “top-down mathematics” [35]. These two threads should indeed be
pursued in parallel and here, we shall summarize some recent experiments in the
latter.

2.1 Methodology

For concreteness, let us focus on calculations of the form of (2), which should be
ubiquitous in mathematics. We shall let D := {Ti → pi } be a set of input tensors
Ti with output property pi , typically obtained from some exhaustive and intensive
computation. We then split D := T � V into training set T and validation set V
where T is a random sample of, say, 80%. Such data, representing “experience and
intuition” of the practitioner, could then be passed to standard machine-learning
algorithms such as neural classifiers/regressors, MLPs, SVMs, decisions trees, etc.
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Importantly, these algorithms have no prior knowledge of the mathematics.6 Once
validation reaches high precision (especially 100%), one could start formulating
conjectures. On the other hand, if one could not reach any good results exhausting
a multitude of algorithms, it would indicate an inherent difficulty in the problem
whence the data came.

2.2 Across Disciplines

With this method of attack it is natural to scan through the available data of math-
ematics, as a reconnaissance onto the topography of Her territory. We saw in the
above that algebraic geometry over C responds well to ML and speculate that the
reason for this is that all computations inherent thereto reduce to finding (co-)kernels
of matrices. Over the past 5 years, there have been various excursions into a variety
of disciplines and we shall highlight some representative cases, and refer the reader
to the citations as well as the summary in [35].

Algebra: In [46], the question was posed as to whether one could “see” a finite
group being simple or not, by direct inspection of its Cayley multiplication table.
Surprisingly, an SVM could do so tomore than 0.98 precision, instigating the curious
conjecture that simple and non-simple groups could be separable when plotting their
flattened Cayley tables. For continuous groups, the tensor decomposition into irreps
for simple Lie algebras of type ABCDG2 is computationally exponential as one
goes up in weight. Yet, numerical quantities such as the number of terms in the
decomposition can be quickly machine-learnt by an MLP with only a few layers to
0.96 precision [47]. In [48], MLPs, decision trees and graph NNs could distinguish
table/non-table ideals to 100% accuracy, whereby suggesting the existence of a yet-
unknown formula.

Graphs and Combinatorics: Various properties of finite graphs, such as cyclicity,
genus, existence of Euler or Hamilton cycles, etc., were explored by “looking” at
the adjacency matrix with MLPs and SVMs [49]. The algorithms determining some
of these quantities are quite involved indeed. For instance, Hamilton cycle detection
is that of the traveling salesman problem, which is NP-hard. Typically, for these
problems, one could reach 80–90% accuracies, which could be related to the fact
that detecting matrix permutations—and hence graph isomorphism—is currently a
challenge to ML. However, when more structures are put in, such as quiver repre-
sentations [50], or tropical geometry [51], accuracies in the high 90s can once more
be attained. Explorations in lattice polytopes [52, 53] and knot invariants [54, 55]
also yield good results.

6 Of course, building activation functions which know some of the underlying theory is effective
and computationally helpful, as was done in, e.g., [39–45], but the true surprises lie in blind tests.
This was performed in the initial experiments of [14] and the ones we shall shortly report, could
lead to conjectures unfathomed by human thought.
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Analytic NumberTheory: As onemight imagine, uncovering patterns in arithmetic
functions, such as prime characteristic, or the likes of Mobius μ and Liouville λ,
would be very hard. And it turns out to be so not only for the human eye, but also
for any standard ML algorithm [14, 24, 35]. Likewise, one would imagine finding
new patterns in the Riemann zeta function [56, 57] to be a formidable challenge.

Arithmetic Geometry: Yet, with a mixture of initial astonishment and a pos-
teriori reassurance, problems in arithmetic geometry are very much amenable to
ML. Properties such as the arithmetic of L-functions [58, 59], degree of Galois
extensions for dessins d’enfants [62], or even the quantities pertaining to the strong
Birch–Swinnerton–Dyer conjecture [60, 61] (interestingly, the most difficult Tate-
Shafaverich group is the least responsive) can all be learnt to high accuracies.
Indeed, as exemplified by countless historical cases, translating Diophantine prob-
lems to geometry, especially that of (hyper-)elliptic curves, renders themmuch more
tractable. In this sense, our ML methodology and results on the data are consistent
with this notion that arithmetic geometry is closer to geometry than to arithmetic.

With these experiments, we conclude with the remark and speculation that there
is a “hierarchy” of mathematical problems, perhaps in tune with our expectations:

Observation 2 Across the disciplines of mathematics,

[
numerical analysis

]
<

[
algebraic geometry over C ∼ arithmetic geometry

]
<[

algebra/representation theory
]

< [combinatorics] <
[
analytic number theory

]

where a < b means patterns from problem from a are more easily extractable than
those from b, or indeed that problems in a are more easily solvable.

Above all, we encourage the readers to take their favourite problems and data and
see how well ML performs on them.
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Octonionic Clifford Algebra
for the Internal Space of the Standard
Model

Ivan Todorov

Abstract We explore the Z2 graded product C�10 = C�4 ̂⊗C�6 as a finite inter-
nal space algebra of the Standard Model of particle physics. The gamma matrices
generating C�10 are expressed in terms of left multiplication by the imaginary octo-
nion units and the Pauli matrices. The subgroup of Spin(10) that fixes an imaginary
unit (and thus allows to write O = C ⊕ C

3 expressing the quark-lepton splitting) is
the Pati-Salam group GPS = Spin(4) × Spin(6)/Z2 ⊂ Spin(10). If we identify the
preserved imaginary unit with the C�6 pseudoscalar ω6 = γ1 · · · γ6, ω2

6 = −1, then
P = 1

2 (1 − iω6)will be the projector on the extended particle subspace, including the
right-handed (sterile) neutrino. We express the generators of C�4 and C�6 in terms
of fermionic oscillators aα, a∗

α,α = 1, 2 and b j , b∗
j , j = 1, 2, 3 describing flavour

and colour, respectively. The internal space observables belong to the Jordan subal-
gebra of hermitian elements of the complexified Clifford algebra C ⊗ C�10 which
commute with the weak hypercharge 1

2Y = 1
3

∑3
j=1 b

∗
j b j − 1

2

∑2
α=1 a

∗
αaα. We only

distinguish particles from antiparticles if they have different eigenvalues of Y . Thus
the sterile neutrino and antineutrino (both with Y = 0) are allowed to mix intoMajo-
rana neutrinos. Restricting C�10 to the particle subspace, which consists of leptons
with Y < 0 and quarks, allows a natural definition of the Higgs field Φ, the scalar
of Quillen’s superconnection, as an element of C�14, the odd part of the first factor
in C�10. As an application we express the ratio mH

mW
of the Higgs and the W -boson

masses in terms of the cosine of the theoretical Weinberg angle.
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1 Introduction

The elaboration of the Standard Model (SM) of particle physics was completed in
the early 1970s. To quote John Baez [3] 50 “years trying to go beyond the Standard
Model hasn’t yet led to any clear success”. The present paper belongs to an equally
long albeit less fashionable effort to clarify the algebraic (or geometric) roots of
the SM, more specifically, to find a natural framework featuring its internal space
properties. After discussing some old ideas motivating our approach among others,
we review some recent developments, clarifying on the way the role of different
projection operators, expressed in terms of Clifford algebra pseudoscalars and their
interrelations.

Most ideas on the natural framework of the SM originate in the 1970s, the first
decade of its existence. (Two exceptions: the Jordan algebras were introduced and
classified in the 1930s [41, 42]; the noncommutative geometry approach originated
in the late 1980s, [15, 16, 25] and is still vigorously developed by Connes and
collaborators [11–13, 49].)

First, early in 1973, the ultimate division algebra, the octonions1 were introduced
by Gürsey2 and his student Günaydin [37, 38] for the description of quarks and their
SU (3) colour symmetry. The idea was taken up and extended to incorporate all four
division algebras byG.Dixon (see [17, 18] and earlier work cited there) and is further
developed by Furey [29–35]. Dubois-Violette (D-V) arrives at the octonions via the
quark-lepton symmetry and the unimodularity of the colour group [23]. Thus, the
octonions appear with an additional complex structure,

O = C ⊕ C
3 , (1)

preserved by the subgroup SU (3) of the automorphism group G2 of O.

1.1 Octonions as a Composition Algebra. the Cayley-Dickson
Construction

One can in fact provide a basis free definition of the octonions starting with the
splitting (1). To this end one uses the skew symmetric vector product and the standard
inner product on C

3 to define a noncommutative and non-associative distributive
product xy on O and a real valued nondegenerate symmetric bilinear form 〈x, y〉 =
〈y, x〉 such that the quadratic norm N (x) = 〈x, x〉 is multiplicative:

N (xy) = N (x)N (y) for N (x) = 〈x, x〉 (2)

1 For a pleasant to read review of octonions, their history and applications—see [1].
2 See Witten’s eloquent characterization of his personality and work in the Wikipedia entry on Feza
Gürsey (1921–1991).
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(cf. [23, 61]). Furthermore, defining the real part of x ∈ O by Re x = 〈x, 1〉 and the
octonionic conjugation x → x∗ = 2〈x, 1〉 − x , we shall have

xx∗ = N (x)1I ⇔ x2 − 2〈x, 1〉x + N (x)1I = 0 . (3)

A unital algebra with a non-degenerate quadratic norm obeying (2) is called a com-
position algebra.

Another basis free definition of the octonions O and of their split version ˜O can
be given in terms of quaternions by the Cayley-Dickson construction. We represent
the quaternion as scalars plus vectors

H = R ⊕ R
3, x = u +U, y = v + V, u, v ∈ R, U, V ∈ R

3,

xy = uv − 〈U, V 〉 + uV +Uv +U × V (4)

with the vector product U × V ∈ R
3 satisfying

U × V = −V ×U, (U × V ) × W = 〈U,W 〉V − 〈V,W 〉U . (5)

The product (4) is clearly noncommutative but one verifies that it is associative. The
Cayley-Dickson construction defines the octonions O and the split octonions ˜O in
terms of a pair of quaternions and a new “imaginary unit” � as:

x = u +U + �(v + V ), �(v + V ) = (v − V )� ,

�2 =
{−1 ⇒ x ∈ O

1 ⇒ x ∈ ˜O .
(6)

1.2 Jordan Algebras; Grand Unified Theories; Clifford
Algebras

D-V suggests that classical observables (real valued functions) are replaced by an
algebra of functions on space-time with values in a finite dimensional euclidean
Jordan algebra.3 As a particularly attractive choice, which incorporates the idea of
quark-lepton symmetry, D-V proposes [23] the exceptional Jordan algebra of 3 × 3
hermitian matrices with octonionic entries,

J 8
3 = H3(O) . (7)

This approach is further pursued in [26, 27, 59, 61, 62].

3 These algebras are defined and classified in [42]; for concise reviews see Sect. 3.2 in [23] and
Sect. 2 of [59].
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A second development,Grand Unified theory (GUT), anticipated during the same
1973 by Pati and Salam [50], became for a time mainstream.4 Fundamental chiral
fermions fit the complex spinor representation of Spin(10), introduced as a GUT
group by Fritzsch and Minkowski and by Georgi. A preferred symmetry breaking
yields the maximal rank semisimple Pati-Salam subgroup,

GPS = Spin(4) × Spin(6)

Z2
⊂ Spin(10),

Spin(4) = SU (2)L × SU (2)R, Spin(6) = SU (4) . (8)

We note that GPS is the only GUT group which does not predict a gauge triggered
proton decay. It is also encountered in the noncommutative geometry approach to the
SM [8, 12]. In general, GUTs provide a nice home for the fundamental fermions, as
displayedby the two16-dimensional complex conjugate “Weyl spinors” of Spin(10).
Their other representations, however, like the 45-dimensional adjoint representation
of Spin(10) are much too big, involve unobserved beasts like leptoquarks which
cause difficulties.

A central role in our approach will be given to the Clifford algebra5 C�10, viewed
as a Z2-graded tensor product [31, 32, 60]:

C�10 = C�4 ̂⊗C�6 . (9)

The complexified Clifford algebra has a single faithful irreducible representation
(IR) of dimension 25 = 32 which fits precisely the fundamental (anti)fermions of
one generation. Clifford algebras were also applied to the SM in the 1970s—see [10]
and references therein. There are two new points in our approach.

(1) We use the presence of the octonions with a preferred complex structure in
C�8+ν , ν = 0, 1, 2 to derive the gauge group of the SM (for C�9),

GSM = S(U (2) ×U (3)) (10)

and its left right symmetric extension (for C�10) [7] (see also the talks of Baez [3],
Krasnov [44] and L. Boyle at the Perimeter Institute Workshop, as well as [34, 35,
60]). One relies, in particular, on the nonassociativity of the octonions (as emphasized
in [43]) which implies noncommutativity of left and right multiplication Lx , Ry

(x, y ∈ O).
(2) We make essential use of the Z2 grading of the Clifford algebra. The Higgs

field, which intertwines left and right chiral fermions, belongs to the odd part of the
factor C�4 in (9) [27, 60]. This fits perfectly the super-connection approach to the
SM, pioneered by Ne’eman [48] and Fairlie [28] well before the notion was coined
(and named) by mathematicians [46, 51].

4 For an enlightening review of the algebra of GUTs and some 40 references see [4].
5 Aptly called geometric algebra by its inventor—see [19].
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Octonions by themselves are not fitted to describe observables. Their Jordan subal-
gebra of hermitian elements consists just of the real numbers. They do enter however
the Jordan spin factors J ν

2 of degree ν ≥ 7 whose associative envelopes are C�ν+1

(as well as the exceptional Jordan algebra (7)):

J ν
2 ⊂ C�′

ν+1(ν = 7, 8, 9, . . .), dim(J ν
2 ) = ν + 2, J 8

2 ⊂ J 8
3 . (11)

As already noted, for ν = 8, 9 their Clifford envelopes may describe the internal
space observables of one generation of fundamental fermions. It will be recalled in
Sect. 3 that the gauge group of the SM (10) is recovered by considering the restriction
of J 8

3 to J 8
2 . More precisely, GSM appears as the intersection of two subgroups of the

automorphism group F4 of J 8
3 : the centralizer F

ω
4 of ω ∈ SU (3)c ⊂ F4, ω2 + ω +

1 = 0 and Spin(9), the stabilizer of J 8
2 , the subalgebra of 3 × 3 matrices in J 8

3 with
zero first row and first column:

GSM = Fω
4 ∩ Spin(9) ⊂ F4 , (12)

Fω
4 = SU (3)c × SU (3)

Z3
, ω(z + Z) = z + exp

(

2πi

3

)

Z , z ∈ C, Z ∈ C
3 . (13)

(x = z + Z being a realization of the splitting (1), [62].) We shall see, however,
that the representation of GSM, obtained by restriction from Spin(9) only involves
SU (2)L -doublets, it has no room for eR, uR, dR . This is, in fact, a manifestation
of a general result (see, e.g. [14], Proposition 15.2 (p. 674)): the only simple com-
pact gauge groups allowing to accommodate chiral fermions are SU (n), n ≥ 3,
Spin(4n + 2) and E6.

2 Triality Realization of Spin(8); C�−6

2.1 The Action of Octonions on Themselves. Spin(8)
as a Subgroup of SO(8) × SO(8) × SO(8)

The group Spin(8), the double cover of the orthogonal group SO(8) = SO(O), can
be defined (see [9, 64]) as the set of triples (g1, g2, g3) ∈ SO(8) × SO(8) × SO(8)
such that

g2(xy) = g1(x) g3(y) for any x, y ∈ O . (14)

If u is a unit octonion, u∗u = 1, then the left and right multiplications by u are
examples of isometries of O

|Lu x |2 = 〈ux, ux〉 = 〈x, x〉, |Ru x |2 = 〈xu, xu〉 = 〈x, x〉 for 〈u, u〉 = 1 . (15)
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Using theMoufang identity6

u(xy)u = (ux)(yu) for any x, y, u ∈ O , (16)

one verifies that the triple g1 = Lu , g2 = Lu Ru , g3 = Ru satisfies (1) and hence
belongs to Spin(8). It turns out that triples of this type generate Spin(8) (see [9] or
Yokota’s book [64] for more details).

The mappings x → Lx and x → Rx are, of course, not algebra homomorphisms
as Lx and Ry generate each an associative algebra while the algebra of octonions
is non-associative. They do preserve, however, the quadratic relation xy∗ + yx∗ =
2〈x, y〉1I:

Lx L y∗ + LyLx∗ = 2〈x, y〉1I = Rx Ry∗ + Ry Rx∗ . (17)

Equation (17), applied to the span of the first six imaginary octonion units e j , j =
1, . . . , 6, setting Lej =: L j , Rej =: R j becomes the defining relation of the Clifford
algebra C�−6:

L j Lk + LkL j = −2δ jk = R j Rk + Rk R j , j, k = 1, . . . , 6 . (18)

In general, Lx L y �= Lxy (and similarly for R), but remarkably, as noted in [31], the
relation (e1(e2(e3(e4(e5(e6 ea)))))) = e7 ea is satisfied for all a = 1, . . . , 8, so that

L1L2 · · · L6 = Le7 =: L7, R1R2 · · · R6 = Re7 =: R7 . (19)

While La Ra = RaLa (for a ∈ O) the non-associativity of the algebra of octonions
is reflected in the fact that for x �= y, Lx and Ry , in general, do not commute.

2.2 C�−6 as a Generating Algebra of O and of so(O)

The Lie algebra so(8) is spanned by the elements of negative square of C�−6. If we
denote the exterior algebra on the span of L1, . . . , L6 by

Λ∗ ≡ Λ∗C�−6 = Λ0 + Λ1 + · · · + Λ6
(

Λ1 = Span
1≤ j≤6

L j , Λ6 = {R L7}
)

then so(8) = Λ1 + Λ2 + Λ5 + Λ6. A basis of the Lie algebra, given by

Lα8 = 1
2 Lα, Lαβ = − 1

4 [Lα, Lβ], α,β = 1, . . . , 7 (20)

obeys the standard commutation relations (CRs)

6 See [54] for a reader friendly review of Moufang loops and for a glimpse of the personality of
Ruth Moufang (1905–1971).
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[Lab, Lcd ] = δbc Lad − δbd Lac + δad Lbc − δac Lbd ,

Lab = 1
4 (LaL∗

b − LbL∗
a), a, b, c, d = 1, 2, . . . , 8 (21)

(and similarly for Rab). Each element of so(8) of square−1 defines a complex struc-
ture. (For a review of this notion in the context of Clifford algebras and spinors—see
[22].) Following [35] we shall single out the Clifford pseudoscalars L7 and R7 (19)
(called volume forms in the highly informative lectures [45] and Coxeter elements in
[58]). We shall use the (mod 7) multiplication rules of [1] for the imaginary octonion
units

Lie j (= ei e j ) = −δi j + fi jk ek, fi jk = 1

for (i, j, k) = (1, 2, 4)(2, 3, 5)(3, 4, 6)(4, 5, 7)(5, 6, 1)(6, 7, 2)(7, 1, 3) (22)

and fi jk is fully antisymmetric within each of the above seven triples. The Clifford
pseudoscalar is naturally associated with the Cartan subalgebra of so(6) spanned by

(L13, L26, L45) as L7(e1, e2, e4) = (e3, e6, e5) . (23)

We can write

L7 = 23L13L26L45 (as 2L13 = L1L
∗
3 = −L1L3 etc.) (24)

The infinitesimal counterpart of (14) reads

Tα(x, y) = (Lα x)y + x(Rα y) for α, x, y ∈ O, α∗ = α ,

i.e. Tα = Lα + Rα . (25)

There is an involutive outer automorphism π of the Lie algebra so(8) such that

π(Lα) = Tα, π(Rα) = −Rα, π(Tα) = Lα (π2 = id) . (26)

As proven in Appendix A

π(Lab) = Eab where Eab ec = δbc ea − δac eb (a, b, c = 1, 2, . . . , 8, e8 = 1) (27)

(Lab), (Eab) and (Rab) provide three bases of so(8), each obeying the CRs (21).
They are expressed by each other in terms of the involution π:

Lab = π(Eab), Eα8 = Lα8 + Rα8, α = 1, . . . , 7 . (28)

We find, in particular—see Appendix A:

L7 = 2L78 = E78 − E13 − E26 − E45 ,
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R7 = 2R78 = E78 + E13 + E26 + E45 = −L78 − L13 − L26 − L45 . (29)

While L78 = 4L13L26L45 (24) commutes with the entire Lie algebra spin(6) =
su(4) the u(1) generator

C1 = L13 + L26 + L45 centralizes u(3) = u(1) ⊕ su(3) ⊂ su(4) (30)

(that is the unbroken part of the gauge Lie algebra of the SM). The reader may verify
the identity R2

7 = −1 for the right hand side of (29) using the relations

L2
jk = −1

4
, C2

1 = −3

4
+ 2C2, −C1L07 = C2 := L13L26 + L13L45 + L26L45 .

(31)
The above relations will be useful for the study of higher Clifford and Lie algebras

that involve so(8) (expressed in terms of Lab or Rab) as a subalgebra. We shall apply
them in the next section to the chain of nested Clifford algebras and their derivation
(Lie) algebras

(C�−6 ⊂)C�8 ⊂ C�9 ⊂ C�10 ↔ so(8) ⊂ so(9) ⊂ so(10) . (32)

In order to accommodate the duality between antihermitian symmetry generators
(of a compact gauge group) and the corresponding conserved hermitian observables
within the same (internal space counterpart of) Haag’s [39] field algebra we need
multiplication by an imaginary unit. Thus the algebraic counterpart of Nœther’s
theorem (cf. [2]) requires a complexification of the algebras (32). In particular, the
Cartan subalgebra of so(8) singled out by the complex structure L7 is spanned by
the four commuting hermitian elements

2i L78, 2i L j 3 j (mod 7) = 2i(L13, L26, L45) ( j = 1, 2, 4) (33)

of square one, where the complex imaginary unit i (i2 = −1) commutes with the
octonion units eα. We shall single out the u(3) Lie subalgebra of the derivation
algebra su(4) = so(6) that contains the colour su(3) by identifying its centralizer
u(1) with the sum of the operator 2i L j3 j (33). It is a multiple of the observable

B − L = 2i

3
(L13 + L26 + L45) , (34)

the difference between the baryon and the lepton numbers. B − L takes eigenvalues
± 1

3 for (anti)quarks and ∓1 for (anti)leptons so that

[(B − L)2 − 1][9(B − L)2 − 1] = 0 . (35)
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3 C�10 = C�4 ̂⊗C�6 as Internal Space Algebra

3.1 Equivalence Class of Lorentz Like Clifford Algebras

Nature appears to select real Clifford algebras C�(s, t) of the equivalence class of
C�(3, 1) (with Lorentz signature in four dimensions) in Elie Cartan’s classification7:

C�(s, t) = R[2n], for s − t = 2(mod 8), s + t = 2n . (36)

They act on 2n dimensional Majorana spinors that transform irreducibly under the
real 2n dimensional representation of the spin group Spin(s, t). If γ1, . . . , γ2n is an
orthonormal basis of the underlying vector space Rs,t then the Clifford pseudoscalar
defines a complex structure

ωs,t = γ1 · · · γ2n, 2n = s + t, ω2
s,t = −1 , (37)

which commutes with the action of Spin(s, t). Upon complexification the resulting
Dirac spinor splits into two inequivalent 2n−1-dimensional complex Weyl (or chi-
ral) spinor representations irreducible over C under Spin(s, t). The corresponding
projectors ΠL and ΠR on left and right spinors are given in terms of the chirality χ
which involves the imaginary unit i :

ΠL = 1
2 (1 − χ), ΠR = 1

2 (1 + χ), χ = iωs,t ,

χ2 = 1I ⇔ Π2
L = ΠL , Π2

R = ΠR, ΠLΠR = 0, ΠL + ΠR = 1I . (38)

Another interesting example of the same equivalence class (also with indefinite
metric) is the conformal Clifford algebra C�(4, 2) (with isometry group O(4, 2)).
We shall demonstrate that just asC�−6 was viewed (in Sect. 2) as theClifford algebra
of the octonions, C�(4, 2) plays the role of the Clifford algebra of the split octonions
(cf. (6)):

x = v + V + �(w + W ), v,w ∈ R, V = iV1 + jV2 + kV3, W = iW1 + jW2 + kW3

i2 = j2 = k2 = i jk = −1, �2 = 1, V � = −�V . (39)

Indeed, defining the mapping

i → γ−1, j → γ0, � → γ1, j� → γ2, �k → γ3, �i → γ4

[γμ, γν]+ = 2ημν1I, η11 = η22 = η33 = η44 = 1 = −η−1,−1 = −η00 (40)

7 For any associative ring K, in particular, for the division rings K = R,C,H, we denote by K[m]
the algebra of m × m matrices with entries in K.
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we find that the missing split-octonion (originally, quaternion) imaginary unit k
(= i j = − j i) can be identified with the C�(4, 2) pseudoscalar:

ω4,2 = γ−1 γ0 γ1 γ2 γ3 γ4 → k, ω2
4,2 = −1, [w4,2, γν]+ = 0 . (41)

The conjugate to the split octonion x (39) and its norm are

x∗ = v − V − �(w + W ), N (x) = xx∗ = v2 + V 2 − w2 − W 2

so that the isometry group of ˜O is O(4, 4).
As we are interested in the geometry of the internal space of the SM, acted

upon by a compact gauge group we shall work with (positive or negative) defi-
nite Clifford algebras C�2�, � = 1(mod 4). The algebra C�−6, considered in Sect. 2,
belongs to this family (with � = −3). For � = 1 we obtain the Clifford algebra of
2-dimensional conformal field theory; the 1-dimensional Weyl spinors correspond
to analytic and antianalytic functions. Here we shall argue that for the next allowed
value, � = 5, the algebra C�10 = C�4 ̂⊗C�6 (9), fits beautifully the internal space
of the SM, if we associate the two factors to colour and flavour degrees of freedom,
respectively. We shall strongly restrict the physical interpretation of the generators
γab

(= 1
2 [γa, γb], a, b = 1, . . . , 10

)

of the derivations of C�10 by demanding that
the splitting (9) of C�10 into C�4 and C�6 is preserved. This reflects the demand of
preserving the lepton-quark splitting (1) and amounts to select a first step of sym-
metry breakings of the GUT group Spin(10) leading to the semisimple Pati-Salam
group (Spin(4) × Spin(6))/Z2 (8). Furthermore, recalling the discussion of Sect. 2,
we identify the first seven γα with multiples of the left imaginary units Lα.

3.2 Realization in Terms of Fermi Oscillators

We start with a basis of γ-matrices adapted to the chain of subalgebras (32):

γα = σ0 ⊗ ε ⊗ Lα, σ0 = 1I2 =
(

1 0
0 1

)

, ε = iσ2 =
(

0 1
−1 0

)

, α = 1, . . . , 7,

γ8 = σ0 ⊗ σ1 ⊗ 1I8, γ9 = σ2 ⊗ σ3 ⊗ 1I8, γ10 = σ1 ⊗ σ3 ⊗ 1I8, (42)

σk being the 2 × 2 hermitian Pauli matrices. The internal space algebraC�4 ̂⊗C�6 is
most suggestively expressed in terms of Fermi oscillators [F] setting (in the notation
of [60]):

1
2 (γ1 + iγ3) = b1, ( 12 (γ1 − iγ3) = b∗

1) ,

1
2 (γ2 + iγ6) = b2,

1
2 (γ4 + iγ5) = b3

=⇒ iγ13 = [b∗
1, b1], iγ26 = [b∗

2, b2], iγ45 = [b∗
3, b3]

(

γ jk = 1

2
[γ j , γk]

)

; (43)
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γ7 = a2 + a∗
2 , iγ8 = a2 − a∗

2 ; γ9 = a1 + a∗
1 , iγ10 = a1 − a∗

1 ;
[aα, a∗

β]+ = δαβ, [b j , b
∗
k ]+ = δ jk, [a(∗)

α , b(∗)
j ]+ = 0 . (44)

We shall use five pairs of commuting orthogonal projections:

πα = aαa
∗
α, π′

α = a∗
αaα = 1 − πα, α = 1, 2; p j = b jb

∗
j = 1 − p′

j , j = 1, 2, 3,
(45)

α (= 1, 2) and j (= 1, 2, 3) playing the role (roughly) of flavour and colour indices,
respectively. In fact, the weak hypercharge Y involves both:

1

2
Y = 1

3

3
∑

j=1

b∗
j b j − 1

2

2
∑

α=1

a∗
αaα = 1

3
(p′

1 + p′
2 + p′

3) − 1

2
(π′

1 + π′
2) =

= 1

2
(π1 + π2) − 1

3
(p1 + p2 + p3) . (46)

The left and right chiral (weak) isospin components are expressed entirely in terms
of a(∗)

α :

I L+ = a∗
1 a2, I L− = a∗

2 a1, [I L+ , I L−] = 2I L3 = π′
1π2 − π1π

′
2 = π′

1 − π′
2 ;

I R+ = a2 a1, I R− = a∗
1 a

∗
2 , [I R+ , I R− ] = 2I R3 = π1π2 − π′

1π
′
2 = π2 − π′

1 . (47)

Wenote that the projection on non-zero left and right isospin aremutually orthogonal:

P1 := (2I L3 )2 = π′
1π2 + π1π

′
2(= P2

1 ), P ′
1 := (2I R3 )2 = π1π2 + π′

1π
′
2(= (P ′

1)
2) ,

P1P
′
1 = 0, P1 + P ′

1 = 1 . (48)

The generators of su(3)c, on the other hand, are written in terms of b(∗)
j :

Ta = 1
2b

∗λa b, λa ∈ H3(C), tr λ = 0, tr λa λb = 2δab, a, b = 1, . . . , 8 . (49)

The u(1) generator (corresponding to C1 (30)) is a multiple of B − L (34)

B − L = i

3
(γ13 + γ26 + γ45) = 1

3

3
∑

j=1

[b∗
j , b j ] = 1

3

∑

j

(p′
j − p j ) . (50)

The states of the fundamental (anti)fermions are given by the primitive idempo-
tents of C�10, represented by the 25 = 32 different products of the five pairs of basic
projectors π(′)

α , p(′)
j (45). All but two of them are labelled by the eigenvalues of the

weak hypercharge Y = B − L + 2I R3 (46) and the electric charge
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Q = 1

2
Y + I L3 = 1

3

3
∑

j=1

b∗
j b j − a∗

2 a2 = 1

3
(p′

1 + p′
2 + p′

3) − π′
2 . (51)

Setting |Q,Y 〉 and 〈Q,Y | for the corresponding ket and bra vectors we find:

(νL) = �π′
1π2 = |0,−1〉〈0,−1| = |νL〉〈νL | ,

(eL) = �π1π
′
2 = | − 1,−1〉〈−1,−1| = |eL〉〈eL | , � := p1 p2 p3 ;

(eR) = �π′
1π

′
2 = | − 1,−2〉〈−1,−2| = |eR〉〈eR| ; (52)

(u j
L) = q j π

′
1π2 = | 23 , 1

3 〉〈 23 , 1
3 | = |u j

L〉〈u j
L | , q1 = p1 p′

2 p
′
3(= p1 p′

3 p
′
2) etc.

(d j
L) = q j π1π

′
2 = | − 1

3 ,
1
3 〉〈− 1

3 ,
1
3 | = |d j

L〉〈d j
L | ; j = 1, 2, 3,

(u j
R) = q j π1π2 = | 23 , 4

3 〉〈 23 , 4
3 | = |u j

R〉〈u j
R| ,

(d j
R) = q j π

′
1π

′
2 = | − 1

3 ,− 2
3 〉〈− 1

3 ,− 2
3 | = |d j

R〉〈d j
R| ,

q j = p j p
′
k p

′
� for ( j, k, �) ∈ Perm(1, 2, 3) , (53)

where j stands for the colour label. (As the colour is unobservable we do not bother
to assign to it eigenvalues of the diagonal operators iγ13, iγ26, iγ45.)

Remark—The factorisation of the primitive idempotents (52) (53) into bra and
kets include choices. We demand, following [60], that they are hermitian conjugate
elements of C�10, homogeneous in a(∗)

α and b(∗)
j such that the kets corresponding to a

left(right)chiral particle contains an odd (respectively even) number of factors. The
result is:

|νR〉 = �π1π2(= 〈νR| = (νR)) , |νL〉 = a∗
1 |νR〉 = a∗

1π2 � ,

|eL〉 = I L−|νL〉 = π1a
∗
2 � , |eR〉 = a∗

1 |eL〉 = a∗
1a

∗
2 � ;

|d j
L〉 = π1a

∗
2 q j , |u j

L〉 = I L+|d j
L〉 = a∗

1π2 q j ,

|d j
R〉 = a∗

1 |d j
L〉 = a∗

1a
∗
2 q j , u j

R = a1|u j
L〉 = π1π2 q j , (54)

q j = p j p′
k p

′
�, j, k, � ∈ Perm(1, 2, 3), i.e. q1 = p1 p′

2 p
′
3 = p1 p′

3 p
′
2 etc. We note

that all above kets as well as all primitive idempotents (53) obey a system of 5
equations (specific for each particle), aα|νR〉 = 0 = b j |νR〉, a∗

1 |νL〉 = a2|νL〉 = 0 =
b j |νL〉, α = 1, 2, j = 1, 2, 3, etc. so that they are minimal right ideals in accord with
the philosophy of Furey [31].

The exceptional pair consists of the right handed sterile neutrino νR and its antipar-
ticle νL , both with Q = 0 = Y . They could be distinguished by introducing a third
quantum number, I R3 or B − L ,

2I R3 = L − B (= 1 for νR and − 1 for νL).
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It is argued in [60] that, if the generator of the centre 1
2Y (46) of the gauge Lie algebra

of the SM is superselected, [63], chiral particles and antiparticles are mandatory
separated iffY �= 0.The sterile neutrino and its antiparticle (bothwithY = 0) canmix
(as they do in the popular theory of neutrino oscillations) into a Majorana neutrino.
We shall return to the implications of this assumption in Sect. 4 below. Here we shall
stay with the majority’s convention and include the right handed (sterile) neutrino
νR , such that

(2I R3 − 1)|νR〉 = 0 (= Y |νR〉 = Q|νR〉) , (55)

in the list of 16 particle states. The corresponding list of antiparticle projectors is
obtained by exchanging primed and unprimed πα and p j , reversing the signs of Q,Y
(and I R3 ) and exchanging left and right. The sum of four flavours (52) and (55) of
leptons and (53) of quarks gives the 4-dimensional projector � on leptons and the 12
dimensional projector q on coloured quarks:

� = (νL) + (eL) + (νR) + (eR) = p1 p2 p3, �2 = �, tr � = 4 ; (56)

q j = (u j
L) + (d j

L) + (u j
R) + (d j

R) = p j p
′
k p

′
�, qi q j = δi j q j , tr q j = 4 ;

( j, k, �) ∈ Perm(1, 2, 3), q = q1 + q2 + q3 = q2, tr q = 12 . (57)

3.3 Expressing the C�6 Pseudoscalar in Terms
of (anti)particle Projectors

We now proceed to displaying a remarkable relation between the total particle and
antiparticle projectors

P = � + q, P ′ = �′ + q ′ P (′)2 = P (′),PP ′ = 0, P + P ′ = 1I32

�′ = p′
1 p

′
2 p

′
3 , q ′ = p′

1 p2 p3 + p1 p
′
2 p3 + p1 p2 p

′
3 , (58)

and the C�6 counterpart of the complex structure L7 (24), proposed as a first step in
the sequence of symmetry breakings of the Spin(10) GUT in [35].

We define the C�6 pseudoscalar in the graded tensor product (9) by

ω6 = γ1γ2 · · · γ6 = −γ13 γ26 γ45 = σ0 ⊗ ε6 ⊗ L7 = −1I4 ⊗ L7

γ jk = 1
2 [γ j , γk] , L7 = L1 · · · L6 , (59)

implying (in view of (43))

iω6 = (p′
1 − p1)(p

′
2 − p2)(p

′
3 − p3) = P ′ − P((P ′ − P)2 = P ′ + P = 1I32) .

(60)



46 I. Todorov

We thus find that theC�6 pseudoscalar complex structureω6 gives rise to the projector

P = 1 − iω6

2
(P2 = P, tr P = 16) (61)

on the particle subspace, invariant under the Pati-Salam group GPS (8), which pre-
serves the splitting (9).

If we omit the first factor σ0 (the 2 × 2 unit matrix) from γa for a = 1, . . . , 8, (37),
we obtain an irreducible representation of C�8. We keep the same Fermi oscillator
realization (43) for the C�8 γ-matrices, so that, in particular

iγ13 = [b∗
1, b1] = p′

1 − p1, iγ26 = [b∗
2, b2] = p′

2 − p2, iγ45 = [b∗
3, b3] = p′

3 − p3 .

(62)
Thus iω6 is given by the same expression (55) for C�8 (but with tr P = 8) and for
C�9 but has a smaller invariance Lie algebra

u(4) = su(4) ⊕ u(1) ⊂ so(8) for C�8 ; su(4) ⊕ su(2) ⊂ so(9) for C�9 . (63)

Inspired by [35, 44] we shall display in both cases the complex structure given by
the Clifford pseudoscalar corresponding to the right action of the octonions:

ωR
6 = γR

1 · · · γR
6 for γR

α = ε ⊗ Rα α = 1, . . . , 7 . (64)

We shall view, following [35], its invariance group, GLR, as the second of the nested
subgroups of Spin(10): (Spin(10) ⊃)GPS ⊃ GLR · · · ⊃ GSM · · · in the sequence
of consecutive symmetry breakings. Written in terms of the colour projectors p j and
p′
j the hermitian pseudoscalar iωR

6 assumes the form:

iωR
6 = 1

2 (P ′ − P − 3(B − L)) = � + q ′ − �′ − q , (65)

since
L = � − �′ , 3B = q − q ′ . (66)

While the term P ′ − P (60) commutes with the entire derivation algebra spin(6) =
su(4) of C�6 the centralizer of B − L in su(4) is u(3)—see Proposition A2 in
Appendix A. It follows that the commutant of ωR

6 in so(8) is u(3) ⊕ u(1) while its
centralizer in so(9) is the gauge Lie algebra GSM = su(3) + su(2) + u(1) of the SM;
finally, in so(10), ωR

6 is invariant under the left-right symmetric extension of GSM:

GLR = su(3)c ⊕ su(2)L ⊕ su(2)R ⊕ u(1)B−L . (67)
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Furthermore, as proven in [43], the subgroup of Spin(9) that leaves ωR
6 invariant

is precisely the gauge group8 GSM = S(U (2) ×U (3)) (10) of the SM (with the
appropriate Z6 factored out). One is then tempted to assume thatC�9, the associative
envelope of the Jordan algebra J 8

2 = H2(O), may play the role of the internal algebra
of the SM, corresponding to one generation of fundamental fermions,with Spin(9) as
aGUTgroup [26, 61].We shall demonstrate that althoughGSM appears as a subgroup
of Spin(9) its representation, obtained by restricting the (unique) spinor irreducible
representation (IR) 16 of Spin(9) to S(U (2) ×U (3)) only involves SU (2) doublets,
so it has no room for (eR), (uR), (dR) (52) (53). We shall see how this comes about
when restricting the realization (47) of IL and IR to Spin(9) ⊂ C�9. It is clear
from (44) that only the sum a1 + a∗

1 = γ9 (not a1 and a∗
1 separately) belongs to

C�9. So the su(2) subalgebra of spin(9) corresponds to the diagonal embedding
su(2) ↪→ su(2)L ⊕ su(2)R :

I+ = I L+ + I R+ = (a∗
1 + a1) a2 = γ9 a2, I− = I L− + I R− = a∗

2γ9

2I3 = 2I L3 + 2I R3 = [a2, a∗
2 ] = π2 − π′

2 . (68)

In other words the spinorial IR 16 of Spin(9) is an eigensubspace of the projector
P1 = (2I L3 )2. It consists of four SU (2)L particle doublets and of their right chiral
antiparticles. More generally, as recalled in the introduction the only simple orthog-
onal groups with a pair of inequivalent complex conjugate fundamental IRs, are
Spin(4n + 2). They include Spin(10) but not Spin(9).

There is one more pseudoscalar, ω4, associated with the first factor, C�4, of the
tensor product (9):

ω4 = γ7 γ8 γ9 γ10 = [a1, a∗
1 ][a∗

2 , a2] = P1 − P ′
1 , (69)

P1 = π′
1π2 + π1π

′
2 is the projector (48) on the subspace with (2I L3 )2 = 1 and P ′

1 =
π1π2 + π′

1π
′
2 is its orthogonal complement. (We have ω2

4 = 1; such a ω4 is called a
pseudo complex structure.)

The C�10 pseudoscalar ω10 = ω6 ω4 defines the (spin(10) invariant) chirality

χ = iω10 = iω6 ω4 = (P ′ − P)(P1 − P ′
1) = ΠR − ΠL . (70)

It gives rise to the projector

ΠL = 1 − χ

2
= PP1 + P ′P1

1 (71)

on the left chiral particles (four SU (2)L doublets) and the 8 antiparticles (the conju-
gates to the eight right chiral SU (2)L -singlets).

8 As noted in the introduction the correct GSM was earlier obtained as the stabilizer of the automor-
phism ω of order 3 (see (12), (13)).
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A direct description of the IR 16L of Spin(10) acting on CH ⊗ CO is given
in [34]. (Here CH and CO are a short hand for the complexified quaternions and
octonions:CH := C ⊗R H.) The right action ofCH on elements ofCH ⊗ COwhich
commutes with the left acting spin(10), is interpreted in [34] as Lorentz (SL(2,C))

transformation of (unconstrained) 2-component Weyl spinors.
The left-right symmetric extensionGLR (67) ofGSM has a long history, startingwith

[47] and vividly (with an admitted bias) told in [53]. It has been recently invigorated
in [20, 40]. The group GLR was derived by Boyle [7] starting with the automorphism
group E6 of the complexified exceptional Jordan algebra CJ 8

3 and following the
procedure of [62].

4 Particle Subspace and the Higgs Field

4.1 Particle Projection and Chirality

Theories whose field algebra is a tensor product of a Dirac spinor bundle on a space-
time manifold with a finite dimensional “quantum” internal space usually encounter
the problem of fermion doubling [36] (still discussed over 20years later, [6]). It
was proposed in [27] as a remedy to consider the algebra PC�10P where P is the
projector (53) on the 16 dimensional particle subspace (including the hypothetical
right-handed sterile neutrino). The resulting subspace is Z2 graded by the chirality
operator separating left and right chiral particles (with antiparticles projected out):

χP = iω10 P = P(ΠR − ΠL) , PΠL = PP1 , (72)

where P1 (48) projects on SU (2)L doublets. The Dirac operator �D = γμDμ (Dμ =
∂μ + Aμ) anticommutes with space-time chirality γ5 = i γ1γ2γ3γ0 and hence
intertwines—like the Higgs field—left and right chiral spinors. This has motivated
Connes and coworkers [11, 15, 16] to introduce an internal space Dirac operator
in the framework of noncommutative (almost commutative) geometry that involves
the Higgs field. Following the pioneering work of Ne’eman and Fairlie [28, 48],
Thierry-Mieg and Ne’eman [55] developed effectively a superconnection approach
to the SM, prior to its introduction (and naming) in mathematics [51]. (For later
reviews and more references—see [5, 52, 56].) The Clifford algebra approach with
the chirality operator χP (72), developed in [27] appears to be ideally suited for a
geometric interpretation of the Higgs field. (An alternative approach to internal space
connection involving scalar fields is been pursued by Dubois-Violette and coworkers
for over thirty years [22, 24, 25].) It turns out that there is another unanticipated
benefit in introducing the projector P: it kills odd polynomials of colour carrying
Fermi operators:

Pb(∗)P = 0 (= PC�16 P) for ω6 C�16 = −C�16 ω6 (73)
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while projecting a∗
α into non-zero odd elements:

Pa(∗)
α P = Pa(∗)

α = a(∗)
α P , [Paα,Pa∗

β]+ = δαβ P . (74)

One may thus place the Higgs field in the odd part, C�14, of the first factor C�4 of
the product (4) and hence mediate the breaking of the electroweak flavour symmetry
without affecting the quark colour SU (3)c symmetry which is known to be exact.
While the odd part C�16 of C�6 maps the particle subspace into its orthogonal com-
plement the u(3) generators 1

2 [b∗
j , bk] ∈ C�06 are projected onto non-zero elements

of C�06 obeying the same CRs; in particular, for ( j, k, �) a permutation of (1, 2, 3)
we have

P b∗
j bk P = qk b

∗
j bk q j = b∗

j bk p
′
� =: Bjk ⇒ [Bjk, Bk�] = Bj� . (75)

4.2 The Higgs as a Scalar Part of a Superconnection

Let D be the Yang-Mills connection 1-form of the SM,

D = dxμ(∂μ + Aμ(x)) ,

i Aμ = W+
μ I L+ + W−

μ I L− + W 3
μ I

L
3 + N

2
Y Bμ + Ga

μ Ta , (76)

where Y, IL and Ta are given by (46), (47) and (49), respectively, Ga
μ is the gluon

field, Wμ and Bμ provide an orthonormal basis of electroweak gauge bosons. Then
one defines a superconnection D by

D = χD + Φ , Φ =
∑

α

(φα a
∗
α − φα aα) . (77)

(We omit, for the time being, the projector P in Aμ and Φ.) The factor χ (first
introduced in this context in [56]) insures the anticommutativity ofΦ andχDwithout
changing the Yang-Mills curvature D2 = (χD)2.

The projector P (58) on the 16 dimensional particle subspace that includes the
hypothetical right chiral neutrino (and is implicit in (77)) was adopted in [27]. By
contrast, particles are only distinguished from antiparticles in [60] if they have
different quantum numbers with respect to the Lie algebra of the SM. In fact,
GSM = s(u(2) ⊕ u(3)) is precisely the Lie subalgebra of GLR (64) which annihilates
the sterile (anti)neutrino:

GSM = {α ∈ GLR;α(νR) = 0 = α(νL)(= α(a1a2 b1b2 b3 + b∗
3 b

∗
2 b

∗
1a

∗
2 a

∗
1)) . (78)
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Thus, in [60] P is restricted to the 15-dimensional projector Pr on the restricted
particle space:

Pr = P − (νR) = q + �r , �r = �(1 − π1π2) . (79)

The projected odd operators a(∗)
α in the lepton sector,

�r aα �r = �(1 − π1π2) aα, �r a
∗
α �r = � a∗

α(1 − π1π2) ⇒

�r a1 �r = � a1π
′
2, �r a2 �r = � a2 π′

1, �r a
∗
1 �r = � a∗

1π
′
2, �r a

∗
2 �r = � a∗

2 π′
1 , (80)

have modified anticommutation relations. In fact, they provide a realization of the
four odd elements of the 8-dimensional simple Lie superalgebra s�(2|1) whose even
part is the 4-dimensional Lie algebra u(2) of the Weinberg-Salam model of the
electroweak interactions (see [60] for details). It is precisely the Lie superalgebra
proposed in 1979 independently by Ne’eman and by Fairlie [28, 48] (and denoted by
them su(2|1)) in their attempt to unify su(2)L withu(1)Y (and explain the spectrumof
the weak hypercharge). Let us stress that the representation space of s�(2|1) consists
of the observed left and right chiral leptons (rather than of bosons and fermions
like in the popular speculative theories in which the superpartners are hypothetical).
Note in passing that the trace of Y on negative chirality leptons (νL , eL) is equal
to its eigenvalue on the unique positive chirality (eR) (equal to −2) so that only
the supertrace of Y vanishes on the lepton (as well as on the quark) space. This
observation is useful in the treatment of anomaly cancellation (cf. [57]).

We shall sketch the main steps in the application of the superconnection (77) to
the bosonic sector of the SM emphasizing specific additional hypotheses used on the
way (for a detailed treatment see [60]).

The canonical curvature form

D
2 = D2 + χ[D, Φ] + Φ2, [D, Φ] = dxμ(∂μΦ

∗[Aμ, Φ]) (81)

satisfies the Bianchi identity

DD
2 = D

2
D (⇒ χ(dΦ2 + [A,φ2] + [Φ, DΦ]+) = 0) , (82)

equivalent to the (super) Jacobi identity of our Lie superalgebra. It is important that
the Bianchi identity, needed for the consistency of the theory still holds if we add to
D

2 a constant matrix term with a similar structure. Without such a term the Higgs
potential would be a multiple of TrΦ4 and would only have a trivial minimum at
Φ = 0 yielding no symmetry breaking. The projected form of Φ (77) and hence the
admissible constant matrix addition to �2 depends on whether we use the projector
P (as in [27]) or Pr (as in [60]). In the first case we just replace a(∗)

α with a(∗)
α P . In

the second, however, the odd generators for leptons and quarks differ and we set:
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� = �[(φ1a
∗
1 − φ1a1)π

′
1 + (φ2 a

∗
2 − φ2 a2)π

′
2] + ρq

2
∑

α=1

(φα a
∗
α − φα aα) , (83)

where ρ (like N in (76)) is a normalization constant that will be fixed later. Recalling
that � and q are mutually orthogonal (�q = 0 = q�, � + q = P) we find

Φ2 = �(φ1φ2 I
L
+ + �1φ2 I

L
− − φ1φ1π

′
2 − φ2 φ2π

′
1)

− ρ2q(φ1φ1 + φ2 φ2) (φα = φα(x)) . (84)

This suggests defining the SM field strength (the extended curvature form) as

F = i(D2 + m̂2) , m̂2 = m2(�(1 − π1 π2) + ρ2q) (85)

(m̂2 = m2P for the 16 dimensional particle subspace of [27]).

4.3 Higgs Potential and Mass Formulas

This yields the bosonic Lagrangian

L(x) = Tr
{

1
2 FμνFμν − (∂μ� + [Aμ,�])(∂μ� + [Aμ,�])

}

− V (�) (86)

where the Higgs potential V (�) is given by

V (�) = Tr (m̂2 + �2)2 − 1
4m

4 = 1
2 (1 + 6ρ4)(φφ − m2)2 . (87)

Minimizing V (�) gives the expectation value of the square of φ = (φ1,φ2):

〈φφ〉 = φm
1 φm

1 + φm
2 φm

2 = m2, for �m =
2

∑

α=1

φm
a a

∗
α(��π′

3−α + ρq) + c · c . (88)

(The superscript m indicates that φα take constant in x values depending on the
mass parameter m.) The mass spectrum of the gauge bosons is determined by the
term −Tr [Aμ,�][Aμ,�] of the Lagrangian (86) with Aμ and � given by (76) and
(88) for φα = φm

α . The gluon field Gμ does not contribute to the mass term as C�06
commutes with C�14. The resulting quadratic form is, in general, not degenerate, so
it does not yield a massless photon. It does so however if we assume that �m is
electrically neutral (i.e. commutes with Q (51)):

[�m, Q] = 0 ⇒ φm
2 = 0 (= φm

2 ) . (89)
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The normalization constant N (= tg θw) is fixed by assuming that 2I L3 and NY
are equally normalized:

N 2 = Tr (2I L3 )2

Tr Y 2
= 3

5

(

= (tg θw)2 ⇒ sin2 θw = 3

8

)

. (90)

As Y (νR) = 0 = I L3 (νR) this result for the “Weinberg angle at unification scale” is
independent on whether we use P or Pr . If one takes the trace over the leptonic
subspace the result would have been (tg θw)2 = 1

3 (⇒ sin θw = 1
2 , [28]) closer to the

measured low energy value.
Demanding, similarly, that the leptonic contribution to �2 is the same as that for

a coloured quark (which gives ρ = 1 for the unrestricted projector P) we find

ρ2 = Tr(�(1 − π1π2)�
2)

Tr q j �2
= Tr(π′

1π
′
2 φφ + π′

1π2 φ2 φ2 + π1π
′
2 φ1 φ1)

4φφ
= 1

2
.

(91)
The ratio m2

H

m2
W
, on the other hand is found to be

m2
H

m2
W

= 4
1 + 6ρ4

1 + 6ρ2
=

{

4forρ2 = 1([N ], [DT 20])
5
2 forρ

2 = 1
2 ([T 21])

(92)

The result of [60], much closer to the observed value, can also be written in the form
m2

H = 4 cos2 θW m2
H , where θW is the theoretical Weinberg angle (90).

5 Outlook

5.1 Coming to C�10

The search for an appropriate choice of a finite dimensional algebra suited to represent
the internal spaceF of theSMis still going on.Our road to the choice ofC�10, adopted
in this survey, has been convoluted.

In view of the lepton-quark correspondence which is embodied in the splitting
(1) of the normed division algebraO of the octonions, the choice of Dubois-Violette
[23] of the exceptional Jordan algebraF = H3(O) (7) looked particularly attractive.
We realized [61, 62] that the simpler to work with subalgebra

J 8
2 = H2(O) ⊂ H3(O) = J 8

3 (93)

corresponds to the observables of one generation of fundamental fermions. The
associative envelope of J 8

2 isC�9 = R[16] ⊕ R[16]with associated symmetry group
Spin(9). It was proven in [62] that the SM gauge group GSM (10) is the intersection



Octonionic Clifford Algebra for the Internal Space of the Standard Model 53

of Spin(9) with the subgroup Fω
4 (13) of the automorphism group F4 of J 8

3 that
preserves the splitting (1) of O, yielding (12).

So we were inclined to identify Spin(9) as a most economic GUT group. As
demonstrated in Sect. 3.3, however, the restriction of the spinor IR 16 of Spin(9) to
its subgroup GSM gives room to only half of the fundamental fermions: the SU (2)L
doublets; the right chiral singlets, eR, uR, dR , are left out. It was thus recognized that
the Clifford algebra C�10 (which also involves the octonions) does the job.

After a synopsis of the triality realization of Spin(8) on the octonions (Sect. 2) the
present survey starts directlywith the (complexified)Clifford algebraC�10 displaying
in Sect. 3.1 its salient features which place it in the same equivalence family under
the Cartan classification as the Lorentzian Clifford algebra C�(3, 1). The particle
interpretation of C�10 is dictated by the choice of a (maximal) set of five commuting
operators in the derivation algebra so(10) ofC�10. It follows the presentation ofC�10
by the Z2 graded tensor product (9),

C�10 = C�6 ̂⊗C�4 , (94)

which is preserved by the Pati-Salam subgroup GPS (8) of Spin(10). This led us to
presenting all chiral leptons and quarks of one generation as mutually orthogonal
idempotents (52) (53).

Furay [32] arrived (back in 2018) at the tensor product (94) following the R ⊗
C ⊗ H ⊗ O road. In fact, Clifford algebras have arisen as an outgrow of Grassmann
algebras and the quaternions.9 The 32 products eaεν(= ενea), a = 1, . . . , 8 (e8 =
1I), ν = 0, 1, 2, 3 of octonion and quaternion units may serve as components of a
Spin(10) Dirac (bi)spinor, acted upon by C�10 (with generators (42) involving the
operators Lα of left multiplication by octonion units)—cf. [34].

5.2 Two Ways to Avoid Fermion Doubling

There are two inequivalent possibilities to avoid fermion doubling withinC�10. One,
adopted in [27, 60] and in Sect. 3 of the present survey consists in projecting on the
particle subspace, which incorporates four SU (2)L doublets and eight SU (2)L (right
chiral) singlets, with projector

P = � + q = 1 − iω6

2
, � = p1 p2 p3 , q = q1 + q2 + q3 (95)

9 The Dublin Professor of AstronomyWilliam Rowan Hamilton (1805–1865) and the Stettin Gym-
nasium teacher Hermann Günter Grassmann (1809–1877) published their papers, on quaternions
and on “extensive algebras”, respectively, in the same year 1844.WilliamKingdomClifford (1845–
1879) combined the two in a “geometric algebra” in 1878, a year before his death, aged 33, referring
to both of them.
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(see (57), (58) and (60)). Here ω6 is theC�6 pseudoscalar, the distinguished complex
structure, used in [35] as a first step in the “cascade of symmetry breakings”. The par-
ticle projector (95) is only invariant under the Pati-Salam subgroup (8) of Spin(10).
The more popular alternative, adopted in [34], projects on left chiral fermions (4
particle doublets and 8 antiparticle singlets) with projector (71), defined in terms of
the C�10 chirality χ = iω10:

ΠL = 1 − χ

2
= PP1 + P ′P ′

1, (P + P ′ = 1 = P1 + P ′
1) , (96)

where P1 projects on SU (2)L doublets, invariant under the entire Spin(10). The
components of the resulting 16L are viewed in [34] as Weyl spinors; the right action
of (complexified) quaternions (which commutes with the left spin(10) action) is
interpreted as an s�(2,C) (Lorentz) transformation.

The difference of the two approaches which can be labeled by the projectors P
andΠL (on left and right particles and on left particles and antiparticles, respectively)
has implications in the treatment of generalized connection (including theHiggs) and
anomalies. Thus, for theΠL (anti)leptons (νL , eL), eL , νL we have vanishing trace of
the hypercharge, trΠLY = 0. ForP leptons, (νL , eL), νR, eR , the traces of the left and
right chiral hypercharge are equal: tr(PΠLY ) = −2 = tr(PΠRY ), so that, as noted
in Sect. 4.2, only the supertrace vanishes in this case. The associated Lie superalgebra
fits ideally Quillen’s notion of super connection. A real “physical difference” only
appears under the assumption that the electroweak hypercharge is superselected and
the particle projector is restricted to the projector Pr on the 15-dimensional particle
subspace (with the sterile neutrino νR , with vanishing hypercharge, excluded). Then
the leptonic (electroweak) part of the SM is governed by the Lie superalgebra s�(2|1),
whose four odd generators are given by third degreemonomials in a(∗)

α , theC�4 Fermi
oscillators. The replacement of P by Pr breaks the quark-lepton symmetry: while
each coloured quark q j appears in four flavours, the colourless leptons are just three.
This yields a relative normalization factor between the quark and leptonic projection
of the Higgs field and allows to derive (in [60]) the relation (see (92))

m2
H = 5

2 m
2
W = 4 cos2 θth m2

W , (97)

where θth is the theoreticalWeinberg angle, such that tg2 θW = 3
5 . The relation (97)

is satisfied within 1% accuracy by the observed Higgs and W± masses.

5.3 A Challenge

What is missing for completing the “Algebraic Design of Physics”—to quote from
the title of the 1994 book by Geoffrey Dixon—is a true understanding of the three
generationsof fundamental fermions.Noneof the attempts in this direction [7, 23, 29,
59] has brought a clear success so far. The exceptional Jordan algebra J 8

3 = H3(O)
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(7) with its built in triality was first proposed to this end in [23] (continued in [26]);
in its most naive form, however, it corresponds to the triple coupling of left and
right chiral spinors with a vector in internal space, rather than to three generations of
fermions. As recalled in (Sect. 5.2 of) [59] any finite-dimensional unital module over
H3(O) has the (disappointingly unimaginative) form of a tensor product of H3(O)

with a finite dimensional real vector space E . It was further suggested there that the
dimension of E should be divisible by 3 but the idea was not pursued any further.
Boyle [7] proposed to consider the complexified exceptional Jordan algebra whose
automorphism group is the compact form of E6. This led to a promising left-right
symmetric extension of the gauge group of the SM but the discussion has not yet
shed new light on the 3 generation problem.
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Appendix

Inter relations between the L , E , and R bases of so(8)
The imaginary octonion units e1, . . . , e7 obey the anticommutation relations of

C�−7,
[eα, eβ]+ := eαeβ + eβeα = −2 δαβ , α,β = 1, . . . , 7 (A.1)

and give rise to the seven generators Lα = Leα
of the Lie algebra so(8):

Lα8 := 1
2 Lα =: −L8α , Lαβ := [Lα8, L8β] ∈ so(7) ⊂ so(8) . (A.2)

For α �= β there is a unique γ such that

Lα eβ = fαβγ eγ = ±eγ , fαβγ = − fβαγ = fγαβ . (A.3)

The structure constants fαβγ (which only take values 0,±1) obey for different triples
(α,β, γ) the relations

fαβγ = fα+1β+1 γ+2 = f2α,2β,2γ (mod 7) . (A.4)

The list (22) follows from f124 = 1 and the first equation (A.4), taking into account
relations like f679 ≡ f672 (mod 7) etc. Note that for fαβγ �= 0 fαβγ are the structure
constants of a (quaternionic) su(2) Lie algebra. They are not structure constants of
so(7) ⊂ so(8).

Define the involutive outer automorphism π of the Lie algebra so(8) by its action
(26) on left and right multiplication Lα and Rα of octonions by imaginary octonions
α = −α∗:
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π(Lα) = Lα + Rα =: Tα , π(Rα) = −Rα ⇒ π(Tα) = Lα . (A.5)

In the basis (A.1) (A.3) of imaginary octonion units eα (α = 1, . . . , 7), setting e8 = 1I
and Lα8 = 1

2 Lα (A.2), Rα8 = 1
2 Rα = −R8α, we define Eab by the second relation

(27)
Eab ec := δbc ea − δac eb , a, b, c = 1, . . . , 8 (e8 = 1) . (A.6)

Proposition A.1—Under the above assumptions/definitions we have

π(Lab) = Eab (for Lαβ := [Lα8, L8β] , Lα8 = 1
2 Lα = −L8α) . (A.7)

Proof—From the first equation (A.5) and from (A.1) (A.2) and (A.6) it follows that

Eα8 = Lα8 + Rα8 = π(Lα8) . (A.8)

The proposition then follows from the relations

Lαβ = [Lα8, L8β] , Eαβ = [Eα8, E8β] (A.9)

and from the assumption that π is a Lie algebra homomorphism.

Corollary—From (A.7) and the involutive character of π it follows that, conversely,

π(Eab) = Lab . (A.10)

To each α = 1, . . . , 7 there correspond 3 pairs βγ such that Lβγ and Eβγ commute
with Lα and among themselves and allow to express Lα = 2Lα8 in terms of Eα8 and
the corresponding Eβγ :

L1 = 2 L18 = E18 − E24 − E37 − E56 ,

L2 = 2 L28 = E28 + E14 − E35 − E67 ,

L3 = 2 L38 = E38 + E17 + E25 − E46 ,

L4 = 2 L48 = E48 − E12 + E36 − E57 ,

L5 = 2 L58 = E58 + E16 − E23 − E47 ,

L6 = 2 L68 = E68 − E15 + E27 − E34 ,

L7 = 2 L78 = E78 − E13 − E26 − E45 , or Lα = Eα8 −
∑

β<γ

fαβγ Eβγ . (A.11)

Recalling that Eab = π(Lab) (A.8) and the fact that π is involutive, so that π(Eab) =
Lab (A.10) we deduce, in particular,

2 E78 = L78 − L13 − L26 − L45 ,
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R7 = 2 E78 − 2 L78 = −L78 − L13 − L26 − L45 , (A.12)

thus reproducing (29).
We now proceed to displaying the commutant of iω6 and iωR

6 in so(7 + j), j =
1, 2, 3.

Proposition A.2—While the Lie algebra spin(6) = su(4) commutes with L7, the
commutant of R7 (A.12) in su(4) ⊂ s�(4,C) is u(3)(⊂ s�(4,C)) given by

u(3) =
⎧

⎨

⎩

3
∑

j,k=1

C jk[b∗
j , bk] ; C jk ∈ C , Ckj = −C jk

⎫

⎬

⎭

(A.13)

in the fermionic oscillator relalization of C�6(C) (the bar over C jk standing for
complex conjugation).

Proof—The fact that L7 = 2 L78 commutes with the generators Lαβ (α,β =
1, . . . , 6) of so(6) follows from (21). To find the commutant of R7 (A.12) it is
convenient to use the fermionic realization of the complexification s�(4,C) of su(4)
which is spanned by the 9 commutators [b∗

j , bk] in (A.13) and the 6 products

b j bk = −bk b j , b∗
j b

∗
k = −b∗

k b
∗
j , j, k = 1, 2, 3, j �= k . (A.14)

The sum L13 + L26 + L45 in (A.12) is a multiple of B − L (45), the hermitian gen-
erator of the centre of s�(3,C),

B − L

(

= i

3
(γ13 + γ26 + γ45)

)

= 1

3

3
∑

j=1

[b∗
j , b j ] . (A.15)

The relations

[B − L , b∗
j b

∗
k ] = 2

3 b
∗
j b

∗
k , [B − L , b j bk] = − 2

3 b j bk ,

[[

B − L , [b∗
j , bk]

]] = 0 , j, k = 1, 2, 3, j �= k , (A.16)

show that the commutant of B − L (and hence of R7) in su(4) is u(3).

Corollary—The commutant of ωR
6 in so(8) is u(3) ⊕ u(1); the commutant of ωR

6 in
spin(9) is the gauge Lie algebra of the SM:

GSM = {a ∈ spin(9) ; [a,ωR
6 ] = 0} = u(3) ⊕ su(2) . (A.17)
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The Jacobi Sigma Model

Patrizia Vitale

Abstract Wereview themain aspects of the recently introduced Jacobi sigmamodel.
This is a 2-dimensional topological field theory with target space a Jacobi manifold.

Keywords Jacobi sigma model · Topological field theory · Jacobi manifold

1 Introduction

This paper is based on a lecture given at the XIV International Workshop on Lie
Theory and Its Applications in Physics, which has been held in Sofia in June 2021.
The main goal being here to convey the main aspects of the Jacobi sigma model,
many technical details and in deep calculations are left aside and we refer to [1, 2]
for an extended presentation of the results.

The Jacobi sigmamodel (JSM) [1–3] is a two-dimensional topological field theory
defined on a source manifold with boundary, which we shall indicate with Σ . The
target space is a D dimensional manifold, M , equipped with a Jacobi structure [4],
namely, a twisted Poisson bi-vector field, Λ and a vector field, E , so called Reeb
vector field, which satisfy the following relation

[Λ,Λ]S = 2E ∧ Λ, [E,Λ]S = 0. (1)

The bracket on the left of the previous equations is the Schouten bracket, which is
defined on the algebra of multi-vector fields L(M) = ⊕D

k=0V
k(M) where V 0(M)

is identified with the algebra of smooth functions on the manifold, V 1(M) is the
algebra of vector-fields and V k(M), k > 1, are k-vector fields, namely antisymmetric
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k-contravariant tensor fields. The pair (Λ, E) endows the set of smooth functions on
M with a Lie algebra structure provided by the Jacobi bracket [4]

{ f, g}J := Λ(d f, dg) + f E(g) − gE( f ). (2)

The latter satisfies Jacobi identity but not the Leibniz rule which is instead replaced
by the following

{ f, gh}J = { f, g}J h + g{ f, h}J + gh E( f ). (3)

The model is a natural generalisation of the Poisson sigma model (PSM) [5–7]. It
reduces to the latter when the Reeb vector field is zero. Moreover, it may be related to
a PSMwith a target space of higher dimensionality (more precisely of one dimension
more), by considering the so called poissonization of the Jacobi structure (Λ, E).
Noteworthy cases of Jacobi manifolds are represented by contact and locally con-
formally symplectic manifolds, with Poisson, symplectic and globally conformally
symplectic as special cases. The model has first and second class constraints, with
the former generating gauge transformations. The imposition of constraints and of
gauge symmetries gives rise to a finite-dimensional reduced phase space. The dynam-
ics which survives on the boundary is that of a classical mechanical system which
represents the holographic dual of the JSM in the bulk [8], in analogy with what
happens for the PSM [9]. Similarly to the PSM, upon quantization it is expected to
give rise to a noncommutative quantum mechanical system.

The model provides new backgrounds for strings dynamics [3]; it naturally con-
tains a three-form field, which in some cases is not exact and may be related to
non-trivial fluxes.1

2 The Model

Let us first recall what is the PSM, to which the JSM is inspired. The former is a two-
dimensional, topological field theory with source space a manifold with boundary,
Σ , and target space a Poisson manifold (M,Π). The first order action is given in
terms of the fields X, η,

S =
∫

Σ

[
ηi ∧ dXi + 1

2
Π i j (X)ηi ∧ η j

]
, i, j = 1, . . . , dimM (4)

where X : Σ → M , is the embedding map, while η ∈ Ω1(Σ, X∗(T ∗M)), is a one
form on Σ with values in the pull-back of the cotangent bundle T ∗M . Analogously,

1 There might be a relation with twisted Poisson sigma models [10, 11]. We thank Peter Schupp for
pointing this out to us.
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dX ∈ Ω1(Σ, X∗(T M)) is a one form ofΣ with values in the pull-back of the tangent
bundle T M . The equations of motion read

dXi + Π i j (X)η j = 0 (5)

dηi + 1

2
∂iΠ

jk(X)η j ∧ ηk = 0 (6)

and consistency of the two requires the vanishing of the Schouten bracket, [Π,Π ]S =
0. If the source manifold is such that ∂Σ �= 0 boundary conditions are required for
the auxiliary fields, e. g. η|∂Σ = 0. The latter can be integrated away, resulting in a
second order action, only if the target space is a symplectic manifold, in which case
ω = Π−1 and

S =
∫

Σ

ωi j d X
i ∧ dX j . (7)

The model is invariant under diffeomorphisms of the source space. On choosing
Σ = R × [0, 1]with t ∈ R, u ∈ [0, 1] and the notation βi = ηti , ζi = ηui , Ẋ = ∂t X ,
X ′ = ∂u X , the Lagrangian and Hamiltonian of the model respectively read

L =
∫
I
du

[−ζi Ẋ
i + βi

(
X ′i + Π i j (X)ζ j

)]
(8)

H = −
∫
I
du βi

[
X ′i + Π i j (X)ζ j

]
. (9)

Then one easily observes that:

Xi and −ζi are conjugate variables with Poisson brackets {Xi , ζ j } = δijδ(u − u′);
the conjugate momentum to β, πβ , is zero, thus yielding a primary constraint;
the conservation of the constraint along themotion implies the secondary constraint
Gβ = X ′i + Π i j (X)ζ j ;
therefore theHamiltonian itself is a pure constraint,moreprecisely aone-parameter
family, Hβ 	 0.

It is possible to check that the set of constraints closes under Poisson brackets, in
particular,

{Hβ, Hβ̃} = H[β,β̃] (10)

with
[β, β̃] = d〈β,Π(β̃)〉 − iΠ(β)dβ̃ + iΠ(β̃)dβ (11)

the (extension of) the Koszul bracket of one-forms β ∈ Ω1(M) to β = β(u); 〈 , 〉 is
the natural pairing between T ∗M and T M . Noticeably, (11) satisfies Jacobi identity
provided Π is a Poisson tensor. Therefore, the map β → Hβ is a Lie algebra homo-
morphism, the Hamiltonian constraints are first class and the Hamiltonian vector
fields generate gauge transformations [12, 13].
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The reduced phase space of the model is defined in the usual way as the quotient
C = P/G, where G is the gauge group, while P is the (infinite-dimensional) con-
strained phase space. It has been proven [12, 13] that the reduced phase space is a
finite-dimensional manifold of dimension 2dim(M).

2.1 The Jacobi Sigma Model

Two main classes of Jacobi manifolds are locally conformally symplectic (LCS) and
contact manifolds (see [14–16]), with generic ones admitting foliations in terms of
contact and/or LCS leaves.

LCS manifolds are even-dimensional manifolds equipped with a one-form α ∈
Ω1(M) and a non-degenerate two-form ω ∈ Ω2(M), locally equivalent to a sym-
plectic form ξ, i.e.

ω = e− f ξ, f ∈ C∞(Ui )

dω = −α ∧ ω (α = d f locally)

The global structures (Λ, E) are uniquely defined in terms of (α,ω)

ιEω = −α, ιΛ(γ)ω = −γ, ∀γ ∈ Ω1(M) (12)

Globally conformal symplectic and symplectic manifolds are particular cases of
LCS, respectively corresponding to the one-form α being exact or zero.

Contact manifolds are odd-dimensional manifolds, dimM = 2n + 1, with a con-
tact one-form, ϑ and a volume form Ω s.t.

ϑ ∧ (dϑ)n = Ω

The global structure (Λ, E) is uniquely fixed by

ιE
(
ϑ ∧ (dϑ)n

) = (dϑ)n ιΛ
(
ϑ ∧ (dϑ)n

) = nϑ ∧ (dϑ)n−1 (13)

Finally, let us shortly mention the Poissonization procedure [4], mainly because
it allows for the definition of Hamiltonian vector fields associated with the Jacobi
structure J = (Λ, E).

Given a Jacobi manifold (M,Λ, E) the manifold M × R may be given a one-
parameter family of homogeneous Poisson structures

Π = e−τ (Λ + ∂

∂τ
∧ E), τ ∈ R

(homogeneous meaning that L∂τ
Π = −Π ). This allows for a consistent definition

of Hamiltonian vector fields associated with J as a projection:
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X f := π∗(XΠ
eτ f )|τ=0 (14)

where XΠ
eτ f is the Hamiltonian vector field associated with the Poisson bracket on

M × R and π : M × R) → M is the projection map. This yields, for any smooth
function on M ,

X f = Λ(d f, ·) + f E (15)

It is important to stress that the map f → X f is a homomorphism of Lie algebras,
namely [X f , Xg] = X{ f,g}J , where the bracket [·, ·] is the standard Lie bracket of
vector fields. The Jacobi bracket (2) may be rewritten as

{ f, g}J = X f (g) − gE( f ) = −Xg( f ) + f E(g). (16)

Having settled the mathematical structures we are ready for introducing the model.
The Jacobi sigma model with source space a two-dimensional manifold Σ with
boundary ∂Σ and target space (M,Λ, E) is defined by the action functional [1]

S[X, (η,λ)] =
∫

Σ

[
ηi ∧ dXi + 1

2
Λi j (X)ηi ∧ η j−Ei (X)ηi ∧ λ

]
(17)

with boundary condition η|∂Σ
= 0. On comparing with the action of the PSM we

notice some similarities, (the action is the same when the Reeb vector field is zero,
with a new auxiliary field, λ, which is necessary to pair with the Reeb vector field.
Therefore, the field configurations are (X, (η,λ)), with

X : Σ → M the embedding map;
(η,λ) ∈ Ω1(Σ, X∗(J 1M));

the pair (η,λ) represents a section of the pull-back bundle of J 1M = T ∗M ⊕ R, the
1-jet bundle of real functions on M . Loosely speaking, η is a one form on Σ and on
M , exactly as it was the case for the PSM,while λ is a one form on� but a scalar field
on M . It is useful to remark that sections of J 1M are isomorphic to one-forms of the
kind eτ (α + f dτ ) with α ∈ Ω1(M), f ∈ C∞(M), τ ∈ R. They form a closed Lie
subalgebra of Ω1(M × R), the one forms of the Poissonized manifold, with respect
to the Koszul bracket. The induced bracket for the sections of J 1M [17] reads

[(α, f ), (β, g)] =
((

LΛ(α)β − LΛ(β)α − d(Λ(α,β) + f LEβ −
− gLEα − α(E)β + β(E)α)

)
,

({ f, g}J − Λ(d f − α, dg − β
))

. (18)

The variation of the action gives the following equations of motion

dXi + Λi jη j − Eiλ = 0, (19)
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dηi + 1

2
∂iΛ

jkη j ∧ ηk − ∂i E
jη j ∧ λ = 0, (20)

Eiηi = 0. (21)

Consistency of the three, together with the properties of the Jacobi structure (Λ, E),
(1), yields another equation,

dλ = 1

2
Λi jηi ∧ η j . (22)

Let us switch to the Hamiltonian approach, which is the framework adopted in [1,
2] to analyse the constraints of the theory and discuss its gauge symmetry. In local
coordinates t ∈ R, u ∈ [0, 1] for � = R × [0, 1], we have

dX = Ẋdt + X ′du, η = βdt + ζdu, λ = λt dt + λudu.

The Lagrangian and the Hamiltonian read respectively

L =
∫
I
du

[
−Ẋ iζi + βi

(
X

′i + Λi jζ j − Eiλu

)
+ λt

(
Eiζi

)]
(23)

H = −
∫
I
du βi

(
X

′i + Λi jζ j − Eiλu

)
+ λt

(
Eiζi

)
(24)

with λt ,λu scalar fields, Ẋ , X ′ and β, ζ carrying and extra index on (the pull-back of)
M . Moreover, −ζi , Xi are conjugate variables with canonical Poisson brackets. The
b.c.η∂� = 0 results inβ∂� = 0 andnob.c. forλ. From the analysis of theHamiltonian
it is possible to infer that the theory is constrained (see [1, 2] for details), with

πβi = δL/δβi , πλt = δL/δλt , πλu = δL/δλu, primary constraints

π̇βi ≡ Gβi = X ′i + Λi jζ j − Eiλu,

π̇λt ≡ Gλt = Eiζi
π̇λu ≡ Gλu = Eiβi

⎫⎬
⎭ secondary constraints

Therefore, as for the PSM, the Hamiltonian is itself a sum of constraints,

H = −
∫

du
[
βiGβi + λtGλt

]
. (25)

Then, on indicating with χk a generic element of the family of constraints, we com-
pute their Poisson brackets. To this, we recall that, according to the Dirac prescrip-
tion for treating the constraints, one has to use the canonical Poisson structure of
the unconstrained phase space, {πA(u),ϕB(v)} = δ(u − v)δB

A , where ϕB(v) indi-
cates a generic field among those characterizing the Hamiltonian model, namely
(Xi ,βi ,λt ,λu), with πA(u) its conjugate momentum. We find that the matrix
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{χk,χk ′ } has finite, non-zero rank, which implies the existence of second class con-
straints. Moreover, the rank is not maximal (indeed it can be shown to be equal to 4,
independently from the dimension of the target space), which implies that some of
the constraints are first class. In order to easily isolate the second class constraints
one can choose without loss of generality local coordinates over the target space
adapted to the Reeb vector field, so that, for example, E has only non-zero com-
ponent along the m-th direction: E = E(X)∂/∂Xm . Then, with a little algebra, one
finds the second class constraints to be πλu ,πβm ,Gλu ,Gβm . The remaining constraints
are first class, thus generating gauge transformations. =⇒ A combination of these
yields gauge transformations, with generating functional

K (β,λt , at , aβa ) =
∫

du λtGλt + βaGβa + atπλt + aβaπβa , a = 1, . . . ,m − 1

(26)
and β,λt , at , aβa gauge parameters.

The next step is to compute the Poisson brackets of the gauge generators, in order
to verify whether they close a Poisson algebra. In doing that, we observe that primary
constraints may be ignored, because their Poisson brackets are strongly zero. Then,
it can be checked by direct computation that, similarly to the Poisson sigma model,
the algebra will only close on-shell. Indeed we find

{K (β,λt ), K (β̃, λ̃t )} =
∫

dudu′
[
Gβc

(
βaβ̃b∂cΛ

ba + Λaj (β̃a∂ jβc − βa∂ j β̃c)

+ E(λ̃t∂mβc − λt∂m β̃c)
)

(27)

+Gλt

(
βaβ̃b�

ab + �aj (β̃a∂ jλt − βa∂ j λ̃t ) + E(λ̃t∂mλt − λ̃t∂m λ̃t )
)]

,

a, b, c = 1, . . . ,m − 1

Therefore, not surprisingly, in order to obtain a closed algebra off-shell, one has to
follow the same strategy as for the PSM: the gauge parameters have to be functions
of the fields, namely

βa → βa(u, X (u)),λt → λt (u, X (u)).

This implies that the gauge parameters (β,λt ) inherit the bracket of sections of the
1-jet bundle J 1M , which reads [17]

[(α, f ), (β, g)] =
(
L�(α)β − L�(β)α − d(�(α,β)) − d( f LEβ −

− gLEα − α(E)β + β(E)α),

{ f, g}J − �(d f − α, dg − β)
)
. (28)
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The latter satisfies Jacobi identity because (�, E) is a Jacobi structure, in the same
way as theKoszul bracket (11) satisfies Jacobi identity provided� is a Poisson tensor.
Therefore, on extending (28) to field dependent parameters, (27) may be rearranged
in the following form

{K(β,λt ), K(β̃,λ̃t )
} = −K[(β,λt ),(β̃,λ̃t )] (29)

which is what we were looking for.

3 Conclusions

To summarise, the Jacobi sigma model is a two-dimensional topological field theory,
with first and second class constraints. First class constraints generate gauge trans-
formations, which close off-shell, provided one allows for field-dependent gauge
parameters. Thanks to Eq. (29), themap (β,λt ) → K(β,λt ) is a Lie algebra homomor-
phism between the algebra of gauge parameters and the algebra of gauge generators,
if the target space M is a Jacobi manifold.

Further results have been obtained in [1, 2]. The reduced phase space of the model
has been shown to be finite-dimensional, with dimension equal to 2dimM − 2. A
dynamical version of the model has been proposed, with the addition of a new term
to the Lagrangian, which is proportional to the metric tensor of the target manifold.
This yields a Polyakov action, where the background fields are directly related to the
Jacobi structure. A non-zero three formmay occur, depending on the target space (for
example, whether the latter is a contact or LCS manifold). Finally, the model may be
related to a Poisson sigma model with target space M × Rwithin a “Poissonization”
procedure. The latter approach has been explored in [3].
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Levi-Civita Connections on Braided
Algebras

Paolo Aschieri

Abstract A braided symmetric algebra carries a representation of a triangular Hopf
algebra. Its noncommutativity is captured by the universal R-matrix. Its differential
geometry is canonically constructed from these data. We review the Cartan struc-
ture equations and the Bianchi identities for the curvature and torsion of arbitrary
connections, i.e., not necessarily invariant under the Hopf algebra action. An arbi-
trary metric tensor defines a unique metric compatible and torsion free connection.
The associated Ricci tensor allows to consider in vacuum noncommutative Einstein
equations.

Keywords Noncommutative Levi-Civita connection · Quantum Riemannian
geometry · Noncommutative Bianchi identities · Noncommutative Cartan structure
equations

1 Introduction

The existence and uniqueness of the Levi-Civita connection of a metric tensor is
the fundamental theorem of (pseudo)-Riemannian geometry. The study of its non-
commutative analogues has been very active in the past years. Due to the variety of
noncommutative algebras one can consider, and to the non uniqueness of the asso-
ciated differential calculi, there are different notions of metric and of Levi-Civita
connections. Examples are then a main tool to study noncommutative Riemannian
geometry. The subject is also motivated by noncommutative gravity. This is possibly
relevant for capturing some aspects of quantum gravity, where quantization of space
time itself is expected (e.g. via gedanken experiments [12]). In particular, closed
strings in the presence of higher forms fluxes are conjectured to lead to gravity on
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non geometric backgrounds that can be understood as noncommutative spaces (see
the recent review [18]).

There are complementary approaches to Levi-Civita connections. On the one
hand, on specific noncommutative algebras, there exist preferred metrics and one is
interested to study the Levi-Civita connections of these distinguished metrics. For
example in [16] invariant (Killing) metrics on quantum groups are considered. More
in general, compatibility between the noncommutative multiplication of an algebra
and its metric structure is used to strongly constrain the possible metrics and then
to study their geometry. Typically the compatibility is that of requiring the metric
g ∈ Ω(A) ⊗A Ω(A), where Ω(A) is the space of one forms on the algebra A, to be
central (ga = ag for all a ∈ A), see e.g. [8–11, 17, 20].

On the other hand it is interesting to study Levi-Civita connections for metrics g
that, up to a proper notion of symmetry, are arbitrary symmetric tensors inΩ(A) ⊗A

Ω(A), i.e., that are not constrained by the noncommutativity of the algebra and that
in general are not central. It is indeed in this framework that a metric can be studied as
a dynamical field describing the gravitational degrees of freedoms. A first problem to
overcome in this approach is that the metric compatibility condition∇g = 0 requires
the lifting of the connection∇ onΩ(A) to the tensor productΩ(A) ⊗A Ω(A).While
this is doable if the connection itself has some invariance or centrality properties,
e.g. if it is a bimodule connection [13] (as it is the case for Levi-Civita connections
of central metrics [4]), for arbitrary connections this is itself an open problem.

For a selected class of noncommutative algebras it is possible to overcome these
centrality and invariance constraints on the metric and the connection. In case of
R

n with Moyal–Weyl noncommutativity the Levi-Civita connection of an arbitrary
symmetric metric was constructed in [3] using a noncommutative Koszul formula
(see also [6, Sects. 3.4, 8.5]). A similar result holds on the noncommutative torus [19].
The noncommutative 3-sphere is in [1]. These studies and [4] rely on the existence of
(undeformed) derivations of the noncommutative algebra A generating the A-module
of vector fields (dual to that of one forms) or a submodule thereof. The Lie algebra
generated by these derivations acts on A, that therefore carries a representation of
the universal enveloping algebra H of this Lie algebra.

We studymore in general algebras that carry an action of a triangular Hopf algebra
H and with noncommutativity controlled by the universal R-matrix R ∈ H ⊗ H ,
for all a, b ∈ A, ab = (R̄α � b)(R̄α � a), whereR−1 = R̄α ⊗ R̄α . These are braided
symmetric (braided commutative) algebras. For example noncommutative algebras
arising from Drinfeld twist (2-cocycle) deformation of commutative algebras are of
this kind, their differential geometry was studied in [5]. Another example, that does
not rely on twist deformation, is given by A a cotriangular Hopf algebra.

In this general setting we develop, reviewing [2], a noncommutative coordinate
free approach to Riemannian geometry that thus avoids using a preferred set of
derivations of the algebra A (usually unavailable).

We begin in Sect. 2 recalling basic facts about triangular Hopf algebras and their
modules and A-bimodules, like that of braided derivations (braided vector fields)
and the dual module of one forms Ω(A). The differential and Cartan calculus of the
exterior, inner and Lie derivatives [15, 20] is presented in Sect. 3 and is extended in
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Sect. 4 to include covariant derivatives. This leads to the Cartan structure equations,
which show that there is a unique notion of curvature and of torsion of a connection,
independently form their realization as operators on covariant or contravariant tensors
or on forms. We also see that the braiding associated with the universal R matrix
allows to lift arbitrary connections on Ω(A) to the tensor product Ω(A) ⊗A Ω(A).
In Sect. 5 existence and uniqueness of the Levi-Civita connection of an arbitrary
braided symmetric metric is proven using a noncommutative Koszul formula. The
Ricci tensor and the Einstein in vacuum equations are then presented.

In this paper we do not provide full proofs with detailed calculations, we rather
streamline the exposition so to clarify the logic flow of the arguments leading to
the main propositions and theorems. For a complementary detailed exposition of the
material presented here we refer to [2].

2 Triangular Hopf Algebra Representations

We consider modules and algebras over a field k of characteristic zero or the ring
of formal power series in a variable � over such field. With slight abuse of notation
k-modules and k-module maps will simply be called linear spaces and linear maps.
The tensor product over k is denoted ⊗. Algebras over k are assumed associative
and unital. Hopf algebras are assumed with invertible antipode.

When we have a Lie group G acting on a manifold M the spaces of vector
fields, one forms and their tensor products are bimodules over A = C∞(M) and are
representations of G. When A is noncommutative G is replaced by a Hopf algebra
H and we consider representations of H that are also A-bimodules.

Let H be a Hopf algebra (H, μ, η,�, ε, S) an H -module is a linear space V
with an H -action � : H ⊗ V → V . A linear map f : V → W between H -modules
is H -equivariant if

h � f (v) = f (h � v) , (1)

for all h ∈ H and v ∈ V . We denote by HM the category of H -modules. The tensor
product V ⊗ W of H -modules is an H -module with action h � (v ⊗ w) := (h(1) �
v) ⊗ (h(2) � w), where we have used the Sweedler notation�(h) = h(1) ⊗ h(2) (with
summation understood) for the coproduct of H .

For any V,W in HM , let homk(V,W ) in HM be the linear space Homk(V,W )

of linear maps L : V → W equipped with the adjoint H -action

� : H ⊗ homk

(
V,W

) → homk

(
V,W

)
, h � L := h(1) � ◦ L ◦ S(h(2)) � , (2)

i.e., (h � L)(v) = h(1) � (L(S(h(2)) � v)). There is another H -adjoint action on linear
maps V → W . We denote by khom(V,W ) the linear space Homk(V,W ) with H -
action �cop defined by
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�cop : H ⊗ khom
(
V,W

) → khom
(
V,W

)
, h �cop L̃ := h(2) � ◦ L̃ ◦ S−1(h(1)) � ,

(3)
i.e., (h �cop L̃)(v) = h(2) � (L̃(S−1(h(1)) � v)). While linear maps L ∈ homk(V,W )

naturally act from the left, indeed the � adjoint action satisfies, for all h ∈ H , v ∈ V ,
h � (L(v)) = (h(1) � L)(h(2) � v), linear maps L̃ ∈ khom(V,W ) naturally act from
the right, indeed the �cop adjoint action satisfies,

h � (L̃(v)) = (h(2) �cop L̃)(h(1) � v) , (4)

that, evaluating L̃ on v from the right, reads h � ((v)(L̃)) = (h(1) � v)(h(2) �cop L̃).
Let now H be a triangular Hopf algebra with universal R-matrix R ∈ H ⊗ H .

We recall that it satisfies

�cop(h) = R�(h)R−1 for all h ∈ H,

(� ⊗ id)R = R13R23 , (id ⊗ �)R = R13R12

and the triangularity conditionR21 = R−1. For each H -module V,W we then have
the braiding isomorphism

τV,W : V ⊗ W −→ W ⊗ V , v ⊗ w 	−→ (
R̄α � w

) ⊗ (
R̄α � v

)
(5)

where we used the notation R = Rα ⊗ Rα , R−1 = R̄α ⊗ R̄α . These isomorphisms
provide a representation of the permutation group. With slight abuse of notation we
shall frequently omit the indices in the isomorphisms τV,W and simply write τ .

A left H -module algebra A is an algebra with a compatible H -module structure,

h � (ab) = (h(1) � a)(h(2) � b) , h � 1A = ε(h)1A

for all h ∈ H and a, b ∈ A. When H is triangular we consider A to be braided
symmetric or braided commutative (also called symmetric or quasi-commutative) if,
for all a, b ∈ A,

ab = (R̄α � b)(R̄α � a) . (6)

Similarly, an H -equivariant A-bimodule (or relative H, A-module) V is an H -
module and a compatible A-bimodule: for all a ∈ A, v ∈ V , h � (av) = (h(1) �
a)(h(2) � v), h � (va) = (h(1) � v)(h(2) � a). It is braided symmetric if

av = (R̄α � v)(R̄α � a) . (7)

Wedenote by H
AM

sym
A the categoryof braided symmetricH -equivariant A-bimodules.

If V,W are modules in H
AM

sym
A the balanced tensor product V ⊗A W is in H

AM
sym
A

(with obvious left and right A-actions inherited from those of V andW respectively).
Furthermore, homk(V,W ) and khom(V,W ) are A-bimodules, the first via the left
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A-module structure of V and W , the second via the right A-module structure of V
and W : For all a ∈ A, v ∈ V, L ∈ homk(V,W ), L̃ ∈ khom(V,W ),

(aL)(v) = a(L(v)) , (La)(v) = L(av) , (8)

(L̃a)(v) = L̃(v)a , (aL̃)(v) = L̃(va) . (9)

Let homA(V,W ) ⊂ homk(V,W ) and Ahom(V,W ) ⊂ khom(V,W ) be the
H -submodules of right A-linear maps: for all a ∈ A, L(va) = L(v)a, and left
A-linear maps: for all a ∈ A, L̃(av) = aL̃(v). Then homA(V,W ) ⊂ homk(V,W )

and Ahom(V,W ) ⊂ khom(V,W ) are A-subbimodules and are modules in H
AM

sym
A .

(Thus H
AM

sym
A is a braided symmetric biclosed monoidal category).

Given a braided commutative A-bimodule V in H
AM

sym
A the dual module ∗V :=

Ahom(V, A) is in H
AM

sym
A . The evaluation of elements of ∗V on elements of V is

denoted as the pairing

〈 , 〉 : V ⊗A
∗V → A , v ⊗A ω 	→ 〈v, ω〉 (10)

which is well defined on the balanced tensor product ⊗A because of the second
expression in (9). It is right A-linear because of the first one in (9), left A-bilinear
and H -equivariant by definition of Ahom(V, A). The pairing 〈 , 〉 : V ⊗A

∗V → A
is therefore a morphism in H

AM
sym
A .

We shall further consider modules in H
AM

sym
A that are finitely generated and pro-

jective. Thismeans that the pairing (10) allows for dual bases {ei } and {ωi }of elements
ei ∈ V , ωi ∈ ∗V , i = 1, 2 . . . n with the property: for all v ∈ V , ω ∈ ∗V ,

v = 〈v, ωi 〉ei , ω = ωi 〈ei , ω〉

(sum over i understood). Despite the name, the vectors ei are in general not inde-
pendent over A, and similarly the ωi (unless V and ∗V are free modules).

We denote by H
AM

sym,fp
A the subcategory of braided commutative H -equivariant

A-bimodules finitely generated and projective and consider fromnowon such bimod-
ules. The spaces of vector fields on A, of one forms and their tensor products will all
be examples of modules in H

AM
sym,fp
A .

3 Differential and Cartan Calculus

Let A be a braided commutative H -module algebra, the linear spaceX(A) of braided
derivations is that of linear maps u ∈ homk(A, A) that satisfy the braided Leibniz
rule, for all a, b ∈ A,
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u(ab) = u(a)b + R̄α � a (R̄α � u)(b) . (11)

X(A) is an H -module (submodule of homk(A, A)): for all h ∈ H, u ∈ X(A), h � u
is still a braided derivation. As for derivations on a commutative algebra, it is not
difficult to see (cf. [20, Lemma 3.1]) that the braided commutator

[ , ] : X(A) ⊗ X(A) → X(A) , u ⊗ v 	→ [u, v] := uv − R̄α � v R̄α � u ,

(where composition of operators is understood) closes in X(A), is an H -equivariant
map (for all h ∈ H, u, v,∈ X(A), h � [u, v] = [h(1) � u, h(2) � v]) and structures the
H -module X(A) as a braided Lie algebra with respect to the triangular Hopf algebra
(H,R), i.e., we have the braided antisymmetry property and the braided Jacobi
identity, for all u, v, z ∈ X(A)),

[u, v] = −[R̄α � v, R̄α � u] , [u, [v, z]] = [[u, v], z] + [R̄α � v, [R̄α � u, z]] .

(12)
Braided derivations are furthermore amodule in H

AM
sym
A by defining, for all a, b ∈ A,

(au)(b) = a u(b) , ua = (R̄α � a)R̄α � u ; (13)

(au is a braided derivation because of the braided commutative property (6) of A).
We call X(A) the bimodule of (braided) vector fields.

LetΩ(A) := ∗X(A) = Ahom(X(A), A) be the dual module of left A-linear maps
X(A) → A with H -action �cop defined in (3) and A-bimodule structure defined in
(9). Recall the pairing notation (10). The exterior derivative d : A → Ω(A) is given
by

〈u, da〉 = u(a) (14)

for all u ∈ X(A). It is well-defined since both 〈 , da〉 : X(A) → A and â : X(A) →
A, u 	→ u(a) are left A-linear maps. The map d is H -equivariant, indeed, for all
h ∈ H the identities

h � 〈u, da〉 = 〈h(1) � u, h(2) �cop da〉 , h � (u(a)) = (h(1) � u)(h(2) � a)

imply h �cop (da) = d(h � a). Next we prove the undeformed Leibniz rule d(ab) =
(da)b + adb:

〈u, d(ab)〉 = u(ab) = u(a)b + R̄α � a (R̄α � u)(b)

= 〈u, (da)b〉 + (R̄α � a)〈R̄α � u, db〉
= 〈u, (da)b〉 + 〈u, adb〉 ,

where we used (13). The module of one forms is the submodule of Ω(A) in H
AM

sym
A

defined by AdA = {ω ∈ Ω(A) ; ω = a jda j } for all a j , a j ∈ A, with finite sum over
the index j understood (the right A-action closes in Ω(A) due to the Leibniz rule).
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We shall assume that the submodule AdA is finitely generated and projective over
A in this case also X(A) ∈ H

AM
sym,fp
A and it can be proven that AdA = Ω(A). Then

the A-bimodule Ω(A) and the exterior derivative d : A → Ω(A) constitute a first
order differential calculus on A. An H -equivariant one, since A and Ω(A) are in
H
AM

sym,fp
A and d : A → Ω(A) is H -equivariant.

Associated with Ω(A) and X(A) we have the modules in H
AM

sym,fp
A : T p,0 =

Ω(A)⊗A p and T 0,q = X(A)⊗Aq , p, q ∈ N, with T 0,0 = A, and the graded H -
module algebras of contravariant tensor fields T •,0 = ⊕

p∈N T p,0 and of covari-
ant tensor fields T 0,• = ⊕

q∈N T 0,q . We also have the graded H -module alge-
bra T •,• = ⊕

p,q∈N T p,q with product that on elements of homogeneous degree is
defined by,

⊗A :T p,q⊗T p′,q ′ →T p+p′,q+q ′
, θ⊗Aν⊗θ ′⊗Aν ′ 	→θ⊗A R̄

α�copθ ′⊗A R̄α�ν⊗Aν ′
(15)

where θ ∈ T p,0, ν ∈ T 0,q , θ ′ ∈ T p′,0, ν ′ ∈ T 0,q ′
. The pairing 〈 , 〉 can be extended

to the morphism in H
AM

sym,fp
A defined to be trivial if r > p and otherwise given by

〈 , 〉 : T 0,r ⊗A T p,q → T p−r,q , 〈ν, θ ⊗A η〉 := 〈ν, θ〉η (16)

for all ν ∈ T 0,r , θ ∈ T r,0, η ∈ T p−r,q . In particular, for r = 1 we obtain the contrac-
tion operator

i : X(A) → homA(T p,q , T p−1,q) , v 	→ iv = 〈v, 〉 .

Therefore, the evaluation in (16) is just the iteration of the contraction operator
r -times: 〈vr ⊗A . . . v2 ⊗A v1, η〉 = ivr ◦ . . . iv2 ◦ iv1(η).

The graded H -module algebra of exterior forms is by definition Ω•(A) :=⊕
n∈N Ωn(A). Here Ω0(A) = A, Ω1(A) = Ω(A), and Ωn(A) is the module of

completely braided antisymmetric tensors in T n,0, for example Ω2(A) = Ω(A) ∧
Ω(A) ⊂ Ω(A) ⊗A Ω(A) is the image of the projector PA = 1

2 (id
⊗2 − τ) :

Ω⊗2(A) → Ω⊗2(A) that isH -equivariant and A-bilinear (amorphism in H
AM

sym,fp
A ).

The wedge product of one forms is then defined by

ω ∧ ω′ := ω ⊗A ω′ − R̄α � ω′ ⊗A R̄α � ω , (17)

and is a braided antisymmetric 2-form: ω ∧ ω′ = −R̄α � ω′ ∧ R̄α � ω. Similarly for
forms of higher degree, indeed the construction is as in the classical case since
the braiding τ provides a representation of the permutation group. In particular
Ω•(A) is equivalently the quotient of the tensor algebra T •,0 by the two-sided ideal
generated by ker PA. The exterior algebra Ω•(A) is generated in degree 0 and 1 and
is a graded braided symmetric H -module algebra: for all θ ∈ Ω p(A), θ ′ ∈ Ω p′

(A),
θ ∧ θ ′ = (−1)pp

′
R̄α � θ ′ ∧ R̄α � θ .
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The contraction operator i : X(A) ⊗A Ω(A)⊗A p → Ω(A)⊗A p−1 restricts to i :
X(A) ⊗A Ω(A)p → Ω(A)p−1, giving, for all u ∈ X(A), the (graded) braided inner
derivation iu : Ω•(A) → Ω•−1(A),

iu(θ ∧ θ ′) = iu(θ) ∧ θ ′ + (−1)|θ |(R̄α � θ) ∧ iR̄α�u(θ
′) ,

where |θ | ∈ N is the degree of the homogeneous form θ . Applying a second inner
derivative we obtain that on exterior forms

iu ◦ iv + iR̄α�v ◦ iR̄α�u = 0 . (18)

We now recall the action of the braided Lie algebra of vector fieldsX(A) on tensor
fields, i.e., the Lie derivative. We define L : X(A) ⊗ A → A, Lu(a) := u(a) and
L : X(A) ⊗ X(A) → X(A), Lu(v) := [u, v]. Since ξ � (Lu(a)) = Lξ(1)�u(ξ(2) �
a) and ξ � (Lu(v)) = Lξ(1)�u(ξ(2) � v), L is H -equivariant and compatible with
the A-bimodule structure of X(A); then the extension of the action of X(A) to the
tensor algebra T 0,• is well defined by requiring Lu to be a braided derivation:

Lu(ν ⊗A ν ′) = Lu(ν) ⊗ ν ′ + R̄α � ν ⊗A LR̄α�u(ν
′)

for all ν, ν ′ ∈ T 0,•
R . This implies the commutativity property Lu ◦ τ = τ ◦ Lu

between the braiding and the Lie derivative operators. The Lie derivative on con-
travariant tensor fields is canonically defined by duality, for all ν ∈ T 0,r

R and θ ∈ T r,0
R ,

Lu〈ν, θ〉 = 〈Luν, θ〉 + 〈R̄α � ν,LR̄α�uθ〉 (19)

i.e., 〈ν,Luθ〉 := LR̄α�u〈R̄α � ν, θ〉 − 〈LR̄α�u R̄α � ν, θ〉. It follows that vector fields
acts on the tensor algebra T •,• as braided derivations. On tensor fields T •,• we have

Lu ◦ Lv − LR̄α�v ◦ LR̄α�u = L[u,v] ; (20)

this follows from the braided Jacobi identity in (12), the braided Leibniz rule and
(19). Equation (20) shows that the Lie derivative L : X(A) ⊗ T •,• → T •,• is an
action of the braided Lie algebra of derivations X(A) on T •,•.

The commutativity of the Lie derivative with the braiding,Lu ◦ τ = τ ◦ Lu , and
the definition of thewedge product in terms of braided antisymmetric tensor products
imply that vector fields also act as braided derivations on the exterior algebraΩ•(A).
From (19) it is immediate to compute, for all u, v ∈ X(A), ω ∈ Ω(A),

(Lu ◦ iv − iR̄α�v ◦ LR̄α�u)ω = i[u,v]ω ; (21)

since both left hand side and right hand side are braided derivations on Ω•(A), this
relation extends to arbitrary exterior forms.
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The Lie derivative commutes with the exterior derivative on A, for all a ∈ A,
v ∈ X(A), Lvda = dLva, indeed, for all u ∈ X(A),

〈u,Lvda〉 = LR̄α�v
〈R̄α � u, da〉 − 〈[R̄α � v, R̄α � u], da〉

= LR̄α�v
LR̄α�u

a − L[R̄α�v,R̄α�u]a

= LuLva = 〈u, dLva〉 .

Using induction on the form degree we have that dLvθ = Lvdθ for any θ ∈ Ω•(A).
Similarly, for all v ∈ X(A),

Lv = iv ◦ d + d ◦ iv

trivially holds on A and by induction on the form degree it holds on Ω•(A) since
both the right hand side and the left hand side are braided derivations of Ω•(A).

The equationsLz ◦ d = d ◦ Lz ,Lv = iv ◦ d + d ◦ iv and (18), (20) (restricted to
exterior forms), (21), d2 = 0, constitute the Cartan calculus of the exterior, Lie and
inner derivatives [15, 20] that we summarize in the following

Theorem 1 (Braided Cartan calculus) Let A be a braided commutative left H-
module algebra and consider the associated braided differential algebra
(Ω•(A),∧, d). The exterior derivative, the Lie derivative and inner derivative along
vector fields u, v ∈ X(A) are graded braided derivations of Ω•(A) (respectively of
degree 1, 0,−1) that satisfy

[Lu,Lv] = L[u,v], [iu, iv] = 0,

[Lu, iv] = i[u,v], [iu, d] = Lu,

[Lu, d] = 0, [d, d] = 0,

where[L , L ′] = L ◦ L ′ − (−1)|L||L ′| R̄α � L ′ ◦ R̄α � L is the graded braided commu-
tator of linear maps L , L ′ on Ω•(A) of degree |L| and |L ′|.

Examples of differential andCartan calculi according to this construction are those
on a cotriangular Hopf algebra K (dual to H ), in this case the calculus is a bicovariant
differential calculus à la Woronowicz [21]. It is fixed by the triangular structure of
K and turns out to be that defined in [14, Sect. 4.3]. Another class of examples [5,
20] arises via Drinfeld twist deformations of the differential and Cartan calculus on
G-manifolds M , with G a Lie group. The Drinfeld two cocycle is associated with
the universal enveloping algebra of the Lie algebra of G.
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4 Braided Differential Geometry

We extend the noncommutative Cartan calculus to connections presenting their Car-
tan formula with the inner derivatives. This allows to unify different definitions of
curvature and torsion. Considering connections on dual modules we further relate
curvature and torsion on vector fields to curvature and torsion on forms via the Cartan
structure equations. The Bianchi identities are obtained.

4.1 Connections

Let H be a triangular Hopf algebra, A be a braided commutative H -module algebra
and

(
Ω•(A),∧, d

)
the associated braided differential graded algebra (differential

calculus) constructed in Sect. 3. A right connection on a module Γ in H
AM

sym
A is a

k-linear map
� : Γ → Γ ⊗A Ω(A) (22)

in homk(Γ, Γ ⊗A Ω(A)), which satisfies the Leibniz rule, for all s ∈ Γ , a ∈ A,

�
(sa) = �

(s)a + s ⊗A da . (23)

A left connection on Γ is a k-linear map

�: Γ → Ω(A) ⊗A Γ (24)

in khom(Γ,Ω(A) ⊗A Γ ), which satisfies the Leibniz rule,

�

(as) = da ⊗A s + a

�

(s) . (25)

We denote by ConA(Γ ) and ACon(Γ ) the set of all right, respectively left connec-
tions.

The H -adjoint action (2) on
� ∈ ConA(Γ ) ⊂ homk(Γ, Γ ⊗A Ω(A)), reads, for

all h ∈ H , h � � := h1 � ◦� ◦ S(h2)�. This linear map is easily seen to satisfy
(cf. [7, Sect. 6.2]), for all s ∈ Γ and a ∈ A,

(h � �
)(sa) = (h � �

)(s)a + s ⊗A ε(h)da . (26)

In particular we see that if ε(h) = 0 then h � � ∈ homA(Γ, Γ ⊗A Ω(A)), while if
ε(h) = 1 then h � � ∈ ConA(Γ ). Similarly for

�∈ ACon(Γ ). Using this action
and the braided commutativity of the A-bimodule Γ , a right connection

�
on Γ is

shown to be also a braided left connection, cf. [7, Proposition 6.8], and similarly a
left connection

�

on Γ is also a braided right connection, for all a ∈ A, s ∈ Γ ,
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�
(as) = (R̄α � a)(R̄α � �

)(s) + R̄α � s ⊗A R̄α � da ,

�

(sa) = (R̄α �cop �)(s)(R̄α � a) + R̄α � da ⊗A R̄α � s .
(27)

If
�

is H -equivariant we have
�

(as) = a
�

(s) + R̄α � s ⊗A R̄α � da, and thus
recover the notion of bimodule connection studied in [13].

A connection

�

on Γ defines a connection on Γ ⊗A Γ via the braided Leibniz
rule

�: Γ ⊗A Γ → Ω(A) ⊗A Γ ⊗A Γ ,

s ⊗A ŝ 	→ �

(s ⊗A ŝ) := (R̄α �cop �

)(s) ⊗A (R̄α � ŝ) + τ12 ◦ (s ⊗A ̂�

ŝ) ,

(28)
where τ12 : Γ ⊗A Ω(A) ⊗A Γ → Ω(A) ⊗A Γ ⊗A Γ is the braiding isomorphisms.
Due to the braided property (27) this definition is well defined, i.e., it is independent
from the representative chosen in Γ ⊗ Γ for the balanced tensor product Γ ⊗A

Γ (e.g. sa ⊗ ŝ versus s ⊗ aŝ). The map in (28) transforms according to the H -
adjoint action �cop so that it is in khom(Γ ⊗A Γ,Ω(A) ⊗A Γ ⊗A Γ ). Finally it is a
connection because it satisfies the Leibniz rule. A similar expression holds also for
right connections.

The connections
� ∈ ConA(Γ ) and

�∈ ACon(Γ ) also extend to connections
d� ∈ homk(Γ ⊗A Ω•(A), Γ ⊗A Ω•+1(A)) and d �∈ khom(Ω•(A) ⊗A Γ,Ω•+1

(A) ⊗A Γ ) well-defined by

d� : Γ ⊗A Ω•(A) −→ Γ ⊗A Ω•+1(A) , d� (s ⊗A θ) := �
(s) ∧ θ + s ⊗A dθ ,

(29)
and, for all k ∈ N,

d �: Ωk(A) ⊗A Γ −→ Ωk+1(A) ⊗A Γ , d �(θ ⊗A s) := dθ ⊗A s + (−1)kθ ∧ �

(s) .

(30)
The H -action reads, for all h′ ∈ H , h′ � d� = dh′�� , h′ �cop d �= dh′�cop �, so that

we have the Leibniz rule, for all ς ∈ Γ ⊗A Ωk(A), ϑ ∈ Ω•(A) and for all σ ∈
Ω•(A) ⊗A Γ and θ ∈ Ωk(A),

d� (ς ∧ ϑ) = d� ς ∧ ϑ + (−1)kς ∧ dϑ , d �(θ ∧ σ) = dθ ∧ σ + (−1)kθ ∧ d �σ .

(31)
The definitions in (29), (30) are well-defined because independent from the repre-
sentative chosen for the balanced tensor product over A; for the proof one can use
for example Eqs. (23), (25), (26).

We extend the inner derivative iu : Ω•(A) → Ω•−1(A)) to Ω•(A) ⊗A Γ by, for
all u ∈ X(A),

iu : Ω•(A) ⊗A Γ → Ω•−1(A) ⊗A Γ , θ ⊗A s 	→ iu(θ ⊗A s) = iu(θ) ⊗A s . (32)

This allows to define the covariant derivative of a left connection along a vector field
u ∈ X(A). It is the linear operator of zero degree d �

u
: Ω•(A) ⊗A Γ → Ω•(A) ⊗A
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Γ defined by
d �

u
:= iu ◦ d �+ d �◦ iu , (33)

in particular on Γ we have d �

u
= iu ◦ �

that, as usual, we denote by

�

u . The key
property of

�

u and d �

u
is that they are composition of a linear map

�

acting from
the right and a linear map iu acting from the left. This implies the braided Leibniz
rule, for all θ ∈ Ω•(A), σ ∈ Ω•(A) ⊗A Γ

d �

u
(θ ∧ σ) = Lu(θ) ∧ σ + (R̄α �cop θ) ∧ d �

R̄α�u(σ ) . (34)

In turn this and the braided Cartan relation [Lu, iv] = i[u,v], i.e., [iu,Lv] = i[u,v]
imply the braided Cartan relation

d �

u
◦ iv − iR̄α�v ◦ d �

R̄α�u = i[u,v] i.e., iu ◦ d �

v
− d �

R̄α�v
◦ iR̄α�u = i[u,v] (35)

where, despite the connection d �is not H -equivariant, but since it is a left connec-
tion, the braiding acts nontrivially only the vector fields u and v, as in [Lu, iv] = i[u,v].

4.2 Curvature

The curvature of the connection
�∈ ACon(Γ ) is defined by

d �

2 = d �◦ d �. (36)

This is a left Ω•(A)-linear map in Ω•(A)hom(Ω•(A) ⊗A Γ,Ω•+2⊗A Γ ). For exam-

ple, to prove that for all θ ∈ Ωk(A), σ ∈ Ω•(A) ⊗A Γ , d �

2
(θ ∧ σ) = θ ∧ d �

2
σ just

use twice (31). We have a second definition of curvature of a left connection. As in
[5] we define the curvature R �to be the linear map R �: X(A) ⊗ X(A) ⊗ Γ → Γ ,

R �(u, v, s) := (

�

u ◦ �

v − �

R̄α�v ◦ �

R̄α�u − �

[u,v])(s) . (37)

It satisfies, for all u, v ∈ X(A) and s ∈ Γ ,

R �(u, v, s) = − iu ◦ iv ◦ d �

2
(s) . (38)

This implies that R �is a tensor field in Ahom(X2(A) ⊗A Γ, Γ ), where X2(A) =
X(A) ∧ X(A) = ∗Ω2(A). These two definitions of curvature are equivalent since
Ahom(Γ,Ω2(A) ⊗A Γ ) � Ahom(X2(A) ⊗A Γ, Γ ) as finitely generated projective
modules in H

AM
sym,fp
A .
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4.3 Torsion

Since Γ = X(A) is a finitely generated and projective A-bimodule we consider the
canonical H -equivariant element I := ω j ⊗A e j ∈ Ω(A) ⊗ X(A), where Ω(A) =
∗X(A) = Ahom(X(A), A) is the right dual module of X(A) and {ω j }, {e j } a pair of
dual bases. The torsion 2-form of a connection

�

is then the tensor field

d �(I ) ∈ Ω2(A) ⊗A X(A) .

We also define the torsion T �as the linear map T �: X(A) ⊗ X(A) → X(A),

T �(u, v) := �

uv − �

R̄α�v R̄α � u − [u, v] . (39)

Use of the Cartan identity (35) shows that it satisfies

T �(u, v) = − iu ◦ iv ◦ d �(I ) . (40)

This implies that T �is a left A-linear map X2(A) → X(A).
Analogous results holds for curvatures and torsions of a right connection.

4.4 Dual Connections, Cartan Structure Equations
and Bianchi Identities

The dual of a left connection

�∈ ACon(Γ ) is the right connection ∗ �∈ ConA(
∗Γ )

defined by, for all s ∈ Γ , ∗s ∈ ∗Γ ,

d〈s, ∗s〉 = 〈 �

s, ∗s〉 + 〈s, ∗ �∗s〉 . (41)

The right connection property is indeed easily proven.Notice the absence of a braided
Leibniz rule, cf. (28), which is compensated by considering a left and a right con-
nection. This definition implies that the dual of the left connection d �is the right
connection d∗ �: for all σ ∈ Ω•(A) ⊗A Γ of homogeneous form degree |σ | and
∗σ ∈ ∗Γ ⊗A Ω•(A),

d〈σ, ∗σ 〉 = 〈d �σ, ∗σ 〉 + (−1)|σ |〈σ, d∗ �∗σ 〉 ; (42)

here we use the pairing 〈 , 〉 : Ω•(A) ⊗A Γ ⊗A
∗Γ ⊗A Ω•(A) → Ω•(A), which is

Ω•(A)-bilinear.
The Cartan structure equations for curvature and torsion relate R �and T �on

vectors fields to the curvature d∗ �

2
and the torsion d + ∧ ◦∗ �

on forms. This last
expression comes from pairing a one form θ with the torsion d �(I ) and using (42):
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〈d �(I ), θ〉 = d〈I, θ〉 + 〈I, ∗ �

θ〉 = (d + ∧ ◦ ∗ �

)θ .

Here too we used the above Ω•(A)-bilinear pairing 〈 , 〉 with now X(A) = Γ and
Ω(A) = ∗Γ .

Theorem 2 (Cartan structure equations) For all u, v, z ∈ X(A), θ ∈ Ω(A)we have

〈R �(u, v, z), θ〉 = 〈u ⊗A v ⊗A z, d∗ �

2
θ〉 ,

〈T �(u, v), θ〉 = −〈u ⊗A v, (d + ∧ ◦∗ �

)θ〉 .

Proof We prove the second equation: 〈T �(u, v), θ〉 = −〈 iu ◦ iv ◦ d �(I ), θ〉 =
− iu ◦ iv〈d �(I ), θ〉 = − iu ◦ iv(dθ + ∧ ◦ ∗ �

θ) = −〈u ⊗A v, dθ + ∧ ◦ ∗ �

θ〉. �

Using a dual basis {ei , }, {ωi } of X(A) and Ω(A), we define the coefficients one
forms of the connection ∗ �∈ ConA(Ω(A)), dual to

�∈ ACon(X(A)),

ωk
l := 〈ek, ∗ �

ωl〉 ,

so that, since ωk ⊗A 〈ek, 〉 is the identity map on Ω(A), ∗ �

ωl = ωk ⊗A ωk
l . In

terms of these coefficients we obtain

d∗ �

2
ωl = ωk ⊗A (dωk

l + ωk
j ∧ ω j

l) := ωk ⊗A (−Rk
l)

(d + ∧ ◦∗ �

)ωl = dωl + ω j ∧ ω j
l := Tl

where we have defined the curvature and torsion coefficients 2-forms Rk
l and Tl . As

in commutative differential geometry, applying idΩ(A) ⊗A d to the first equation and
differentiating the second we readily obtain the Bianchi identities,

ωk ⊗A (dRk
l + ωk

j ∧ R j
l − Rk

j ∧ ω j
l) = 0 ,

dTl − T j ∧ ω j
l = ω j ∧ R j

l .
(43)

Notice that the commutator [ω,R] l
k := ωk

j ∧ R j
l − Rk

j ∧ ω j
l in the first identity

is not a braided commutator.

5 Braided Riemannian Geometry

Since Ω(A) = ∗X(A) is a finitely generated A-bimodule (a module in H
AM

sym,fp
A )

we have the isomorphism

Ω(A) ⊗A Ω(A)
�→ Ahom(X(A),Ω(A)) , g = ga ⊗A ga 	→ g� := 〈 ,ga〉 ⊗A ga
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where g�(u) = 〈u,ga〉ga for all u ∈ X(A). We say that an element g ∈ Ω(A) ⊗A

Ω(A) is braided symmetric if g = τ(g).
A pseudo-Riemannian metric g ∈ Ω(A) ⊗A Ω(A) is a braided symmetric ele-

ment such that g� ∈ Ahom(X(A),Ω(A)) is invertible.
Recall that a connection

�

onX(A) lifts, viaEq. (28), to a connection onX(A) ⊗A

X(A) and, considering the dual connection, to a connection ∗ �

onΩ(A) ⊗A Ω(A).

Definition 1 A connection

�∈ ACon(X(A)) is metric compatible if ∗ �

g = 0
where ∗ �

is the dual connection on Ω(A) ⊗A Ω(A). A Levi-Civita connection

�∈ ACon(X(A)) is a metric compatible and torsion free connection.

We can now state the main result.

Theorem 3 (Levi-Civita connection) Let H be a triangular Hopf algebra, A a
braided commutative H-module algebra and the associated module of one forms
be finitely generated and projective. For any metric g there is a unique Levi-Civita
connection.

Sketch of the proof Assume

�∈ ACon(X(A)) is a torsion free metric compati-
ble connection. Applying iu to the identity d〈v ⊗A z,g〉 = 〈 �

(v ⊗A z),g〉 + 〈v ⊗A

z, ∗ �

g〉 = 〈 �

(v ⊗A z),g〉 we obtain Lu〈v ⊗A z,g〉 = 〈 �

u(v ⊗A z),g〉. We use
the braided Leibniz rule in (28) in order to compute

�

u = iu ◦ �

on v and z.
Then, as in the commutative case we use the torsion free condition T (u, v) =

�
uv − �

ηv ηu − [u, v] = 0 and the braiding properties to obtain

Lu〈v ⊗A z,g〉 = 〈βγ z ⊗A

�

β
ηv γηu ,g〉 + 〈[u, v] ⊗A z ,g〉 + 〈αv ⊗A

�

αu z ,g〉
(44)

where we used the notation αv ⊗ αu = R̄α � v ⊗ R̄α � u and similarly βγ z ⊗ β
ηv ⊗

γ ηu = R̄β R̄γ � z ⊗ R̄β R̄η � v ⊗ R̄γ R̄η � v.We rewrite this identity for the cyclically
permuted elements u ⊗ v ⊗ z 	→ αβ z ⊗ αu ⊗ βv and u ⊗ v ⊗ z 	→ ηv ⊗ γ z ⊗ γ ηu;
then subtract the second from the first and add the third thus obtaining (after using
the Yang–Baxter equation, the braided symmetry of the metric and the braided anti-
symmetry of the braided Lie bracket of vector fields)

2〈αv ⊗A

�

αu z ,g〉 = Lu〈v ⊗A z,g〉 − Lαv〈αu ⊗A z,g〉 + Lαβz〈αu ⊗A βv,g〉
− 〈[u, v] ⊗A z ,g〉 + 〈u ⊗A [v, z] ,g〉 + 〈[u, β z] ⊗A βv ,g〉 .

(45)
The right hand side of this identity uniquely determines the left hand side. Since
g� is invertible it determines the unique covariant derivative

�

u : X(A) → X(A)

for all u ∈ X(A) and hence uniqueness of the metric compatible and torsion free
connection

�

. We now do not assume existence of the Levi-Civita connection and
define

�

using (45). The properties of the right hand side of (45) then show that

�

is a connection. �
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We observe that the Koszul formula (45) generalizes to the case of arbitrarymetric
tensors the Koszul formula obtained in [20] for the case of H -equivariant metrics:
h � 〈u ⊗A v,g〉 = 〈h � (u ⊗A v),g〉, for all h ∈ H , u, v,∈ X(A).

The Ricci tensor is the trace of the Riemann tensor, using a pair of dual basis {ω j },
{e j } it is given by, for all u, v ∈ X(A),

Ric(u, v) = 〈ωi , R �(ei , u, v)〉′ , (46)

where

〈 , 〉′ := 〈 , 〉 ◦ τ : Ω(A) ⊗A X(A) → A , 〈θ, u〉′ = 〈R̄α � u, R̄α �cop θ〉

is the pairing with forms on the left of vector fields. Since I = ωi ⊗A ei ∈ Ω ⊗A

X(A) commutes with the elements of A and since the curvature R �is left A-linear,
Ric is a well defined left A-linear tensor in Ahom(X(A) ⊗A X(A), A). We can then
define an Einstein metric on A to be a metric g proportional (via a coefficient λ) to
the Ricci tensor of its Levi-Civita connection, for all u, v ∈ X(A),

Ric(u, v) = λ〈u ⊗A v,g〉 .

Here both Ric and 〈 ,g〉 are left A-linear tensors in Ahom(X(A) ⊗A X(A), A).
Noncommutative Einstein spaces arise as solutions of this equation.
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Notes on AdS4 Holography and
Higher-Derivative Supergravity

Nikolay Bobev

Abstract I summarize recent results on higher-derivative conformal supergravity
which find important applications in AdS/CFT and black hole physics. In particular,
I showhow toderive the higher-derivative action of four-dimensionalminimal gauged
supergravity and use it in conjunction with holography and supersymmetric local-
ization to derive new results for the large N partition functions of three-dimensional
supersymmetric matter coupled Chern–Simons theories. In addition, these methods
can be used to derive the leading corrections to the Bekenstein–Hawking entropy of
general four-dimensional AdS black holes.

Keywords Supergravity · AdS/CFT · Black holes · String theory

1 Introduction

The gravitational side of the AdS/CFT correspondence is under good calculational
control in the classical supergravity limit of string and M-theory which allows for
explicit calculations of physical observables in the planar limit of the dual gauge
theory. Going beyond this approximation requires calculating higher-derivative cor-
rections to ten- or eleven-dimensional supergravity and understanding their effects
on holographic observables. This is technically challenging and there are few explicit
results available in the literature. The goal of this note is to summarize recent
results which bypass some of these difficulties by eschewing the need to work in
ten or eleven dimensions and study higher-derivative corrections directly in four-
dimensional gauged supergravity [1–3].

The simplest setup in this context is given by the gravity multiplet of four-
dimensional N = 2 gauged supergravity which captures the universal dynamics of
the energy-momentum multiplet in the dual three-dimensional N = 2 SCFT. The
two-derivative action for the bosonic fields is the Einstein–Maxwell action with a
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negative cosmological constant. The four-derivative action for this model can be
studied using techniques from conformal supergravity. It was shown in [1, 3] that
there are only two supersymmetric four-derivative terms in the action which have
arbitrary real coefficients, c1 and c2. Despite the presence of non-trivial corrections to
the Lagrangian of the theory every solution of the two-derivative equations of motion
also solves the four-derivative equations. Moreover the amount of supersymmetry
preserved by a given solution is not affected by the four-derivative corrections.

These supergravity results prove powerful in the context of holography. In par-
ticular they allow for an explicit evaluation of the regularized on-shell action of any
solution to the four-derivative supergravity theory which in turn captures the path
integral of the dual SCFT. In addition, the presence of the higher-derivative correc-
tions modifies the thermodynamics of black hole solutions in the theory. The main
results for the on-shell action and the black hole entropy in this context can be found
in (10) and (22) below, respectively.

The constants c1,2 are free parameters in four-dimensional supergravity but they
should be uniquely fixed by the embedding of the model in string or M-theory. In the
absence of such an explicit embedding one can appeal to the holographically dual
field theory and study its path integral to subleading order in the planar limit. Indeed,
this proves to be a fruitful strategy in the context of three-dimensional SCFTs realized
on the worldvolume of N M2-branes which are dual to orbifolds of the AdS4 × S7

background of M-theory. Combining the results for the higher-derivative on-shell
action with supersymmetric localization results in the large N limit one finds that
the partition function of the SCFTs on various compact manifolds can be computed
explicitly to order N

1
2 , see (30) below.

2 Minimal Gauged Supergravity

We start with a short summary of the conformal supergravity formalism, see [4]
for a review and further references. We are interested in the four-dimensional mini-
mal gaugedN = 2 supergravity specified by the Weyl multiplet, an auxiliary vector
multiplet and an auxiliary hypermultiplet. We will mostly work in Euclidean sig-
nature in view of the applications of our results to evaluating on-shell actions and
comparing them to the dual CFT partition functions evaluated by supersymmetric
localization. In Euclidean signature, the vector multiplet is related to the reducible
combination of a real chiral multipletX+ and a real anti-chiral multipletX−, see [5].
The quadratic terms (X±)2 can be used to construct a supersymmetric Lagrangian
by using (anti-)chiral superspace integrals [6],

LV = 1
2

∫
d4θ E+ (X+)2 + 1

2

∫
d4θ̄ E− (X−)2 , (1)

where E± is the (anti-)chiral superspace measure. The two-derivative action of min-
imal gauged supergravity is obtained by adding to (1) the Lagrangian for the hyper-
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multiplet as described in [5]. The hypermultiplet implements the gauging in the
supergravity theory since it transforms locally under a U(1) subgroup of the SU(2)
R-symmetry.

Our goal is to study two supersymmetric Lagrangian densities containing higher-
derivative couplings. One of them is constructed from the Weyl multiplet, related
to a chiral and an anti-chiral tensor multiplet Wab± , which is squared to arrive at the
superspace integrals [7]

LW2 = − 1
64

∫
d4θ E+ (Wab

+ )2 − 1
64

∫
d4θ̄ E− (Wab

− )2 . (2)

The other is built from the T-log multiplet and contains the supersymmetric com-
pletion of the Gauss–Bonnet term [8]. In superspace notation, it can be written as

LTlog = − 1
2

∫
d4θ E+ Φ ′

+∇ 4
lnΦ− + anti-chiral . (3)

Here Φ ′+ is a chiral multiplet and Φ− is an anti-chiral multiplet and, as discussed
in [8], when Φ ′+ is a constant multiplet, Φ− can be identified with X−. Note that,
in minimal gauged supergravity, identifying Φ ′+ with a composite chiral multiplet,
which needs to carry zero Weyl weight [8], leads to terms in the Lagrangian (3)
with at least six derivatives. We do not consider such higher-order terms here and
therefore set Φ ′+ = 1.

One can study other supersymmetric R2-invariants constructed from tensor multi-
plets, see [9, 10]. However the effects of the gauging on these invariants has not been
studied in detail in the literature. Moreover as discussed recently in [3] the addition
of these other supersymmetric invariants is either not allowed or does not change the
results presented below.

The Lagrangians in (1), (2), and (3) are superconformally invariant by construc-
tion. The coefficient of the two-derivative Lagrangian can be set to unity by simple
field redefinitions, and therefore we find that there are two arbitrary real coeffi-
cients, c1 and c2, which determine the four-derivative Lagrangian.Moreover, one can
show that the bosonic terms in (2) and (3) are related by LW2 + LTlog = LGB, where
LGB is the Gauss–Bonnet density [8]. We can thus eliminate the T-log Lagrangian
in favor of the Weyl-squared and Gauss–Bonnet terms and arrive at the following
superconformal higher-derivative Lagrangian

LHD = L2∂ + (c1 − c2)LW2 + c2 LGB . (4)

Starting from (4), one can obtain the Lagrangian density in the Poincaré frame
by gauge-fixing the extra symmetries and eliminating the auxiliary fields that ensure
off-shell closure of the superconformal algebra. This procedure results in an action
that involves only the dynamical fields of minimal gauged supergravity. This cal-
culation is straightforward but tedious and is discussed in more details in [3]. An
important ingredient in this technical analysis is the observation that, upon choos-
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ing convenient gauge-fixing conditions for the superconformal symmetries, the extra
superconformal fields can be eliminated from (4) using their two-derivative solutions,
even in the presence of the higher-derivative couplings. The result of these conformal
supergravity calculations is the following four-derivative bosonic Lagrangian

e−1L2∂ = − (16π GN )−1
[
R + 6 L−2 − 1

4 FabF
ab

]
,

e−1LW2 = (
Cab

cd
)2 − L−2FabF

ab + 1
2

(
F+
ab

)2(
F−
cd

)2
− 4 F−

ab R
acF+

c
b + 8

(∇a F−
ab

)(∇cF+
c

b
)
, (5)

e−1LGB = Rabcd Rabcd − 4 RabRab + R2 ,

where GN is the Newton constant, Cab
cd is the Weyl tensor, Fab is the graviphoton

field strength, and L determines the cosmological constant.
A somewhat unexpected property of the Lagrangian (5) was observed in [1],

namely it was shown in [1, 3] that the solutions of the two-derivative equations of
motion also solve the equations of motion derived from (5). Similar results have
been shown also for ungauged N = 2 supergravity, see [11], as well as for non-
supersymmetric gravitational theories [12]. In addition to that, it can be shown that
the supersymmetry variations of the gravitini are not modified by the presence of
the higher-derivative couplings. This implies that any solution of the two-derivative
Poincaré action of four-dimensionalminimal gauged supergravity is also a solution of
the higher-derivative action (4), and it preserves the same amount of supersymmetry.
From now on we focus solely on solutions of the two-derivative equations of motion.

3 On-Shell Action

A central observable in holography is the appropriately regularized value of the
on-shell gravitational action on asymptotically AdS solutions. In order to evaluate
the action (4) on solutions of the two-derivative EoM one can use (5) to derive the
following identity for the on-shell values of the three actions:

IW2 = IGB − 64πGN

L2
I2∂ . (6)

The divergences in the on-shell actions on the right-hand side of (6) can be removed
via holographic renormalization using the following counterterms, see [3] for more
details:

ICT2∂ = 1

8π GN

∫
d3x

√
h

(−K + 1
2 LR + 2 L−1

)
,

ICTGB = 4
∫

d3x
√
h

(J − 2Gab K
ab

)
, (7)
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where hab is the induced metric on the boundary, Kab is the extrinsic curvature, R
and Gab are the boundary Ricci scalar and Einstein tensor, respectively, and J is
defined in term of the extrinsic boundary curvature and its trace as

J = 1
3

(
3K (Kab)

2 − 2(Kab)
3 − K 3) . (8)

Using (5) and (7), one finds the following regularized on-shell actions

I2∂ + ICT2∂ = πL2

2GN
F , IGB + ICTGB = 32π2χ . (9)

HereF depends on the two-derivative solutionM4, and χ is the Euler characteristic
of M4. Combining the results in (4), (6), and (9), one arrives at the following uni-
versal formula for the regularized four-derivative on-shell action in minimal gauged
supergravity:

IHD =
[
1 + 64πGN

L2
(c2 − c1)

] πL2

2GN
F + 32π2c1 χ . (10)

This simple formula expresses the full four-derivative on-shell action in terms of
the regularized two-derivative result, determined by F , together with the topologi-
cal invariant χ . We emphasize that this result is valid for all solutions of the two-
derivative EoM and is independent of supersymmetry.

In the context of holography the on-shell action in (10) is dual to the logarithm
of the partition function of a three-dimensionalN = 2 SCFT defined on the bound-
ary of M4. Two important examples for M4 include Euclidean AdS4 solutions
with squashed S3 boundary as well as Euclidean black hole solutions with S1 × �g

boundary. We now present some more details on these two solutions.
We start by discussing an Euclidean 1

4 -BPS solution which can be obtained from
the Plebanski–Demianski solutions of the Einstein–Maxwell theory. This solution
is holographically dual to a 3d SCFT placed on the squashed S3 background with
U (1) ×U (1) invariance studied in [13]. The Euclidean supersymmetric gravity solu-
tion of interest is studied in some detail in [14] and can be written as

ds2 = f1(x, y)
2dx2 + f2(x, y)

2dy2 + (dΨ + y2dΦ)2

f1(x, y)2
+ (dΨ + x2dΦ)2

f2(x, y)2
,

A = b4 − 1

L(x + y)
(dΨ − xydΦ) ,

(11)

where the metric functions f1 and f2 are

f1(x, y)
2 = L2 y2 − x2

(x2 − 1)(b4 − x2)
, f2(x, y)

2 = L2 y2 − x2

(y2 − 1)(y2 − b4)
. (12)
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The solution depends on a single real parameter b > 0. In the limit b → 1 the gauge
field vanishes andwe recover the EuclideanAdS4 solution. The coordinate ranges for
the noncompact coordinates are x ∈ [1, b2], y ∈ [b2,∞). The conformal boundary is
approached as y → ∞, and thus in order to evaluate the on-shell action we introduce
a cut-off on the y range of integration at a finite value yb. Using the counterterms
discussed above and evaluating explicitly this on-shell action we find

F = 1

4

(
b + 1

b

)
, χ = 1 . (13)

To obtain the full result for the on-shell action these values should be plugged in the
general formula (10).

Another important solution of the two-derivative equations of motion is given by
a supersymmetric Euclidean version of the dyonic Reissner–Nordström black hole.
We refer to this background as the Euclidean Romans solution, see for instance [15,
16]. The solution takes the explicit form

ds2 = U (r)dτ 2 + dr2

U (r)
+ r2ds2�g

,

U (r) =
(
r

L
+ κL

2r

)2

− Q2

4r2
, F = ±κL V�g

+ Q

r2
dτ ∧ dr .

(14)

With ds2�g
we denote the metric on a constant curvature Riemann surface of genus

g with normalization chosen such that the curvature κ is given by κ = 1, κ = 0, and
κ = −1 for genus g = 0, g = 1, and g > 1, respectively. Note that supersymmetry
requires the magnetic flux P across the Riemann surface to have magnitude |P| =
|κ|L . The electric charge Q on the other hand is a free parameter and is not restricted
by supersymmetry. We denote the volume form on the Riemann surface by V�g

, and
define ω�g

to be the one-form potential for this volume form such that dω�g
= V�g

.
Integrating the volume form yields:

Vol(�g) =
∫

�g

V�g
= 2πη , (15)

where η = 2|g − 1| if g 	= 1 and η = 1 if g = 1. The metric function U (r) has two
zeroes r±, given by

r± = L

√
−κ

2
± |Q|

2L
. (16)

We impose that the outer radius r+ is real in order for the spacetime to cap off at a
real value of the coordinate r . Additionally, we need to ensure that r+ > 0 to avoid a
naked singularity where the Riemann surface shrinks down to zero size.We therefore
have to demand that

|Q| > κL . (17)
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This imposes the constraint |Q| > L for g = 0, |Q| > 0 for g = 1, while imposing
no constraint for a higher-genus Riemann surface. Thus, for κ = 0, 1, we cannot take
the Q → 0 limit if we insist on having a non-singular and real metric.

Assuming that the above conditions are satisfied, then as r → r+, the metric
becomes locally R2 × �g. The R2 is written in polar coordinates (r, τ ) where the τ

coordinate has periodicity

β = 2πLr+
|Q| = 2πL2

|Q|
√

−κ

2
+ |Q|

2L
. (18)

To compute the on-shell action of this solution we integrate the radial coordinate
from r = r+ to a cut-off at r = rb, and the time coordinate from τ = 0 to τ = β.
Using the counterterms described above and taking the cutoff to infinity we find

F = 1 − g , χ = 2(1 − g) . (19)

All dependence on the electric charge Q drops out of the final on-shell action, and
so once we fix the genus g of the Riemann surface we have a one-parameter family
of solutions (labelled by the charge Q) all with the same on-shell action. This inde-
pendence of the on-shell action on Q was discussed in detail in [16] and here we
have shown how the result extends in the presence of higher derivative corrections.
We note that using the relation (18) the independence of the on-shell action on Q
implies that it is independent of the periodicity of the Euclidean time coordinate τ .

Our results can be related to an important observable in AdS4 holography: the
coefficient,CT , of the two-point function of the energy momentum tensor in the dual
SCFT. Using the four-derivative action in (5) and the results in [17] we find

CT = 32L2

πGN
+ 2048(c2 − c1) . (20)

This result is valid for all three-dimensional holographic SCFTs captured by our
minimal supergravity setup. Another way to derive the same result for CT is to
use a Ward identity that relates it to the second derivative of the squashed sphere
partition function, see [18]. One can indeed use (10) and (13) to confirm that the

Ward identity CT = 32
π2

∂2 IS3b
∂b2 |b=1 is obeyed. This constitutes a non-trivial consistency

check of our results.

4 Black Hole Thermodynamics

The thermodynamics of black holes ismodified by the four-derivative terms in (5). To
study this we consider a stationary black hole solution to the two-derivative equations
of motion and work in Lorentzian signature implemented via a Wick-rotation of the
Lagrangian in (5).
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In a higher-derivative theory of gravity, the black hole entropy can be computed
using the Wald formalism [19]:

S = −2π
∫
H
Eabcd εab εcd , (21)

where the integral is over the two-dimensional horizon H , Eabcd is the variation of
the Lagrangian with respect to the Riemann tensor, and εab is the unit binormal to
the horizon. Using the Lagrangian (5) and the equations of motion, we find that the
entropy is

S = (1 + α)
AH

4GN
− 32π2c1 χ(H) , (22)

where AH is the area andχ(H) the Euler characteristic of the horizon andwe defined
α := 64πGN

L2 (c2 − c1). We find two modifications to the entropy: a topological term
independent of the charges of the black hole, accompanied by an overall rescaling
of the Bekenstein–Hawking area law.

The four-derivative terms in the action also modify the conserved quantities asso-
ciated with Killing vectors of the spacetime. To study this take � to be a time-like
boundary at spatial infinity. The conserved chargeQ associated with a Killing vector
K can be computed by the Komar integral

Q[K ] =
∫

∂�

d2x
√

γ naK bτab , τab := 2√
h

δLHD

δhab
, (23)

with γ the induced metric on the boundary surface ∂�, na the unit normal to ∂�, and
τab the boundary stress tensor [20]. Using (6) and (7), we find that for any solution
of the two-derivative EoM the boundary stress tensor takes the universal form

τ ab = (1 + α)τ ab
2∂ − c1 τ ab

GB , (24)

where τ ab
2∂ is the boundary stress-tensor associated with L2∂ and τ ab

GB is the boundary
stress tensor associated withLGB in (5). The topological nature of the Gauss–Bonnet
term ensures that τ ab

GB gives no contribution to the Komar integral [21]. This implies
that the four-derivative terms in (5) simply rescale the Komar charges of the original
two-derivative solution. In particular, the mass and angular momentum of the black
hole are M = (1 + α)M2∂ and J = (1 + α)J2∂ , respectively.

To study the electromagnetic charges of the black hole we note that the Maxwell
equations can be written as dG = dF = 0, where F is the two-form graviphoton
field strength and G is the two-form defined by

(�G)μν = 32π GN
δLHD

δFμν
. (25)
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The electric and magnetic charges Q and P are defined by integrating G and F over
∂�:

Q =
∫

∂�

G , P =
∫

∂�

F . (26)

The field strength F , and therefore the magnetic charge, is unaffected by the higher-
derivative terms. However, the latter modify G, which in turn modifies the electric
charge as Q = (1 + α)Q2∂ .

As a consistency check of our results we consider the quantum statistical relation
between the thermodynamic quantities of a black hole and its Euclidean on-shell
action [22]

I = β (M − T S − ΦQ − ωJ ) , (27)

where T = β−1 is the temperature, Φ is the electric potential, and ω is the angular
velocity of the black hole. These intensive quantities are fully determined by the two-
derivative solution and are therefore not modified since the black hole background
is not affected by the four-derivative terms in the action. The same is not true for the
extensive quantities I , S, M , Q, and J computed above. Comparing (10) to (22), we
find that if the quantum statistical relation is satisfied in the two-derivative theory
then it is also satisfied in the four-derivative theory provided that the Euler character-
istics of the full Euclidean solution and the horizon are equal, χ(M4) = χ(H). This
relation can been shown to hold in general, see [3], and we have checked it explicitly
for all known asymptotically AdS4 stationary black holes.

Our results imply that the ratio Q/M for extremal black holes is not affected by
the four-derivative terms in (5) and thus the corrections to the black hole entropy
in (22) have no relation to the extremality bound. Moreover, the black hole entropy
corrections do not have a definite sign and therefore do not necessarily lead to an
increase in the entropy for all black holes. These results are in conflict with some of
the claims in the literature about the weak gravity conjecture implying positivity of
entropy corrections and are discussed further in [3].

5 Field Theory and Holography

To make a connection between the results above and holography we now assume
that the four-dimensional supergravity action in (4) arises as a consistent truncation
of M-theory on an orbifold of S7. This consistent truncation has been established at
the two-derivative level and in the absence of orbifold singularities in [23] and we
will assume that these results extend also to our setup.1 We consider two classes of
smooth orbifolds for which the low energy dynamics of N M2-branes is captured by

1 It will be very interesting to extend this result to include higher-derivative terms and to study
potential subtleties arising from orbifolds with fixed points.
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Table 1 The constants in (30) for two classes of SCFTs

Theory A B C

ABJM at level k
√
2k
3 − k2+8

24
√
2k

− 1√
2k

N = 4 SYM w. N f
fund.

√
2N f

3
N2

f −4

8
√

2N f
− N2

f +5

6
√

2N f

the U(N )k × U(N )−k ABJM theory [24] or a U(N ) N = 4 SYM theory with one
adjoint and N f fundamental hypermultiplets [25].

For M-theory constructions arising from N M2-branes it is expected that the
dimensionless ratio L2

2GN
scales as N

3
2 while the four-derivative coefficients c1,2 scale

as N
1
2 , see for example [26]. We expect that the coefficients of the six- and higher-

derivative terms in the four-dimensional supergravity Lagrangian are more sublead-
ing in the large N limit. To implement this scaling it is convenient to define the
constants vi := 32π ci N− 1

2 . In addition, we allow for an N
1
2 correction to L2

2GN
by

defining
L2

2GN
= A N

3
2 + a N

1
2 . (28)

With this at hand the on-shell action in (10) becomes

IHD = π F
[
A N

3
2 + B N

1
2

]
− π (F − χ)C N

1
2 , (29)

where B := a + v2 and C := v1. To determine the constants (A, B,C) we can use
supersymmetric localization results on the squashed sphere S3b discussed above. In
particular for the round sphere at b = 1 the free energy for the ABJM theory and
the U(N ) N = 4 SYM was computed in [27, 28] and [25], respectively. These
results allow us to determine the constant A as well as the sum B + C in (29). For
both families of SCFTs it is also possible to compute the constant CT [29] and one
can combine this with (29) and the supergravity result in (20) to determine B and
C individually. The outcome of these calculations is summarized in Table1 below.
Note that these results unambiguously fix the coefficient c1 in (4), while c2 cannot
be fully determined due to the shift by the constant a in (28).2

Using this amalgam of four-derivative supergravity and supersymmetric local-
ization results we arrive at the general form of the partition function for these two
classes of SCFTs (30)

− log Z = π F [
A N

3
2 + B N

1
2
] − π (F − χ)C N

1
2 . (30)

2 In [3] it was shown that under some very plausible assumptions about the STU model in gauged
supergravity one can also determine the constants c2 and a individually for the ABJM theory.
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This is our central result in the holographic context. It amounts to a prediction for
the leading and subleading terms in the large N expansion of the partition function
of these two classes of SCFTs when placed on general compact Euclidean three-
manifolds that admit Killing spinors. We discuss two explicit examples in more
detail below.

As a consistency check we note that our results for the ABJM theory at level
k = 1 and the U(N ) N = 4 SYM theory for general N f agree with [30] where
the squashed sphere partition function was computed for b2 = 3. For more general
values of the squashing parameter we obtain the following result for the ABJM free
energy, F := − log Z :

FS3b
= π

√
2k

12

[(
b + 1

b

)2 (
N

3
2 + (

1
k − k

16

)
N

1
2

)
− 6

k N
1
2

]
. (31)

This result was also recently confirmed in [31] by a perturbative analysis of thematrix
model arising from supersymmetric localization to fifth order in an expansion around
b = 1.

The result in (30) allows also for the calculation of the leading correction to the
large N results for the topologically twisted index on S1 × �g for the so-called
universal twist [15, 32]. For the ABJM theory we find

− log ZS1×�g
= (1 − g) π

√
2k

3

(
N

3
2 − 32+k2

16k N
1
2

)
. (32)

This agrees with the result from supersymmetric localization for g = 0 in [33].
Finally, we note that using the explicit results for (A, B,C) in Table1 and the result
in (22) we can compute the leading correction to the entropy of any asymptotically
AdS4 × S7 black hole. In particular, as shown in [3], this amounts to a prediction for
the leading correction to the Bekenstein–Hawking entropy of the AdS-Schwarschild
black hole.

6 Outlook and Further Developments

We studied four-derivative corrections to minimal N = 2 gauged supergravity and
analyzed their effects on black hole thermodynamics and holography. These results
can be extended and generalized in several ways and belowwe list some of the recent
developments in this area as well as a few open problems

• When deriving the four-derivative action in (5) certain reality condition on the
matter fields and the coefficients in the action were assumed. These assumptions
can be relaxed and a more general four-derivative action can be derived, see [3].
These more general actions find applications in the holographic context for 3d
SCFTs of classR arising fromM5-braneswrapped on hyperbolic three-manifolds,
see [34, 35].
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• The result for the on-shell action in (10) can be understood also more mathemat-
ically in terms of the topology of the Euclidean supergravity solution. As shown
in [36], the two-derivative on-shell action F localizes on the fixed points of the
preserved equivariant supercharges, and this principle allows for its explicit eval-
uation for generic NUT or Bolt solutions. The on-shell action (10) suggests that
the higher-derivative corrections to the on-shell action can also be written purely
in terms of topological fixed point data. Indeed, this was demonstrated explicitly
in [37] after an appropriate generalization of the results in [36].

• As discussed above the coefficients of the higher-derivative terms in the action can
be fixed by using supersymmetric localization for two classes of theories arising
from M2-branes. It will certainly be very interesting to understand how to extend
these results for other 3d N = 2 SCFTs with holographic duals. Some progress
in this direction was made in [2] where 3dN = 2 SCFTs of classR arising from
M5-branes were analyzed. There are numerous other interesting examples awaited
to be explored.

• The main focus of this review was on 4d minimal gauged supergravity. It is impor-
tant to understand how to calculate the higher-derivative corrections to more gen-
eralmatter coupled supergravity theories. For the STUmodel of gauged supergrav-
ity arising as a consistent truncation of 11d supergravity on S7 this was analyzed
in [3], however the general structure of such higher-derivative corrections still
remains to be uncovered.

• The approach to finding higher derivative corrections to gauged supergravity
reviewed here can be naturally extended to five dimension. This was recently
studied in [38, 39] in the context of minimal gauged supergravity, see also [40] for
earlier results inmatter-coupled supergravity. Generalizing these higher-derivative
results to six and seven dimensions is of great interest for holographic applications.

Acknowledgements I am grateful to Anthony Charles, Dongmin Gang, Kiril Hristov, and Valentin
Reys for numerous illuminating discussions and for the enjoyable collaboration that led to the results
summarized here. I am supported in part by an Odysseus grant G0F9516N from the FWO and by
the KU Leuven C1 grant ZKD1118 C16/16/005.

References

1. N. Bobev, A.M. Charles, K. Hristov, V. Reys, Phys. Rev. Lett. 125(13), 131601 (2020). https://
doi.org/10.1103/PhysRevLett.125.131601. arXiv:2006.09390 [hep-th]

2. N. Bobev, A.M. Charles, D. Gang, K. Hristov, V. Reys, JHEP 04, 058 (2021). https://doi.org/
10.1007/JHEP04(2021)058. arXiv:2011.05971 [hep-th]

3. N. Bobev, A.M. Charles, K. Hristov, V. Reys, JHEP 08, 173 (2021). https://doi.org/10.1007/
JHEP08(2021)173. arXiv:2106.04581 [hep-th]

4. E. Lauria, A. Van Proeyen, Lect. Notes Phys. 966 (2020). https://doi.org/10.1007/978-3-030-
33757-5. arXiv:2004.11433 [hep-th]

5. B. de Wit, V. Reys, JHEP 12, 011 (2017). https://doi.org/10.1007/JHEP12(2017)011.
arXiv:1706.04973 [hep-th]

6. D. Butter, JHEP 10, 030 (2011). https://doi.org/10.1007/JHEP10(2011)030. arXiv:1103.5914
[hep-th]

https://doi.org/10.1103/PhysRevLett.125.131601
https://doi.org/10.1103/PhysRevLett.125.131601
http://arxiv.org/abs/2006.09390
https://doi.org/10.1007/JHEP04(2021)058
https://doi.org/10.1007/JHEP04(2021)058
http://arxiv.org/abs/2011.05971
https://doi.org/10.1007/JHEP08(2021)173
https://doi.org/10.1007/JHEP08(2021)173
http://arxiv.org/abs/2106.04581
https://doi.org/10.1007/978-3-030-33757-5
https://doi.org/10.1007/978-3-030-33757-5
http://arxiv.org/abs/2004.11433
https://doi.org/10.1007/JHEP12(2017)011
http://arxiv.org/abs/1706.04973
https://doi.org/10.1007/JHEP10(2011)030
http://arxiv.org/abs/1103.5914


Notes on AdS4 Holography and Higher-Derivative Supergravity 101

7. E. Bergshoeff, M. de Roo, B. de Wit, Nucl. Phys. B 182, 173–204 (1981). https://doi.org/10.
1016/0550-3213(81)90465-X

8. D. Butter, B. de Wit, S.M. Kuzenko, I. Lodato, JHEP 12, 062 (2013). https://doi.org/10.1007/
JHEP12(2013)062. arXiv:1307.6546 [hep-th]

9. S.M. Kuzenko, J. Novak, Phys. Rev. D 92(8), 085033 (2015). https://doi.org/10.1103/
PhysRevD.92.085033. arXiv:1507.04922 [hep-th]

10. S. Hegde, B. Sahoo, JHEP 01, 070 (2020). https://doi.org/10.1007/JHEP01(2020)070.
arXiv:1911.09585 [hep-th]

11. A.M. Charles, F. Larsen, JHEP 10, 142 (2016). https://doi.org/10.1007/JHEP10(2016)142.
arXiv:1605.07622 [hep-th]

12. J. Smolic, M. Taylor, JHEP 06, 096 (2013). https://doi.org/10.1007/JHEP06(2013)096.
arXiv:1301.5205 [hep-th]

13. N. Hama, K. Hosomichi, S. Lee, JHEP 05, 014 (2011). https://doi.org/10.1007/
JHEP05(2011)014. arXiv:1102.4716 [hep-th]

14. D. Martelli, A. Passias, J. Sparks, Nucl. Phys. B 864, 840–868 (2012). https://doi.org/10.1016/
j.nuclphysb.2012.07.019. arXiv:1110.6400 [hep-th]

15. F. Azzurli, N. Bobev, P.M. Crichigno, V.S. Min, A. Zaffaroni, JHEP 02, 054 (2018). https://
doi.org/10.1007/JHEP02(2018)054. arXiv:1707.04257 [hep-th]

16. N. Bobev, A.M. Charles, V.S. Min, JHEP 10, 073 (2020). https://doi.org/10.1007/
JHEP10(2020)073. arXiv:2006.01148 [hep-th]

17. K. Sen, A. Sinha, JHEP 07, 098 (2014). https://doi.org/10.1007/JHEP07(2014)098.
arXiv:1405.7862 [hep-th]

18. C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski, JHEP 05, 017 (2013). https://doi.
org/10.1007/JHEP05(2013)017. arXiv:1212.3388 [hep-th]

19. R.M. Wald, Phys. Rev. D 48(8), R3427–R3431 (1993). https://doi.org/10.1103/PhysRevD.48.
R3427. arXiv:gr-qc/9307038 [gr-qc]

20. V. Balasubramanian, P. Kraus, Commun. Math. Phys. 208, 413–428 (1999). https://doi.org/10.
1007/s002200050764. arXiv:hep-th/9902121 [hep-th]

21. R.C. Myers, J.Z. Simon, Phys. Rev. D 38, 2434–2444 (1988). https://doi.org/10.1103/
PhysRevD.38.2434

22. G.W. Gibbons, M.J. Perry, C.N. Pope, Class. Quant. Grav. 22, 1503–1526 (2005). https://doi.
org/10.1088/0264-9381/22/9/002. arXiv:hep-th/0408217 [hep-th]

23. J.P. Gauntlett, O. Varela, Phys. Rev. D 76, 126007 (2007). https://doi.org/10.1103/PhysRevD.
76.126007 ([arXiv:0707.2315 [hep-th]].)

24. O. Aharony, O. Bergman, D.L. Jafferis, J. Maldacena, JHEP 10, 091 (2008). https://doi.org/
10.1088/1126-6708/2008/10/091. arXiv:0806.1218 [hep-th]

25. M. Mezei, S.S. Pufu, JHEP 02, 037 (2014). https://doi.org/10.1007/JHEP02(2014)037.
arXiv:1312.0920 [hep-th]

26. X.O. Camanho, J.D. Edelstein, J. Maldacena, A. Zhiboedov, JHEP 02, 020 (2016). https://doi.
org/10.1007/JHEP02(2016)020. arXiv:1407.5597 [hep-th]

27. M. Marino, P. Putrov, J. Stat. Mech. 1203, P03001 (2012). https://doi.org/10.1088/1742-5468/
2012/03/P03001. arXiv:1110.4066 [hep-th]

28. H. Fuji, S. Hirano, S. Moriyama, JHEP 08, 001 (2011). https://doi.org/10.1007/
JHEP08(2011)001. arXiv:1106.4631 [hep-th]

29. S.M. Chester, R.R. Kalloor, A. Sharon, JHEP 07, 041 (2020). https://doi.org/10.1007/
JHEP07(2020)041. arXiv:2004.13603 [hep-th]

30. Y. Hatsuda, JHEP 07, 026 (2016). https://doi.org/10.1007/JHEP07(2016)026.
arXiv:1601.02728 [hep-th]

31. S.M. Chester, R.R. Kalloor, A. Sharon, JHEP 04, 244 (2021). https://doi.org/10.1007/
JHEP04(2021)244. arXiv:2102.05643 [hep-th]

32. F. Benini, K. Hristov, A. Zaffaroni, JHEP 05, 054 (2016). https://doi.org/10.1007/
JHEP05(2016)054. arXiv:1511.04085 [hep-th]

33. J.T. Liu, L.A. Pando Zayas, V. Rathee,W. Zhao, JHEP 01, 026 (2018). https://doi.org/10.1007/
JHEP01(2018)026. arXiv:1707.04197 [hep-th]

https://doi.org/10.1016/0550-3213(81)90465-X
https://doi.org/10.1016/0550-3213(81)90465-X
https://doi.org/10.1007/JHEP12(2013)062
https://doi.org/10.1007/JHEP12(2013)062
http://arxiv.org/abs/1307.6546
https://doi.org/10.1103/PhysRevD.92.085033
https://doi.org/10.1103/PhysRevD.92.085033
http://arxiv.org/abs/1507.04922
https://doi.org/10.1007/JHEP01(2020)070
http://arxiv.org/abs/1911.09585
https://doi.org/10.1007/JHEP10(2016)142
http://arxiv.org/abs/1605.07622
https://doi.org/10.1007/JHEP06(2013)096
http://arxiv.org/abs/1301.5205
https://doi.org/10.1007/JHEP05(2011)014
https://doi.org/10.1007/JHEP05(2011)014
http://arxiv.org/abs/1102.4716
https://doi.org/10.1016/j.nuclphysb.2012.07.019
https://doi.org/10.1016/j.nuclphysb.2012.07.019
http://arxiv.org/abs/1110.6400
https://doi.org/10.1007/JHEP02(2018)054
https://doi.org/10.1007/JHEP02(2018)054
http://arxiv.org/abs/1707.04257
https://doi.org/10.1007/JHEP10(2020)073
https://doi.org/10.1007/JHEP10(2020)073
http://arxiv.org/abs/2006.01148
https://doi.org/10.1007/JHEP07(2014)098
http://arxiv.org/abs/1405.7862
https://doi.org/10.1007/JHEP05(2013)017
https://doi.org/10.1007/JHEP05(2013)017
http://arxiv.org/abs/1212.3388
https://doi.org/10.1103/PhysRevD.48.R3427
https://doi.org/10.1103/PhysRevD.48.R3427
http://arxiv.org/abs/gr-qc/9307038
https://doi.org/10.1007/s002200050764
https://doi.org/10.1007/s002200050764
http://arxiv.org/abs/hep-th/9902121
https://doi.org/10.1103/PhysRevD.38.2434
https://doi.org/10.1103/PhysRevD.38.2434
https://doi.org/10.1088/0264-9381/22/9/002
https://doi.org/10.1088/0264-9381/22/9/002
http://arxiv.org/abs/hep-th/0408217
https://doi.org/10.1103/PhysRevD.76.126007
https://doi.org/10.1103/PhysRevD.76.126007
http://arxiv.org/abs/0707.2315
https://doi.org/10.1088/1126-6708/2008/10/091
https://doi.org/10.1088/1126-6708/2008/10/091
http://arxiv.org/abs/0806.1218
https://doi.org/10.1007/JHEP02(2014)037
http://arxiv.org/abs/1312.0920
https://doi.org/10.1007/JHEP02(2016)020
https://doi.org/10.1007/JHEP02(2016)020
http://arxiv.org/abs/1407.5597
https://doi.org/10.1088/1742-5468/2012/03/P03001
https://doi.org/10.1088/1742-5468/2012/03/P03001
http://arxiv.org/abs/1110.4066
https://doi.org/10.1007/JHEP08(2011)001
https://doi.org/10.1007/JHEP08(2011)001
http://arxiv.org/abs/1106.4631
https://doi.org/10.1007/JHEP07(2020)041
https://doi.org/10.1007/JHEP07(2020)041
http://arxiv.org/abs/2004.13603
https://doi.org/10.1007/JHEP07(2016)026
http://arxiv.org/abs/1601.02728
https://doi.org/10.1007/JHEP04(2021)244
https://doi.org/10.1007/JHEP04(2021)244
http://arxiv.org/abs/2102.05643
https://doi.org/10.1007/JHEP05(2016)054
https://doi.org/10.1007/JHEP05(2016)054
http://arxiv.org/abs/1511.04085
https://doi.org/10.1007/JHEP01(2018)026
https://doi.org/10.1007/JHEP01(2018)026
http://arxiv.org/abs/1707.04197


102 N. Bobev

34. S. Choi, D. Gang, N. Kim, JHEP 06, 078 (2021). https://doi.org/10.1007/JHEP06(2021)078.
arXiv:2012.10944 [hep-th]

35. P.B. Genolini. arXiv:2110.15955 [hep-th]
36. P. Benetti Genolini, J.M. Perez Ipiña, J. Sparks, JHEP 10, 252 (2019). https://doi.org/10.1007/

JHEP10(2019)252. arXiv:1906.11249 [hep-th]
37. P.B. Genolini, P. Richmond, Phys. Rev. D 104(6), L061902 (2021). https://doi.org/10.1103/

PhysRevD.104.L061902. arXiv:2107.04590 [hep-th]
38. N. Bobev, K. Hristov, V. Reys. arXiv:2112.06961 [hep-th]
39. J.T. Liu, R.J. Saskowski. arXiv:2201.04690 [hep-th]
40. M. Baggio, N. Halmagyi, D.R. Mayerson, D. Robbins, B.Wecht, JHEP 12, 042 (2014). https://

doi.org/10.1007/JHEP12(2014)042. arXiv:1408.2538 [hep-th]

https://doi.org/10.1007/JHEP06(2021)078
http://arxiv.org/abs/2012.10944
http://arxiv.org/abs/2110.15955
https://doi.org/10.1007/JHEP10(2019)252
https://doi.org/10.1007/JHEP10(2019)252
http://arxiv.org/abs/1906.11249
https://doi.org/10.1103/PhysRevD.104.L061902
https://doi.org/10.1103/PhysRevD.104.L061902
http://arxiv.org/abs/2107.04590
http://arxiv.org/abs/2112.06961
http://arxiv.org/abs/2201.04690
https://doi.org/10.1007/JHEP12(2014)042
https://doi.org/10.1007/JHEP12(2014)042
http://arxiv.org/abs/1408.2538


Homothetic Rota–Baxter Systems
and Dyckm-Algebras

Tomasz Brzeziński

Abstract It is shown that generalized Rota–Baxter operators introduced in [W. A.
Martinez, E. G. Reyes, M. Ronco, Int. J. Geom. Meth. Mod. Phys. 18, 2150176
(2021)] are a special case of Rota–Baxter systems [T. Brzeziński, J. Algebra 460, 1–
25 (2016)]. The latter are enriched by homothetisms and then shown to give examples
of Dyckm-algebras.

Keywords Rota-Baxter algebra · Rota-Baxter system · Double homothetism ·
Dyckm-algebra

1 Introduction

Rota–Baxter operators first appeared in [2] in analysis of differential operators on
commutative Banach algebras, then were brought to combinatorics [17], and are now
intensively studied e.g. in probability, renormalization of quantum field theories, the
theory of operads, dialgebras, trialgebras, dendriform algebras, pre-Lie algebras etc.;
see [7] for progress up to the early 2010s.

A Rota–Baxter operator of weight λ on an associative algebra A over a fieldK is
a linear operator R : A → A, such that, for all a, b ∈ A,

R(a)R(b) = R (R(a)b + a R(b) + λ ab) , (1)

where λ is a scalar. The pair (A, R) is often referred to as a Rota–Baxter algebra.
In a recently published article [14]Martinez, Reyes andRonco introduced a gener-

alization ofRota–Baxter operators that involves a pair of scalars (α, β). A generalized
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Rota–Baxter operator of weights (α, β) on an associative algebra A is a linear map
R̄ : A → A, such that, for all a, b ∈ A,

R̄(a)R̄(b) = R̄
(
R̄(a)b + a R̄(b) + α ab

) + βab. (2)

The authors of [14] then proceed to show that such operators of weights (3, 2) give
rise to a class of Dyckm-algebras introduced and studied in [11, 12] in context of
dendriform structures.

This note has two aims. First, we show that generalized Rota–Baxter operators are
examples of Rota–Baxter systems [3]. Second, we enrich Rota–Baxter systems with
homothetisms [16] or self-permutable bimultiplications [13] that were introduced in
studies of ring extensions and constrain them in such a way as to produce examples
of Dyckm-algebras that extend those in [14].

2 Rota–Baxter Systems, Homothetisms and
Dyckm-Algebras

2.1 Rota–Baxter Systems and Generalized Rota–Baxter
Operators

The following notion was introduced in [3]. An associative algebra A (over a field
K) together with a pair of linear operators R, S : A −→ A is called a Rota–Baxter
system if, for all a, b ∈ A,

R(a)R(b) = R (R(a)b + aS(b)) , (3a)

S(a)S(b) = S (R(a)b + aS(b)) . (3b)

As explained in [5], conditions (3) can be recast in the form of a single Nijenhuis
operator. Recall from [6] that a Nijenhuis tensor or operator on an associative algebra
B is a linear function N : B −→ B such that, for all a, b ∈ B,

N (a)N (b) = N (N (a)b + aN (b) − N (ab)). (4)

Starting with an algebra A we can form an algebra B on the vector space A ⊕ A ⊕ A
with the product ⎛

⎝
a
b
c

⎞

⎠

⎛

⎝
a′
b′
c′

⎞

⎠ =
⎛

⎝
aa′
bb′

ac′ + cb′

⎞

⎠

Then (A, R, S) is a Rota–Baxter system if and only if
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N =
⎛

⎝
0 0 R
0 0 S
0 0 0

⎞

⎠

is a Nijenhuis operator on B.
If R is a Rota–Baxter operator of weight λ, then setting S = R + λ id one obtains

a Rota–Baxter system. In a similar way, one can interpret a generalized Rota–Baxter
operator of weights (α, β) as a Rota–Baxter system. More precisely,

Lemma 1 Let R̄ be a generalized Rota–Baxter operator of weights (α, β) and let
λ,μ ∈ K be such that

α = λ + μ, β = λμ. (5)

Set
R = R̄ + λ id, S = R̄ + μ id. (6)

Then (A, R, S) is a Rota–Baxter system.

This is checked by a straightforward calculation (left to the reader). As a conse-
quence and in view of [3, Proposition 2.5], one concludes, for example that there is
a dendriform algebra associated to a generalized Rota–Baxter operator R̄ (cf. [14,
Proposition 18]).

Of course, ifK is not an algebraically closed field, equations (5) for λ andμmight
not have solutions. However, the most interesting case of a generalized Rota–Baxter
operator studied in [14] corresponds to the weights (3, 2), hence one can take λ = 1
and μ = 2 then.

2.2 Homothetisms and Homothetic Rota–Baxter Systems

The following notion originates from studies of homology of rings and ring exten-
sions in [13, 16]. Let A be an associative algebra. By a double operator σ on A we
mean a pair of linear operators σ = (

→
σ ,

←
σ ) on A,

→
σ : A −→ A, a �−→ σa,

←
σ : A −→ A, a �−→ aσ.

The somewhat unusual way of writing the argument to the left of the operator (in
the definition of

←
σ ) proves very practical and economical in expressing the action of

double operatorswith additional properties, in particular those thatwe are introducing
presently.

A double operator σ on A is called a bimultiplication [13] or a bitranslation [15]
if, for all a, b ∈ A,

σ(ab) = (σa)b, (ab)σ = a(bσ) & a(σb) = (aσ)b. (7)
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A bimultiplication σ is called a double homothetism [16] or is said to be self-
permutable [13] provided that, for all a ∈ A,

(σa)σ = σ(aσ). (8)

The first two conditions in (7) mean that
→
σ is a right and

←
σ is a left A-module homo-

morphism. A bimultiplication is called simply a multiplication in [9]. In functional
analysis, in particular in the context of C∗-algebras, bimultiplications are known as
multipliers [4, 8]. The set of all bimultiplications is a unital algebra, known as a
multiplier algebra. The relations (8) mean that endomorphisms

→
σ and

←
σ mutually

commute in the endomorphism algebra of the vector space A. Put together, condi-
tions (7) and (8) mean that one needs not put any brackets in strings of letters that
involve elements of A and σ .

Any element of A, say s ∈ A, induces a double homothetism s̄ = (
→
s ,

←
s ) on A,

→
s : a �−→ sa,

←
s : a �−→ as.

Such double homothetisms are said to be inner and they form an ideal in themultiplier
algebra. In applications of bimultiplications to ring extensions, most recently in
connecting extensions of integers to trusses (sets with an associative binary operation
distributing over a ternary abelian heap operation) [1] the key role is played by the
quotient of the multiplier algebra by the ideal of inner homothetisms; in particular
in the theory of operator algebras this is known as the corona algebra.

The rescaling by λ ∈ K understood as a pair (λid, λid) is a double homothetism,
which we will also denote by λ. If A has the identity 1, then, of course λ is an inner
homothetism, λ1.

We are now ready to define the main notion of this note.

Definition 1 Let (A, R, S) be a Rota–Baxter system and let σ be a double homoth-
etism on A. We say that (A, R, S, σ ) is a homothetic Rota–Baxter system if, for all
a ∈ A,

S(a)σ − σ R(a) = σaσ. (9)

If R̄ is a generalized Rota–Baxter operator of weights (α, β) such that

γ := ±
√

α2 − 4β ∈ K,

then (A, R, S, γ ) is a homothetic Rota–Baxter system, where (A, R, S) corresponds
to R̄ through Lemma1 (the sign depends on the choice of λ andμ, i.e. whether λ < μ

or λ > μ).
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2.3 Dyckm-Algebras

The combinatorial, algebraic and operadic aspects of a certain class of lattice paths
counted by Fuss-Catalan numbers led López, Préville-Ratelle and Ronco in [11] to
introduce the following notion.

Let m be a natural number. A K-vector space A together with m + 1 linear oper-
ations ∗i : A ⊗ A −→ A, i = 0, . . . , m such that, for all a, b, c ∈ A

a ∗i (b ∗ j c) = (a ∗i b) ∗ j c, 0 ≤ i < j ≤ m, (10a)

a ∗0 (b ∗0 c) =
(

m∑

i=0

a ∗i b

)

∗0 c, (10b)

a ∗m

(
m∑

i=0

b ∗i c

)

= (a ∗m b) ∗m c, (10c)

a ∗i

(
i∑

k=0

b ∗k c

)

=
(

m∑

k=i

a ∗k b

)

∗i c, 1 ≤ i ≤ m − 1, (10d)

is called a Dyckm-algebra.
Dyckm-algebras generalize associative algebras (the m = 0 case) and Loday’s

dendriform algebras (the m = 1 case) [10, Sect. 5]. In [14] it is shown that one
can associate Dyckm-algebras to any generalized Rota–Baxter operator of weights
(3, 2) (see Theorem 20 and Proposition 21 in [14] for explicit formulae). Aided by
this observation we will associate Dyckm-algebras to any homothetic Rota–Baxter
system.

3 Dyckm-Algebras from Homothetic Rota–Baxter Systems

The main result of this note is contained in the following theorem.

Theorem 1 Let (A, R, S, σ ) be a homothetic Rota–Baxter system and let m be any
natural number. Define m + 1 linear operations ∗i : A ⊗ A −→ A, i = 0, . . . , m as
follows:

a ∗i b =

⎧
⎪⎨

⎪⎩

R(a)b, i = 0,

(−1)i+1aσb, i = 1, . . . , m − 1,

aS(b) − 1+(−1)m

2 aσb, i = m,

(11)

for all a, b ∈ A. Then
(

A, {∗i }m
i=0

)
is a Dyckm-algebra.
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Proof We will carefully check that all the relations between different operations
listed in (10) hold. Starting with (10a), if i �= 0 and j �= m, these equations reduce
to the equality aσ(bσc) = (aσb)σc which follows by (7) and (8). For i = 0 and
j �= m, (10a) amounts to the equality R(a)(bσc) = (R(a)b)σc, which holds by (7).
The proofs of (10a) for j = m, and all the remaining equalities in (10) depend on
the parity of m. So, we will consider two separate cases in turn.

Assume that m is odd. Then (10a) with i = 0 and j = m follows immediately by
the associativity of A, while i �= 0 and j = m amounts to the equality a(bσ S(c)) =
(ab)σ S(c), which holds by (7).

Since m is odd (10b) reduces to

a ∗0 (b ∗0 c) = (a ∗0 b + a ∗m b) ∗0 c,

that is
R(a)R(b)c = R(R(a)b + aS(b))c,

and this immediately follows by (3a). In a similar way (10c) follows by (3b).
We split checking (10d) into two cases. If i is even, then (10d) reduces to

a ∗i (b ∗0 c) = (a ∗m b + a ∗m−1 b) ∗i c,

which amounts to the equality

aσ R(b)c = (aS(b) − aσb)σc, (12)

that follows by the constraint (9). If i is odd, then (10d) is equivalent to

a ∗i (b ∗0 c + b ∗1 c) = (a ∗m b) ∗i c,

that is,
R(a)(R(b)c + bσc) = (aS(b))σc (13)

and thus again follows by the definition of a double homothetism and (9). This
completes the proof of the theorem for m odd.

Assume now that m is even. We look back at two remaining cases in (10a). If
i = 0 and j = m, then

a ∗0 (b ∗m c) = R(a)bS(c) − R(a)(bσc)

= R(a)bS(c) − (R(a)b)σc = (a ∗0 b) ∗m c,

by the associativity of A and (7). In a similar way, if i �= 0 and j = m, (10a) is
equivalent to the equality
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aσ(bS(c)) − aσ(bσc) = (aσb)S(c) − (aσb)σc,

which follows by (7) and (8).
Since m is even (10b) reduces to

a ∗0 (b ∗0 c) = (a ∗0 b + a ∗1 b + a ∗m b) ∗0 c,

and, in view of the definition of ∗m , this immediately follows by (3a). In a similar
way (10c) follows by (3b).

As for the m-odd case, we split checking (10d) into two cases. If i is even, then
(10d) reduces to

a ∗i (b ∗0 c) = (a ∗m b) ∗i c,

which is the same as (12), while, for i odd, (10d) is equivalent to

a ∗i (b ∗0 c + b ∗1 c) = (a ∗m b + a ∗m−1 b) ∗i c,

that is already proven equality (12). This completes the proof of the theorem. �

If R̄ is a generalized Rota–Baxter operator of weights (3, 2), then the correspond-
ing Rota–Baxter system R = R̄ + id, S = R̄ + 2id is constrained by the homoth-
etism 1, induced by the rescaling by the identity in K, and thus Theorem1 implies
[14, Theorem 20 and Proposition 21].
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Quantum Dynamics Far from
Equilibrium: A Case Study in the
Spherical Model

Malte Henkel

Abstract The application of quantum Langevin equations for the study of non-
equilibrium relaxations is illustrated in the exactly solved quantum spherical model.
A tutorial on the physical background of non-Markovian quantum noise and the
spherical model quantum phase transition is followed by a review of the solution
of the non-Markovian time-dependent spherical constraint and the consequences for
quantum ageing at zero temperature, after a quantum quench.

Keywords Non-equilibrium quantum dynamics · Open quantum system ·
Quantum spherical model · Quantum ageing

1 What is a Quantum Langevin Equation?

The description of quantum-mechanical many-body problems far from equilibrium
presents conceptual difficulties which go beyond those present in classical systems
[7, 8, 11, 14, 23, 35, 44, 49]. Physically, one distinguishes closed systems, which
are isolated and open systems, which are coupled to one or several external baths.
For closed systems, the Heisenberg equations of motion are a convenient starting
point.

For open quantum systems, a large variety of theoretical descriptions has been
considered. Here, we shall concentrate on quantum Langevin equations, where the
‘noises’ must be chosen as to (i) maintain the quantum coherence of the system and
(ii) to describe the interaction with the external baths. We shall begin with a tutorial
for the formulation of dissipative quantum dynamics of open system and shall use
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Fig. 1 Schematic LRC
circuit R

L
C

I

U(t)~

the quantum spherical model for a case study.1 In this Sect. 1, we recall the generic
formulation of quantum Langevin equations, in Sect. 2 we give a brief introduction to
the quantum spherical model and its quantum phase transition, in Sect. 3 the quantum
dynamics of this model is formulated in a way to facilitate the extraction of the long-
time behaviour of physical observables and in Sect. 4, we recall the main ingredients
to describe the physical ageing expected in relaxational dynamics after a quantum
quench. The later sections review the results of a detailed analysis in the quantum
spherical model, at temperature T = 0. Section5 discusses the solution of the non-
linear integral equation derived from spherical constraint. Sections6 and 7 review
the results after quenches to either the disordered phase or else onto the critical point
or into the ordered phase. We conclude in Sect. 8.

Inspired by a proposal of Bedeaux and Mazur [4, 5], we consider quantum
Langevin equations in the following form, for simplicity formulated for a single
quantum variable s and its canonically conjugate momentum p,

∂t s = i

�

[
H, s

] + η(s) ; ∂t p = i

�

[
H, p

] − γ p + η(p) (1)

where H is the hamiltonian of the system and the damping constant γ > 0 describes
the dissipative part of the dynamics. The moments of the noise operators η(s), η(p)

must be specified as to maintain the required quantum properties of the dynamics.
That the noise structure in (1) is quite natural can be seen from the example of a

LRC electric circuit [3], see Fig. 1. According to Kirchhoff, one has U (t) = UR +
UL + UC and furthermore UR = RI and UL = L İ , where I = I (t) is the current
and R, L are the resistance and the inductivity, respectively. Their combined noises
are modeled by setting U (t) = LηU . In addition, the (noisy) voltage fluctuations at
the capacity C are described by U̇C = 1

C I + ηI . This leads to

∂tUC = 1

C
I + ηI ; ∂t I = − 1

L
UC − R

L
I + ηU (2)

and with the correspondences s ↔ UC , p ↔ I and η(s) ↔ ηI , η(p) ↔ ηU , (2) is
identified with (1), if H describes a harmonic oscillator. Apparently the noises ηU , ηI

describe the ‘rough’ fluctuations around the smooth averages I = I (t) and UC =

1 For studies of the quantum dynamics in closed spherical models, see [2, 9, 12, 13, 25, 31].
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UC(t). This example also suggests that in the context of nano-electronics, quantum
noise effects might become of relevance.

Returning to (1), it remains to specify the noise correlators. For definiteness, it
is assumed that any deterministic term is included into the hamiltonian H , so that〈
η(s)

〉 = 〈
η(p)

〉 = 0. The non-vanishing second moments are, at temperature T > 0

〈{
η(s)(t), η(p)(t ′)

}〉 = γ T coth
(π

�
T
(
t − t ′

)) ; 〈[
η(s)(t), η(p)(t ′)

]〉 = i�γ δ(t − t ′)
(3)

Clearly, quantum noise is explicitly non-Markovian.2 Anti-commutators {., .} and
commutators [., .] were used. Equation (3) can be derived in two distinct ways:

1. The classical approach of Ford, Kac and Mazur [17–19] considers explicitly the
coupling of the system to an external bath, with the total hamiltonian Htot =
H + Hint + Hbath. The composite object described by Htot is considered as a
closed system. Using for the bath hamiltonian Hbath a large ensemble of harmonic
oscillators, along with a bi-linear coupling Hint to the system, the Heisenberg
equations of the bath degrees of freedom can be formally solved. An average over
the initial positions and momenta of the bath then leads to (3). Herein, the system
is a single degree of freedom s in some external potential V = V (s).

2. A phenomenological derivation [47] considers the ‘desirable’ physical properties
of dissipative quantum dynamics which any choice of the quantum noises should
keep. These are

a. canonical equal-time commutator
〈[s(t), p(t)]〉 = i�.

b. the Kubo formula of linear response theory [11, 36].
c. the virial theorem (for selecting equilibrium stationary states) [16, 41].
d. the quantum fluctuation-dissipation theorem (qfdt) (to distinguish quantum

and classical equilibrium states) [20, 26].

While the qfdt is habitually formulated in frequency space, for any temperature
T > 0 a mathematically equivalent statement is the Kubo–Martin–Schwinger
relation [11, 36, 47]

C

(
t − t ′ + i�

2T

)
− C

(
t − t ′ − i�

2T

)
= �

2i

[
R

(
t − t ′ + i�

2T

)
+ R

(
t − t ′ − i�

2T

)]

(4)
where C(t − t ′) = 〈{

s(t), s(t ′)
}〉

is the stationary correlator and R(t − t ′) =
δ

〈
s(t)

〉

δh(t ′)

∣∣∣
∣
h=0

is the stationary linear response with respect to the conjugate field

h. The qfdt follows from a Fourier transformation of (4) with respect to t − t ′. If
the chosen system is a harmonic oscillator, its dynamics can be formally solved
which provides a relation between the noise correlators and the four physical cri-

2 In the classical limit � → 0, Markovian white-noise correlators are recovered from (3) [47].
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Fig. 2 Variance
〈
x2(t)

〉
of a brownian particle for classical white noise with T > 0 (left panel) and

for quantum noise (3) at T = 0 (right panel). Insets: cross-over from initial ballistic motion

teria raised above. Postulating that the noise correlators should not contain any
system-specific parameter, Eq. (3) follows [47].

That these distinct approaches lead to the same noise correlators (3) also clarifies
important physical properties of this choice of dynamics. The only physical param-
eters are the dissipation constant γ , the bath temperature T and Planck’s constant �.
The validity of (3) does not depend on the implicit auxiliary assumptions contained
in either approach. Equations (1) and (3) are the quantum Langevin equations, to be
used in what follows.

Thequalitative differences between classical andquantumnoises canbe illustrated
through the motion of a free 1D Brownian particle. Figure2 [47] compares the
variance

〈
x2(t)

〉 ∼ t of the position x(t) for classical white noise at finite temperature
T > 0 (left panel) with the quantum result

〈
x2(t)

〉 ∼ ln t obtained at T = 0 (right
panel). Consequently, quantumdiffusion is ‘moreweak’ than classical diffusion since
it needs considerably more time to homogenise a system.

Excellent reviews of dissipative quantum dynamics include [8, 23, 49].

2 What is the Quantum Spherical Model?

The spherical model is a simple, yet non-trivial, and exactly solvable model for the
study of phase transitions [6]. Its classical version is defined in terms of a continuous
spin variable sn ∈ R attached to the sites n ∈ L of a d-dimensional hyper-cubic
lattice L ⊂ Z

d . In its most simple variant, one uses nearest-neighbour interactions
H = −∑

(n,m) snsm + μ

2

∑
n s2n, where the Lagrange multiplier μ is fixed from the

(mean) spherical constraint [6, 30]
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Fig. 3 Specific heat C in the
classical and quantum
spherical models
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〈
∑

n∈L
s2n

〉

= N (5)

where N = |L | is the number of sites of the lattice L and
〈·〉 denotes the ther-

modynamic average. This condition was originally motivated by a comparison with
the Ising model, with discrete ‘Ising spins’ sn = ±1 and which naturally obey (5)
[6]. The spherical model is solvable since in Fourier space, the degrees of freedom
decouple, but some interactions do remain because of the constraint (5). At equi-
librium, the spherical model has a critical point Tc > 0 for any spatial dimension
d > 2 and the universality class of the model is distinct from mean-field theory if
2 < d < 4. The values of the critical exponents are different from those found in the
Ising model, e.g. [44].

A serious physical short-coming of the classical spherical model is its low-
temperature behaviour [6], see Fig. 3 for dimensions 2 < d < 4. The cusp of the
specific heat C at T � Tc (rather than a jump) is a manifestation of non-mean-field
criticality. But for all temperatures T ≤ Tc,C is constant! This violates the third fun-
damental theorem of thermodynamics [3], which requests thatC(T ) → 0 as T → 0.

The quantum spherical model corrects this deficiency. In terms of spin operators
sn and conjugate momenta pm, which obey

[
sn, pm

] = i�, let [27, 32, 33, 45]

H = 1

2

∑

n∈L

⎡

⎣p2
n + (

r + d
)
s2n −

∑

(n,m)

snsm

⎤

⎦ ;
∑

n∈L

〈
s2n
〉 = N

λ
(6)

(after several re-scalings) and theLagrangemultiplier is now r := μλ − d. The quan-
tumhamiltonian H arises from its classical counterpartH by adding a kinetic energy
term ∼ ∑

n p2
n and λ controls the relative importance of this term. Schematically,
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Fig. 4 Quantum and classical phase transitions in the spherical model

the behaviour of the quantum model is illustrated in Fig. 3. Indeed, for d > 2 there
exists a critical temperature Tc > 0 such that the high-temperature behaviour of the
quantum model is analogous to the classical one. Especially, the type of singularity
of C around T � Tc is precisely the same [32, 34]. On the other hand, for T < Tc,
the behaviour of the quantum model is different from the one of its classical variant
and one finds C(T ) → 0 as T → 0, as expected from the third fundamental theorem
of thermodynamics.

In addition, at zero temperature T = 0, the quantum spherical model has a quan-
tum phase transition, where λ acts as thermodynamic parameter [27, 32, 34, 45, 46].
The schematic phase diagrams at equilibriumare shown inFig. 4 [48]. For dimensions
1 < d < 2, there is only a quantum phase transition at T = 0 and at λ = λc > 0. In
the ordered ferromagnetic phase, the system acquires a non-vanishing spontaneous
magnetisation, but in the disordered paramagnetic phase, it remains non-magnetic.
On the other hand, for d > 2, there exists not only a quantum phase transition at
T = 0 andλ = λc > 0, but also a classical finite-temperature phase transition at some
Tc = Tc(λ) > 0 if λ < λc. The universal properties of the quantum phase transition,
notably the values of the critical exponents around λ � λc, of the d-dimensional
quantum model are the same as the ones of the (d + 1)-dimensional classical model
around T � Tc(λ) [27, 29, 32, 34, 40, 45, 46].

The existence and nature of phase transitions are often expressed via upper and
lower critical dimensions. The lower critical dimension d� is defined such that for
d < d�, no phase transition exists. The upper critical dimension du is defined such
that for d > du , the critical behaviour of themodel is identical to the one ofmean-field
theory. At equilibrium, one has for the (short-ranged) spherical model

{
d� = 2 ; du = 4 classical
d� = 1 ; du = 3 quantum

(7)

These values will be needed below when discussing the relaxational dynamics of the
quantum spherical model.
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3 How to Formulate Quantum Dynamics of the Spherical
Model?

In order to extract the long-time and large-distance properties of the relaxational
dynamics of the spherical model, we first carry out a continuum limit3 and let sn 
→
φ(t, x) and pn 
→ π(t, x). The spherical model degrees of freedom decouple in
Fourier space; hence we set

φk(t) :=
∫

Rd

dx φ(t, x) e−ik·x (8)

such that the quantum Langevin equations (1) and (3) become in Fourier space

∂tφk = i

�

[
H, φk

] + η
(φ)

k ; ∂tπk = i

�

[
H, πk

] − γπk + η
(π)

k (9)

together with the non-vanishing moments

〈{
η

(φ)

k (t), η(π)

k′ (t ′)
}〉 = γ T coth

(
πT

�
(t − t ′)

)
δ(k + k′) (10a)

〈[
η

(φ)

k (t), η(π)

k′ (t ′)
]〉 = i�γ δ(t − t ′) δ(k + k′) (10b)

These describe a set of quantum harmonic oscillators which are only coupled
through the spherical constraint (6). Since the Lagrange multiplier r = r(t) is now
time-dependent, the explicit solution of Eqs. (9) and (10) becomes very cumbersome.

But since we shall be mainly interested in the long-time dynamics of the model,
we shall project onto this long-time regime by carrying out a scaling transformation.
For notational simplicity, we give the procedure for a single degree of freedom [47,
48] and shall write for a moment φk(t) 
→ φ(t) and so on. Consider

t̃ := λt ; φ(t) = λφ̃(t̃ ) ; r(t) = r(t̃ ) (11)

Then the quantum Langevin equation becomes

λ2∂2
t̃ φ̃(t̃ ) = −r(t̃)φ̃(t̃ ) − γ̃ ∂t̃ φ̃(t̃ ) + ξ̃ (t̃ ) (12a)

ξ̃ (t̃ ) := η̃(π)(t̃ ) + γ̃ λ−2η̃(φ)(t̃ ) + ∂t̃ η̃
(φ)(t̃ ) (12b)

where we set γ̃ := λγ . In the long-time scaling limit

t → ∞ , λ → 0 , such that t̃ = λt is kept fixed (13)

3 The form (6) of H is chosen to facilitate taking this limit.



118 M. Henkel

the quantum equation of motion (12a) reduces to an over-damped Langevin equation

γ̃ ∂t̃ φ̃(t̃ ) = −r(t̃)φ̃(t̃ ) + ξ̃ (t̃ ) (14a)

with the noise correlators

〈{
ξ̃ (t̃ ), ξ̃ (t̃ ′ )

}〉 = �γ̃

π
I

(
�

2T̃
, t̃ − t̃ ′

)
; 〈[

ξ̃ (t̃ ), ξ̃ (t̃ ′ )
]〉 = 2i�γ̃

d

dt̃
δ
(
t̃ − t̃ ′)

(14b)
where we also re-scaled T̃ := T/λ and the distribution I has a known integral rep-
resentation (see [23, 47–49] and (16a) below). The reduced description (14) does
not apply to the early-time regime, but since the properties of that regime are non-
universal anyway, one cannot hope to study them through the perspective of extremely
simplified models such as considered here.

Dropping the tildes throughout and focussing on the leading low-momentum
behaviour, we have found that the long-time behaviour of the quantum Langevin
equations (9) and (10) simply follows from the over-damped Langevin equation
(k = |k|)

γ ∂tφk(t) + (
r(t) + k2

)
φk(t) = ξk(t) (15)

and that the physical nature of the dynamics will be determined by the form of the
noise correlators involving the ξk(t). In addition, since we aim at an understanding
of the relevance of quantum noise for the long-time dynamics, we shall from now on
concentrate on the zero-temperature limit4 and let T → 0. Amajor qualitative differ-
ence between quantum and classical dynamics is the non-Markovianity of quantum
noise. Another important difference comes from different scalings. In order to eluci-
date their respective relevance, we shall consider the following three types of noise
correlators [48]:

1. quantum noise, at temperature T = 0 and a regulator t0 ∼ 1/γ , is defined by

〈{
ξk(t), ξk(t)

}〉 = γ �

π

∫

R

dω |ω|eiω(t−t ′)e−t0|ω| δ(k + k′)

= γ �π
t20 − (t − t ′)2

[t20 + (t − t ′)2]2 δ(k + k′) (16a)

〈[ξk(t), ξk(t)
]〉 = 2i�γ

(
d

dt
δ(t − t ′)

)
δ(k + k′) (16b)

These noise correlators follow from the quantum correlators (10) and (14b). The
regularisation merely permits a finite expression of the associated distribution.
Non-universal quantities such as critical exponents should turn out to be inde-
pendent of t0, whereas non-universal quantities such as the location of the critical

4 If T > 0, expect after a finite time loss of quantum coherence and hence classical dynamics.
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pointmay depend on it. At the end, one should strive at taking t0 → 0, consistently
with the over-damped limit γ → ∞ implicit in the over-damped Eq. (15).

2. effective noise is defined by the correlators

〈{
ξk(t), ξk(t)

}〉 = μ|k|2δ(t − t ′) δ(k + k′) ; 〈[
ξk(t), ξk(t)

]〉 = 0 (17)

Herein, the scaling ∼ 1
(t−t ′)2 (in the t0 → 0 limit) is replaced by an equivalent

scaling in the momentum |k| and μ serves as a control parameter. Hence quan-
tum and effective noises have the same scaling properties, but effective noise is
Markovian while quantum noise is not. Comparison of the results of both will
permit to appreciate the importance of non-Markovian effects for the long-time
dynamics.

3. classical white noise is of course defined by

〈{
ξk(t), ξk(t)

}〉 = 4γ T δ(t − t ′) δ(k + k′) ; 〈[
ξk(t), ξk(t)

]〉 = 0 (18)

and differs in its scaling from effective noise. It is clearly Markovian.

In what follows, we shall compare the behaviour of three distinct types of dynamics:

1. quantum dynamics, given by (15) and (16).
2. effective dynamics, given by (15) and (17).
3. classical dynamics, given by (15) and (18).

The results will be interpreted in the context of physical ageing.

4 What is Physical Ageing?

From the solution φk(t) of the equation of motion (15), we define the observables:

1. equal-time correlations Ck(t) are obtained as

δ(k + k′) Ck(t) := 〈{
φk(t), φk′(t)

}〉
(19)

to be studied in the long-time scaling limit (hence the dynamical exponent z = 2)

t → ∞ , k = |k| → 0 , such that ρ := k2t/γ is kept fixed (20)

2. two-time correlations Ck(t, s) are obtained as

δ(k + k′) Ck(t, s) := 〈{
φk(t), φk′(s)

}〉
(21)

The auto-correlator is C(t, s) := ∫
k,(Λ)

Ck(t, s), denoting
∫
k,(Λ)

:= ∫ Λ

0

∫
Sd

dk
(2π)d

such thatΛdescribes anuv-cutoff.Anyquantity depending explicitly onΛ cannot
be universal.
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3. two-time responses Rk(t, s) are obtained as

Rk(t, s) := δ
〈
φk(t)

〉

δhk(s)

∣∣∣
∣∣
h=0

(22)

where h is the magnetic field conjugate to the magnetisation
〈
φk(t)

〉
. The auto-

response is R(t, s) := ∫
k,(Λ)

Rk(t, s). Herein, t is called the observation time and
s the waiting time.

Physical ageing was originally observed in the slow dynamics of glasses after a
quench from a melt to below the glass-transition temperature [43]. Here, we shall
characterise the initial state through a vanishing magnetisation and the initial equal-
time correlator 〈

φk(0)
〉 = 0 ; Ck(0) = c0 + cα|k|α (23)

which in direct space means C(0, x) ∼ |x|−d−α such that for α ≥ 0 the initial cor-
relations are short-ranged and for α < 0 they are long-ranged. Numerous studies in
classical systems lead to the following expectations, see [11, 24, 28]:

1. for a quench into the disordered phase T > Tc (or λ > λc) the systems rapidly
become time-translation-invariant

Ck(t, s) = Ck(t − s) = Ck(τ ) ; Rk(t, s) = Rk(t − s) = Rk(τ ) (24)

and Ck(τ ) and Rk(τ ) should decay exponentially fast with τ . Since there is a sin-
gle stationary (equilibrium) state, the (quantum) fluctuation-dissipation theorem
should hold but no ageing is expected.

2. for a quench onto criticality or into the ordered phase T ≤ Tc (or λ ≤ λc), there
is no time-translation-invariance. If the dynamics can be described in terms of
a single length scale L(t) ∼ t1/z , one finds dynamical scaling for t � τmicro,
s � τmicro and t − s � τmicro (τmirco is a microscopic reference time-scale)

C(t, s) = s−b fC

(
t

s

)
; R(t, s) = s−1−a fR

(
t

s

)
(25)

with the asymptotic behaviour fC,R(y) ∼ y−λC,R/z with defines5 the autocorre-
lation exponent λC and the auto-response exponent λR . The exponents a, b are
called ageing exponents. Strong fluctuations lead to a breaking of the fluctuation-
dissipation theorem. If this holds true, the three defining properties of physical
ageing [28], namely (i) slowdynamics, (ii) breakingof time-translation-invariance
and (iii) dynamical scaling are satisfied.

5 Please do not confuse the autocorrelation exponent λC with the critical point λc.
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In the classical spherical model, these expectations are fully borne out [10, 24, 39].
For the initial conditions (23), the exact values of all exponents are known for the
spherical model [37], see Table2 below. For detailed reviews, see [11, 28].

Are these classicallymotivated expectations verified inquenchedquantumdynam-
ics ? It is often thought that the answer should be affirmative: “. . . a large class of
coarsening systems (classical, quantum, pure and disordered) should be charac-
terised by the same scaling functions.” [1]. Is this always so ? In what follows, we
shall study this question for the quantum spherical model, at temperature T = 0.

5 The Spherical Constraint

Having brought together in Sects. 1–4 the physical background for studying non-
equilibrium quantum dynamics and ageing, we now turn to the exact solution of the
quantum spherical model at T = 0 and describe the results [48].

The formal solution of the equation of motion (15) is

φk(t) = exp
(−k2t/γ

)

√
g(t)

[
φk(0) + 1

γ

∫ t

0
dt ′ √g(t ′) exp

(
k2t ′/γ

)
ξk(t

′)
]

(26)

with the important auxiliary function g(t) := exp
(

2
γ

∫ t
0 dt ′ r(t ′)

)
. In order to re-write

the spherical constraint (6) as an equation for g(t), we first define two further sup-
plementary functions

A(t) = cα Aα(t) :=
∫

Rd

dk exp

(
−2

k2t

γ

)
cαkα (27a)

F(t, s) :=
∫

Rd

dk exp

(
−k2(t + s)

γ

) 〈{
ξk(t), ξ−k(s)

}〉
(27b)

and also g2(t, s) := √
g(t)g(s) . The spherical constraint (6) then becomes, using

the definition (19) and the solution (26)

1

λ

!= C(t, t) = 1

g(t)

[
A(t) + (

g2 ∗ ∗F
)
(t, t)

]
(28)

where
(
h1 ∗ ∗h2

)
(t, s) := ∫ t

0 dx
∫ s
0 dy h1(x, y)h2(t − x, s − y) is the two-

dimensional convolution. It follows that the spherical constraint fixes the function
g(t)

1

λ
g(t) = A(t) + (

g2 ∗ ∗F
)
(t, t) (29)
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5.1 Markovian Case

If the noise correlator
〈{

ξk(t), ξk(t)
}〉 ∼ δ(t − t ′) is Markovian, the constraint (29)

turns into a linear Volterra equation (here for effective noise)

1

λ
g(t) = A(t) + μ

γ 2

(
g ∗ A2

)
(t) =⇒ g(p) = cα Aα(p)

1/λ − μ/γ 2 A2(p)
(30)

which is formally solved by a Laplace transformation h(p) = ∫ ∞
0 dt e−pt h(t). The

remainder of the procedure is now standard. Tauberian theorems [15] state that the
long-time behaviour of g(t) for t → ∞ is related to the one of g(p) for p → 0.
The critical point λc is given by the smallest pôle of g(p). Expanding Aα(p) around
p = 0 it follows that for quenches to λ > λc, one has g(t) ∼ et/τr and for quenches
to λ ≤ λc, one finds g(t) ∼ t�, with the values of � listed in Table1.

5.2 Non-Markovian Case

In the non-Markovian case, (29) is a non-linear integral equation for g(t). Progress
can be made by considering instead the symmetric function G(t, s) = G(s, t)which
satisfies the equation

1

λ
G(t, s) = A

(
t + s

2

)
+ (

G ∗ ∗F
)
(t, s) (31)

which reduces to (29) in the limit s → t , hence g(t) = G(t, t) (although G(t, s) �=
g2(t, s)). Denote by h(p, q) = ∫ ∞

0 dx
∫ ∞
0 dy e−px−qyh(x, y) the two-dimensional

Laplace transform. Then the formal solution of (31) is

G(p, q) = A(p, q)

1/λ − F(p, q)
(32)

The interpretation of this result is again via a Tauberian theorem.

Lemma: [48] For a homogeneous function f (x, y) = y−αφ(x/y) with φ(0) finite

and asymptotically φ(u)
u�1� φ∞ u−λ, one has the scaling form

f (p, q) = pα−2Φ(q/p) , Φ(u) = Γ (2 − α)uα−1
∫ ∞

0
dξ φ(ξu)(ξ + 1)α−2

(33a)

If n < λ < n + 1 with n ∈ N, one has asymptotically for u → ∞
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Table 1 Non-equilibrium exponents of the quantum spherical model for λ ≤ λc at T = 0 [48]

Quantum region � λC λR a b

λ = λc I 0 < d < 2 − α
2 d + α

2 d − α
2

d
2 − 1 d

2

II 2 < d, d + α < 2 1 − d+α
2 1 + d+α

2
d−α
2 + 1 d

2 − 1 1

V 2 < d, d + α > 2 0 d + α d d
2 − 1 d+α

2

λ < λc − d+α
2

d+α
2

d−α
2

d
2 − 1 0

Φ(u) � φ(1)uα−2 + · · · + φ(n)uα−1−n + Φ∞ uα−1−λ (33b)

Φ∞ = φ∞
Γ (1 − λ)

Γ (1 + λ − α)
, φ(m) = (−1)m−1 Γ (m + 1 − α)

(m − 1)!
∫ ∞

0
du um−1φ(u)

The critical point is found from the smallest pôle of G(p, q). Expanding F(p, q),

this gives 1
λc

= F(0, 0). Explicitly (Ωd = |Sd |, CE = 0.5772 . . . is Euler’s constant)

1

λc
=

{
μ

γ

Ωd
(2π)d

Λd

d ; effective noise

− 4�

πγ

Ωd
(2π)d

{
Λd

d

[
ln

(
Λ2 t0

γ

)
+ CE − 2

d

]
+ O(t0)

}
; quantum noise

(34)

which is finite for all d > 0. Hence d� = 0 for both quantum dynamics and effective
dynamicswhich is different from the equilibriumvalues of d� quoted in (7).Hence the
stationary state of the T = 0 quantum dynamics cannot be an equilibrium state ! This
is even more surprising since the single-particle dynamics constructed in section 1
should for any T > 0 relax to the unique equilibrium state.

Qualitatively, the results for g(t) of non-Markovian quantum dynamics are analo-
gous to the ones of effective dynamics. For quenches to λ > λc, g(t) ∼ et/τr is expo-

nential, with τr ∼ (
λ − λc

)−2/d
. For quenches to λ ≤ λc, we read off G(p, q) =

p−�−2
G(q/p), hence G(t, s) = s�G (t/s) by the Lemma. It follows that g(t) =

G(t, t) = t�G (1) and the values of � are listed in Table1. They are the same as for
effective dynamics. The constant G (1) will not be needed in the leading terms of the
observables.

6 Quench into the Disordered Phase

We now review results for a quantum quench with λ > λc [48], where g(t) ∼ et/τr .
For the stationary single-time correlator Ck(∞), we find

Ck(∞) �
{

μ

γ 2
k2

1/τr+2k2/γ ; effective noise
�

πγ
gAS

(
t0
(
k2/γ + (2τr)−1

)) ; quantum noise
(35)
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where gAS(x) := ∫ ∞
0 dt cos t

t+x � x−2 for x � 1. They are quite distinct, but the result of
quantum noise is qualitatively very similar to the classical Ornstein–Zernicke form.

Next, the two-time correlators Ck(s + τ, s) do indeed satisfy time-translation-
invariance for s � τmicro, as expected

Ck(s + τ, s) �
⎧
⎨

⎩

μk2

γ 2
1

1
τr

+2 k2
γ

exp
(
−

(
1
2τr

+ k2

γ

)
τ
)

; effective noise

− 2�

πγ
1

[(2τr)−1+k2/γ ]2
1
τ 2 ; quantum noise

(36)

but their functional forms are very different. Analogously, the two-time response
Rk(s + τ, s) is time-translation-invariant for s � τmicro, with the same form for both
effective and quantum noises

Rk(s + τ, s) � 1

γ
exp

(
−

(
1

2τr
+ k2

γ

)
τ

)
(37)

For effective noise, correlators and responses decay exponentially with τ . Empiri-
cally, one might say that they satisfy an ‘effective fluctuation-dissipation theorem’

∂Ck(τ )

∂τ
= − μ

2γ

∣∣k
∣∣2Rk(τ ) = −Teff(k)

γ
Rk(τ )

but therein Teff(k) is distinct from the bath temperature T = 0. So that relation is
rather ad hoc. For quantum noise, the different forms of Ck(τ ) and Rk(τ ) exclude
the validity of any fluctuation-dissipation theorem.

In conclusion, although there is a single stationary state of the dynamics, this
stationary state cannot be an equilibrium state, neither for effective nor for quantum
noise, since the qfdt does not hold.

7 Quench onto Criticality or Into the Ordered Phase

We now review results for a quantum quench with λ ≤ λc [48], where throughout
g(t) ∼ t�. For a quenched into the ordered phase with λ < λc, the dynamics is the
same as in the classical case and only depends on the initial correlations (23). This
is expected, since the same already occurs for classical white noise dynamics [37]
and quantum noise is more weak than classical noise, see Fig. 2.

For critical quenches to λ = λc, one obtains several scaling regions, as shown in
Fig. 5 in dependence of the values of the dimension d and the parameterα of the initial
correlations (23). The regions are the same for quantum and effective dynamics. The
dotted horizontal line indicates the upper critical dimension du , and we read off6

6 In agreement with the results of Keldysch field-theory [21, 22].
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Table 2 Non-equilibrium exponents of the classical spherical model for T ≤ Tc [37]

Classical region � λC λR a b

T = Tc Ic 2 < d < 4,
0 < d + α < 2

−1 − α
2 d + α

2 −
1

d − α
2 −

1

d
2 − 1 d

2 − 1

IIc 4 < d,
0 < d + α < 2

1 − d+α
2 1 + d+α

2
d−α
2 + 1 d

2 − 1 1

IIIc 2 < d < 4,
d + α > 2

d
2 − 2 3

2d − 2 3
2d − 2 d

2 − 1 d
2 − 1

IVc 4 < d,
d + α > 2,
α > −2

0 d d d
2 − 1 d

2 − 1

Vc 4 < d,
d + α > 2,
α < −2

0 d + α d d
2 − 1 d+α

2

T < Tc 2 < d − d+α
2

d+α
2

d−α
2

d
2 − 1 0

−2
α

1

d

2

3

4

5− 4− 3−
α

d

3

4

−4−1 5− 3− 2− 1−

1

2

quantum classical 

0 0

I

I
II

II

III

IV
V

V

Fig. 5 Critical scaling regions for quantum and classical dynamics

d(qu)
u = 2 and d(cl)

u = 4. In the quantum case, this is different from the equilibrium
values of du quoted in (7). The regions are characterised as follows:

I. both bath and initial fluctuations are relevant.
II. only initial long-ranged fluctuations are relevant.
V. no relevant fluctuations at all, long-ranged initial correlations.

For classical dynamics, two more regions exist, without a quantum counterpart (for
short-ranged initial correlations with α = 0 these are the main cases for study):

III. thermal bath fluctuations are relevant.
IV. no relevant fluctuations at all, short-ranged initial correlations.

The exact values of the non-equilibrium exponents are listed in Table1 for quantum
and effective dynamics and in Table2 for classical dynamics. We see that in region
I there is a shift d 
→ d − 1 in λC and λR when going from quantum to classical.
Otherwise, the exponents are identical (the admissible values of d and α can be dif-
ferent). Although the exponents are the same for quantum and effective dynamics,
the scaling functions can be different. This is shown in Fig. 6 [48] for the equal-time
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Fig. 6 Critical equal-time correlator Ck(t) − Ck(∞) as a function of ρ = k2t/γ in region I

correlator Ck(t) = C (ic)
k (t) + C (n)

k (t) in region I. The contributions C (n)

k (t) of quan-
tum and effective noise are different, while the initial contribution C (ic)

k (t) obviously
is the same. In regions II and V, only C (ic)

k (t) is relevant. All scaling functions are
known analytically [48]. Analogous statements hold true for the two-time correlator
Ck(t, s) while the form of the two-response Rk(t, s) is noise-independent.

8 Conclusions

Several surprises arise in the T = 0 quantum dynamics of the spherical model:

1. the stationary state is not a quantum equilibrium state, not even for λ > λc

2. the non-equilibrium exponents for λ ≤ λc are insensitive to non-Markovianity
3. non-Markovian noise is important for equal-time correlators

Figure5 shows the correspondence of the critical scaling regimes for quantum and
classical dynamics. The qualitative scenario of physical ageing (Sect. 4) is confirmed,
but a comparison ofTables1 and2 shows that the values of the exponents are different.

Turning to possible dynamical symmetries, the underlying Eq. (15) has z = 2 and
does admit a dynamical Schrödinger symmetry if r(t) ∼ t−1 [28, 38, 42]. This ansatz
for r(t) does hold true for classical dynamics at T ≤ Tc. For quantum dynamics at
T = 0 and λ ≤ λc, r(t) = γ

2 ∂t ln g(t) � γ

2
�

t . In region I, since � = −α
2 → 0 in

the limit of short-ranged initial conditions α = 0, the ansatz7 r(t) ∼ t−1 no longer
applies. New representations for a dynamical symmetry must be sought.
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7 It is also used in Keldysch field theory with disordered initial state [22].
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On First Extensions in S-Subcategories
ofO
Hankyung Ko and Volodymyr Mazorchuk

Abstract We compute the first extension group from a simple object to a proper
standard object and, in some cases, the first extension group from a simple object to
a standard object in the principal block of an S-subcategory of the BGG categoryO
associated to a triangular decomposition of a semi-simple finite dimensional complex
Lie algebra.

Keywords Category O · S-subcategory · Properly stratified algebra · Proper
standard module · Extension

1 Introduction and Description of the Results

Bernstein–Gelfand–Gelfand categoryO associated to a triangular decomposition of
a semi-simple finite dimensional complex Lie algebra g is about half a century old,
it originates from the classical papers [3, 4]. However, it remains an important and
intensively studied object in modern representation theory, see [6, 7, 15, 18–21] for
details. Category O has numerous analogues and generalizations, which include:

• parabolic category O, see [31],
• S-subcategories in O, see [12, 27].

Homological invariants of the above categories carry essential information about
both the structure and the properties of these categories. For category O, many
homological invariants are explicitly known, see [6, 7, 18–21, 23, 24] and references
therein. Using these results, many homological invariants for S-subcategories in O,
for example, various projective dimensions, can be computed using the approach of
[26, Sect. 4], especially using [26, Theorem 15]. In the present paper, inspired by
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the recent results from [20, 21], we take a closer look at the first extension space
between certain classes of structural object in S-subcategories of O.

We completely determine, in type A, the first extension space from a simple
object to a proper standard object in the regular block of an S-subcategory of O
in Theorems5 and 6. In many special cases (notably both for the dominant and the
antidominant standard objects), we completely determine the first extension space
from a simple object to a standard object in the regular block of an S-subcategory of
O in Proposition9. We also obtain some general results which reduce the problem
of computation of the first extension space from a simple object to a standard object
in an S-subcategory ofO to a similar problem for certain objects in categoryO, see
Proposition8.

The paper is organized as follows: Sect. 2 contains preliminaries on category
O and its combinatorics. In Sect. 3 we survey some of the recent results of [20, 21]
which describe extensions froma simple highestweightmodule to aVermamodule in
categoryO. In Sect. 4 we recall the definition and basic properties ofS-subcategories
in O. Section5 is devoted to explicit description of the first extensions space from
a simple to a proper standard object in S-subcategories in O in type A. We also
formulate a number of general results which hold in all types. In Sect. 6 we similarly
look at the first extensions space from a simple to a standard object. We complete
the paper with some examples in Sect. 7. This includes a detailed sl3-example (for
a rank one parabolic) as well as various examples of non-trivial extension from a
simple to a proper standard object for the algebra sl4.

2 Preliminaries on CategoryO

2.1 CategoryO

Let g be a semi-simple finite dimensional complex Lie algebra with a fixed triangular
decomposition g = n− ⊕ h ⊕ n+, see [15, 30] for details. Associated to this datum,
we have the Bernstein–Gelfand–Gelfand categoryO defined as the full subcategory
of the category of all finitely generated g-modules, consisting of all h-diagonalizable
and locally U (n+)-finite modules, cf. [3, 4, 15, 30].

Simple modules inO are exactly the simple highest weight modules L(λ), where
λ ∈ h∗, see [8, Chap. 7] for details. For each such λ, we also have in O the corre-
sponding

• Verma module Δ(λ),
• dual Verma module ∇(λ),
• indecomposable projective module P(λ),
• indecomposable injective module I (λ),
• indecomposable tilting module T (λ).
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Consider the principal block O0 of O, which is defined as the indecomposable
direct summand containing the trivial g-module L(0). Simple modules in O0 are
indexed by the elements of the Weyl group W of g. For w ∈ W , we have the corre-
sponding simple module Lw := L(w · 0), where w · − denotes the usual dot-action
of the Weyl group on h∗. We will similarly denote by Δw, ∇w, Pw, Iw and Tw the
other structural modules corresponding to Lw.

We will use Ext and Hom to denote extensions and homomorphisms inO, respec-
tively. The simple preserving duality on O is denoted by �.

2.2 Graded CategoryO

The category O0 admits a Z-graded lift OZ

0 , see [33, 34]. All structural modules in
O0 admit graded lifts (unique up to isomorphism and shift of grading). We will use
the same notation as for ungraded modules to denote the following graded lifts of
the structural modules in OZ

0 :

• Lw denotes the graded simple object concentrated in degree 0,
• Δw denotes the graded Verma module with top in degree 0,
• ∇w denotes the graded dual Verma module with socle in degree 0,
• Pw is the graded indecomposable projective module with top in degree 0,
• Iw is the graded indecomposable injective modules with socle in degree 0,
• Tw is the graded indecomposable tilting module having the unique Lw subquotient
in degree 0.

For k ∈ Z, we denote by 〈k〉 the functor which shifts the grading by k, with the
convention that 〈1〉 maps degree 0 to degree −1. We will use ext and hom to denote
extensions and homomorphisms in OZ

0 , respectively. Note that, for any k ≥ 0 and
any two structural modules M and N with fixed graded lifts M and N, we have

Extk(M, N ) ∼=
⊕

i∈Z
extk(M,N〈i〉).

2.3 Combinatorics of Category OZ

0

LetH denote the Hecke algebra of W over Z[v, v−1] in the normalization of [33]. It
has the standard basis {Hw : w ∈ W } and the Kazhdan–Lusztig basis {Hw : w ∈
W }. The Kazhdan–Lusztig polynomials {px,y : x, y ∈ W } are the entries of the
transformation matrix between these two bases, that is

Hy =
∑

x∈W
px,y Hx , for all y ∈ W.
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Taking theGrothendieck group gives rise to an isomorphismofZ[v, v−1]-modules
as follows:

Gr(OZ

0 ) ∼= H, [Δw] 
→ Hw, for w ∈ W.

Here the Z[v, v−1]-module structure on Gr(OZ

0 ) is given be letting the element v act
as 〈−1〉. This isomorphism maps Pw to Hw, for w ∈ W .

2.4 Kazhdan–Lusztig Orders and Cells

Following [16], for x, y ∈ W , we write x ≥L y provided that there is w ∈ W such
that Hx appears with a non-zero coefficient in HwHy . This defines the left pre-order
on W . The equivalence classes with respect to this pre-order are called left cells and
the corresponding equivalence relation is denoted ∼L .

Similarly, for x, y ∈ W , we write x ≥R y provided that there is w ∈ W such that
Hx appears with a non-zero coefficient in HyHw. This defines the right pre-order
on W . The equivalence classes with respect to this pre-order are called right cells
and the corresponding equivalence relation is denoted ∼R .

Finally, for x, y ∈ W , we write x ≥J y provided that there are w,w′ ∈ W such
that Hx appears with a non-zero coefficient in HwHyHw′ . This defines the two-
sided pre-order on W . The equivalence classes with respect to this pre-order are
called two-sided cells and the corresponding equivalence relation is denoted ∼J .

The two-sided pre-order induces a partial order on the set of the two-sided cells.
Themapsw 
→ w0w andw 
→ ww0 induce anti-involution on the poset of two-sided
cells, see [5, Chap. 6]. In particular, the poset of two-sided cells has the minimum
element {e} and themaximum element {w0}. In type A1, there is nothing else. Outside
type A1, removing these two extreme cells, we again get a poset with the minimum
and the maximum element. The new minimum element is the cell containing all
simple reflections, called the small cell (see [17]), while the new maximum element
is the image of the small cell under the w 
→ w0w anti-involution (note that the two
new extreme cells coincide in rank 2).We call this newmaximumcell the penultimate
cell and denote it by J .

3 First Extension from a Simple to a Verma Module in
CategoryO

In this section, we briefly summarize the results from [20, 21, 23] which describe
the first extension from a simple module to a Verma module.
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3.1 First Extension to a Verma from the Anti-dominant
Simple

We have the usual length function � on the Weyl group W considered as a Cox-
eter group with respect to the simple reflections determined by our fixed triangular
decomposition of g. Forw ∈ W , the value �(w) is the length of a reduced expression
of w. We also have the content function c : W → Z≥0. For w ∈ W , the value c(w)

is the number of different simple reflections which appear in a reduced expression
of w (from the Coxeter relations it follows that this number does not depend on the
choice of a reduced expression).

As usual, we denote by w0 the longest element of W . The following result is [23,
Theorem 32].

Theorem 1 For w ∈ W and i ∈ Z, we have

dim ext1(Δw0 ,Δw〈i〉) =
{
c(w0w), i = �(w0) − �(w) − 2;
0, otherwise.

3.2 First Extension to a Verma Module from Other Simple
Modules and Inclusion of Verma Modules

Recall the following properties of (graded) Verma modules:

• every non-zero map between two Verma modules is injective;
• for x, y ∈ W , we have hom(Δx ,Δy〈d〉) = 0 if and only if x ≥ y in the Bruhat
order and d = �(x) − �(y);

• dimHom(Δx ,Δy) ≤ 1, for all x, y ∈ W .

The ungraded versions of these properties can be found in [8, Chap. 7]. The graded
version of the second property follows by matching the degrees using standard argu-
ments, see e.g. [34].

In particular, each Δx 〈−�(x)〉 injects to Δe, and the cokernel Δe/(Δx 〈−�(x)〉)
belongs toOZ

0 . To ease the notation, we denote the latter byΔe/Δx . These cokernels
control the first extension fromnon-anti-dominant simplemodules toVermamodules
in the following way, as observed in [20].

Proposition 1 For each x, w ∈ W, with x = w0, we have

dim ext1(Lx 〈d〉,Δw〈−�(w)〉) = [socΔe/Δw : Lx 〈d〉].

The proof is similar to the second part of [20, Proof of Corollary 2]. A similar
argument will also be given in Proposition4.

The rest of this section describes the cokernelsΔe/Δw, forw ∈ W . To do this, we
need to dive into poset-theoretic properties of the Bruhat order. An elementw ∈ W is
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called join-irreducible provided that it is not a join (supremum) of other elements, that
is, there is noU ⊂ W withw /∈ U such thatw = ∨

U . The set of all join-irreducible
elements, denoted by B, is called the base of the poset W .

3.3 Cokernel of Inclusion Between Verma Modules in Type A

In a few coming subsections we restrict to the case of type A. The join-irreducible
elements in W of type A are explicitly identified in [22] as the bigrassmannian
elements.An elementw ∈ W is calledbigrassmannianprovided that there is a unique
simple reflection s such that �(sw) < �(w) and there is a unique simple reflection t
such that �(w) < �(wt). In type A, the base B agrees with the set of bigrassmannian
elements in W .

The Kazhdan–Lusztig two-sided order is also easier in type A. The classical
Robinson-Schensted correspondence

RS : Sn −→
∐

λ�n
SYTλ × SYTλ

assigns to w ∈ W a pair RS(w) = (pw, qw) of standard Young tableaux of shape
λ =: sh(w), where λ is a partition of n, see [32, Sect. 3.1]. By [16, Theorem 1.4],
we have

• x ∼L y if and only if qx = qy ;
• x ∼R y if and only if px = py ;
• x ∼J y if and only if sh(x) = sh(y).

The poset of all two-sided cells with respect to the two-sided order is isomorphic to
the poset of all partitions of n with respect to the dominance order, see [14].

Recall that J denotes the penultimate cell with respect to the two-sided order.
In type A, the elements in J are naturally indexed by pairs of simple reflections in
W : for any pair (s, t) of simple reflections in W , there is a unique element ws,t ∈ J
such that w0 = sws,t = ws,t t .

We now formulate the main result of [20], that is [20, Theorem 1].

Theorem 2 (i) For w ∈ Sn, the module Δe/Δw has simple socle if and only if
w ∈ B.

(ii) The map B � w 
→ soc(Δe/Δw) induces a bijection between B and simple
subquotients of Δe of the form Lx , where x ∈ J .

(iii) For w ∈ Sn, the simple subquotients of Δe/Δw of the form Lx , where x ∈ J ,
correspond, under the bijection from ii, to y ∈ B such that y ≤ w.

(iv) For w ∈ Sn, the socle of Δe/Δw consists of all Lx , where x ∈ J , which corre-
spond, under the bijection from (ii), to the Bruhat maximal elements in the set
{y ∈ B : y ≤ w}.

Motivated by the last claim, we denote BM(w) := max{y ∈ B : y ≤ w}.
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The socle of the cokernel of an inclusion between two arbitrary Verma modules
can be described using Theorem2. The following corollary is [20, Corollary 23].

Corollary 1 Let v,w ∈ Sn be such that v < w.

(i) The bijection from Theorem2 (ii) induces a bijection between simple subquo-
tients of Δv/Δw of the form Lx , where x ∈ J , and y ∈ B such that y ≤ w and
y � v.

(ii) The socle of Δv/Δw consists of all Lx , where x corresponds to an element in
BM(w) \ BM(v).

3.4 First Extension to a Verma from Other Simples in Type A

Let w ∈ B be such that �(sw) < �(w) and �(wt) < �(w), for two simple reflections
s and t . Denote by Φ : B → J the map which sends such w to ws,t . Theorem2 and
Proposition1 has the following consequence:

Corollary 2 Let x, y ∈ Sn with x = w0. Then we have

dim Ext1(Lx ,Δy) = dim Ext1(∇y, Lx ) =
{
1, x ∈ Φ(BM(y));
0, otherwise.

3.5 Extensions in Singular Blocks in Type A

Let λ be a dominant integral weight and Oλ the indecomposable summand of O
containing λ. If λ is regular, thenOλ is equivalent toO0. In the general case, denote
by W λ the stabilizer of λ with respect to the dot action of W . Simple objects in Oλ

are then in a natural bijection with the cosets in W/W λ .
For w ∈ W denote by w the unique longest element in wW λ. Also, denote by w

the unique shortest element in wW λ. The following claim is [20, Theorem 16]:

Theorem 3 Let x, y ∈ Sn and let μ be an integral, dominant weight. Then we have

dim Ext1O(L(x · λ),Δ(y · λ)) =

⎧
⎪⎨

⎪⎩

c(x y) − rank(W λ), x = w0;
1, x ∈ Φ(BM(y));
0, otherwise.
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3.6 The Graded Picture in Type A

Corollary2 admits a graded lift. Let s1, . . . , sn−1 be the simple reflections in Sn such
that the corresponding Dynkin diagram is

s1 s2 . . . sn−1

For i, j ∈ {1, 2, . . . , n − 1}, let

iB j := {w ∈ B : �(siw) < �(w) and �(ws j ) < �(w)}.

The set iB j consists of min{i, j, n − i, n − j} elements which can be described very
explicitly, see [20, Sect. 4.2]. For example, here are the three elements of 4B3 in S7
and their graphs:

(
1 2 3 4 5 6 7
1 2 5 3 4 6 7

)
,

(
1 2 3 4 5 6 7
1 5 6 2 3 4 7

)
,

(
1 2 3 4 5 6 7
5 6 7 1 2 3 4

)
,

1 2 3 4 5 6 7

1 2 3 4 5 6 7

, 1 2 3 4 5 6 7

1 2 3 4 5 6 7

, 1 2 3 4 5 6 7

1 2 3 4 5 6 7

.

The elements of iB j form naturally a chain with respect to the Bruhat order on
Sn . This allows us to index the elements of the set iB j via the tuples (i, j, k), where
0 ≤ k ≤ min{i, j, n − i, n − j} − 1, increasingly along the Bruhat order. Since The-
orem2 is gradable, see [20, Proposition 22], we can lift Corollary2 to the graded
setup by Proposition1.

Proposition 2 Let y ∈ Sn and x = Φ((i, j, k)), where (i, j, k) ∈ BM(y). Then the
unique degree m ∈ Z for which dim ext1(Lx 〈−m〉,Δy〈−�(y)〉) = 1 is

m = (n − 1)(n − 2)

2
+ |i − j | + 2k.

Similarly, Theorem3 can also be graded.

Proposition 3 Let y = y ∈ Sn and x = x = Φ((i, j, k)), where (i, j, k) ∈
BM(y). Then the unique degree m ∈ Z for which dim ext1(L(x · λ)〈−m〉,Δ(y ·
λ)〈−�(y)〉) = 1 is

m = (n − 1)(n − 2)

2
+ |i − j | + 2k.
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3.7 First Extension to a Verma from Other Simples in Other
Types

By Proposition1, the problem again reduces to determining the (socles of) Δe/Δw,
for w ∈ W . However, the latter does not seem to follow a uniformly describable
pattern, in general. In particular, it is shown in [21] that none of the statements in
Theorem2 is true, in general, in other types.

What remains to be true is that, for x, w ∈ W with x = w0, we have
Ext1(Lx ,Δw) = 0, unless x ∈ J . Another partial result is an upper bound. Let

sBMt (w) = {z ∈ BM(w) | sz < z and zt < z},

for w ∈ W and s, t simple reflections. The following is Theorem F(c) in [21].

Theorem 4 Let w ∈ W and x ∈ J . If s, t are simple reflections in W such that
sx > x and xt > x, then

dim ext1(Lx ,Δw〈d〉) ≤ dim ext1(Lx ,Δb〈d〉), (1)

for all d ∈ Z, where b is the join of sBMt (w). The right hand side of (1) is again
bounded by

dim Ext1(Lx ,Δb) ≤ |sBMt (w)|. (2)

In particular, Ext1(Lx ,Δw) = 0, if sBMt (w) = ∅.
Using further computation, it is determined in [21] that

dim ext1(Lx ,Δb〈d〉)

is bounded by 1 in type B, by 2 in types DF , and by 3, 4, and 6 in types E6, E7 and
E8, respectively.

The paper [21] develops several techniques to compute specific Δe/Δw. Thus for
a given w ∈ W , it is often possible to determine ext1(Lx ,Δw〈d〉), for all x ∈ W and
d ∈ Z. See [21, Sect. 5] for details.

4 S-Subcategories in O

In this subsection we recall the definition and basic properties of S-subcategories in
O from [12, 27].
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4.1 Definition

Let p be a parabolic subalgebra of g containing h ⊕ n+. We denote by W p the
corresponding parabolic subgroup of W and by w

p
0 the longest element of W p.

Denote by Xlong
p and Xshort

p the sets of the longest and the shortest representatives

in the W p-cosets from Wp\W , respectively. The map w
p
0 · − : Xlong

p → Xshort
p is a

bijection with inverse w
p
0 · − : Xshort

p → Xlong
p .

Recall that the parabolic category Op
0 is defined in [31] as the Serre subcategory

of O0 generated by all Lw, where w ∈ Xshort
p .

We define the S-subcategory Sp
0 of O0 as the quotient of O0 modulo the Serre

subcategoryQp generated by all Lw, where w /∈ Xlong
p . We denote by πp : O0 → S0

the Serre quotient functor.
The category Sp

0 admits various realizations as a full subcategory of O0. For
example, Sp

0 is equivalent to the full subcategory of O0 consisting of all M which
have a projective presentation of the form

X → Y → M → 0,

such that, for each Pw appearing as a summand of X or Y , we have w ∈ Xlong
p .

Alternatively, Sp
0 is equivalent to the full subcategory of O0 consisting of all N

which have an injective copresentation of the form

0 → N → X → Y

such that, for each Iw appearing as a summand of X or Y , we have w ∈ Xlong
p .

By abstract nonsense, see [2], Sp
0 is equivalent to the module category over the

endomorphism algebra Ap of the direct sum of all Pw, where w ∈ Xlong
p .

We also note that, in the case W p is of type A1, the category Sp
0 is the Serre

quotient of O0 by Op
0 . In this case W = Xlong

p

⋃
Xshort
p .

The graded version (Sp
0 )Z of Sp

0 is similarly defined as the Serre quotient of
OZ

0 by the Serre subcategory of the latter category generated by all Lw〈i〉, where
w /∈ Xlong

p and i ∈ Z. We use the same notation πp for the graded Serre quotient
functor. The above alternative descriptions have the obvious graded analogues. For
example, (Sp

0 )Z is equivalent to the full subcategory of OZ

0 consisting of all objects
which have a projective presentation as abovewith indecomposable summands of the
form Pw〈i〉, where w ∈ Xlong

p and i ∈ Z. Similarly for the injective copresentation.

4.2 Origins and Motivation

S-subcategories inOwere formally defined in [12]. They provide a uniform descrip-
tion for a number of generalizations of category O in [10, 11, 13, 25, 29]. Notably,
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these include various categories of Gelfand–Zeitlin module, see [25], and Whittaker
modules, see [29].

The realization of theS-subcategories inO as projectively presentablemodules in
O was studied in [27]. In particular, in [27] it was shown that the action of projective
functors on S0 categorifies the permutation W -module for W p, i.e., the W -module
obtained by inducing the trivialW p-module up toW (see also [28] for further details).

4.3 Stratified Structure

Here we recall some structural properties of Sp
0 established in [12, 27].

For w ∈ Xlong
p , denote by

• Lp
w the object πp(Lw) in Sp

0 ;• Pp
w the object πp(Pw) in Sp

0 ;• I pw the object πp(Iw) in Sp
0 ;• T p

w the object πp(Tw
p
0 w〈−�(w

p
0 )〉) in Sp

0 .

By construction, Lp
w is simple and {Lp

w : w ∈ Xlong
p } is a complete and irredundant

list of representatives of simple objects in Sp
0 . The objects P

p
w and I pw are the corre-

sponding indecomposble projectives and injectives in Sp
0 , respectively. For structural

modules, we will use the same notation for the ungraded versions of the modules
and for their graded versions. The latter are obtained by applying the graded version
of πg to the standard graded lifts of structural modules.

Forw ∈ Xlong
p , denote byΔ

p

w the objectπp(Δw) inSp
0 . ThenΔ

p

w
∼= πp(Δxw〈�(x)〉),

for all x ∈ W p. The object Δ
p

w is called the proper standard object corresponding to
the element w.

Further, for w ∈ Xlong
p , let Qw ∈ O0 denote the quotient of Pw modulo the trace

in Pw of all Py , where y ∈ W is such that y < w with respect to the Bruhat order
and y = xw, for any x ∈ W p. Denote by Δp

w the object πp(Qw) in Sp
0 . The object

Δp
w is called the standard object corresponding to w.
The object Δp

w has a filtration with subquotients Δ
p

w (up to graded shift). The
length of this filtration is |W p|. With more details for the graded version: for i ∈ Z,
the multiplicity of Δ

p

w〈−2i〉 as a subquotient of a (graded) proper standard filtration
of Δp

w equals the cardinality of the set {w ∈ W p : �(w) = i}. Furthermore, each
projective object in Sp

0 has a filtration with standard subquotients.
The simple preserving duality � onO0 induces a simple preserving duality on Sp

0
which we will denote by the same symbol, see [27, Lemma 2.12].

The above means that the underlying algebra Ap of the category Sp
0 is properly

stratified in the sense of [9]. The objects T p
w are tilting with respect to this structure,

in the sense of [1]. An additional property of the algebra Ap is that each T p
w is also

cotilting. This follows from the description of tilting modules for Ap in [12, Sect. 6]
and the fact that these modules are self-dual.
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5 First Extension from a Simple to a Proper Standard
Module in Sp

5.1 First Extension from the Antidominant Simple

Similarly as in O, it is easy to separately treat the following special case.

Theorem 5 For y ∈ Xlong
p and i ∈ Z, we have

Ext1S(Lp
w0

,Δ
p

y ) = dim ext1S
(
Lp

w0
〈−�(w0) + 2〉,Δp

y 〈−�(y)〉) = c(w0w
p
0 y).

Proof Note that Lp
w0

∼= Δ
p

w0
is a proper standard object. The object T p

y is both tilting

and cotilting. In particular, it is the cotilting envelope of Δ
p

y . Let Q be such that the
following sequence is short exact in (Sp

0 )Z:

0 → Δ
p

y 〈−�(y)〉 → T p
y 〈2�(wp

0 ) − �(y)〉 → Q → 0. (3)

Set a := 2�(wp
0 ) − �(y). As proper standard and costandard (and hence also

cotiltitng) objects are homologically orthogonal, it follows that

dim ext1S (Lpw0 〈i〉,Δp
y 〈−�(y)〉) = dim homS (Lpw0 〈i〉, Q) − dim homS (Lpw0 〈i〉, Tp

y 〈a〉) + 1.

At the same time, we have w
p
0 y ∈ Xshort

p . Therefore, Δ
p

y
∼= πp(Δw

p
0 y〈�(wp

0 )〉) and

T p
y

∼= πp(Tw
p
0 y〈−�(w

p
0 )〉). It follows that the sequence given by Formula (3) is

obtained by applying πp to the following short exact sequence in O:

0 → Δw
p
0 y〈−�(w

p
0 y)〉 → Tw

p
0 y〈−�(w

p
0 y)〉 → Q′ → 0.

Since Q′ has a Verma flag, the socle of Q′ is a direct sum of copies of shifts of Δw0 ,
and w0 ∈ Xlong

p . Consequently, πp induces isomorphisms

homS(Lp
w0

〈i〉, Q) = homO(Lw0〈i〉, Q′)

and
homS(Lp

w0
〈i〉, T p

y 〈−�(w
p
0 y)〉) = homO(Lw0〈i〉, Tw

p
0 y〈a〉).

This implies that

ext1S(Lp
w0

〈i〉,Δp

y 〈−�(y)〉) = ext1O(Lw0〈i〉,Δw
p
0 y〈−�(w

p
0 y)〉)

and the claim of the theorem now follows from Theorem1.



On First Extensions in S-Subcategories of O 141

5.2 Inclusions Between Proper Standard Modules

Recall from Sect. 3.2 the properties of homomorphisms between Verma modules in
O. Applying the functor πp gives:

• every non-zero map between two proper standard objects in Sp
0 is injective;

• for x, y ∈ Xlong
p , we have homS0(Δ

p

x ,Δ
p

y 〈d〉) = 0 if and only if x ≥ y and d =
�(y) − �(x);

• dimHomS0(Δ
p

x ,Δ
p

y ) ≤ 1, for all x, y ∈ Xlong
p .

We thus obtain the canonical quotients Δ
p

y/Δ
p

x := Δ
p

y/(Δ
p

x 〈�(y) − �(x)〉). The fol-
lowing analogue of Proposition1 relates these quotients to extensions from simple
to proper standard objects in Sp

0 .

Proposition 4 For each x, y ∈ Xlong
p with x = w0, we have

dim ext1(Lp
x 〈d〉,Δp

y 〈−�(y)〉) = [socΔ
p

e /Δ
p

y : Lp
x 〈d〉].

Proof Let L := (Lp
x 〈d〉)⊕m and suppose we have a short exact sequence

0 → Δ
p

y 〈−�(y)〉 → M → L → 0 (4)

such that M is indecomposable. Since L is semisimple, we have

socM = socΔ
p

y 〈−�(y)〉 = Lp
w0

〈−�(w0)〉.

Thus, the injective covers of Δ
p

y and of M coincide and are isomorphic to
I pw0

〈−�(w0)〉. The latter is also isomorphic to a shift of Pp
w0
.

Being both a tilting and a cotilting object, Pp
w0

has a proper standard filtration

which starts with a submodule isomorphic to Δ
p

w
p
0
, up to shift. In particular, the

cokernel of the inclusion

0 → Δ
p

w
p
0
〈−�(w

p
0 )〉 → I pw0

〈−�(w0)〉

has a proper standard filtration.
As the socle of each proper standard module is a shift of Lp

w0
, we have

Ext1S(Lp
w,Δ

p

w
p
0
) = 0,

for any w ∈ Xlong
p such that w = w0. This implies that M must be a submodule of

Δ
p

w
p
0
〈−�(w

p
0 )〉. In other words, L should be a summand of the socle of the cokernel

of the canonical inclusion Δ
p

y 〈−�(y)〉 ⊂ Δ
p

w
p
0
〈−�(w

p
0 )〉.
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On the other hand, any summand of this socle gives rise to a non-split short exact
sequence as in Formula (4) (since in that case M obviously has simple socle). The
claim follows.

5.3 Cokernel of Inclusion of Proper Standard Modules

Lemma 1 Let x, y ∈ Xshort
p be such that x ≥ y. Let z ∈ W be such that Lz appears

in the socle of Δy/Δx . Then z ∈ Xlong
p .

Proof Note that x ∈ Xshort
p is equivalent to sx > x , for each s ∈ S ∩ W p. Thus, if

Lz appears in the socle of Δy/Δx , (and thus in the socle of Δe/Δx ,) then, by [20,
Proposition 6], we have sz < z, for each s ∈ S ∩ W p. The latter is equivalent to
z ∈ Xlong

p , as desired.

Proposition 5 For x, y ∈ Xlong
p such that x ≥ y, we have

soc(Δ
p

y/Δ
p

x )
∼= πp(socΔw

p
0 y/Δw

p
0 x

).

This isomorphism holds as well for graded modules with the standard shifts, that is,
if we shift each Δ

p

w or Δw by 〈−�(w)〉.
Proof As mentioned in Sect. 4.3, we have the isomorphisms

Δ
p

x
∼= ππ(Δw

p
0 x

)〈�(wp
0 )〉 and Δ

p

y
∼= ππ(Δw

p
0 y)〈�(wp

0 )〉.

Note that w
p
0 x, w

p
0 y ∈ Xshort

p . Therefore we may apply Lemma1 to conclude that
the socle of the cokernel of the inclusion Δw

p
0 x

⊂ Δw
p
0 y contains only Lz such that

z ∈ Xlong
p . Now the claim of the proposition follows by applying πp.

5.4 Ungraded Statements in Type A

In type A, the above results can be summarized and made more precise as follows.

Proposition 6 In type A, for x, y ∈ Xlong
p such that x ≥ y, the cokernel of Δ

p

x ⊂ Δ
p

y

is isomorphic to the (multiplicity-free) direct sum of all simples Lp
z , where z ∈ Xlong

p

and z ∈ Φ(BM(x) \ BM(y)).

Proof This follows from Corollary1 and Proposition5.
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Theorem 6 In type A, let x, y ∈ Xlong
p . Then we have

dim Ext1S(Lp
x ,Δ

p

y ) =

⎧
⎪⎨

⎪⎩

c(w0w
p
0 y), x = w0;

1, x ∈ Φ(BM(y));
0, otherwise.

(5)

Proof The case x = w0 is covered by Theorem5. For x = w0, Formula (5) follows
from Propositions6 and 4.

5.5 Graded Statement in Type A

We can also explicitly determine the degree shifts for the graded non-zero extensions
in Theorem6.

Proposition 7 Assume we are in type A. Let y ∈ Xlong
p and x = Φ((i, j, k)),

for some (i, j, k) ∈ BM(y)∩ Xlong
p . Then the unique degree m ∈ Z for which

dim ext1(Lp
x 〈−m〉,Δp

y 〈−�(y)〉) = 1 is

m = (n − 1)(n − 2)

2
+ |i − j | + 2k.

Proof This follows from Propositions5, 4 and 2.

5.6 First Extension from Other Simples to Proper Standard
Modules in Other Types

Propositions4 and 5 translate all graded and ungraded results from [19] to the cor-
responding statements on the first extension spaces. In particular, we have

• for x, y ∈ Xlong
p , we have Ext1(Lp

x ,Δ
p

w) = 0 unless x ∈ J ;
• if x ∈ J , we have

dim Ext1(Lp
x ,Δ

p

w) ≤ |sBMt (w)|,

where s, t are simple reflections in W such that sx > x and xt > x .

We emphasize that the main point of giving the above bound is to have a general
statement, and that the bound |sBMt (w)| is a gross exaggeration in most of the cases.
For computing/bounding first extension spaces between simple and proper standard
modules, it is strongly recommended to ignore the bound |sBMt (w)| and instead
look at [19, Sect. 5] (see also the discussion after [19, Theorem F]).
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6 First Extension from a Simple to a Standard Module in
Sp

6.1 Elementary General Observations

Since w0 corresponds to the minimum element for the partial order with respect to
which Ap is stratified, the standard object Δp

w0
is a tilting object. Due to the special

properties of Ap mentioned at the end of Sect. 4.3, it is also a cotilting module. The
simple object Lp

w0
is a proper standard module. Therefore, due to the homological

orthogonality of proper standard and cotilting modules, we have

ExtiS(Lp
w0

,Δp
w0

) = 0, for all i > 0.

The projective-injective object I pw0
is a tilting object and is thus the tilting envelope

of the standard object Δp

w
p
0
. Therefore the cokernel of the inclusion Δ

p

w
p
0

↪→ I pw0
has

a standard filtration. As the socle of each standard object is isomorphic to Lp
w0
, it

follows that the only simple object appearing in the socle of the cokernel of the above
inclusion is Lp

w0
. Consequently,

Ext1S(Lp
x ,Δ

p

w
p
0
) = 0, for all x ∈ Xlong

p \ {w0}.

We will generalize this result below in Sect. 6.3.

6.2 Reduction to CategoryO

The following statement reduces the problem of computing first extensions from
simple to standard objects in S to the problem of computing first extensions between
certain modules in O.

Proposition 8 For x, y ∈ Xlong
p and i ∈ Z, we have an isomorphism

ext1S(Lp
x ,Δ

p
y 〈i〉) ∼= ext1(Lx , Qy〈i〉).

Proof The functor πp connectsO0 and Sp
0 . Since πp(Lx ) = Lp

x and πp(Qy) = Δ
p
y ,

we need to show that the socle of the cokernel Cy of the natural inclusion Qy ↪→ Iw0

only contains simples of the form Lz , where z ∈ Xlong
p .

Let a be the semi-simple part of p. For w ∈ Xlong
p , the module Qw is obtained by

parabolic induction (from p to g) of a projective-injective module in the category
O for a, see [27, Proposition 2.9]. In particular, Qw is an (infinite) direct sum of
projective-injective modules in the categoryO for a. Since Iw0 = Pw0 has a filtration
whose subquotients are various Qw’s, the module Iw0 is an (infinite) direct sum of
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projective injective module in the category O for a. Consequently, the module Cy

is an (infinite) direct sum of projective injective module in the category O for a. In
particular, for any simple root α of a, the action of a non-zero element in aα on any
simple submodule Lz of Cy is injective.

This means that sz > z, for any simple reflection s ∈ W p, and hence z ∈ Xlong
p as

asserted. Now the statement of the proposition follows by comparing the long exact
sequence obtained by applying hom1(Lx , −〈i〉) to the short exact sequence

0 → Qy → Iw0 → Cy → 0

with the image of this long exact sequence under πp.

As a corollary, we have the following general observation:

Corollary 3 For x, y ∈ Xlong
p and i ∈ Z. If ext1S(Lp

x ,Δ
p
y 〈i〉) = 0, then x ∈ J ∪

{w0}.
Proof By Proposition8, we need to show that ext1(Lx , Qy〈i〉) = 0 implies x ∈ J ∪
{w0}. The module Qw has a Verma flag, by construction. From [20, Proposition 3] it
follows that ext1(Lx ,Δw〈i〉) = 0, for w ∈ W , implies x ∈ J ∪ {w0}. As any non-
zero extension from Lx to Qy〈i〉 must induce a non-zero extension from Lx to one
of the Verma subquotients of Qy〈i〉, the claim of the corollary follows.

6.3 The Case of Standard Modules which Can be Obtained
Using Projective Functors

An element w ∈ W is called (p-)special provided that the subgroup w−1W pw is
parabolic, that is, there exists a parabolic subgroupW p̃ ofW such thatW pw = wW p̃.
For example, any w ∈ W p, in particular w

p
0 , is special. Also, w0 is special, for we

can choose W p̃ = w0W pw0.

Proposition 9 Let x, y ∈ Xlong
p and assume that y is special.

(i) We have
Ext1S(Lp

x ,Δ
p
y )

∼= Ext1O(L(x · λ),Δ(y · λ)),

where λ is an integral dominant weight which has the dot-stabilizer W p̃.
(ii) Under the additional assumption x = w0, we have

dim Ext1S(Lp
x ,Δ

p
y ) = dim Ext1O(L(x · λ),Δ(y · λ)) = [socΔe/Δw

p
0 y : Lx ].

Proof Let x, y be as above and let p̃ be such that W py = yW p̃. Let w̃0 be the
longest element inW p̃. We have Qw

∼= θw̃0Δw, since both sides are characterized as
the quotient of Pw with a filtration where the factors are exactly Δz〈−�(w) + �(z)〉
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for z ∈ W pw = wW p̃ (with multiplicity one). Let λ be a dominant integral weight
for whichW p̃ is the dot-stabilizer. LetOλ be the corresponding block ofO. Consider
the corresponding projective functors

θon
w̃0

: O0 → Oλ and θout
w̃0

: Oλ → O0

of translation onto and out of theW p̃-wall, respectively. These functors are biadjoint
and θw̃0

∼= θout
w̃0

θon
w̃0
. In particular, for x ∈ Xlong

p , we have

Ext1(Lx , Qw) ∼= Ext1(θon
w̃0
Lx , θ

on
w̃0

Δw).

Since x ∈ Xlong
p , we have θon

w̃0
Lx

∼= L(x · λ) in Oλ. We also have θon
w̃0

Δw
∼= Δ(w · λ)

inOλ. The claimed evaluation of dim Ext1S(Lp
x ,Δ

p
y ) now follows from Proposition8.

Now we prove the second equality in the second statement, where the first equal-
ity is obtained from the first claim. If x = w0 then the proof of Proposition4 (or
of Proposition1) identifies the value dim Ext1O(L(x · λ),Δ(y · λ)) with the value
[socΔ(λ)/Δ(y · λ) : L(x · λ)]. The latter agrees with [socΔe/Δw

p
0 y : Lx ] by [20,

Proposition 15] since w
p
0 y = yw̃0 is the shortest element in W py = yW p̃.

6.4 A Type A Formula

By Sect. 3.5, Proposition9 completely computes the first extension between simple
and standard in S-subcategories in type A.

Proposition 10 Let x, y ∈ Xlong
p with y special and assume we are in type A. Then

dim Ext1S(Lp
x ,Δ

p
y ) =

⎧
⎪⎨

⎪⎩

c(x y) − rank(W p), x = w0;
1, x ∈ Φ(BM(y));
0, otherwise.

The graded version of this claim is obtain in the obvious way using the shifts
described in Sect. 3.6.

7 Examples

7.1 sl3-Example

Consider the case of theLie algebra sl3. In this casewehaveW = S3 = {e, s, t, st, ts,
w0 = sts = tst}. Let p be such that W p = {e, s}. With such a choice, we have
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Xlong
p = {s, st, w0} and Xshort

p = {e, t, ts}

and the Hasse diagrams for the (opposite of the) Bruhat order on W , Xlong
p and Xshort

p

are as follows:
e

s t

st ts

w0

s

st

w0

e

t

ts

If we denote Lp
x simply by x , then the subquotients of the graded filtrations of the

indecomposable projectives in S0 are as follows:

Pp
w0

w0

st

w0 s w0

st st

w0 s w0

st

w0

Pp
st

st

w0 s

st st

w0 w0 s

st

w0

Pp
s

s

st

w0 s

st

w0

The (graded and unique) Loewy filtrations of the proper standard modules are as
follows:

Δ
p

w0

w0

Δ
p

st

st

w0

Δ
p

s

s

st

w0

We note that all proper standard modules are multiplicity-free and hence the corre-
sponding module diagrams are well-defined. This is not the case for the indecom-
posable projectives Pp

w0
and Pp

st which are not even graded multiplicity-free. The
projective Pp

s is not multiplicity-free but it is graded multiplicity-free and hence its
module diagram is well-defined as well as the algebra Ap is positively graded.
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The following table contains information on the dimension and the degree shift
for the extension spaces from a simple object to a proper standard object in the format
(d,m) for the formula dim ext1S0

(Lp
x ,Δ

p

y 〈m〉):

x \ y s st w0

s − (1,−1) −
st − − (1,−1)
w0 (2, 0) (2,−1) (1,−2)

Note that s and w0 are special while st is not. The following table contains infor-
mation on the dimension and the degree shift for the extension spaces from a simple
object to a standardobject in the format (d,m) for the formula dim ext1S0

(Lp
x ,Δ

p
y 〈m〉):

x \ y s st w0

s − (1, 1) −
st − − (1, 1)
w0 (1, 2) (1, 1) −

7.2 sl4-Example

The Lie algebra sl4 is the smallest Lie algebra for which there are non-trivial
Kazhdan–Lusztig polynomials. These non-trivial KL-polynomials also contribute
to a non-trivial extension from a simple module to a Verma module.

We have W = S4 and let s1, s2 and s3 be the simple reflections with the corre-
sponding Dynkin diagram

s1 s2 s3 .

As pointed out in [20, Sect. 1.3], we have the following fact (which we present here
in the graded version):

ext1(Ls2w0〈−3〉,Δs2〈−1〉) ∼= C.

Note that s2w0 is a longest representative in the cosets Wp \ W for the choices of a
parabolic subgroups W p in W given by the following subsets of simple roots:

∅, {s1}, {s2}, {s1, s2}.

We denote the corresponding parabolic subalgebras by pi , for i = 1, 2, 3, 4. Conse-
quently, we have:



On First Extensions in S-Subcategories of O 149

ext1Sp
1
(Lp1

s2w0
〈−3〉,Δp1

s2 〈−1〉) ∼= C,

ext1Sp
2
(Lp2

s2w0
〈−3〉,Δp2

s1s2〈−2〉) ∼= C,

ext1Sp
3
(Lp3

s2w0
〈−3〉,Δp3

s3s2〈−2〉) ∼= C,

ext1Sp
4
(Lp4

s2w0
〈−3〉,Δp4

s1s3s2〈−3〉) ∼= C.
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1 Introduction

Conformal Field Theories (CFTs) in d > 2 dimensions have been an active topic
of study in recent years. In part this activity has been stimulated by the AdS/CFT
correspondence, originally stated as an equivalence between N = 4 super Yang-
Mills (SYM) theory on R3,1 withU (N ) gauge group and 10 dimensional string theory
[1]. A key question is to understand how the higher dimensional quantum gravity
emerges from local CFT operators and their correlators. Another motivation has been
to gain an understanding of exotic CFTs that do not have a conventional Lagrangian
description. Good examples of these theories include the Argyres-Douglas fixed
points in 4D [2] as well as the (0, 2) theories in 6D [3]. In addition, promising
tools with which to study higher dimensional CFTs have become available with the
revival of the bootstrap program [4], which uses associativity of the operator product
expansion (OPE) to determine the CFT data.

CFTs in d = 2 (CFT2) have been well studied since the 80s. The primary stim-
ulus for this activity is the worldsheet dynamics of strings in critical string theory,
described by a CFT2 plus ghost system. These theories have a rich structure leading
to a fruitful interaction between mathematics and physics [5, 6]. A central role is
played by

• Infinite dimensional Lie algebras (theVirasoro algebra and current algebras)which
control their spectrum and correlators.

• The representation theory of these algebras, extended by considerations ofmodular
transformations of characters.

• Rational conformal field theories, with finitely many primary fields for these alge-
bras.

• Vertex operator algebras, which providemathematical constructions for field oper-
ators and for the OPEs.

An important observation is that themathematics of CFT2s use two kinds of algebras.
First, there are the symmetry algebras given by infinite dimensional Lie algebras (the
Virasoro algebra, current algebra etc.). Secondly, there is the algebra of the quan-
tum fields themselves, formalized through vertex operator algebras. This situation is
analogous to constructions in non-commutative geometry where we have a fuzzy or
quantum space which is an associative coordinate algebra [7–9], as well as a Hopf
algebra acting as a symmetry of the quantum space. It is natural to expect a simi-
lar structure for CFTd, except that we have a finite dimensional symmetry algebra
SO(d,2) replacing the Virasoro algebra (and its generalizations) and large multiplic-
ities of irreducible representations (irreps) coming from the fields/quantum states.
This expectation is, at least partly, motivated by the operator/state correspondence
of radial quantization

lim
x→0

Oa(x)|0〉 = |Oa〉 (1)
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which is a general property ofCFTs for anyd. TheAdS/CFTcorrespondence together
with the operator state correspondence implies, for example, that string states in
AdS5×S5 are in correspondencewith operators inN = 4 SYM.An understanding of
the quantum states (and associated physics) in quantum gravity on AdS spacetimes
requires a detailed understanding of the CFT operators and associated algebraic
structures.

The 1
2 -BPS sector is an interesting sector of N = 4 SYM where these ideas can

be developed quite explicitly. On the AdS side of the duality, there is a rich spec-
trum of physical states including gravitons, strings, branes and non-trivial spacetime
geometries. On the CFT side of the duality, this sector is constructed from a single
complex matrix Z , transforming in the adjoint representation

Z → UZU † (2)

under the U (N ) gauge symmetry. The generic gauge invariant operator is a multi-
trace operator. For example, the complete set of gauge invariant operators that can
be constructed using three fields is given by

TrZ3 TrZ2TrZ (TrZ)3 (3)

These operators have degree 3 and are in correspondence with the partitions of 3

3 = 3 3 = 2 + 1 3 = 1 + 1 + 1 (4)

In general, operators of degree n correspond to partitions of n and they can be
constructed using permutations σ ∈ Sn as follows

Oσ (Z) =
∑

i1,··· ,in
Z i1
iσ(1)

· · · Zin
iσ(n)

(5)

For example

TrZ3 =
∑

i1,i2,i3

Zi1
i2
Zi2
i3
Zi3
i1

=
∑

i1,i2,i3

Zi1
iσ(1)

Zi2
iσ(2)

Zi3
iσ(3)

(6)

with σ = (123). The mapping between permutations and gauge invariant operators
is not one-to-one since

Oσ (Z) = Oγ σγ −1(Z) for all γ ∈ Sn (7)

which implies that two permutations in the same conjugacy class define the same
gauge invariant operator. This nicely explains why gauge invariant operators corre-
spond to partitions of n. The two-point function of degree n operators is derived, as
usual, by using Wick’s theorem and the basic 2-point function



154 R. de Mello Koch and S. Ramgoolam

〈Zi
j (x1)(Z

†)kl (x2)〉 = δil δ
k
j

(x1 − x2)2
(8)

This allows us to express the correlator in terms of permutation groupmultiplications
as follows [10]

〈Oσ1(Z(x1))Oσ2(Z
†(x2))〉 = 1

((x1 − x2)2)n
n!

|Cp1 | |Cp2 |
×

∑

σ1∈Cp1

∑

σ2∈Cp2

∑

σ3∈Sn
δ(σ1σ2σ3)N

Cσ3 (9)

The combinatoric part of this answer is a quantity in a 2D topological field theory
(TFT2). TFT2s are equivalent to Frobenius algebras. A Frobenius algebra is an
associative algebra with a non-degenerate pairing. The algebra corresponding to the
combinatoric TFT2 of the 1

2 -BPS sector is the centre of the group algebra of the
symmetric group Sn . The connection to TFT2 can be generalized beyond the 1

2 -BPS
sector and it turns out that multi-matrix sectors of N = 4 SYM are related to other
Frobenius algebras, built from permutations or associated diagram algebras such as
Brauer algebras [10–16]. For a review of these ideas, the reader can consult [17].

It is natural to ask if the space-time dependence of correlators in CFT4 (and CFTd
for d > 2) can also be described using aTFT2/Frobenius algebra language. The paper
[18] gives a positive answer for the case of a free 4D massless scalar field, along
with the cases in which the scalar transforms in the fundamental or in the adjoint
of a global symmetry. The construction uses an infinite dimensional associative
algebra which reproduces free field correlators of arbitrary free field composites and
is a representation of so(4, 2) or Uso(4, 2). This algebra has an so(4, 2) invariant
non-degenerate pairing. In the paper [19] the algebraic structures associated with
this CFT4/TFT2 construction were used to develop novel counting formulae and
construction algorithms for the primary fields of free CFT4. The paper [20] describes
perturbative CFTs from this algebraic point of view (equivariant algebras). Concrete
examples that are described include sectors of d = 4N = 4 SYM at weak coupling
as well as the Wilson-Fischer CFT, defined in d = 4 − ε using the φ4 interaction.
Novel algebraic structures needed to accomplish this include a deformed co-product
forUso(4, 2), the role of indecomposable representations ofUso(4, 2) and diagram
algebras which generalize known diagram algebras appearing in the representation
theory of Uso(d). This work has some overlap with the paper [23].

This paper is organized as follows: Sect. 2 reviews the CFT4/TFT2 construction
in the simplest possible setting of a free scalar field. The result is a U (so(4, 2))
equivariant TFT2 with the quantum field realized as a vertex operator. Section3
describes perturbative CFT4 by making use of deformed co-products while Sect. 4
introduces diagram algebras and their representations, motivated by the Wilson-
Fisher CFT.
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2 CFT4/TFT2 Construction of the Free Scalar Field

The axiomatic approach to TFT2 that we adopt associates geometrical objects to
algebraic objects, following the standard discussions (see the original work [21] and
textbooks such as [22]) , with appropriate adaptations to account for the infinite-
dimensionality of the state spaces. For example, a vector spaceH is associated with
a circle

−→ H (10)

while tensor products ofH go to disjoint unions of circles

−→ H ⊗ H (11)

Interpolating surfaces between circles (cobordisms) are associated with linear maps
between the vector spaces. For example, the map δ : H → H is represented as a
cylinder

δA
B = (12)

which takes circle A into circle B, while the non-degenerate pairing η : H ⊗ H → C

ηAB = (13)

takes two circles to nothing. The product C : H ⊗ H → H

CAB
D = (14)

takes two circles to a circle. In the language of category theory, the circles are
objects and the interpolating surfaces (cobordisms) are morphisms in a geometrical
category, while the vector spaces are objects, and the linear maps are morphisms
in an algebraic category. The correspondence between geometrical objects algebraic
objects is a functor between the two categories. The existence of this functor requires
that all relations on the geometrical side should be mirrored on the algebraic side.
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As an example, the statement that the pairing ηAB is non-degenerate is expressed in
terms of the inverse pairing

η̃AB = (15)

as the statement that η and η̃ glue to give the cylinder

ηAB η̃BC = δA
C (16)

where the gluing operation is implemented by summing over the circles to be glued.
Using the product CAB

D and the pairing ηAB we can define a new map

CABD = ηDCCAB
C (17)

which is the familiar relation between the CFT correlator (CABD) and the OPE
(CAB

D). Finally, associativity of the OPE is expressed as

CAB
ECEC

D = CBC
ECEA

D (18)

To summarise, TFT2’s correspond to commutative, associative, non-degenerate alge-
bras known as Frobenius algebras. TFT2 with a global symmetry group G is defined
by [24]. Since this will play an important role in our construction, it is worth sum-
marizing the essential features from [24] with one important modification of the
discussion due to the infinite dimensionality of the state space.

1. The state space is a representation of a group G - which will be SO(4, 2) in our
application.

2. The linear maps are G-equivariant linear maps.
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3. The state space is infinite dimensional: amplitudes are defined for surfaceswithout
handles. Consequently, this is a genus restricted TFT2.

The basic two point function in the CFT of a free scalar in four dimensions is

〈φ(x1)φ(x2)〉 = 1

(x1 − x2)2
(19)

Correlators of composite operators are constructed using this contraction, according
to Wick’s theorem. Thus, the first step in our construction is to understand the 2-
point function of the elementary field in the TFT2 language. The so(4, 2) symmetry
of the CFT is our starting point. The Lie algebra is spanned by the dilatation oper-
ator D which generates dilatations, the momenta Pμ which generate translations,
the generators Mμν of so(4) rotations and the generators Kμ of special conformal
transformations. To carry out a radial quantization of the theory we choose a point,
say the origin of Euclidean R

4. The usual state operator map associates states with
the scalar field and its descendents

lim
x→0

φ(x)|0〉 = v+

lim
x→0

∂μφ(x)|0〉 = Pμv+

... (20)

The state v+ is the lowest energy state in a lowest-weight representation V+ of
so(4, 2)

Dv+ = v+
Kμv+ = 0
Mμνv

+ = 0 (21)

Higher energy states are generated by Sμ1μ2···μl
l Pμ1 Pμ2 · · · Pμlv

+, where Sμ1μ2···μl
l is

a symmetric traceless tensor of so(4). The index l labels a basis of linearly indepen-
dent symmetric traceless tensors. There is also a dual representation V−, which is a
representation with negative scaling dimensions

Dv− = −v−
Pμv− = 0

Mμνv
− = 0 (22)

Other states in this representation are generated by acting with Sμ1μ2···μl
l Kμ1 · · · Kμl .

There is a η : V+ ⊗ V− → C, which is so(4,2) invariant

η(Lav,w) + η(v,Law) = 0 (23)

After making the choice
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η(v+, v−) = 1 (24)

the invariance conditions (23) and the properties of the states v+ and v−, determine
η. For example

η(Pμv+, Kνv
−) = −η(v+, PμKνv

−)

= η(v+, (−2Dδμν + 2Mμν)v
−) = 2δμν (25)

Using invariance conditions onefinds thatη(PμPμv+, v−) is zero. Setting PμPμv+ =
0, which physically corresponds to imposing the equation of motion, identifies V+
as a quotient of a bigger representation Ṽ+. Ṽ+ is spanned by

Pμ1 · · · Pμlv
+ (26)

i.e. it is the vector space of polynomials in Pμ. This is an indecomposable repre-
sentation. After we perform the quotient by the equation of motion, we recover the
irreducible representation V+. The quotient also ensures that η is non-degenerate i.e.
that there are no null vectors. So we see that η is the structure we need for the con-
struction of a TFT2 with so(4,2) symmetry. It has both the non-degeneracy property
and the invariance property. So there is an invariant in V+ ⊗ V− and thus in V− ⊗ V+,
but not in V+ ⊗ V+ or V− ⊗ V−. It is useful to introduce V = V+ ⊕ V− and define
η̂ : V ⊗ V → C

η̂ =
(

0 η+−
η−+ 0

)
(27)

In V we have a state, corresponding to the quantum field, given by

Φ(x) = 1√
2
(e−i P·xv+ + x ′2eiK ·x ′

v−), x ′
μ = xμ

x2
(28)

and a calculation with the invariant pairing shows that

η(Φ(x1),Φ(x2)) = 1

(x1 − x2)2
(29)

This is the basic free field 2-point function, now constructed from the invariant
map η : V ⊗ V → C. To get all correlators, we must set up a state space, which
knows about composite operators. The states obtained by the standard operator state
correspondence from general local operators are of the form

Pμ1 · · · Pμn1
φPν1 · · · Pνn2

φ · · · Pτ1 · · · Pτnm
φ (30)

Composite operators belonging to the n field sector correspond to states in which n φ

fields appears. Particular linear combinations of these states are primary fields, which
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are lowest weight states (annihilated by Kμ) that generate irreducible representations
(irreps) of SO(4,2) through the action of the raising operators (Pμ). The list of primary
fields in the n-field sector is obtained by decomposing the space

ProjSn invt(V
⊗n
+ ) ≡ Symn(V+) (31)

into SO(4,2) irreps. The symmetrization on the right hand side of (31) is needed
because φ is a boson. We can now introduce the state space H of the TFT2, which
we associate to a circle in TFT2. The state space consists of all possible primaries
and their descendents

H =
∞⊕

n=0

Symn(V ) (32)

where V = V+ ⊕ V−. This state space is big enough to accommodate all the com-
posite operators and it admits an invariant pairing. The state space is small enough
for the invariant pairing to be non-degenerate The state space contains

Φ(x) ⊗ Φ(x) ⊗ Φ · · · ⊗ Φ(x) (33)

which is used to construct composite operators in the TFT2 set-up. By construction,
the pairing η : H ⊗ H → C reproduces all 2-point functions of arbitrary composite
operators. The construction is straight forward: recall H is built from tensor prod-
ucts of V , and we have already introduced an “elementary” η̂ : V ⊗ V → C. The
construction of the complete η map is built from products of the elementary η̂, using
Wick contraction sums, in the obvious way. As an example, for v1, v2, v3.v4 ∈ V we
have

η(v1 ⊗ v2, v3 ⊗ v4) = η̂(v1, v3)η̂(v2, v4) + η̂(v1, v4)η̂(v2, v3) (34)

We complete the definition by setting

η(v(n), v(m)) ∝ δmn (35)

where v(k) ∈ Symk(V ). This defines the pairing ηAB where A, B take values in the
spaceH given by the sum of all n-fold symmetric products of V = V+ ⊕ V−. Notice
that the building blocks used in constructing η are invariant maps. The product
of these invariant maps is also obviously invariant. We can also demonstrate that
η is non-degenerate. The basic idea is that if you have a non-degenerate pairing
V ⊗ V → C, it extends to a non-degenerate pairing on H ⊗ H → C, by using the
sum over Wick patterns. Consequently, we have

ηAB η̃BC = δCA (36)
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This is the snake-cylinder equation, given in (16).
In a very similar way it is possible to define 3-point functions CABC and, in

general higher point functions CABC ··· using Wick pattern products of the basic
η’s. By writing explicit formulae for these sums over Wick patterns, we can show
that the associativity equations are satisfied. Consider Eq. (17). The CABC give 3-
point functions, while theCC

AB = CABD η̃DC give the OPE-coefficients. Through this
connection, the associativity equations of the TFT2 are the crossing equations of
CFT4, obtained by equating expressions for a 4-point correlator obtained by doing
OPEs in two different ways. There an important property of the OPE in this language,
easily illustrated by the product

Sym2(V ) ⊗ Sym2(V ) → Sym4(V ) ⊕ Sym2(V ) ⊕ C (37)

which corresponds to the free field OPE, which takes the schematic form

φ2(x)φ2(0) → φ4 ⊕ φ2 ⊕ 1 (38)

This demonstrates that the presence of both V+ and V− is needed if the TFT2 is to
construct this OPE in representation theory.

The algebraic framework developed above allows us to exhibit novel ring struc-
tures in the state space of the TFT2. Further, this algebraic structure can profitably
be used to give a construction of primary fields in free CFT4/CFTd [19]. The state
space in radial quantization, set up around x = 0, is (for x ′ = 0, we would keep V−
instead)

H+ =
∞⊕

n=0

Symn(V+) (39)

The irrepV+ is isomorphic to a space of polynomials in variables xμ, quotiented by the
ideal generated by xμxμ. Taking amany-body physics viewofH+, this is a quotient of
a polynomial ring in dn variables x I

μ. The construction of primaries, or equivalently,
the problem of describing lowest weight states of irreducible representations inH+ is
usefully done by recognizing the connection to a closely related problem about rings.
It turns out that the construction of primary fields in d dimensions, and the refined
counting of these primaries, according to their scaling dimension n and so(d) irreps,
is equivalent to studying a polynomial ring in variables the X A

μ with μ ∈ {1, · · · , d}
and A ∈ {1, 2, · · · , n − 1}, under the constraints

A(1 − A2)

d∑

μ=1

X A
μ X

A
μ +

∑

B:B>A

d∑

μ=1

2A(1 + A)X A
μ X

B
μ

+
∑

B:B<A

d∑

μ=1

B(1 + B)XB
μ X

B
μ = 0 (40)

for 1 ≤ A ≤ (n − 1), and
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n−1∑

A=1

d∑

μ=1

X A
μ X

A
μ = 0 (41)

The details of the derivation of these constraints are explained in [19].

3 Perturbative CFTs

Having explained the CFT4/TFT2 construction for the free scalar field, it is natural to
ask about constructions for interacting theories. Towards this end, the first example
theory we have in mind is the Wilson-Fischer (WF) fixed point, described by the
Lagrangian

∫
dd x(∂μφ∂μφ + g

4!φ
4) (42)

together with a continuation of the Feynman rules to d = 4 − ε dimensions. Choos-
ing the critical value of the coupling constant

g∗ ∼ 16π2

3
ε + O(ε2) (43)

leads to a vanishing beta function and, consequently, a CFT. The fundamental field
φ as well as composite operators (given by polynomials in derivatives of φ) have a
modified dimension. Apart from the classical dimension, there is also an anomalous
dimension, generated by loop corrections. The anomalous dimensions of the WF
theory are captured by a dilatation operator. In particular, the one-loop corrections
to the dimensions of composite operators

∂k1φ∂k2φ · · · ∂kLφ (44)

are captured by a 2-body Hamiltonian

H =
∑

i< j

ρi j (P0) (45)

where P0 is a projector to an irrep in V ⊗ V with V the irrep of the scalar φ [25]. At
order ε, φ has a vanishing anomalous dimension, while that of φ2 is non-vanishing.
A naive intuition informed by tensor products of representations would suggest that
dimension of a composite operator is given by the sum of the dimensions of its
constituents, but this is not correct. To obtain the correct dimension for φ2 we need

D(v ⊗ v) = (D ⊗ 1 + 1 ⊗ D)(v ⊗ v) + ε

3
P0(v ⊗ v) (46)
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This motivates the definition of the deformed co-product

Δ(D) = D ⊗ 1 + 1 ⊗ D + ε

3
P0 (47)

This deformation is highly reminiscent of deformations we encounter in quantum
groups. For example, in Uq(su(2)) we have

Δ(J+) = J+ ⊗ qH + q−H ⊗ J+ (48)

and

Δ(La) ∈ End(V ⊗ W ), Δε(La) ∈ End(V ⊗ W ) (49)

with

Δ(La) = Δ0(La) + εΔε(La)

Δ0(La) = La ⊗ 1 + 1 ⊗ La (50)

such that

[La,Lb] = f cabLc

[Δ(La),Δ(Lb)] = f cabΔ(Lc) (51)

At order ε we have worked out the deformation needed to explain the complete
spectrum of one loop anomalous dimensions. The co-products for the complete set
of generators are

Δ(D) = D ⊗ 1 + 1 ⊗ D + ε

3
P0

Δ(Pμ) = Pμ ⊗ 1 + 1 ⊗ Pμ

Δ(Kμ) = Kμ ⊗ 1 + 1 ⊗ Kμ − ε

3
P0

(
∂

∂Pμ

⊗ 1 + 1 ⊗ ∂

∂Pμ

)
P0

Δ(Mμν) = Mμν ⊗ 1 + 1 ⊗ Mμν (52)

It is a straightforward exercise to verify that the above co-products are consistent
with the commutation relations of so(4, 2). For example, we have checked that

[Δ(Kμ),Δ(Pν)] = 2Δ(Mμν) − 2δμνΔ(D) (53)

In performing this check and others like it, it is useful to noteΔ0(La)P0 = P0Δ0(La)

and P2
0 = P0.

The planar SU (2) sector in N = 4 SYM is another interacting CFT that has an
instructive TFT2/CFT4 construction. For this example there is no need to continue
to d = 4 − ε dimensions. In this example too, deformed co-products are needed
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to reproduce the one loop spectrum of anomalous dimensions. Consider the three
operators

Oz = 1√
2N

Tr(Z2), Oy = 1√
2N

Tr(Y 2)

Ozy = 1√
3N 2

(
Tr(Y ZY Z) − Tr(Y 2Z2)

)
(54)

These operators are all eigenstates of the one loop dilatation operator. Ozy has a
non-zero anomalous dimension δ = 3λ

4π2 in the planar limit [26]. The anomalous
dimensions of both Oz and Oy vanish. In the free theory, the dimensions add

Dim(Oz) + Dim(Oy) = Dim(Ozy) (55)

At first order in the interaction this relationship is corrected as follows

Dim(Oz) + Dim(Oy) = Dim(Ozy) − δ (56)

As the first step, consider so(4, 2) irrep generated byOz . In the operator-state corre-
spondence, the operator Oz corresponds to a tower of operators

Oz(0) → vz
∂μ1Oz(0) → Pμ1vz

∂μ1∂μ2Oz(0) → Pμ1 Pμ2vz
... (57)

The states live in a representation Vz of so(4, 2). The lowest weight state vz has the
properties

Dvz = 2vz, Mμνvz = 0, Kμvz = 0 (58)

At dimension (2 + k) we have states

Vk = Span
{
Pμ1 · · · Pμkvz

}
(59)

The direct sum forms the so(4; 2) irrep VZ

VZ =
⊕∞Vk

k=0
(60)

There is a similar representation Vy built on the primaryOy . Vz and Vy are isomorphic
representations of so(4, 2). We also need the representation Vzy , built on Ozy . This
representation has lowest weight state vzy with properties

Dvzy = (4 + δ)vzy
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Kμvzy = 0
Mμνvzy = 0 (61)

States at D = 4 + δ + k are obtained by acting with k P’s.
Given the non-additivity of the anomalous dimensions, we cannot model the 3-

point correlator with the standard action of the Lie algebra on V2 ⊗ V2. If we use the
standard action, we would have

Δ0(D)(vz ⊗ vy) = (D ⊗ 1 + 1 ⊗ D)(vz ⊗ vy) = 4vz ⊗ vy (62)

whereas the dimension of vzy is 4 + δ. The map f : vzy → vz ⊗ vy

Δ0(D) f (vzy) = f Δ0(D)(vzy) (63)

can be extended to an equivariant map Vzy → Vz ⊗ Vy at zero coupling, but cannot
be so extended when we turn on δ at non-zero coupling.

Let P4 be the projector to V4—the so(4, 2) representationwith scalar lowestweight
of dimension 4 - in the standard tensor product decomposition of V2 ⊗ V2. We can
define a deformed co-product

Δ(D) = Δ0(D) + δP4
Δ(Pμ) = Δ0(Pμ)

Δ(Mμν) = Δ0(Mμν)

Δ(Kμ) = Δ0(Kμ) − δ

2
P4Δ0

(
∂

∂Pμ

)
P4 (64)

With the so(4, 2) action on Vz ⊗ Vy given by

La : v1 ⊗ v2 → Δ(La)(v1 ⊗ v2) (65)

and the so(4, 2) action on Vzy which we will refer to as ρzy , we can extend f

f : Vzy → Vz ⊗ Vy (66)

such that

fρzy(La) = Δ(La) f (67)

Using the map f , we can construct the correlator as follows

η((e−i P·x1v+ ⊗ e−i P·x2v+), (x ′
3)

2 f (eiK ·x ′
3v+

zy)) (68)

The inner product g on Vz ⊗ Vy is related by using the anti-automorphism on so(4, 2)
to the invariant pairing on
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η : (V+ ⊗ V+) ⊗ (V− ⊗ V−) → C (69)

4 d = 4− ε and Diagram Algebras

In our example of the Wilson-Fischer, we need to continue from d = 4 to d = 4 − ε

dimensions in order to obtain a non-trivial CFT. Analytically continued tensor rules,
and in particular the rule δμ

μ = 4 − ε, are needed to construct the stress tensor with
the right properties. The state space V+ used in the free scalar field theory is a quotient
of a space Ṽ+ spanned by states of the form

{
Pμ1 · · · Pμkv

}
(70)

The quotient amounts to setting to zero PμPμv. The stress tensor

Tμν = 1

2
(Pμv ⊗ Pνv + Pνv ⊗ Pμv − δμνPτ v ⊗ Pτ v)

−α

6
Δ(PμPν − P2δμν)v ⊗ v (71)

is a state in Ṽ+ ⊗ Ṽ+. The above state is conserved and traceless upon using the
interacting equation of motion, along with

Dv =
(
1 − ε

2

)
v, Mαβv = 0, δμμ = 4 − ε (72)

The positive part of the state space

∞⊕

n=0

Symn(V+) (73)

where V+ = Ṽ+/{P2v} is replaced by

∞⊕

n=0

Symn(Ṽ+) (74)

and we need to quotient by

P2v − 4g∗v ⊗ v ⊗ v (75)

Thus, understanding the interacting equations of motion in terms a quotient space,
requires working with Ṽ+ and its tensor powers. The quotient condition relates states
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in Ṽ+ to Ṽ⊗3
+ . Notice that in both the free and interacting theories, we move from V+

to Ṽ+ by quotienting with the equation of motion.
To make sense of the rule δμμ = 4 − ε, we need to construct a diagram algebra,

much like the Brauer algebras. In our TFT2 setting, Uso(d) (and Uso(d, 2)) itself
has to be made diagrammatic in order to give a TFT2 with conformal equivariance
formulation of the perturbative correlators.

If we depict the product Mi j Mkl in the universal enveloping algebra Uso(d) by
juxtaposing two boxes side to side, we can express

Mi j Mkl − MklMi j = δ jkMil + δil M jk − δ jl Mik − δikM jl (76)

as a relation between diagrams as follows

− = + − − (77)

To go from the diagrammatic relation to the equation in Uso(d), we attach the labels
i, j, k, l to the crosses starting with i for the left-most cross and proceeding with
j, k, l as we go to the crosses towards the right. The antisymmetry can be expressed
diagrammatically as follows

= − (78)

The quadratic Casimir Mi j Mi j is associated to the diagram shown below

= (79)

We will define an infinite dimensional associative algebra over C, denoted F ,
abstracted from the generators Mi j of Uso(d). An associative algebra is a vector
space equipped with a product m

m : F ⊗ F → F (80)

The vector space F is
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F = C ⊕ SpanC(M) ⊕ · · · (81)

The · · · refers to subspaces which can be specified efficiently, using the oscilla-
tor construction of Uso(d) and its interpretation in terms of equivariant maps and
diagrams. The d-dimensional oscillator relations are

[a†i , a j ] = −δi j (82)

and the Lie algebra generators of so(d) can be written as

Mi j = a†i a j − a†j ai (83)

Think of this as specifying a state (whichwe can also callMi j ) usingV = Span(a, a†)
and W = Span(ei : i ∈ 1, · · · , d)

Mi j = a† ⊗ ei ⊗ a ⊗ e j − a† ⊗ e j ⊗ a ⊗ ei ∈ V ⊗ W ⊗ V ⊗ W (84)

It is useful to write this as

Mi j = PW⊗W
A (a† ⊗ ei ⊗ a ⊗ e j ) (85)

The number of these Mi j is d(d − 1)/2. This obstructs continuing d to non-integer
dimensions. In contrast to this, the space of equivariant maps

PA(W ⊗ W ) → PW⊗W
A (V+ ⊗ W ⊗ V− ⊗ W ) (86)

is a one-dimensional vector space (for d > 41) spanned by the map M acting as

M : (ei1 ⊗ ei2 − ei2 ⊗ ei1) → (a† ⊗ ei1 ⊗ a ⊗ ei2 − a† ⊗ ei2 ⊗ a ⊗ ei1)
(87)

More compactly, we can write

M : W2 → (VW )2 (88)

where W2 = PA(W ⊗ W ) and

(VW )2 = PW⊗W
A (V+ ⊗ W ⊗ V− ⊗ W ) (89)

Now, introduce the infinite dimensional associative algebra

F = ⊕m,n=0Fm,n (90)

1 Ford = 4we can also use εi1i2i3i4 which gives anothermap, sowewill use larged in the appropriate
places in our definitions to keep things as simple as possible.
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with

Fm,n = Homso(d):d>2m+2n(W
⊗m
2 , (VW )⊗n

2 ) (91)

This algebra contains all the M-diagrams we drew earlier, and it includes diagram
with arbitrarily large numbers of M-boxes. We define U∗ as a quotient of this space
of diagrammatic maps by the commutation relation (77).

In order to understand the representation theory of U∗, which will be a diagram-
matic analog of the representation theory of Uso(d) at large d, we will start by
interpreting the basic equation

[Mi j , a
†
k ] = δ jka

†
k − δika

†
j (92)

which gives the action of Uso(d) on the d-dimensional vector representation. By
using labelledM-box diagrams, and associating to a†k a line joining a cross to a circle,
the above equation becomes

= −

=

(93)

Using the definitions from above,

a†i = a† ⊗ ei ∈ V+ ⊗ W ei ∈ W (94)

There is an so(d) equivariant map ρ

ρ : W → (V+ ⊗ W ) (95)

We can think of this as themapwhich attaches ei ∈ W to a† to produce a†i = a† ⊗ ei .
The map commutes with so(d). This leads to the definition of a vector space of
diagrams

V ∗ = ⊕∞
n=0Homso(d):d�n(W

⊗n
2 ⊗ W, V+ ⊗ W ) (96)

We can define a diagrammatic inner product for V ∗ (which involves loops eval-
uating to d) and show that V ∗ ⊗ V ∗ contains orthogonal subspaces corresponding
to the symmetric-traceless, the trace, and the anti-symmetric. The proof proceeds by
proving Bn=2(d) commutes with U ∗ action on V ∗ ⊗ V ∗. Much as B2(d) commutes
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with Uso(d) on Vd ⊗ Vd , but in the above both the algebra and the representation
space are spanned by diagrams. d appears upon evaluation ofCasimirs, which involve
loops evaluated as d - which can then be set to 4 − ε.

There are some rather natural conjectures we can formulate about (V ∗)⊗n . First,
the action of U ∗ should commute with a known diagrammatic algebra, the Brauer
algebra Bd(n), much as Bd(n) commutes with Uso(d) in V⊗n

d . Proving this con-
jecture would involve generalising arguments given in [20]. These are the first steps
towards a fully diagrammatic Schur-Weyl duality whereU ∗, with loop parameter d,
acts on V ∗⊗n and is Schur-Weyl dual to Bd(n).

5 Summary and Outlook

Our key result [20] has been to define U∗,2 acting on V ∗,2 as a generic d version of
Uso(d,2) acting on Ṽ . To summarise, we present evidence that perturbative CFT can
be formulated in terms of Uso(d,2) (for theories in integer dimensions) or U∗,2 (for
theories like Wilson Fischer), using familiar constructions in algebra/representation
theory, namely

• indecomposable representations,
• deformed co-products and
• diagram algebras.
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Reducing the N = 1, 10-d, E8 Gauge
Theory over a Modified Flag Manifold

George Manolakos, Gregory Patellis, and George Zoupanos

Abstract We present a split-like supersymmetric extension of the Standard Model
which originates from a 10-d,N = 1, E8 gauge theory. The transition to four dimen-
sions occurs after the dimensional reduction of the initial, higher-dimensional theory
over the SU (3)/U (1)2 × Z3 space. Making use of the Wilson flux breaking mech-
anism, the resulting 4-d theory is an N = 1 SU (3)3 Grand Unified Theory. After
the symmetry breaking of the SU (3)3 gauge group, the model is viewed as split-
like Supersymmetric Standard Model and, at the T eV scale and below, the model is
treated as a two Higgs doublet model, producing the following results: top, bottom
and light Higgs masses within the range given by the experiment and prediction
of the unification (and first supersymmetry breaking) and (second) supersymmetry
breaking scales at ∼1015 GeV and ∼1.5 TeV, respectively.

Keywords Dimensional reduction · Supersymmetry · Grand unification · Small
radii · Higgs

1 Introduction

Our study has come to realization due to the very fundamental and insightful
works of Forgacs-Manton (F-M), the Coset Space Dimensional Reduction (CSDR)
[1–3] and Scherk-Schwartz (S-S) [4], the group manifold reduction. The CSDR
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mechanism took into consideration the number of dimensions and the starting gauge
group, as predicted by the heterotic string [6], with those two sharing the common
ground that they lead to promising Grand Unified Theories (GUTs). Moreover, it is
worth noting that the higher-dimensional theory is accompanied by the unification of
the gauge and scalar sectors, with the scalars being identified as the extra-dimensional
components of the vector field and, if supposed supersymmetric, fermions partici-
pate in the aforementioned unification, in the sense that they consist the fermionic
counterpart of the gauge fields in a vector supermultiplet. Two remarkable features
of the CSDR is that the fermionic terms of the higher-dimensional action lead to
4-d Yukawa interactions and that the reduced 4-d theories can be chiral, if necessary
conditions are applied on the fermionic spectrum of the higher-dimensional theory
[7]. However, the most powerful property of the CSDR mechanism is that it fails
to inherit the amount of supersymmetry to the 4-d theory, which means that implic-
itly functions as a (soft) supersymmetry breaking mechanism, which is vital for the
construction of viable 4-d models [8–11] (see also [12]).

In our specific model, the initial, higher-dimensional theory is a 10-d,N = 1, E8

gauge theory whose spectrum is minimal, consisting solely of a vector supermulti-
plet. The CSDR mechanism is performed over the SU (3)/U (1)2 × Z3, which is a
modification of the 6-d flag manifold SU (3)/U (1)2 (non-symmetric coset space),
where the freely-acting Z3 component has been introduced to enable the triggering
of the Wilson flux mechanism, which causes a diminution of the produced gauge
symmetry of the reduced (grand unified) theory to the SU (3)3 ×U (1)2 [2, 8, 9, 13]
(see also [14]). The produced GUT is also (softly broken) N = 1 supersymmetric.

The phenomenological part of themodel is developed after the consideration of the
symmetry breaking of the SU (3)3 ×U (1)2 gauge group. Assuming the coincidence
of the unification and compactification scales, GUT breaking is accompanied by
the supersymmetry breaking of the initial N = 1 and the supersymmetric spectrum
becomes partially supermassive, which means that our model evolves into split-like
supersymmetricwith twoHiggs doublets until the T eV scale and from the latter to the
electroweak one it is treated as a twoHiggs doubletmodel (2HDM) producingmasses
of the lightHiggs boson and the third generation quarkswithin the experimental range
(for the original work see [15]), passing the first tests regarding its viability.

2 Dimensional Reduction of E8 over SU(3)/U(1)2

In this section we apply directly the CSDR in our specific case, that is the 10-
d,N = 1, E8 Yang-Mills-Dirac theory with Weyl-Majorana fermions over the non-
symmetric coset space SU (3)/U (1)2 [2, 8, 14, 16]. The produced 4-d action is:

S = C
∫

d4x tr

[
−1

8
FμνF

μν − 1

4
(Dφa)

2

]
+ V (φ) + i

2
ψ̄Γ μDμψ − i

2
ψ̄Γ aDaψ ,

(1)
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where V (φ) is defined as:

V (φ) = −1

8
gacgbd tr

(
f C
ab φC − ig[φa,φb])( f D

cd φD − ig[φc,φd ]
)

(2)

and tr(T i T j ) = 2δi j , where T i are the E8 generators.Also, g is the coupling constant,
C is the coset volume, Dμ = ∂μ − igAμ, Da are the 4-d covariant derivative and
the coset space covariant derivative, respectively and, last, gab is the metric of the
coset space, given by gαβ = diag(R2

1, R
2
1, R

2
2, R

2
2, R

2
3, R

2
3). The 4-d gauge group is

determined by the centralizer of U (1) ×U (1) in E8:

H = CE8(U (1)A ×U (1)B) = E6 ×U (1)A ×U (1)B .

Moreover, the CSDR rules determine the representations of the particles that consist
the particle spectrumof the 4-d theory (details in [2, 8, 13]). Specifically the surviving
gauge fields (of E6 ×U (1)A ×U (1)B) fall into threeN = 1 vector supermultiplets
whereas the matter fields fall into sixN = 1 chiral ones, where three of the latter are
E6 singlets carryingU (1)A ×U (1)B charges, while the rest are chiral. In particular,
the matter fields transform under E6 ×U (1)A ×U (1)B as:

αi ∼ 27(3, 12 ), βi ∼ 27(−3, 12 ), γi ∼ 27(0,−1), (3)

α ∼ 1(3, 12 ), β ∼ 1(−3, 12 ), γ ∼ 1(0,−1) . (4)

Regarding the potential of the theory, besides the terms identified as F and D-terms,
the rest are interpreted as soft scalar masses and trilinear soft terms. As far as the
gaugino mass is concerned, since it has geometric origin, as understood by the fol-
lowing relation:

M = (1 + 3τ )
R2
1 + R2

2 + R2
3

8
√
R2
1R

2
2R

2
3

. (5)

This expression implies that, in absence of torsion, the gauginos gainmass at the com-
pactification scale [2]. This result can change in presence of torsion [8] as required
for the realization of the split supersymmetry scenario, which requires a gaugino
mass in the T eV scale.

3 Breaking by Wilson Flux Mechanism

In the previous section we demonstrated the case of applying the CSDR on an E8

gauge theory over the coset space SU (3)/U (1)2. Nevertheless, the resulting 4-d
gauge group, E6 ×U (1)2 cannot be broken down to the gauge group of the Standard
Model (SM) by the scalar Higgs accommodated in the 27 representation. Therefore,
in order to end up with a different 4-d gauge group (with less symmetry), the Wilson
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flux breaking mechanism is introduced [17–19]. In order that the above mechanism
to get induced, the coset space must be modified from simply connected, that is the
default case for SU (3)/U (1)2, to multiply connected. To achieve this modification,
the freely-acting discrete symmetry Z3 is employed, therefore the space on which
the reduction is performed is now the SU (3)/U (1)2 × Z3. Each g ∈ Z3 is mapped
to an element Ug ∈ E6 (a Wilson line) and the set of these elements consists the
image of Z3, T E6 in E6. The above map turns out to be a homomorphism, and
once it is determined, E6 breaks to the centralizer CE6(T

E6) = SU (3)3 [27]. Also,
the presence of the discrete symmetry functions as a filtering mechanism for the
spectrum, i.e. only fields that are invariant under the action of Z3 on both their gauge
and geometric indices make it through to the resulting SU (3)3 gauge theory.1 In the
E6 phase, the matter fields were belonging to the trivial or 27 representations. For
the trivial case, out of the three E6 singlets α,β, γ of Eq. (4) only one survives,
specifically the α ≡ θ(3, 12 ). In turn, the SU (3)3 representations of the non-trivial

surviving matter fields are obtained by the decomposition E6 ⊃ SU (3)3, that is
27 = (1, 3, 3̄) ⊕ (3̄, 1, 3) ⊕ (3, 3̄, 1) and are obtained to be the following:

α1 ≡ Ψ1 ∼ (1, 3, 3̄)(3, 12 ),β3 ≡ Ψ2 ∼ (3̄, 1, 3)(−3, 12 ), γ2 ≡ Ψ3 ∼ (3, 3̄, 1)(0,−1),

(6)

where the above are the parts of the three 27 chiral multiplets of αi ,βi , γi of Eq.
(3) and combined they form one complete generation. The reduction of the number
of the generations is an unwelcome feature and in order to return to a spectrum of
three ones, non-trivial monopole charges in theU (1) ×U (1) part of the coset needs
to be introduced, leading to three identical instances of the above fields, recovering
the desired number of generations [28].

The employment of the Wilson flux breaking mechanism affects the scalar poten-
tial as well, in the sense that it can be rewritten from the E6 language to the
SU (3)c × SU (3)L × SU (3)R one as [13]:

Vsc = 3 · 2
5

( 1

R4
1

+ 1

R4
2

+ 1

R4
3

)
+

∑
l=1,2,3

V (l) , (7)

in which V (l) = Vsusy + Vsof t = VD + VF + Vsof t , with l being a generation index
which we drop in the ensuing (unless its presence is necessary), since we focus on
the third generation for our analysis and calculations. The F-terms derive from the
superpotential which is given by the following expression:

W = √
40dabcΨ

a
1 Ψ b

2 Ψ c
3 , (8)

the various D-terms are written as:

1 For more details on the parametrization of the filtering procedure see the original work [15] but
also [20].
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DA = 1√
3

〈
Ψi |GA|Ψi

〉
, D1 = 3

√
10

3
(
〈
Ψ1|Ψ1

〉 − 〈
Ψ2|Ψ2

〉
), (9)

D2 =
√
10

3
(
〈
Ψ1|Ψ1

〉 + 〈
Ψ2|Ψ2

〉 − 2
〈
Ψ3|Ψ3

〉 − 2|θ|2) (10)

and, last, the soft supersymmetry breaking terms are:

Vsof t =
(

4R2
1

R2
2R

2
3

− 8

R2
1

) 〈
Ψ1|Ψ1

〉 +
(

4R2
2

R2
1R

2
3

− 8

R2
2

) 〈
Ψ2|Ψ2

〉

+
(

4R2
3

R2
1R

2
2

− 8

R2
3

)
(
〈
Ψ3|Ψ3

〉 + |θ|2)

+ 80
√
2

(
R1

R2R3
+ R2

R1R3
+ R3

R1R2

)
(dabcΨ

a
1 Ψ b

2 Ψ c
3 + h.c) (11)

=m2
1

〈
Ψ1|Ψ1

〉 + m2
2

〈
Ψ2|Ψ2

〉 + m2
3

(〈
Ψ3|Ψ3

〉 + |θ|2
)

+ (αabcΨ
a
1 Ψ b

2 Ψ c
3 + h.c) .

Following [21], the multiplets of the fields found in (6) can be nicely expressed in
the SU (3)c × SU (3)L × SU (3)R language as complex 3 × 3 matrices according to
the following assignment:

Ψ2 ∼ (3̄, 1, 3) → (qc) α
p , Ψ3 ∼ (3, 3̄, 1) → (Q a

α ), Ψ1 ∼ (1, 3, 3̄) → L p
a ,

(12)

which leads to the more legible and comprehensive form of the particle content of
an enhanced version of the Minimal Supersymmetric Standard Model (MSSM):

qc =
⎛
⎝ dc1

R uc1R Dc1
R

dc2
R uc2R Dc2

R
dc3
R uc3R Dc3

R

⎞
⎠ , Q =

⎛
⎝−d1

L −d2
L −d3

L
u1L u2L u3L
D1

L D2
L D3

L

⎞
⎠ , L =

⎛
⎝ H 0

d H+
u νL

H−
d H 0

u eL
νc
R ecR S

⎞
⎠ .

4 Specification of Parameters and GUT Breaking

4.1 Choice of Radii

Having established the theoretical frame, in order to advance to the phenomenological
part, we proceed by making two important assumptions. First, the compactification
scale is considered to be high2 and second, the compactification and unification scales

2 Working with high compactification scale, the Kaluza-Klein excitations can be ignored. In case
the compactification scale was considered at the T eV scale, then the eigenvalues of the Dirac and
Laplace operators of the SU (3)/U (1)2, which are not known yet, would be necessary to be included
in the calculation.
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coincide, MC = MGUT , which means that the scale of the three radii of the compact-
ification scale is Rl ∼ 1

MGUT
, l = 1, 2, 3.Without any further assumption this would

lead to a superheavy supersymmetric spectrum3 (of MGUT order) and soft trilinear
couplings. However, we can treat one of the radii, let us call the third, to be slightly
different than the others. Under this assumption, inspection of the expression of the
scalar potential, (11), leads to the understanding that the supersymmetric spectrum
undergoes a separation (split-like scenario), with the squarks being superheavy but
the sleptons gaining mass in the T eV energy regime.

4.2 The Breaking of SU(3)3

The breaking of the SU (3)L and SU (3)R parts of the gauge group can be triggered
by the following vevs of the two families of L’s:

〈L(3)
s 〉 = diag(0, 0, V ) , 〈L(2)

s 〉 = anti − diag(0, 0, V ) ,

where the s index designates the scalar component of the supermultiplet.4 These vevs
are singlets under SU (3)c, therefore they do not break the colour part of the total
gauge group. Appropriate combination of the two vevs leads to the desired breaking,
that is to the SM gauge group [22]:

SU (3)c × SU (3)L × SU (3)R → SU (3)c × SU (2)L ×U (1)Y . (13)

According to the configuration of the scalar potential, the above breaking gives vevs
to the singlet of each family (not necessarily to all three), specifically in our case,
〈θ(3)〉 ∼ O(T eV ) , 〈θ(1,2)〉 ∼ O(MGUT ). As far as the two Abelian symmetries is
concerned, they break due to 〈θ(1,2)〉, but their global versions remain in the theory.
Last, the electroweak breaking proceeds by the following vev configuration, 〈L(3)

s 〉 =
diag(vd , vu, 0) [23].

4.3 Lepton Yukawa Couplings and µ Terms

Due to the presence of the aforementioned global symmetries, invariant lepton
Yukawa terms are not allowed in the Yukawa sector. Nevertheless, according to [26],
the 4-dim theory can be considered as renormalizable, therefore below the unifica-
tion scale an effective term can emerge in the form of higher-dimensional operator

3 Gauginos are not taken into consideration in this reasoning, since, as stated earlier, they obtain
mass in a geometric manner.
4 There exist more vevs that can be added without affecting the breaking, see [22].
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LeHd

(
K
M

)3
[13], where K denotes the vev of the conjugate scalar component of

any combination of S(i), ν(i)
R and θ(i). Similar argumentation may also allow mass

terms for S(i) and ν(i)
R , ending up to be superheavy. Moreover, appropriate higher-

dimensional operators can be employed for the emergence of the μ-term, one for
each family HuHdθ

K
M . Due to the vev configuration, it is understood that the μ terms

corresponding to theHiggs doublets of the l = 1, 2 generationswill be supermassive,
while that of the l = 3 generation will be at the T eV scale.

5 Phenomenological Analysis

Since the dimensional reduction led to aGUT, it is understood that all gauge couplings
are equal to g at MGUT . Moreover, at the higher-dimensional level, there is a single
coupling, therefore the (quark) Yukawa couplings have to be equal to g atMGUT . Our
phenomenological analysis is performed using 1-loop β-functions for all parameters
involved. Below the unification scale they run according to the RGEs of the MSSM
(squarks included and gauginos excluded as they gain mass geometrically—see Eq.
(5)- at the T eV scale) plus the 4 additional Higgs doublets (and their supersymmetric
counterparts), down to an intermediate scale Mint , namely the scale below which all
supermassive particles and parameters have decoupled.BelowMint theRGEs include
only the 2Higgs doublets that originate from the third generation, their corresponding
Higgsinos and the sleptons. Last, the T eV regime, (MTeV ), the RGEs used are those
of a non-supersymmetric 2HDM. The experimental values taken into consideration
for comparison to our results are [24]:

• The strong gauge coupling:

as(MZ ) = 0.1187 ± 0.0016 . (14)

• The top quark pole mass and the bottom quark mass at MZ :

mexp
t = (172.4 ± 0.7) GeV , mb(MZ ) = 2.83 ± 0.10 GeV . (15)

• The (SM) Higgs boson mass:

Mexp
H = 125.10 ± 0.14 GeV . (16)

5.1 Gauge Unification

The first test for each GUT is to produce the prediction of the unification scale,
MGUT . We follow the straightforward methodology, namely the a1,2 are used for the
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MGUT calculation and the a3 is used for confirmation. The 1-loop gauge β-functions
are given by 2πβi = biα2

i , where the bi coefficients vary for each of the three energy
regions according to the corresponding particle spectrum [15]. Taking into account
an uncertainty of 0.3% at the boundary of MGUT , the various scales of our model are
obtained: MGUT∼1.7 × 1015 GeV, Mint∼9 × 1013 GeV, MTeV∼1500GeV. The
calculation of the αs gives the following prediction:

as(MZ ) = 0.1218 , (17)

which is within 2σ of the experimental value, (14). It is remarkable that although
the predicted value of the MGUT is somewhat low, implying that fast proton decay
would be induced and the model would be excluded already, that is not the case by
virtue of the two global U (1)’s which forbid it.

5.2 1-Loop Results

As mentioned above, the gauge and quark Yukawa interactions share the same cou-
pling constant g due to unification and that propertywas used as a boundary condition
in our calculations for the MGUT . However, as commented in Sect. 4.3, tau Yukawa
terms are absent due to the presence of the global symmetries and that is why they
were introduced through higher-dimensional operators. This means that there exists
muchwider freedomof the corresponding coupling constant and therefore the bound-
ary condition is not fixed to g. This property motivated us to pick the input in our
model to be the tau lepton mass [24].

Also, we take into consideration uncertainties in the two important energy scales,
MGUT and MTeV , due to threshold corrections (for details see [25]). In the current
level of our analysis, to facilitate the calculation of our first results, it was sufficient
to consider all “light” supersymmetric particles on equal footing. The top and bottom
Yukawa couplings come with the following uncertainties: 6% for the GUT boundary
and 2% for the T eV boundary. As follows, the masses of the quarks of the third
generation and that of the (light) Higgs are obtained within 2σ and 1σ of their
experimental values, respectively, as given in Eqs. (15), (16):

mb(MZ ) = 3.00 GeV , m̂t = 171.6 GeV , mh = 125.18 GeV . (18)

As explained above, all allowed Yukawa terms share the common value of the
coupling constant,g, at the unification scale. For that reason, it is necessary to consider
that the model exhibits a large tanβ∼48 in order to recover the experimentally
observed discrepancy of the fermion masses. Last, the mass of the pseudoscalar
Higgs boson is considered to be 2−3 TeV.
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6 Conclusions

First we considered a 10-d,N = 1, E8 Yang-Mills-Dirac theorywithWeyl-Majorana
fermions, constructed on the compactified spacetime of the formM4 × B0/Z3, where
B0 is the coset space SU (3)/U (1) ×U (1) andZ3 is a discrete groupwhich acts freely
on B0. In order to result with the promising 4-d (softly broken)N = 1 SU (3)3 GUT,
we employed two mechanisms: the CSDR and the Wilson flux breaking. The GUT
breaking along with the assumption of a slight discrepancy between the radii of the
coset led to a split-like supersymmetric scenario where the gauginos, third generation
Higgsinos and sleptons gain mass at ∼1.5 TeV, while the rest supersymmetric parti-
cles become supermassive (∼MGUT ). Treating the model as a 2HDM, calculations
led to valid results for the top, bottom and light Higgs masses rendering the model
viable so far.
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Ramond States of the D1-D5 CFT Away
from the Free Orbifold Point

Andre Alves Lima, Galen M. Sotkov, and Marian Stanishkov

Abstract The free orbifold point of the D1-D5 CFTmust be deformed with a scalar
marginal operator driving it to the region in moduli space where the holographic
supergravity description of fuzzball microstates becomes available. We discuss the
effects of the deformation operator on the twisted Ramond ground states of the CFT
by computing four-point functions. One can thus extract the OPEs of the deformation
operator with these Ramond fields to find the conformal dimensions of intermediate
non-BPS states and the relevant structure constants. We also compute the anomalous
dimensions at second order in perturbation theory, and find that individual single-
cycle Ramond fields are renormalized, while the full multi-cycle ground states of the
SN orbifold remain protected at leading order in the large-N expansion.

Keywords Symmetric product orbifold of N = 4 SCFT · Ramond fields ·
Marginal deformations · Correlation functions · Renormalization

1 Introduction

In the decoupling limit, the Type IIB supergravity solution for the bound state of a
large number N1 of D1-branes wrapped around a circle S

1, and a large number N5 of
D5-branes wrapped aroundT

4 × S
1 develops a “throat” geometry; that is, it becomes

AdS3 × S
3 × T

4,whereAdS3 andS
3 have the same (large) radius fixed by the branes’

charges. The holographic CFT dual to this spacetime, called theD1-D5CFT, is a two-
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dimensional superconformal field theory with N = (4, 4) SUSY, and R-symmetry
group SO(4) ∼= SU(2)L × SU(2)R associated with S

3. The superconformal algebra
also has a global “SO(4)” symmetry associated with T

4. The large central charge,
fixed by theAdS3 radius, is c = 6N , where N = N1N5 � 1. See e.g. [3] for a review.

The D1-D5 system is a well-known laboratory for the study of microscopic prop-
erties of black holes in String Theory. The SUGRA solution (when the branes carry
internal momentum along their common S

1 direction) has a horizon whose area
matches the counting of CFT states, as famously discovered by Strominger and
Vafa [18]. But more than “state counting”, a precise holographic dictionary exists,
between states in the D1-D5 CFT and specific non-singular, horizonless ‘semiclas-
sical’ SUGRA solutions [14, 17] which have the same charges as—and thus look
like—the extremal supersymmetric black hole away from the would-be horizon, out-
side the AdS3 × S

3 throat. Details of this dictionary, and the search for new andmore
general (less symmetric) horizonless and non-singular ‘microstate geometries’ are
part of what has become known as the fuzzball program, an ongoing endeavor, see
e.g. [2, 4, 14, 16, 17].

The D1-D5 CFT dual to gravity solutions is strongly-coupled, but conjectured
to live in the moduli space of a free SCFT on the symmetric orbifold (T4)N/SN .
(See [3] and references therein.) Holographic computations are usually done in this
free orbifold point, where results are often exact, and then rely on the existence of
non-renormalization theorems for some BPS-protected objects such as NS chiral
operators, as well as on explicit matching with bulk computations, in special cases
where they can also be performed in parallel with their CFT counterpart. Meanwhile,
motivated by the increasing scrutiny of the relation between individual states and
geometries, the effect of the deformation of the free orbifold towards the strongly-
coupled CFT has been given attention over the years, see e.g. [1, 5, 6].

Here we report the results published in [7–11], on the fate of twisted Ramond
ground states |R[g]〉, with an arbitrary twist g ∈ SN , when the free CFT is deformed
by a marginal scalar modulus O(int)

[2] . In terms of the action,

Sint = Sfree + λ

∫
d2z O(int)

[2] (z, z̄) (1)

with a coupling λ. Known microstate geometries are dual to coherent superpositions
of Ramond ground states, or to specific excitations thereof [4, 16, 17], providing
one important motivation—besides the fact that they are naturally very elementary
objects—for their study in the deformed theory. Although the actual D1-D5 CFT is
strongly coupled, we work with conformal perturbation theory to order λ2, which is
the lowest possible order where one can detect lifting of dimensions of |R[g]〉. The
analysis hinges upon us being able to compute specific four-point functions involving
the Ramond states and the deformation modulus.
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2 Ramond Ground States and Their Four-Point Functions
with the Deformation Operator

Specifically, to assess the anomalous dimensions in second-order perturbation theory,
we must compute

〈
R†

[g](∞, ∞̄) O(int)
[2] (1, 1̄) O(int)

[2] (u, ū) R[g](0, 0̄)
〉

(2)

that is a four-point function of twisted operators. The Hilbert space of the orbifold
is divided into twisted sectors, created by the insertion of ‘bare-twist fields’ σg(z),
which introduces a branch cut at the point z such that, when a given field crosses
it, g ∈ SN permutes the copies I = {1, . . . , N }. Twisted operators are excitations of
the bare twists. For example, O(int)

(2) is an excitation of a transposition σ(2), and in the
twisted sector of the cyclic permutation (1, · · · , n) ∈ SN there are two R-charged
holomorphic Ramond ground states (see the Appendix for definitions)

R±
(n)(z) = exp

(
± i

2n

n∑
I=1

[
φ1,I − φ2,I

])
σ(1,··· ,n)(z) (3)

differing by R-charge j± = ± 1
2 , and both having conformal weight hRn = 6n

24 , appro-
priate for the Ramond sector of a CFT with central charge 6n. To obtain SN -invariant
operators from (3), we sum over all elements in the conjugacy class [n],

Rs
[n] = 1√

N !|Cent(n)|
∑
h∈SN

Rs
h(n)h−1 . (4)

The normalization factor, featuring the order of the centralizer of the twist permuta-
tion, |Cent(n)| = (N − n)!n, counts multiplicities of terms in the sum, to ensure that
Rs

[n] has the same normalization as each of its components in the r.h.s.More generally,
any g ∈ SN can be decomposed as a product g = ∏

n(n)Nn , of (disjoint) cyclic per-
mutations of length n, characterized by a partition [Nn] = {Nn ∈ N | ∑

n nNn = N },
and the conjugacy class [g] is the set of all permutations with the same partition [Nn].
Generic SN -invariant operators formulti-cycle permutations can be constructed anal-
ogously to (4), to depend only on [Nn]. This applies to the Ramond ground states
R[g] of the full orbifold, which are not the fields Rs

[n], but products

R[N (s)
n ] =

[ ∏
s,n

(Rs
[n])

N (s)
n

]
for a partition

∑
n,s

N (s)
n = N . (5)

The partition takes into account an SU(2) “spin index” s = ±, 1̇, 2̇ besides the twist.
Any field with this structure has the correct conformal weight hR = N

4 for a CFT
with central charge c = 6N , and R-charge j = ∑

s,n N
(s)
n js .
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Connected correlators of twisted fields are associated to branched coverings of
the Riemann sphere, whose genera are determined by the twist permutations via the
Riemann-Hurwitz formula. It can be shown that (2) factorizes into a sumof connected
functions where the Ramond fields have at most two cycles [10],

As1s2
n1n2 =

〈[
Rs1

[n1]R
s2
[n2]

]†
(∞, ∞̄) O(int)

[2] (1, 1̄) O(int)
[2] (u, ū)

[
Rs1

[n1]R
s2
[n2]

]
(0, 0̄)

〉
, (6)

with associated genus-zero covering surface. The covering is given by the map

z(t) =
(
t

t1

)n1 (
t − t0
t − t∞

)n2 (
t1 − t∞
t1 − t0

)n2

(7)

such that, respectively, the twists n1 at z = 0,∞ are lifted to t = 0,∞ on the cover-
ing; the twists n2 at z = 0,∞ lift to t = t0, t∞; and the twists 2 at z = 1, u to t = t1, x .
The monodromies impose that t0, t1, t∞ are functions of x , and u(x) ≡ z(x) is

u(x) = xn1−n2(x + n1
n2

)n1+n2(x − 1)−n1+n2(x − 1 + n1
n2

)n2−n1 . (8)

Following [12, 13, 15] we can use the covering surface as a tool for dealing with
monodromies and compute (6). The final result is

As1s2
n1n2(u, ū) = �(n1n2)

N 2

2max(n1,n2)∑
a=1

|As1s2
n1n2(xa(u))|2

As1s2
n1n2(x) = 1

16n21

[
Cs1s2 + x(x − 1 + n1

n2
)
]

× x1−n1+n2(x − 1)1+n1+n2(x + n1
n2

)1−n1−n2(x − 1 + n1
n2

)1+n1−n2

(x + n1−n2
2n2

)4

(9)

We have written the overall factor �/N 2 in the large-N limit, but apart from this the
result holds for finite N as well. The constant � depends only on n1n2, and Cs1s2
only on n1, n2 and s1, s2. They can be found in [10].

Equation (9) is written in terms of the functions xa(u) that are the inverses of
u(x), and cannot be found in general, but can be expanded in the coincidence limits
u → 0 and u → 1, to give the associated conformal data. For example, for u → 0,
we obtain the OPE

O(int)
(2) (u, ū)

[
Rs1

(n1)
Rs2

(n2)

]
(0, 0̄) |∅〉

= 〈Y s1s2†
(n1+n2)

O(int)
(2) [Rs1

(n1)
Rs2

(n2)
]〉

|u|2+ n1+n2
2 −Δ

s1s2
Y

Y s1s2
(n1+n2)

(0, 0̄) |∅〉 + · · ·
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The operator Y s1s1
(n1+n2)

results from O(int)
(2) joining the two single-cycle Ramond fields.

Its dimensionΔ
s1s2
Y , as well as the structure constant in the denominator, can be found

from the expansion of (9). For instance, when n1 = n2 = n we find

Δ+−
Y = Δ1̇±

Y = Δ1̇2̇
Y = Δ1̇1̇

Y = 1

n
+ n, Δ++

Y = 2

n
+ n.

In the limit u → 1, we find the (symbolic) OPE O(int)
[2] × O(int)

[2] = [1] + [σ[3]],
expected from the composition of the two transpositions in the twists. The chan-
nel with the conformal family of the identity [1], is in fact used to fix the constants
in (9).

The correlator (2) is a sumof functions (9) for every required pairwise combination
of single-cycle Ramond fields. This sum has “symmetry factors” depending on the
multiplicity of equivalent strands in the product (5), i.e. on the form of the partition
[N (s)

n ], but these factors are not dynamical and can be disregarded in the computation
of the anomalous dimension below. We note that there can be contributions from
functions with single-cycle Ramond fields and a genus-one covering surface, but we
focus on the genus-zero functions here.

3 Away from the Free Orbifold Point

Conformal perturbation theory gives the dimension ΔR
(ren) = hR(ren) + h̃R(ren) ofR[g] at

order λ2, once we perform the integral

ΔR
(ren) = N

2
− π

2
λ2

∫
d2u

〈
R†

[g](∞, ∞̄) O(int)
[2] (1, 1̄) O(int)

[2] (u, ū)R[g](0, 0̄)
〉
.

The integrand is a sum of functions of the type (9). With a change of variables we
find, with unimportant constants A and B,

∫
d2u As1s2

n1n2(u, ū) =
∫
d2x

∣∣u′(x) As1s2
n1n2(x)

∣∣2

= A

∫
d2y |1 − y|−3 + B

∫
d2y |1 − y|−3|y − w|2

(10)

which is divergent, but can be regularized by analytic continuation:

∫
d2y

|y − 1|3 = lim
a→0

4π

�(−a)
= 0,

∫
d2y

|y − w|2
|1 − y|3 ∼ lim

a→1

−16π

�(−a)
= 0

Hence
ΔR

(ren) = 1
2N + O(λ3) (11)
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Fig. 1 Plots of the integral JR(n) in Eq. (12), for R-charged (left) andR-neutral (right) single-strand
Ramond ground states of twist n = 4k + 	

at least in the large-N limit, where only the genus-zero connected functions con-
tribute to (2). The dimension of the Ramond ground states is protected.

A curious feature of the non-renormalization is that it only occurs for the total
orbifold ground states with hR = 1

4N . Individual single-cycle states with hRn = 1
4n

are renormalized. We can see that by using similar methods to compute

JR =
∫
d2u

〈
Rs†

[n](∞, ∞̄)O(int)
[2] (1, 1̄)O(int)

[2] (u, ū)Rs
[n](0, 0̄)

〉
(12)

whose numerical values are plotted in Fig. 1. The functions in the integrand contain
a leading genus-zero part coming from O(int)

[2] joining the field Rs
(n) with an untwisted

vacuum strand, that is absent in the decomposition of the correlator (2).
In summary, we find that the c = 6N CFTRamond ground states are protected, as

it should be expected, since they are associated with SUGRA fuzzball solutions and
related to BPS NS-chiral fields by spectral flow of the c = 6N theory. However, the
individual single-cycle components Rs

[n] do lift, and acquire anomalous dimensions
when the CFT is driven away from the free orbifold point.

Acknowledgements This work was partially supported by the Bulgarian NSF grants KP-06-H28/5
and KP-06-H38/11.

Appendix

The (T4)N/SN orbifold has N copies of a ‘seed’ N = (�,�) SCFT with cen-
tral charge cseed = 6. The total central charge is c = 6N . Each copy, labeled by an
index I = {1, . . . , N }, has 4 real bosons and (4 + 4̃) real fermions, all free, which
can be gathered into SU(2) doublets. The holomorphic Ramond fields in the text
are constructed from the bosonized fermions ψα1̇

I (z) = [e−iφ2,I (z), e−iφ1,I (z)]T and
ψα2̇

I (z) = [eiφ2,I (z),−eiφ1,I (z)]T . The indices α = ± correspond to the holomorphic
R-symmetry group SU(2)L and Ȧ = 1̇, 2̇ to the factor SU(2)2 of the global symmetry.



Ramond States of the D1-D5 CFT Away from the Free Orbifold Point 191

References

1. S.G. Avery, B.D. Chowdhury, S.D. Mathur, JHEP 06, 031 (2010)
2. I. Bena, S. Giusto, R. Russo, M. Shigemori, N.P. Warner, JHEP 05, 110 (2015)
3. J.R. David, G. Mandal, S.R. Wadia, Phys. Rept. 369, 549 (2002)
4. S. Giusto, E. Moscato, R. Russo, JHEP 11, 004 (2015)
5. B. Guo, S.D. Mathur, JHEP 10, 155 (2019)
6. C.A. Keller, I.G. Zadeh, J. Phys. A 53, 095401 (2020)
7. A.A. Lima, G.M. Sotkov, M. Stanishkov, Phys. Rev. D 102, 106004 (2020)
8. A.A. Lima, G.M. Sotkov, M. Stanishkov, Phys. Lett. B 808, 135630 (2020)
9. A.A. Lima, G.M. Sotkov, M. Stanishkov, JHEP 7, 211 (2021)
10. A.A. Lima, G.M. Sotkov, M. Stanishkov, JHEP 7, 120 (2021)
11. A.A. Lima, G.M. Sotkov, M. Stanishkov, JHEP 3, 202 (2021)
12. O. Lunin, S.D. Mathur, Commun. Math. Phys. 219, 399 (2001)
13. O. Lunin, S.D. Mathur, Commun. Math. Phys. 227, 385 (2002)
14. S.D. Mathur, Fortsch. Phys. 53, 793 (2005)
15. A. Pakman, L. Rastelli, S.S. Razamat, JHEP 10, 034 (2009)
16. S. Rawash, D. Turton, JHEP 07, 178 (2021)
17. K. Skenderis, M. Taylor, Phys. Rept. 467, 117 (2008)
18. A. Strominger, C. Vafa, Phys. Lett. B 379, 99 (1996)



Primordial Black Hole Generation in a
Two-Field Inflationary Model

Lilia Anguelova

Abstract We summarize our work on the generation of primordial black holes in
a type of two-field inflationary models. The key ingredient is a sharp turn of the
background trajectory in field space. We show that certain classes of solutions to
the equations of motion exhibit precisely this kind of behavior. Among them we
find solutions, which describe a transition between an ultra-slow roll and a slow roll
phases of inflation.

Keywords Primordial black holes · Cosmological inflation · Rapid turns · Hidden
symmetry

1 Introduction

Large perturbations during cosmological inflation can seed the formation of Pri-
mordial Black Holes (PBHs). If produced with enough abundance, the latter could
constitute a significant component of dark matter. This possibility has attracted a lot
of attention recently, due to the observation of gravitational waves sourced by binary
black hole mergers. The reason is that analysis of the observational data contains
indications of primordial origin for a fraction of these black holes [1–3].

A novel mechanism for the formation of PBHs in multi-field inflation was pro-
posed in [4, 5]. Cosmological models with multiple scalars are of particular interest
in view of recent theoretical developments [6–9]. An essential difference from the
single-field case is that the field-space trajectories of their background solutions can
deviate fromgeodesics. The basic idea of [4, 5] is that a brief period of such a strongly
non-geodesic motion can induce a large enhancement of the power spectrum of the
curvature perturbation, thus triggering PBH generation. Studying a type of two-field
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models, we showed in [10] that there are actual solutions of the background equations
of motion, which behave in precisely this manner.

A key role in the considerations of [10] was played by a class of exact solutions
found in [11]. The scalar field space in that case is the Poincaré disk, while the scalar
potential is determined by a certain hidden symmetry. We review the investigation of
[10], showing that the field-space trajectories of these solutions exhibit exactly the
behavior needed for PBHgeneration.We also discuss how to improve the problematic
behavior of the corresponding Hubble η-parameter via a suitable symmetry-breaking
modification. The resulting modified solutions preserve the PBH-generating proper-
ties of the hidden symmetry ones, while describing a smooth transition between an
ultra-slow roll and a slow roll inflationary phases.

2 Two-Field Inflationary Models

We will study inflationary models arising from two scalar fields φ I (xμ) minimally
coupled to Einstein gravity. The action describing this system is:

S =
∫

d4x
√− det g

[
R

2
− 1

2
GI J∂μφ I ∂μφ J − V ({φ I })

]
, (1)

where gμν is the spacetime metric with μ, ν = 0, 1, 2, 3 and GI J is the scalar field-
space metric with I, J = 1, 2. As usual in cosmology, we will assume that the back-
ground spacetime metric and scalars have the form:

ds2g = −dt2 + a2(t)dx2 , φ I = φ I
0 (t) , (2)

where a(t) is the scale factor. Recall that the Hubble parameter is given by H(t) =
ȧ/a , where˙≡ ∂t .

2.1 Important Characteristics

To define a number of important quantities, characterizing any inflationary model,
let us introduce an orthonormal basis of tangent and normal vectors to a field-space
trajectory (φ1

0(t), φ
2
0(t)) :

T I = φ̇ I
0

φ̇0
, NI = (detG)1/2εI J T

J , φ̇2
0 = GI J φ̇

I
0 φ̇

J
0 . (3)

In terms of this basis, the deviation from a geodesic is measured by the quantity [12]:

Ω = −NI DtT
I , (4)
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where DtT I = φ̇ J
0 ∇J T I . The function Ω(t) is called the turning rate of a trajectory.

On solutions of the equations of motion, which follow from (1) with (2) substituted,
the expression (4) can be rewritten as:

Ω = NI V I

φ̇0
. (5)

Another set of important characteristics is given by the slow roll parameters,
defined in the following manner [13]:

ε = − Ḣ

H 2
, ηI = − 1

H φ̇0
Dt φ̇

I
0 . (6)

Expanding ηI in the above basis, we have:

ηI = η‖T I + η⊥N I , (7)

where:

η‖ = − φ̈0

H φ̇0
and η⊥ = Ω

H
. (8)

The phenomenologically-motivated slow roll conditions in the present context are
ε << 1 and |η‖| << 1 . On the other hand, there is no restriction on the dimensionless
turning rate η⊥ . In fact, we will see shortly that the regime of interest for PBH
generation is characterized by η2

⊥ >> 1 .
To explain the physicalmechanism that can seed the formation of primordial black

holes, we need to consider perturbations around the homogeneous background (2).
In comoving gauge, the fields decompose as:

φ I (t, x) = φ I
0 (t) + δφ⊥N I ,

gi j (t, x) = a2(t)
[
(1 + 2ζ )δi j + hi j

]
, (9)

where δφ⊥(t, x) is the entropic perturbation, ζ = ζ(t, x) is the curvature one and
hi j (t, x) are tensor fluctuations with i, j = 1, 2, 3 being spatial indices. Substituting
(9) in (1), one can derive an effective action for the perturbations. The key ingredients
in that action are an interaction term between ζ and the entropic perturbation, as well
as a mass term for δφ⊥ of the form (see, for instance, [12]):

m2
s = N I N J V;I J − Ω2 + εH 2R , (10)

where V;I J = ∂I ∂J V − �K
I J VK and R is the Ricci scalar of the field-space metric

GI J .
The interaction term, whose strength depends on η⊥ , implies that δφ⊥ can affect

the evolution of ζ , and thus of the density fluctuations in the EarlyUniverse. In partic-
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ular, the amplitude of the curvature perturbation can become significantly enhanced
for large enough turning rate [4, 5]. The latter, however, can induce a negative entropic
mass in view of (10). Thus, a brief tachyonic instability of the entropic perturbation
can signify the formation of primordial black holes. Our goal will be to show that
there are actual solutions to the background equations of motion, which lead to
precisely this kind of behavior for η⊥(t) and m2

s (t) .

2.2 Rotationally Invariant Field Spaces

Let us now focus on rotationally invariant scalar field spaces. Then we can write the
metric GI J as:

ds2G = dϕ2 + f (ϕ)dθ2 , (11)

where we have denoted:

φ1
0(t) ≡ ϕ(t) and φ2

0(t) ≡ θ(t) . (12)

Using (11)–(12) together with (2), one finds from (1) the following equations of
motion for the background:

ϕ̈ − f ′

2
θ̇2 + 3H ϕ̇ + ∂ϕV = 0 , θ̈ + f ′

f
ϕ̇θ̇ + 3H θ̇ + 1

f
∂θV = 0 , (13)

ϕ̇2 + f θ̇2 = −2Ḣ , 3H 2 + Ḣ = V . (14)

We will be interested specifically in the case with ∂θV = 0 . In that case, (5) gives
for the turning rate [10]:

Ω =
√

f(
ϕ̇2 + f θ̇2

) θ̇ ∂ϕV , (15)

In addition, the effective entropic mass (10) acquires the form [10]:

m2
s = M2

V − Ω2 + εH 2R , (16)

where:

M2
V ≡ f θ̇2∂2

ϕV + f ′
2 f ϕ̇

2∂ϕV

(ϕ̇2 + f θ̇2)
. (17)

We should note thatΩ(t) can be a non-trivial function, i.e. the background trajec-
tories in field space can be genuinely non-geodesic, even though the potential does
not depend on one of the two scalars, as will become clear shortly; see also [10] and
references therein.
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3 A Class of Exact Solutions

Now we will show that a class of exact solutions to (13)–(14), obtained in [11],
leads to a brief period with large turning rate, as well as tachyonic entropic mass, as
needed for PBH generation. These solutions arise from the following choices of the
functions f and V :

f (ϕ) = 8

3
sinh2

(√
3

8
ϕ

)
, (18)

V (ϕ, θ) = V0 cosh2
(√

3

8
ϕ

)
. (19)

Note that (18) is equivalent with taking the field-space metric (11) to be that of the
Poincaré disk (with fixed Gaussian curvature). Then (19) is exactly the form of the
potential required by the hidden symmetry of [11].

For the above choices of potential and field space, one can solve (13) by:

a(t) = [
u2 − (

v2 + w2
)]1/3

,

ϕ(t) =
√
8

3
arccoth

⎛
⎝

√
u2

v2 + w2

⎞
⎠ ,

θ(t) = arccot
( v

w

)
, (20)

where u, v and w are the following functions:

u(t) = Cu
1 sinh(κ t) + Cu

0 cosh(κ t) , κ ≡ 1

2

√
3V0 ,

v(t) = Cv
1 t + Cv

0 and w(t) = Cw
1 t + Cw

0 , (21)

with Cu,v,w
0,1 = const . The expressions (20)–(21) solve (14) as well, if the following

relation between the integration constants is satisfied:

(Cv
1 )

2 + (Cw
1 )2 = κ2

[
(Cu

1 )
2 − (Cu

0 )
2
]

. (22)

Substituting (20), together with (18)–(19), inside (15) and (17) gives:

Ω = 3V0

4

u (vẇ − v̇w)
√
u2 − w2 − v2[

(vu̇ − v̇u)2 + (wu̇ − ẇu)2 − (vẇ − v̇w)2
] (23)

and
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M2
V = 3V0

4

{
u2

[
(vu̇ − v̇u)2 + (wu̇ − ẇu)2

] − (v2 + w2)(vẇ − v̇w)2
}

(u2 − v2 − w2)
[
(vu̇ − v̇u)2 + (wu̇ − ẇu)2 − (vẇ − v̇w)2

] , (24)

respectively. Analyzing these expressions directly, upon substitution of (21), is rather
daunting. So [10] used a combination of analytical and numerical means to under-
stand their behavior.

For that purpose, it is very useful to introduce the canonical radial variable on the
Poincaré disk, ρ, which runs in the range 0 ≤ ρ < 1 and is related to the field ϕ via:

ρ = tanh

(
1

8

√
6ϕ

)
. (25)

Using (20) in (25), one finds:

ρ(t) =
√

v2 + w2

√
u2 − v2 − w2 + √

u2
, (26)

which implies that the extremum condition ρ̇(t) = 0 can be written as:

(v2 + w2) u̇ − (vv̇ + wẇ) u = 0 . (27)

Analyzing (27), with (21) substituted, [10] showed that the function ρ(t) can have
at most two local extrema. In the cases with a single extremum, the latter is always
a maximum. In the cases with two extrema, the one occurring at an earlier time is
a local minimum, whereas the one occurring later is a local maximum. In any case,
only the local maximum corresponds to a turn of the trajectory. Furthermore, the
single turn induces a peak of Ω(t), as well as a corresponding peak of −m2

s (t) . We
have illustrated the behavior of these functions on Fig. 1. The examples, plotted there,
have been chosen for convenience.1 It should be stressed, though, that the shape of
the functions is always the same, regardless of the values of the integration constants.
However, as demonstrated in [10], both the position and the height of the peak can
be varied at will by choosing suitably the values of the constants. In particular, one
can easily achieve numerically that |η⊥|tpeak ≈ 23 , which is necessary for triggering
PBH generation according to the benchmark cases of [5]. Note that, interestingly,
the rapid turn occurs during a single e-fold.

The above results show that, in principle, the exact solutions (20)–(22) are suitable
for describing the generation of perturbations, large enough to seed PBH formation.
Unfortunately, however, it turns out that the corresponding η‖-parameter violates
the slow roll approximation [10]. Since η‖ equals the Hubble slow roll parameter

ηH ≡ − Ḧ
2H Ḣ

on solutions of the equations of motion, this means that the inflationary

1 In particular, in all three examples ε << 1 (in fact, ε(t)|tpeak ∼ 10−19) and H = 2 to a great degree
of accuracy, implying that the number of e-folds is N = 2t .
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Fig. 1 Three examples of the functions Ω/H and −m2
s /H

2 , obtained by taking κ = 3, Cu
0 = 6,

Cv
0 = 1,Cv

1 = − 1
5 ,C

w
1 = 1

2 andC
u
1 - the positive root of (22), as well asCw

0 = −2.46 (dash-dotted
curve), Cw

0 = −2.47 (solid curve) and Cw
0 = −2.48 (dotted curve)

regime under consideration is not viable phenomenologically. In the next Section,
we will show how one can remedy the behavior of η‖ , while preserving the desired
for PBH-generation properties of the solutions.

4 Modified Solution and PBH Generation

Our goal now is to findmodified solutions of the equations of motion, which preserve
the desirable behavior of η⊥(t) , while improving that of η‖(t) . For that purpose, let
us consider the following Ansatze:

f (ϕ) = 1

q2
sinh2(qϕ) , (28)

V (ϕ, θ) = V0 cosh6p(qϕ) , (29)

where p, q = const and p > 0 . Thus, the field space metric is still that of the
Poincaré disk, although for arbitrary q the hidden symmetry of [11] is not preserved.
Let us also introduce new variables ũ, ṽ, w̃ via the Ansatz:

ũ = a
1
2p cosh(qϕ) ,

ṽ = a
1
2p sinh(qϕ) cos θ ,

w̃ = a
1
2p sinh(qϕ) sin θ . (30)
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Notice that, taking p = 1
3 and q =

√
3
8 inside (28)–(30), one recovers precisely the

expressions (18)–(20), relevant for the exact solutions with hidden symmetry that we
considered above. In addition, one can show that the equations of motion, resulting
from (28)–(30), simplify significantly for:

q = 1√
24

1

p
. (31)

So we will assume (31) from now on, as well.
In [10] it was argued that a phenomenologically preferable regime, ensuring that

ε << 1 at early times, is obtained in the large-ũ limit:

|ũ|, | ˙̃u| >> |ṽ|, |w̃|, | ˙̃v|, | ˙̃w| . (32)

In this regime, the equations of motion, that follow from (28)–(31), acquire the form:

24 p ũ ¨̃u + 24 p (3p − 1) ˙̃u2 − 6 V0 ũ
2 = 0 , (33)

¨̃y + 2(3p − 1)ku ˙̃y − (3p − 1)k2u ỹ = 0 , (34)

where ỹ = ṽ, w̃ . These equations can be solved respectively by:

ũ(t) = Cu e
kut , ku =

√
V0

12

1

p
(35)

and
ṽ(t) = Cve

kv t , w̃(t) = Cwe
kw t , (36)

where

kv = −ku
[
(3p − 1) + √

(3p − 1)3p
]

,

kw = −ku
[
(3p − 1) − √

(3p − 1)3p
]

. (37)

Note that substituting p = 1/3 inside (33)–(34) leads precisely to the hidden sym-
metry solutions in (21). Also, to have real kv,w in (37), we need p ≥ 1

3 . In fact, we
will take p > 1 from now on, to ensure a phenomenologically desirable behavior
of η‖ according to the discussion in [10].

Now, using (28)–(29) and (35)–(37), together with the inverse of (30), one can
show that the turning rate Ω(t) in (15) has a single peak. Furthermore, one can
compute analytically the position, height and width of the peak [10]. Similarly, one
can show analytically that the corresponding effective entropic mass m2

s (t) in (16)
has a transient tachyonic instability [10]. Specifically, we have that:

m2
s |t=tpeak = (m2

V − Ω2)|t=tpeak = −3k2u p (3p − 2) , (38)
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whereas before and after the peak:

m2
s = m2

V − Ω2 → 3k2u p as t → 0 or t → ∞ . (39)

Herewe have used that ε<<1 in the entire range of validity of the new solutions (35)–
(37), as well as that the Ricci scalar of the field-space metric is fixed toR = − 1

12p2 .
From the inverse of (30), one can also find the η‖-parameter of the new solutions

[10]; recall that η‖(t) = − Ḧ
2H Ḣ

. At early times, i.e. for t ≈ 0 , the full analytical
expression reduces to:

η‖ ≈ (ku − kv)

2pku
= 3p + √

(3p − 1)3p

2p
. (40)

Note that this is well-approximated numerically by η‖ ≈ 3 for any p > 2 . Thus,
before the turn one has an ultra-slow roll inflationary phase. On the other hand, at
late times, i.e. for large t , we have:

η‖ ≈ (ku − kw)

2pku
= 3p − √

(3p − 1)3p

2p
, (41)

which is well-approximated numerically by η‖ ≈ 1
4p for any p > 2 . Clearly, by

choosing a suitably large value of p , we can ensure that the slow roll approximation
η‖ << 1 is well satisfied after the turn. Hence, the modified solutions of this Section
describe a smooth transition between an ultra-slow roll and a slow roll inflationary
phases, for any p greater than 4 or so.2

We should note that the solutions (35)–(37) are approximate, since they were
derived in the large-ũ limit. However, they satisfy (32) more and more accurately
with time. Hence, as discussed in [10], one can improve them by considering small
corrections, at early times, of the form:

ṽ(t) = (
Cv + C (1)

v t + C (2)
v t2 + · · · ) ekv t ,

w̃(t) = (
Cw + C (1)

w t + C (2)
w t2 + · · · ) ekw t , (42)

where C (1),(2),...
v,w = const . Such subleading corrections in ṽ(t) and w̃(t) leave the

slow roll parameters ε(t) and η‖(t) essentially unchanged, since the scale factor
a(t) is dominated by ũ(t) . However, the function θ̇ (t) is rather sensitive to the
corrections in (42), implying that η⊥(t) is as well. Thus, as demonstrated in [10], the
sharpness of the turn of a trajectory in field space can be significantly affected by
the above subleading corrections. In view of this, it is easy to obtain any magnitude
of η⊥(tpeak) , desirable for PBH-generation, by choosing suitably the values of the
constants. Interestingly, the corresponding sharp turn can last several e-folds.

2 This is similar to the numerical considerations of [14], where PBH generation was also triggered
by a transition between two phases of inflation. However, in that work the transition was due to a
separate potential term for each scalar, driving its own slow-roll expansion phase.
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Finally, it is worth pointing out that, in the large ũ-regime, one is always near the
center of field space. Specifically, our slow roll phase occurs for ϕ << 1 . This is in
stark contrast with the usual hyperbolic models in the literature, which rely on large
field values (even close to the boundary of the Poincaré disk, which is at ϕ → ∞) to
achieve slow roll expansion. Thus our models provide a much more reliable effective
description of the inflationary period.

Acknowledgements I have received partial support from the Bulgarian NSF grants DN 08/3 and
KP-06-N38/11.
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Late Time Cosmic Acceleration
with Uncorrelated Baryon Acoustic
Oscillations

Denitsa Staicova

Abstract The combination of Baryon Acoustic Oscillations (BAO), with other
astrophysical probes can be used to compare different cosmological models with
respect to the default ΛCDM model. In this proceeding, we summarize our recent
publications in which we combined BAO dataset in the effective redshift range
z ∈ (0.1, 2.36)with the Cosmic Chronometers data, the Pantheon Type Ia supernova
and the Hubble Diagram of Gamma Ray Bursts and Quasars. We tested the defaultΛ
CDM, plus ΩkCDM and wCDM.We found that the ΛCDMmodel is the best model
and the Hubble constant without additional local universe priors is H0 = 69.85 ±
1.27km/s/Mpc, with sound horizon distance: rd = 146.1 ± 2.15Mpc. When one
adds a local prior, the results are H0 = 71.40 ± 0.8 and rd = 143.5 ± 2.0.

Keywords Cosmological models · Hubble tension · Baryonic Acoustic
Oscilations

1 Introduction

Baryon Acoustic Oscillations (BAO) are pressure waves oscillating in the post-
inflationary universe, which freeze at the epoch of recombination and which can
be seen in the mass distribution of large scale structures. As the physics of this pri-
mordial baryonic plasma waves is rather simple, it can be modelled, and thus the
BAO provide a Standard ruler evolving with the Universe ever since recombination
[1]. The BAOhave been seen in qualitatively different objects, thus allowing us a new
way to infer cosmic parameters. They have been measured in clustering of galaxies
and quasars, from the correlation function of the Lyα absorption lines in the spectra
of distant quasars, in cross correlation with quasar positions and galaxies.While their
measurement require very precise astronomical surveys, thus can be vulnerable to
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systematics, combined with other datasets, they can help us understand better the
cosmological model describing the universe and to explain the so called “tensions”
in cosmology [2–7]. In this proceeding, we review the results from two our articles
on the topic [8, 9], in whichwe used BAO datasets, alongwith a combination of other
datasets, to infer the parameters for different cosmological models. This shines new
light on the H0 tension—the 4σ difference between the measurements of the Hubble
constant H0 obtained from the late universe measurements [10] and the ones from
the Cosmic Microwave Background (CMB) by Planck Collaboration [11]—and the
connected to it rd tension [12, 13]. This tension calls for a revision of the ΛCDM
model or for looking for systematic error in the data gathering or analysis and it is
on the forefront of modern cosmology.

2 Review of the Theory

As usual, for the ΛCDM model, we assume a Friedmann-Lemaître-Robertson-
Walker metric with the scale parameter a = 1/(1 + z), where z is the redshift. The
Friedmann equation then is:

E(z)2 = Ωr (1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ, (1)

where Ωr , Ωm , ΩΛ and Ωk are the fractional densities of radiation, matter, dark
energy and the spatial curvature at redshift z = 0. The function E(z) is the ratio
H(z)/H0, where H(z) := ȧ/a is the Hubble parameter at redshift z and H0 is the
Hubble parameter today. The radiation density can be computed as:Ωr = 1 − Ωm −
ΩΛ − Ωk . In order to examine a possibility for wCDM, one can generalize the
Friedmann equation to ΩΛ → Ω0

DE (1 + z)−3(1+w).
Since observationally, onemeasures the distribution of the redshifts and the angles,

they are converted to distances by adopting a fiducial cosmological model, and mea-
suring the ratio of the observed BAO scale to that predicted in the fiducial model.
While the transversal BAO do not depend on the fiducial cosmology [14], here we
use different BAO measurements and thus we take this ratio as a free parameter.

In transverse direction,BAOmeasures DH (z)/rd = c/H(z)rd ,meaning, it always
measures the combination H × rd . The comoving angular diameter distance is:

DM = c

H0
√|Ωk | sinn

(√|Ωk |
∫ z

0

dz′

E(z′)

)
, (2)

where sinn(x) = sinh(x), x, sin(x) for Ωk < 0,Ωk = 0,Ωk > 0. Related to DM

are the angular diameter distance DA = DM/(1 + z) and the volume averaged dis-
tance, DV (z) = [zDH (z)D2

M(z)]1/3.
The sound horizon at drag epoch,rd , is defined by:
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rd =
∫ ∞

zd

cs(z)

H(z)
dz (3)

where cs ≈ c
(
3 + 9ρb/(4ργ )

)−0.5
is the speed of sound in the baryon-photon fluid

with the baryon ρb(z) and the photon ργ (z) densities respectively [15]. The drag
epoch corresponds to the time when the baryons decouple from the photons at zd ≈
1060.We see that rd can be calculated in a simpleway, if onemakes someassumptions
about the state of the pre-recombination Universe. In our works, we take it as a free
parameter inferred from the data.

3 Methodology

The dataset we use consists of 17 points fromdifferent data releases (DR) of the Sloan
Digital Sky Survey (SDSS), the WiggleZ Dark Energy Survey, the Dark Energy
Survey (DES), the Dark Energy Camera Legacy Survey (DECaLS) and the 6dF
Galaxy Survey (6dFGS) ([16–29]. To use these points in our analysis, we show that
they are not strongly correlated by checking the effect of replacing the covariance
matrix of uncorrelated points Cii = σ 2

i with one with random correlations Ci j =
0.5σiσ j , where σiσ j are the 1σ errors of the data points i, j . This let us show that
the effect of a correlations of up to 30% of the datapoints results in a less than 10%
difference in the final values, thus our conclusions should be affected only in a minor
way from such correlations.

We use a nested sampler as it is implemented within the open-source package
Polychord [30] with the GetDist package [31] to present the results. The prior
we choose is with a uniform distribution, where Ωm ∈ [0.; 1.], ΩΛ ∈ [0.; 1 − Ωm],
H0 ∈ [50; 100] and rd ∈ [100; 200] Mpc. The measurement of the Hubble constant
yielding H0 = 74.03 ± 1.42 (km/s)/Mpc at 68% CL by [10] has been incorporated
into our analysis as an additional prior which we denote as R19. We use a wide
prior on rd to avoid as much as possible the bias it induces on H0. With respect to
the fiducial cosmology, we use as a prior for the ratio rd/rd, f id ∈ [0.9, 1.1]. For the
Ωk CDM, we use as priors Ωk ∈ [−0.3; 0.3] and Ωm ∈ [0.1; 1 − ΩΛ], while for the
wCDM we use as a prior w ∈ [−1.25;−0.75]

Since BAO are able to constrain only the combination H × rd , one needs com-
plimentary datasets to be able to remove the degeneracy. Thus we use Cosmic
Chronometers (CC) and Standard Candles (SC). For the Cosmic Chronometers
(CC) we include 30 uncorrelated CC measurements of H(z) [32], for the Standard
Candles (SC) we use uncorrelated measurements of the Pantheon Type Ia super-
nova dataset [33, 34]. To them we add, the measurements from Quasars [35] and
Gamma Ray Bursts [36]. Over all, we have 273 datapoints and we vary 5 parameters:
{H0,Ωm,ΩΛ, rd , rd/rd, f id}, to which we add w or Ωk for the extended models.
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Table 1 Constraints at 95% CL errors on the cosmological parameters for the ΛCDM, the wCDM
model [8] and the ΩkΛCDMmodel [8, 9]. The datasets are: the BAO + CC + SC combination and
the same datapoints, with the R19 measurement as a Gaussian prior for H0

Model Parameters BAO + CC + SC BAO + CC + SC +
R19

ΛCDM H0[km/s/Mpc] 69.85 ± 1.27 71.40 ± 0.89

Ωm 0.271 ± 0.016 0.267 ± 0.017

ΩΛ 0.722 ± 0.012 0.726 ± 0.012

rd [Mpc] 146.1 ± 2.2 143.5 ± 2.0

ΩkΛCDM H0[km/s/Mpc] 70.48 ± 1.21 71.90 ± 0.87

Ωm 0.326 ± 0.026 0.326 ± 0.025

ΩΛ 0.765 ± 0.029 0.776 ± 0.024

rd [Mpc] 145.96 ± 2.4 143.45 ± 1.9

Ωk −0.085 ± 0.042 −0.096 ± 0.038

wCDM H0[km/s/Mpc] 69.94 ± 1.08 71.65 ± 0.88

Ωm 0.269 ± 0.023 0.266 ± 0.022

ΩΛ 0.724 ± 0.019 0.727 ± 0.019

rd [Mpc] 146.4 ± 2.5 143.2 ± 1.9

w −0.989 ± 0.049 −0.989 ± 0.049

4 The MCMC Results

A summary of the numerical values of our results can be found in Table1. To avoid
repetitions, here we focus only on the combined datasets which also have smaller
errors. The full analysis can be found in [8], where also the results for rd/r f id are
reported. On Fig. 1 we show the posterior distribution for the two cases, and we see
that the H0 − rd distribution is the samewith andwithout the additional H0 prior. The
Ωm distributions are more spread out. This can be confirmed also from Fig. 2, where
we plot the normalized Gaussians for the same parameters. As expected, for rd − H0

we have 2 distributions, consistent with the two different priors on H0.When it comes
to Ωm , the distributions are no so clear cut and there is some ambiguity (i.e. here
the difference is not entirely due to the H0 prior), related to the unknown parameter-
space. In this case, the higher value corresponds to the ΩkCDM model, which is
much closer to the Planck values for Ωm .

ΛCDM: One sees that the BAO + CC + SC datasets without the R19 prior, lead to
values closer to the ones announced by Planck [11], while with the R19 prior for H0,
the fit gives a result much closer to the observed in the late universe [10]. The matter
energydensity is smaller than the one reported byPlanck (Ω Planck

m = 0.315 ± 0.007),
which has been also seen in [14] (Ωm = 0.25 ± 0.02).

For the sound horizon, we get rd = 146.1 ± 2.2 Mpc for BAO + CC + SC and
rd = 143.5 ± 2.0 Mpc for the R19 prior. This should be compared with the Planck
measurements ∼ 147.1 ± 0.3 Mpc [11] and the completed SDSS lineage of exper-



Late Time Cosmic Acceleration … 207

Fig. 1 The 2d posterior distribution for the parameters Ωm , H0 and rd , where the index R refers
to the additional R19 prior

Fig. 2 The normalized Gaussians for the parameters Ωm , H0 and rd , again the index R refers to
the R19 prior

iments in large-scale structures measurement 149.3 ± 2.8 Mpc [37]. Using BAO,
SNea, ages of early type galaxies and local determinations of the Hubble constant,
[38] reports∼143.9 ± 3.1Mpc. [14] gets∼ 144.1 ± 5.1Mpc from rd/DM + BBN +
H0LiCOW and 150.4 ± 3 Mpc from rd/DM + BBN + CC. For a visual comparison
of different known measurements, see Fig. 1 in [9]. The discrepancy between early
and late universe results has led [12] to consider it as a “tension in the rd − H0

plane” or even as a tension in the rd − H0 − Ωm plane, since the value of rd depend
strongly on Ωm . Explicitly, increasing Ωm leads to a smaller rd , which also affects
the value of H0, as we also have observed.

ΩkΛCDM: For all the 3 sampleswe get a negative spatial curvature energy density
(Ωk < 0) which corresponds to k = 1, i.e. a closed universe. This is in line with
previous results obtained by the Planck 2018 collaboration [11] for CMBalonewhich
found a preference for a closed universe at 3.4σ and also with those obtained by [39]
which includes the data fromCC, Pantheon and BAOmeasurements to conclude also
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negative Ωk for relieving the H0 tension. The numbers reported in [8, 9] exclude a
flat universe and one can see a small alleviation of the H0 tension in this case.

The wCDM model: The dark energy equation of state we obtain differs from the
one obtained by the Planck collaboration 2018 [11]) which givesw = −1.03 ± 0.03,
i.e. it is essentially consistent with a cosmological constant. In our case, it is much
closer to the analysis done in [3, 40]). The full dataset does not exclude w = −1.

5 Conclusion

We review the results presented in [8, 9] which include the use of uncorrelated BAO
points, plus the CC and the SC datasets. We see that the addition of new datasets
enables us to significantly constrain the inferred cosmological parameters. One thing
that is clear from our considerations in [8], elaborated in [9] is that the connection
between rd and H0 and Ωm plays a significant role in understanding the H0 tension
and that the H0 tension cannot be solved without taking into account the other two
parameters. In [8] we use the reduced chi-square statistic and the Akaike information
criteria to find that ΛCDM is the best model under both criteria. However, including
the spatial curvature in the model, allows us to somewhat decrease the H0 tension on
the cost of having a closed Universe. Due to the higher number of parameters, this
model is not statistically preferred by the measures we performed, but it raises the
question about a possible non-zero curvature density of the universe. The numbers
obtained by our analysis are closer to the Tip of the Red Branch measurements for
H0, showing that the BAO dataset combined with other probes can lead to consistent
and interesting results and it is a powerful tool in cosmology.

Acknowledgements D.S. is thankful to Bulgarian National Science Fund for support via research
grant KP-06-PN58/1.
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On the Hidden Symmetries of D = 11
Supergravity

Lucrezia Ravera

Abstract We report on recent developments regarding the supersymmetric FreeDif-
ferential Algebra describing the vacuum structure of D = 11 supergravity. We focus
on the emergence of a hidden superalgebra underlying the theory, explaining the
group-theoretical role played by the nilpotent fermionic generator naturally appear-
ing for consistency of the construction. We also discuss the relation between this
hidden superalgebra and other superalgebras of particular relevance in the context of
supergravity and superstring, involving a fermionic generator with 32 components.

1 Introduction

In eleven spacetime dimensions an (almost) central extension of the supersymmetry
algebra was introduced in the literature and named M-algebra [13, 19, 20, 27, 32].
Such super Lie algebra includes, besides the super-Poincaré structure, the anticom-
mutator

{Q, Q} = −i
(
CΓ a

)
Pa − 1

2

(
CΓ ab

)
Zab − i

5!
(
CΓ a1···a5) Za1···a5 , (1)

where Zab and Za1···a5 are Lorentz-valued almost central charges (they commute with
all generators except the Lorentz one). The M-algebra is commonly considered as
the Lie superalgebra underlying M-theory [16, 26, 31] (see also [17, 18, 24]) in its
low-energy limit, which corresponds to D = 11 supergravity in the presence of non-
trivial M2- or M5-brane sources [1, 5, 6, 15, 29, 30]. However, a field theory based
on theM-algebra (1) is naturally defined on a superspace that is enlarged with respect
to the ordinary one. Indeed, let us recall that ordinary superspace is spanned by the
supervielbein {V a, Ψ }, where V a is the bosonic vielbein andΨ the gravitino 1-form,
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while the base space induced by theM-algebra includes also the bosonic 1-formfields
Bab and Ba1···a5 , respectively dual to the generators Zab and Za1···a5 . On the other hand,
the low-energy limit of the M-theory, corresponding to D = 11 supergravity, should
be based on ordinary superspace. Under this perspective, the M-algebra cannot be
the final answer, as it is not sufficient to reproduce the Free Differential Algebra
[28] (FDA in the following) on which D = 11 supergravity is based. Here let us
recall that D = 11 supergravity [9] contains, besides the super-Poincaré fields given
by the Lorentz spin connection ωab and the supervielbein {V a, Ψ }, with a, b, . . . =
0, 1, . . . , 10, also a 3-form A(3), satisfying, in the superspace vacuum,

d A(3) − 1

2
Ψ̄ ∧ ΓabΨ ∧ V a ∧ V b = 0 , (2)

whose closure relies on fermion 1-forms Fierz identities in superspace. As such,
this theory is not based on a superalgebra, but instead on a FDA on the superspace
spanned by the supervielbein.

A super Lie algebra of 1-forms leaving invariant D = 11 supergravity and repro-
ducing the FDA on ordinary superspace was introduced in 1981 by D’Auria and Fré
in [10] and later named D’Auria-Fré algebra (DF-algebra in the following).1 Such
Lie superalgebra, from which the M-algebra emerges as a subalgebra, includes,
besides the Lorentz (Jab), spacetime translations (Pa) and supersymmetry (Qα ,
α = 1, . . . , 32) generators, and the bosonic charges Zab, Za1···a5 , also a nilpotent
fermionic charge Q′ ({Q′, Q′} = 0), such that

[Pa, Q] ∝ ΓaQ
′ , [Zab, Q] ∝ ΓabQ

′ , [Za1···a5 , Q] ∝ Γa1···a5Q
′ . (3)

The presence of the extra fermionic nilpotent charge Q′ in the D’Auria-Fré con-
struction is naturally required by supersymmetry and consistency of the theory. Let
us stress that, actually, this fact is not a peculiarity of D = 11 supergravity, but is
fully general: a hidden superalgebra underlying the supersymmetric FDA containing
at least one nilpotent fermionic generator can be constructed for any supergravity
theory involving antisymmetric tensor fields [2].

It was hence proven that the hidden superalgebra underlying the FDA of D = 11
supergravity is the DF-algebra, in the sense that it is equivalent to the FDA descrip-
tion of the D = 11 theory on ordinary superspace (and therefore to the Cremmer-
Julia-Scherk theory [9]). The DF-algebra is the invariance algebra of the D = 11
supergravity vacuum. On the other hand, under the out-of-vacuum perspective, the
DF-algebra is a local invariance of the theory (and D = 11 supergravity is, in fact,
the local theory of the supergroup associated with the DF-algebra). The bosonic
generators Zab and Za1···a5 were later understood as p-brane charges, sources of the
dual potentials A(3) and B(6) appearing in the theory, and eq. (1) was interpreted as
the natural generalization of the supersymmetry algebra in higher dimensions, in the

1 The DF-algebra has recently raised a certain interest also in the Mathematical-Physicists commu-
nity, due to the fact that it can be reformulated in terms of Ln ⊂ L∞ algebras, or “strong homotopy
Lie algebras”, see, e.g., [25].



On the Hidden Symmetries of D = 11 Supergravity 213

presence of non-trivial topological extended sources (black p-branes). On the other
hand, a clearer understanding of the group-theoretical and physical meaning of the
(necessary) nilpotent fermionic generator Q′ has been provided only rather recently,
in [2]. Besides, some other issues remained open, such as: Is the DF-algebra the fully
extended superalgebra underlying D = 11 supergravity? And would a non-Abelian
charge deformation of the DF-algebra be possible? Which is the relation between
the DF-algebra and the most general simple superalgebra involving a fermionic gen-
erator with 32 components, namely osp(1|32)? An answer to these questions was
formulated in the works [2, 3], as we are going to review in the following. Before
proceeding in this direction, let us briefly recap some key aspects of the geomet-
ric approach to supergravity in superspace adopted [7] and the FDA description of
D = 11 supergravity.

2 Lie Superalgebras and Maurer-Cartan Equations

In the geometric approach to supergravity in superspace [7] the dual formulation
of Lie superalgebras in terms of the associated Maurer-Cartan (MC) equations is
adopted: Given a Lie superalgebra

[TA, TB} = CAB
CTC , (4)

where TA are the generators in the adjoint representation of the corresponding Lie
supergroup, one can introduce an equivalent description in terms of the differential
1-forms σ A dual to the Lie superalgebra generators, σ A(TB) = δA

B , obeying theMC
equations

RA ≡ dσ A + 1

2
CBC

Aσ B ∧ σC = 0 . (5)

In order to describe non-trivial physical configurations, a non-vanishing right-hand
side has to be switched on in (5), which corresponds to defining the supercurva-
tures RA (super field-strengths). The latter are the building blocks of supergravity
in the geometric approach. The MC equations RA = 0 can be identified with the
vacuum configuration of a supergravity theory, and their d2-closure is equivalent to
the Jacobi identities of the dual algebraic structure. Moreover, as we are dealing with
the geometric formulation in superspace, let us stress that the latter is spanned by
the supervielbein {V a, Ψ }, the 1-form fields V a and Ψ being respectively dual to the
generators Pa and Q. For a detailed review of the geometric approach to supergravity
in superspace we refer the reader to [12].
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3 D = 11 Supergravity and Its Free Differential Algebra

Supergravity theories in 4 ≤ D ≤ 11 spacetime dimensions have a bosonic field con-
tent that generically includes, besides the metric and a set of 1-form gauge potentials,
also p-index antisymmetric tensors, and they are therefore appropriately discussed
in the FDAs framework. Indeed, FDAs extend the MC equations by incorporating
p-form gauge potentials. The concept of FDA was introduced by Sullivan in [28].
Subsequently, the FDA framework was applied to the study of supergravity theories
by R. D’Auria and P. Fré in particular in [10], where the FDA was referred to as Car-
tan Integrable System (CIS), since the authors were unaware of the previous work
by Sullivan [28]. Actually, FDA and CIS are equivalent concepts [11]. The latter
is also known as the Chevalley-Eilenberg Lie algebras cohomology framework in
supergravity (CE-cohomolgy in the following).

Let us schematically review the steps for constructing a FDA: Given a set of MC
1-forms {σ A}, we can build up n-form cochains (Chevalley cochains),

Ω(n) = ΩA1···Anσ
A1 ∧ · · · ∧ σ An . (6)

If a cochain is closed (dΩ(n) = 0) it is called cocycle, and if it is also exact it
is called a coboundary. In particular, we are interested in those cocycles that are
not coboundaries, which are elements of the CE-cohomology (while if the closed
cocycles are also coboundaries, namely exact cochains, the cohomology class is
trivial). Then, if there exists a p such that dΩ(p+1) = 0, i.e., a cocycle, we can
introduce a p-form (gauge potential) A(p) such that

F (p+1) ≡ d A(p) + Ω(p+1) = 0 . (7)

Consequently, we can consider
({σ A}, A(p)

)
as new a basis of MC forms and look

for new cocycles, iteratively, constructing the complete FDA.
We now turn to the FDA description of the (vacuum structure of) D = 11 super-

gravity. The theory, which in particular involves a 3-index antisymmetric tensor Aμνρ

(μ, ν, ρ, . . . = 0, 1, . . . , 10), was originally built in 1978 [9] and subsequently refor-
mulated geometrically by R. D’Auria and P. Fré in [10] in terms of a supersymmetric
FDA on superspace. The latter reads as follows:

Rab = dωab − ωac ∧ ωc
b = 0 ,

Ra ≡ DV a − i

2
Ψ̄ ∧ Γ aΨ = 0 ,

ρ ≡ DΨ = 0 ,

F (4) ≡ d A(3) − 1

2
Ψ̄ ∧ ΓabΨ ∧ V a ∧ V b = 0 , (8)

with A(3) = Aμνρdxμ ∧ dxν ∧ dxρ and where D = d − ω denotes the Lorentz
covariant derivative. The right-hand side of (8) defines the vacuum of the theory.
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The d2-closure of the last equation in (8) relies on the Fierz identity

Ψ̄ ΓabΨ ∧ Ψ̄ ∧ Γ aΨ = 0 . (9)

Furthermore, due to another Fierz identity, namely

Γ[a1a2Ψ ∧ Ψ̄ ∧ Γa3a4]Ψ + 1

3
Γa1···a5Ψ ∧ ψ̄ ∧ Γ a5Ψ = 0 , (10)

the supersymmetric FDA also allows to include in the description

F (7) ≡ dB(6) − 15 A(3) ∧ d A(3) − i

2
Ψ̄ ∧ Γa1···a5Ψ ∧ V a1 ∧ · · · ∧ V a5 = 0 , (11)

F (7) being Hodge-dual to F (4) on spacetime. The complete FDA is therefore defined
in terms of

(
V a, Ψ, A(3), B(6)

)
, and it is invariant under the p-form gauge transfor-

mations
δA(3) = dΛ(2) , δB(6) = dΛ(5) + 15Λ(2) ∧ d A(3) , (12)

with p-form gauge parameters Λ(2) and Λ(5).

4 Hidden Superalgebra Underlying D = 11 Supergravity

The investigation presented in [10] proved that the FDA reported in the previous
section can be traded for an ordinary Lie superalgebra. The D’Auria-Fré recipe
consists of the following steps:

1. Associate to A(3) and B(6) the 1-form fields Bab = B[ab] and Ba1···a5 = B[a1···a5],
respectively;

2. Take as basis of MC 1-forms σ A ≡ {V a, Ψ, ωab, Bab, Ba1···a5}, which implies the
extra MC equations

DBab = 1

2
Ψ̄ ∧ Γ abΨ , DBa1···a5 = i

2
ψ̄ ∧ Γ a1···a5Ψ ; (13)

3. Assume A(3) to bewritten in terms of the 1-formsσ A above, that is A(3) = A(3)(σ ),
with all possible combinations,

A(3)(σ ) = T0Bab ∧ V a ∧ V b + T1Bab ∧ Bb
c ∧ Bca (14)

+T2Bb1a1···a4 ∧ Bb1
b2 ∧ Bb2a1···a4

+T3εa1···a5b1···b5m B
a1···a5 ∧ Bb1···b5 ∧ Vm

+T4εm1···m6n1···n5B
m1m2m3 p1 p2 ∧ Bm4m5m6

p1 p2 ∧ Bn1···n5 ;
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where T0, T1, T2, T3, T4 are constant parameters;
4. Require

d A(3)(σ ) = 1

2
Ψ̄ ∧ ΓabΨ ∧ V a ∧ V b , (15)

namely that the vacuum FDA structure on ordinary superspace, spanned by the
supervielbein {V a, Ψ }, is reproduced once considering A(3) = A(3)(σ ).

Then, expressing the FDA with A(3) = A(3)(σ ) determines the latter expression.
However, as shown in [10], this requires to include in the parametrization of A(3) in
terms of 1-forms a spinor 1-form field η, such that

Dη = iE1ΓaΨ ∧ V a + E2ΓabΨ ∧ Bab + iE3Γa1···a5Ψ ∧ Ba1···a5 , (16)

whose d2-closure requires E1 + 10E2 − 5!E3 = 0, enlarging in this way the basis of
MC 1-forms to σ A ≡ {V a, Ψ, ωab, Bab, Ba1···a5 , η}. We are therefore led to consider

A(3)(σ ) = T0Bab ∧ V a ∧ V b + T1Bab ∧ Bb
c ∧ Bca (17)

+T2Bb1a1···a4 ∧ Bb1
b2 ∧ Bb2a1···a4

+T3εa1···a5b1···b5m B
a1···a5 ∧ Bb1···b5 ∧ Vm

+T4εm1···m6n1···n5B
m1m2m3 p1 p2 ∧ Bm4m5m6

p1 p2 ∧ Bn1···n5

+iS1Ψ̄ ∧ Γaη ∧ V a + S2Ψ̄ ∧ Γabη ∧ Bab

+iS3Ψ̄ ∧ Γa1···a5η ∧ Ba1···a5 ,

and the requirement (15) fixes the coefficients Ei , Tj , Sk in terms of a single free
parameter [4]. The dual set of generators spanning the hidden superalgebra underly-
ingD = 11 supergravity (i.e., theDF-algebra) isTA ≡ {Pa, Q, Jab, Zab, Za1···a5 , Q′}.
The DF-algebra includes, besides the super-Poincaré structure, the anticommutation
relations (1) and {Q′, Q′} = 0, and the commutators (3). As we have anticipated
before, the generators Zab and Za1···a5 were later understood as M-brane charges,
sources of A(3) and B(6), respectively, while the role played by the necessary nilpo-
tent fermionic charge Q′ was clarified in [2] (and [3]). We report on this in the
following.

4.1 Role of the Nilpotent Fermionic Generator Q′

The DF-algebra is a “spinorial central extension” of the M-algebra including Q′.
In [2] it was shown that the inclusion of the spinor 1-form η (dual to Q′), whose
presence in naturally required by supersymmetry in the D’Auria-Fré construction,
allows to realize the M-algebra as a (hidden) symmetry of D = 11 supergravity. In
particular, η allows a fiber bundle structure G → (superspace) on the supergroup-
manifold G generated by the M-algebra, intertwining between basis and fiber. The
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p-form gauge transformations leaving invariant the supersymmetric FDA trivialized
in terms of 1-forms result to be realized as diffeomorphisms in the fiber direction of
the supergroup-manifold G.

To better understand these points, let us recall here that, as the generators of the
hidden Lie superalgebra span the tangent space of a supergroup-manifold, then, in the
geometric approach we are adopting, the fields are naturally defined in an enlarged
manifold corresponding to the supergroup-manifold, where all the invariances of the
FDA are diffeomorphisms, generated by Lie derivatives. The spinor 1-form η allows
the diffeomorphisms in the directions spanned by the almost central charges to be
particular gauge transformations, so that one obtains the ordinary superspace as the
quotient of the supergroup over the fiber subgroup of gauge transformations. More
precisely, if η 
= 0, the hidden superalgebra, let us call itG, generates a supergroup-
manifold G with a principal fiber bundle structure G → K , where the base space K
is superspace, spanned by {V a, Ψ } ∈ K, and we have

d A(3)(σ ) = 1

2
Ψ̄ ∧ ΓabΨ ∧ V a ∧ V b ∈ K × · · · × K , (18)

while the fiber is generated by H = H0 + H, where

{ωab} ∈ H0 , {Bab, Ba1···a5} ∈ H . (19)

The spinor 1-form η behaves like a cohomological “ghost” field, in the sense that it
allows to realize in a “dynamical” way the gauge invariance of A(3), guaranteeing
that only the physical degrees of freedom appear in the FDA (namely that the FDA on
ordinary superspace is reproduced). On the other hand, a singular limit η → 0 exits,
where a trivialization A(3)

lim(σ ) can still be defined with the same G but d A(3)
lim(σ ) ∈

G × · · · × G, namely the FDA with η → 0 lives in an enlarged superspace. In other
words, in the singular limit η → 0 the supersymmetric FDA parametrized in terms
of 1-forms becomes ill defined: indeed, the exterior form A(3) is a gauge field, since
it includes “longitudinal” unphysical directions corresponding to the gauge freedom
A(3) → A(3) + dΛ(2). In the limit η → 0, the unphysical degrees of freedomΛ(2) get
mixed with the physical directions of superspace, and all the generators of the hidden
superalgebra act as generators of external diffeomorphisms. On the contrary, when
η 
= 0 the hidden supergroup acquires a principal fiber bundle structure; η allows
to separate the physical directions of superspace, generated by the supervielbein
{V a, Ψ }, from the other directions, belonging to the fiber of superspace, in such a
way as to recover the gauge invariance of the FDA. This amounts to say that, once the
superspace is enlarged, in the presence of η no explicit constraint has to be imposed
on the fields, since the non-physical degrees of freedom transform into each other
and do not contribute to the FDA.

Let us now discuss gauge invariance of the FDA inmore detail. For A(3)(σ ) the p-
form gauge transformations of the FDA are realized through gauge transformations
inH,
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{
δBab = DΛab ,

δBa1···a5 = DΛa1···a5 ⇒
{

δA(3) = dΛ(2) ,

δB(6) = dΛ(5) + 15Λ(2) ∧ d A(3) .
(20)

The gauge invariance of the FDA trivialized in terms of 1-forms requires

δgaugeη = −E2Λ
abΓabΨ − iE3Λ

a1···a5Γa1...a5Ψ . (21)

Hence, considering the tangent vector

−→z ≡ Λab Zab + Λa1···a5 Za1···a5 (22)

in H ∈ G, we find that there exists a Λ̄(2) = Λ(2)(Λab,Λa1···a5; σ) = ı−→z
(
A(3)(σ )

)
,

where ı denotes the contraction operator, such that

δΛ̄

(
A(3)(σ )

) = dΛ̄(2) = �−→z
(
A(3)(σ )

)
, (23)

where �−→z = dı−→z + ı−→z d is the Lie derivative in the direction −→z and where we
have also used the fact that ı−→z

(
d A(3)

) = 0. Therefore, for η 
= 0, δA(3) is genuinely
realized as a diffeomorphism in the fiber direction of the supergroup-manifold G. Let
us finallymention that, as shown in [2], assuming Λ̄(5) = ı−→z

(
B(6)(σ )

)
one can prove

that δΛ̄B
(6) = �−→z

(
B(6)(σ )

)
, whatever B(6)(σ ) may be. This is particularly relevant

since, even though we do not know the explicit parametrization of B(6) in terms of
1-form fields, at least we can say that, analogously to what happens for A(3), δB(6)

is properly realized as a diffeomorphism in the fiber direction of G. Remarkably, as
the structure above relies on supersymmetry (and, in particular, on Fierz identities),
the extension of this analysis to lower dimensions might turn out to be a useful tool
in generalized geometry frameworks, such as Exceptional Field Theory (see, e.g.,
[21–23] and references therein), offering a dynamical way to implement the so-called
section constraints.

One might ask at this point whether the DF-algebra is the fully extended super-
algebra underlying D = 11 supergravity. Some clues to answer this question are
provided to us by minimal D = 7 supergravity, in which case the full on-shell hid-
den symmetry involves two nilpotent fermionic charges, associatedwith the presence
of two mutually dual p-forms [2]. It could therefore be conjectured that there are
different spinors associated with the mutually dual p-forms even in D = 11, and that
new extra 1-forms may be necessary to write the parameterization B(6)(σ ) in such a
way to reproduce the complete FDA on ordinary superspace. Under this perspective,
it would be particularly useful to calculate explicitly B(6)(σ ).
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5 Relation Between the DF-algebra and osp(1|32)

To come to more realistic cases, it would be important to be able to switch on non-
Abelian charges in the setup reviewed in the previous sections. Such issue could
be analyzed either as in Exceptional Field Theory, by Scherk-Schwarz dimensional
reduction to lower dimensions, or directly in D = 11. However, it is well-known that
in D = 11 the massive theory is problematic. Nevertheless, let us have a look closer,
reporting the results obtained in [3] pointing in the directionof a clearer understanding
of the problem. In fact, as we have previously mentioned, the DF-algebra and the
parametrization A(3)(σ ) depend on a free parameter. In [3] it was shown that this
dependence can be associated with an intriguing relation with osp(1|32), which
is the most general simple superalgebra involving a fermionic generator with 32
components and a scale parameter e. The latter has length dimension −1 and can be
thought as proportional to (the square root of) a cosmological constant.

The 1-form fields appearing in the dual formulation of osp(1|32) are
{V a, Ψ, ωab, Ba1···a5}. To make contact with the DF-algebra, it is first of all nec-
essary to include a further bosonic 1-form field Bab, and this was done in [8] by
considering a “torsion deformation” of osp(1|32), namely taking

ωab → ωab − eBab , Rab → Rab − eDBab + e2Bac ∧ Bc
b (24)

and then requiring a Minkowski background,Rab ≡ dωab − ωac ∧ ωc
b = 0. More-

over, in order to try to make contact also with η of the DF-algebra, in [8] such torsion
deformation of osp(1|32) was enlarged by including a spinor 1-form ηe. The MC
description of the resulting superalgebra reads

Rab ≡ dωab − ωac ∧ ωc
b = 0 , (25)

DV a = −eBab ∧ Vb + e

2 · (5!)2 εab1···b5c1···c5Bb1···b5 ∧ Bc1···c5

+ i

2
Ψ̄ ∧ Γ aΨ ,

DBab = eV a ∧ V b − eBac ∧ Bc
b + e

24
Bab1···b4 ∧ Bb

b1···b4 + 1

2
Ψ̄ ∧ Γ abΨ ,

DBa1···a5 = 5eBm[a1 ∧ Ba2···a5]
m + e

5!ε
a1···a5b1...c6Bb1···b5 ∧ Vb6

−5e

6! ε
a1···a5b1···b6Bc1c2

b1b2b3 ∧ Bc1c2b4b5b6 + i

2
Ψ̄ ∧ Γ a1···a5Ψ ,

DΨ = i

2
eΓaΨ ∧ V a + 1

4
eΓabΨ ∧ Bab + i

2 · 5!eΓa1···a5Ψ ∧ Ba1···a5 ,

Dηe = i

2
Γaψ ∧ V a + 1

4
ΓabΨ ∧ Bab + i

2 · 5!Γa1···a5Ψ ∧ Ba1···a5 .

In particular, we can see that Dηe = 1
eDΨ , and the MC closure does not allow any

free parameters. Hence, in the e → 0 limit the algebraic structure above does not
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reproduce the DF-algebra, as ηe

=η for any value of the free parameter in the DF-

algebra. On the other hand, let us observe that the reduced version of (25) without
ηe in the limit e → 0 gives the M-algebra.

The relation between the DF-algebra and osp(1|32) was subsequently clarified in
[3] under a cohomological perspective. In particular, in [3] it was found that A(3)(σ )

and η admit the general decomposition

A(3)(σ ) = A(3)
(0) + αA(3)

(e) , η = η(0) + αη(e) , (26)

α being precisely the free parameter of the D’Auria-Fré construction. The contribu-
tion

A(3)
(0) = A(3)

(0)(V
a, Ψ, Bab, η(0)) (27)

does not depend on Ba1···a5 and explicitly breaks the osp(1|32) structure, while the
contribution

A(3)
(e) = A(3)

(e)(V
a, Ψ, Bab, Ba1···a5 , η(e)) (28)

is covariant under the (torsion deformation of) osp(1|32). In the vacuum FDA we
have

d A(3)
(0) = 1

2
Ψ̄ ∧ ΓabΨ ∧ V a ∧ V b , d A(3)

(e) = 0 . (29)

Therefore, it emerges that only d A(3)
(0) is responsible for the 4-form cohomology

of the supersymmetric FDA, and the free parameter α parametrizes the cohomo-
logically trivial deformation d A(3)

(e) . We conclude that, as the decomposition (26)
shows, A(3)(σ ) is not invariant under osp(1|32) (neither under its torsion deforma-
tion) because of the contribution A(3)

(0) explicitly breaking this symmetry. Such term is
however the only one contributing to the vacuum 4-form cohomology in superspace.

It would be worth conducting a similar analysis for the 6-form B(6). Furthermore,
one might then consider the out-of-vacuum FDA, where we would have

d A(3) − 1

2
Ψ̄ ∧ ΓabΨ ∧ V a ∧ V b = F (4) = F (4)

(0) + αF (4)
(e) (30)

with

d A(3)
(0) = 1

2
Ψ̄ ∧ ΓabΨ ∧ V a ∧ V b + F (4)

(0) , d A(3)
(e) = F (4)

(e) , (31)

and compute the charge associated with the 3-form gauge potential,

q =
∫

d A(3) = q(0) + αq(e) . (32)

In this context, possible connections could emerge with the analysis of the 4-form
cohomology of M-theory on spin manifolds [14, 34], where d A(3)

(0) might turn out to
be the contribution responsible for the canonical integral class of the spin bundle of



On the Hidden Symmetries of D = 11 Supergravity 221

D = 11 superspace. In particular, this would imply that q(0) could assume fractional
values (in units of q(e)).

To conclude, let us also mention that the 4-form F (4) appears in the topological
term A(3) ∧ F (4) ∧ F (4) of the D = 11 supergravity Lagrangian, and it appears that
the nilpotent spinor 1-form η could be an important addition towards the construction
of a possible off-shell theory underlying D = 11 supergravity. In [19], a supersym-
metric D = 11 Lagrangian invariant under the M-algebra and closing off-shell with-
out requiring auxiliary fields was constructed, as a Chern-Simons form, and shown to
depend on one free parameter. It would be very interesting to investigate the possible
connections between this and the approach reviewed in the present report. Moreover,
another aspect that deserves further investigation consists in a clearer understanding
of the relation between the geometrical formulation of D = 11 supergravity based on
the out-of-vacuum FDA structure (and its trivialization in terms of 1-form fields) and
the derivation of the CJS theory from some sector of the OSp(1|32) Chern-Simons
action as stated in [33].
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Defects at the Intersection: The
Supergroup Side

Fabrizio Nieri

Abstract We consider two seemingly different theories in the Ω-background: one
arises upon the most generic Higgsing of a 5d N = 1 U(N ) gauge theory coupled
to matter, yielding a 3d-1d intersecting defect; the other one arises upon simple
Higgsing of a 5dN = 1 U(N |M) supergroup gauge theory coupled to super-matter,
yielding another defect. The cases N = M = 1 are discussed in detail via equivariant
localization to matrix-like models. The first theory exhibits itself a supergroup-like
structure, which can be motivated via non-perturbative string dualities, and in a
matter decoupling limit it is argued to be dual to a supergroup version of refined
Chern-Simons theory. Furthermore, it is observed that the partition functions of
the two defect theories are related by analytic continuation in one of the equivariant
parameters.Wefind a commonorigin in the algebraic engineering throughq-Virasoro
screening currents. Another simple Higgsing of the 5dN = 1 U(1|1) yields a single
component defect whose partition function is reminiscent of ordinary refined Chern-
Simons on a lens space.

Keywords Defects · Supergroup Chern-Simons theory · Topological strings ·
Open/closed Duality

1 Intersecting Defects and Supermatrix-Like Models

Gauge invariance is one of the main principles behind our comprehension of Nature,
and the dichotomy between matter particles and force mediators (fermions vs.
bosons) in theories based on ordinary compact Lie groups is a fact of life. Super-
groups, on the other hand, unify particles of opposite statistics: while theories exhibit-
ing global supergroup symmetries have been long appreciated (cf. SUSY models), it
is also quite interesting to study QFT (supersymmetric or not) based on gauge super-
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Fig. 1 Representation of the
supports of the 5d theory and
of the 3d-1d defects. At each
point there is also a circle
which is not explicitly
displayed

groups. Non-unitarity is manifest due to the violation of spin-statistics, whereas
the lack of a definite bilinear form on the gauge algebra requires an intrinsic non-
perturbative approach. These are actually some of the features which make such
theories and the closely related supermatrix models interesting to investigate. In
fact, they do arise, in one way or another, in many places of theoretical physics:
effective membrane dynamics [1–4], analytic continuations of unitary models [5, 6],
topological strings [7–10], exotic phenomena [11, 12], instanton calculus [13] and
integrability [14–16] just to mention few examples.

This note, a brief account of the results published in [17] (supplemented by orig-
inal computations in Sect. 2.1), is about yet another place where supergroup gauge
theories, a supergroup version of refined Chern-Simons theory in particular [18] (see
also [19] for recent work in this direction), show up: SUSY theories based on ordi-
nary gauge groups but supported on intersecting subspaces embedded in an ambient
space. The intersecting gauge theories of our interest arise upon Higgsing a parent 5d
SUSY gauge theory with unitary group in the Ω-background C2

q,t−1 × S
1, while the

support of the defects is given by the two orthogonal cigars Cq × S
1 and Ct−1 × S

1

intersecting at the origin along a common circle (Fig. 1).
This description of the 3d-1d coupled system allows its partition function to be

computed by specialization of the instanton partition function of the parent 5d theory,
which for the U(N ) SQCD can be presented in a combinatorial form as a summation
over a set of N integer partitions λ [20, 21]

Z inst.[SQCD] ≡
∑

{λA}
Λ

∑
A |λA| Z{λA}[SQCD] ν→ν∗−−−→ Zvortex[Defectq,t] ,

Z{λA}[SQCD] ≡
N∏

A,B=1

N∅λA(νA/μ̄B; q, t)NλA∅(μB/νA; q, t)
NλAλB (νA/νB; q, t) , (1)

where Λ denotes the instanton counting parameter, μ, μ̄ (anti-)fundamental flavor
fugacities and ν the Coulomb branch parameters (our conventions and definitions are
set in the Appendix). The truncation to the vortex part of the defect partition function
is achieved by locking the Coulomb parameters to the flavour ones as follows

νA → ν∗
A ≡ μAt

−rAqcA , r, c ∈ Z
N
≥0 . (2)
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The defect theory is UV described by a pair of 3d N = 2 gauge theories with
gauge groups U(r) and U(c) respectively (coupled to adjoint and fundamental/anti-
fundamental chirals) and interacting through 1d chiral matter along the common S1 at
the origin, supplemented with superpotential terms (enforcing identifications among
parameters) [22–25]. The analysis of the partition function, which can be recast in a
matrix-like integral

Z [Defectq,t] ≡
∮ r∏

a=1

dzRa
2π izRa

c∏

b=1

dzLb
2π izLb

( ∏

a

zRa
)−ζR

(∏

b

zLb
)ζL×

× Δ(zR, zL; q, t−1, p) ×
∏

A,a

(zRa /ηRμ̄A; q)∞
(zRa /ηRμA; q)∞

∏

A,a

(zLa/ηLμ̄A; t−1)∞
(zLa/ηLμA; t−1)∞

, (3)

where p1/2 ≡ √
qt−1, ηR/ηL ≡ 1/

√
qt, qζR ≡ Λ ≡ tζL , suggests that the intersecting

defects provide a deformation of a dual supergroup gauge theory, which for N = 1
(SDEQ) can be identified as a supergroup version of refined Chern-Simons theory
on S

3 (after a matter decoupling limit). This is essentially because the integration
measure features the supergroup version of the Macdonald weight function [26, 27]

Δ(zR, zL; q, t−1, p) ≡ Δt(zR; q)Δq−1(zL; t−1)
∏

a,b(1 − p−1/2zLb/z
R
a )(1 − p−1/2zRa /zLb )

, (4a)

Δt(z; q) ≡
∏

i 
= j

(zi/z j ; q)∞
(tzi/z j ; q)∞ , (4b)

which in scaling limit q, t → 1 (ln t/ ln q ≡ β fixed) yields the β-deformation of the
Cauchy weight function [28], simply related to the Hermitian supermatrix measure
in the unrefined case β = 1.1 The democracy between the two orthogonal planes
opens up the possibility of understanding the refinement t 
= q as a specific deforma-
tion away from the supergroup point: ln q and ln t−1 are identified with the inverse
Chern-Simons couplings, strictly opposite for a supergroup theory. This can roughly
be seen in the decoupling limit μ → 0, μ̄ → ∞, in which case the potential asymp-
totically contributes with exp[∑a(ln z

R
a )2/ ln q − ∑

b(ln z
L
b )

2/ ln t]. The appearance
of a supergroup structure may seem surprising from the intersecting defect perspec-
tive: the parent theory is an ordinary gauge theory, while after Higgsing the degrees
of freedom are even defined on different space-time components. An explanation
can be offered by embedding the configuration under study into string/M-theory and
then exploiting chain of non-perturbative dualities to recognise a setup engineering
supergroup Chern-Simons theory [29–31] (Fig. 2).

1 Let us note that, because of the original q ↔ t−1 symmetry, we considered here the chamber
|q| < 1, |t−1| < 1, which is, however, tricky for the unrefined limit. The case |q| < 1, |t| < 1 is
discussed in [17].
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Fig. 2 The3d[intersecting]-3d[supergroup] equivalence, here specialized to N = 1. It canbeplaced
in the context of a generalized 3d-3d correspondence. The squares on the l.h.s. represent coupling
to (anti-)fundamental matter (which can be decoupled)

2 Towards Non-unitary Open/closed Duality

The relation between the 5d parent theory and the 3d defect in the ordinary Higgsing
process (i.e. c = 0), once embedded into string theory, can also be understood as a
large r geometric transition (open/closed duality) [32]. Since in a generic Higgsing
process the parent 5d theory (the closed side) gives rise to both q- and t-branes sup-
porting the intersecting defect in space-time (the open side), it is natural to wonder
what happens upon trying to go back by a simultaneous large (r, c) limit. One may
think that the original setup must be recovered, however, this is not the only possi-
bility: it turns out that a closed string side engineering a 5d supergroup gauge theory
[13] (see [33] for a nice review) is also possible (and more natural to some extent).

A clean illustration of such dynamics can be achieved by recalling that the toric
geometries/brane configurations dual to our 5d-3d-1d theories can be thought of as
networks of Ding-Iohara-Miki (DIM) intertwiners [34, 35]. In the special case we are
interested in (SQCD or SQED) the algebraic description can also be recast in terms
of the q-Virasoro algebra [36, 37], whose screening currents S± are identified with
q- and t-branes. In the ordinary Higgsing only one type of screening is considered,
then the open/closed duality is the observation that free field correlators involving a
finite number of charges capture 3d defect partition functions [38], whereas sending
their number to infinity [39] recovers the partition function of the parent 5d theory2

Z [Defectq] � 〈
∮ ≺∏

i=1,...,r

dzi S+(zi ) · · · 〉 r→∞−−−→

r→∞−−−→ 〈
∑

{ki∈Z}

≺∏

i≥1

xiq
kiS+(xiq

ki ) · · · 〉 � Z inst.[U(1)] , (5)

2 The dependence on vortex or instanton counting parameters arises from the zero mode contribu-
tions acting on the charged Fock vacuum.
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where the infinitely-many base points in the Jackson integration are at xi ≡ η+ν+ti−1,
for some η+ ∈ C

×.3 For simplicity, we are here limiting to the Abelian theory in 5d
(dual to the resolved conifold geometry). Both the 3d integrand and the 5d instanton
summands are easily recognized from the OPE relations

S(∓)(x)S(±)(x ′) = : S(∓)(x)S(±)(x ′) : (−p1/2xx ′)−1

(1 − p−1/2x/x ′)(1 − p−1/2x ′/x)
, (6a)

S(+)(x)S(+)(x ′) = : S(+)(x)S(+)(x ′) : (x ′/x; q)∞(px ′/x; q)∞
(qx ′/x; q)∞(tx ′/x; q)∞ x2β , (6b)

S(−)(x)S(−)(x ′) = : S(−)(x)S(−)(x ′) : (x ′/x; t)∞(p−1x ′/x; t)∞
(tx ′/x; t)∞(qx ′/x; t)∞ x2β

−1
. (6c)

where : : denotes the usual (free boson) normal ordering. The characteristic sum-
mation over partitions arises due to zeros in the coefficients for configurations of
points outside of the set

χ+ ≡ {ν+ti−1q−λ+
i , λ+

i ≥ λ+
i+1, i ∈ [1,+∞)} . (7)

Mimicking the same logic, we can consider free field correlators involving both
types of screenings. When there are r of one type and c of the other type, the inte-
gration measure of the 3d-1d intersecting defect partition function is manifestly
reproduced as in (4a).4 When an infinite amount of both types is considered, we first
generate a second dynamical set

χ̃− ≡ {ν−qi−1t−λ−∨
i , λ−∨

i ≥ λ−∨
i+1, i ∈ [1,+∞)} , (8)

where∨ denotes transposition, and it is convenient tofixη+/η− ≡ p1/2.5 Thediagonal
(i.e. ++ and −−) OPE factors simply generate the adjoint instanton summands for
the U(1) × U(1) theory

3 We are focusing on the adjoint sector only as the addition of fundamental matter can be imple-
mented by inserting vertex operators, represented by the dots. Also, ≺ means the product runs in
increasing order from left to right, and viceversa for �.
4 Up to overall q- and t-constant which play little role for the identification.
5 Let us note that because of the q ↔ t exchange symmetry of the points in the two sets, we are
naturally led to consider the chamber |q|, |t| < 1.
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≺∏

x∈χ+
S+(η+x) �

�(λ+)∏

i, j=1

(t t j−i ; q)∞
(t j−i ; q)∞

(t j−iqλ+
i −λ+

j ; q)∞
(t t j−iqλ+

i −λ+
j ; q)∞

×

× 1

Nλ+∅(t�(λ+); q, t)N∅λ+(t−�(λ+); q, t) = 1

Nλ+λ+(1; q, t) ≡ Zv
++ , (9a)

�∏

x∈χ̃−
S−(η−x) �

�(λ−∨)∏

i, j=1

(q q j−i ; t)∞
(q j−i ; t)∞

(q j−i tλ
−∨
i −λ−∨

j ; t)∞
(q q j−i tλ

−∨
i −λ−∨

j ; t)∞
×

× 1

Nλ−∨∅(q�(λ−∨); t, q)N∅λ−∨(q−�(λ−∨); t, q) = 1

Nλ−∨λ−∨(1; t, q) ≡p−|λ−|Zv
−− , (9b)

where the equalities are up to normalization (empty diagrams) and zero mode con-
tributions. This is the first sign of a super-instanton expansion, however, the crucial
information comes from the mixed (i.e. +− and −+) terms which have to match the
specific bi-fundamental-like contributions. This can checked, for instance, by using
the identities

∏
(x,x ′)∈χ̃−

∅ ×χ+
∅
(1 − p−1/2η−η−1

+ x/x ′)
∏

(x,x ′)∈χ̃−×χ+(1 − p−1/2η−η−1
+ x/x ′)

=

=
∏�(λ+)

i=1

∏�(λ−∨)
j=1 (1 − p−1ν−/ν+t−iq j )

∏�(λ+)
i=1

∏�(λ−∨)
j=1 (1 − p−1ν−/ν+t−λ−∨

j −iqλ+
i + j )

×

× Nλ+∅(q�(λ−∨)ν−/ν+; q, t)N∅λ∨−(p−1t−�(λ+)ν−/ν+; t, q) , (10a)
∏

(x,x ′)∈χ̃−
∅ ×χ+

∅
(1 − p−1/2η+η−1

− x ′/x)
∏

(x,x ′)∈χ̃−×χ+(1 − p−1/2η+η−1
− x ′/x)

=

=
∏�(λ+)

i=1

∏�(λ−∨)
j=1 (1 − ν+/ν−tiq− j )

∏�(λ+)
i=1

∏�(λ−∨)
j=1 (1 − ν+/ν−tλ

−∨
j +iq−λ+

i − j )
×

× N∅λ+(q−�(λ−∨)ν+/ν−; q, t)Nλ∨−∅(p−1t�(λ
+)ν+/ν−; t, q) . (10b)

Once all the pieces are combined, the super-instanton partition function of the U(1|1)
theory is reproduced. In particular, the counting parameters Λ±1 in the ± sectors are
accounted by the zero modes of the screening currents.

2.1 Inclusion of Matter and Supergroup Higgsings

The inclusion of (anti-)fundamental matter with supergroup flavor symmetry intro-
duces the following contributions to the super-instanton summands
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Z f
+± ≡ N∅λ+(ν+/μ̄±; q, t)±1 , Z fa

+± ≡ Nλ+∅(μ±/ν+; q, t)±1 (11a)

Z f
−± ≡ N∅λ−∨(p−1ν−/μ̄±; t, q)∓1 , Z fa

−± ≡ Nλ−∨∅(p−1μ±/ν−; t, q)∓1 . (11b)

In particular, the diagonal sectors show zeros at particular values of ν± which can
be used to truncate the partition function.6 Let us consider the inclusion of one
anti-fundamental, then the interesting points are at

μ+/ν+ = trq−c′
, μ−/ν− = pqct−r ′

, r, c, r ′, c′ ∈ Z≥0 . (12)

Viewing the U(1) theory as the subsector U(1|0), we see that the situation described
in the previous Section corresponds to c = r ′ = 0, which completely freezes the
negative node.With an abuse of notation, this defect can be dubbedU(r |0) × U(0|c′),
while the most general one as U(r |c) × U(r ′|c′). In the following, we consider a
couple of intermediate possibilities.

Intersecting U(r |c) Defect. We are here interested in setting

ν+ → ν∗
+ ≡ μ+t−r , ν− → ν∗

− ≡ μ−p−1q−c , (13)

so that �(λ+) ≤ r , �(λ−∨) ≤ c. At these points, the diagonal vector and fundamental
contributions partially simplify

Zv
++Z

fa
++

ν+→ν∗+−−−−→
r∏

i, j=1

(t t j−i ; q)∞
(t j−i ; q)∞

(t j−iqλ+
i −λ+

j ; q)∞
(t t j−iqλ+

i −λ+
j ; q)∞

1

N∅λ+(t−r ; q, t) , (14a)

Zv
−−Z

fa
−−

ν−→ν∗−−−−−→
c∏

i, j=1

(q q j−i ; t)∞
(q j−i ; t)∞

(q j−i tλ
−∨
i −λ−∨

j ; t)∞
(q q j−i tλ

−∨
i −λ−∨

j ; t)∞
p|λ−|

N∅λ−∨(q−c; t, q) , (14b)

and the mixed contributions too

Zv
+−Z

fa
+−Z

v
−+Z

fa
−+

ν±→ν∗±−−−−→
r∏

i=1

c∏

j=1

1 − pμ+/μ−ti−rqc− j

1 − pμ+/μ−tλ
−∨
j +i−rq−λ+

i +c− j
×

×
r∏

i=1

c∏

j=1

1 − p−2μ−/μ+tr−iq j−c

1 − p−2μ−/μ+t−λ−∨
j +r−iqλ+

i + j−c
×

× p−|λ+|N∅λ+(p2t−rμ+/μ−; q, t)N∅λ∨−(p−2q−cμ−/μ+; t, q) . (15)

Eventually, the truncated super-instanton summands can be organized as the (nor-
malized) residues at the poles

z+
i = α+μ+ti−rq−λ+

i , z−
j = α−μ−q j−ct−λ−∨

j (16)

6 For defects induced by orbifolding see [15].
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in the contour integral

Z inst.[U(1|1) + fa] ν±→ν∗±−−−−→
∮ r∏

i=1

dz+
i

2π iz+
i

c∏

j=1

dz−
j

2π iz−
j

( ∏

i

z+
i

)−ζ+(∏

j

z−
j

)ζ−×

× Δ(z+, z−; q, t, p)
r∏

i=1

(z+
i /α+μ−p−2; q)∞
(z+

i /α+μ+; q)∞
c∏

j=1

(z−
j /α−μ+p2; t)∞

(z−
j /α−μ−; t)∞ , (17)

provided α+/α− = p3/2, p−1qζ+ = Λ = p−1tζ− . Comparing with the defect partition
function (3) coming from the ordinary SQED, the two are related by analytic contin-
uation t−1 → t and removing boundary contributions (Theta functions/t-constants
from themeasure), together with straightforward identification of parameters. In par-
ticular, the contours are different because the pole structure is different, and in the
supergroup case there are no poles from the would be intersection sector.

Single Component U(r |0) × U(r ′|0) Defect. We are here interested in

ν+ → ν∗
+ ≡ μ+t−r , ν− → ν∗

− ≡ μ−p−1tr
′
, (18)

so that �(λ+) ≤ r , �(λ−) ≤ r ′. In this case, it is convenient towrite the bi-fundamental
contributions in the equivalent infinite product form

Zv
+− =

∏

(x,x ′)∈χ+×χ−

(tx/x ′; q)∞
(t2x/x ′; q)∞

∏

(x,x ′)∈χ+
∅ ×χ−

∅

(t2x/x ′; q)∞
(tx/x ′; q)∞ , (19a)

Zv
−+ =

∏

(x,x ′)∈χ+×χ−

(t−1x ′/x; q)∞
(x ′/x; q)∞

∏

(x,x ′)∈χ+
∅ ×χ−

∅

(x ′/x; q)∞
(t−1x ′/x; q)∞ , (19b)

while for the diagonal terms we use Zv−− = Zv++|λ+→λ− . Note that we introduced the
set

χ− ≡ {η−ν−t−(i−1)qλ−
i , λ−

i ≥ λ−
i+1, i ∈ [1,+∞)} , (20)

simply related to χ+ by (±, q, t) → (∓, q−1, t−1): this is why the− sector is associ-
ated to a negative gauge node. At the specified points, we get the partial simplification
in the −− sector

Zv
−−Z

fa
−−

ν−→ν∗−−−−−→
r ′∏

i, j=1

(t t j−i ; q)∞
(t j−i ; q)∞

(t j−iqλ−
i −λ−

j ; q)∞
(t t j−iqλ−

i −λ−
j ; q)∞

(p1/2t−r ′
)|λ−|

N∅λ−(t−r ′ ; q, t) fλ−(q, t)
, (21)

while in the ++ the simplification is as before. Eventually, the truncated super-
instanton summands can be organized as the (normalized) residues at the poles

z±
i = α±μ±t±(i−r)q∓λ±

i , (22)
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in the contour integral

Z inst.[U(1|1) + fa] ν±→ν∗±−−−−→
∮ r∏

i=1

dz+
i

2π iz+
i

r ′∏

j=1

dz−
j

2π iz−
j

( ∏

i

z+
i

)−ζ+( ∏

j

z−
j

)−ζ−×

× Δt(z
+; q)Δt(z

−; q)
r∏

i=1

r ′∏

j=1

(z+
i /z−

j v; q)∞
(tz+

i /z−
j v; q)∞

(vz−
j /z

+
i ; q)∞

(tvz−
j /z

+
i ; q)∞ ×

×
r∏

i=1

(tα+μ−/z+
i ; q)∞

(z+
i /α+μ+; q)∞

r ′∏

i=1

(tz−
i /α−μ+; q)∞

(α−μ−/z−
i ; q)∞ (23)

providedqζ+ = Λ = qζ−μ−/μ+,wherewe also setv ≡ tp−1α+/α− (this shiftmaybe
reabsorbed). The resultingmeasure looks like that ofU(r + r ′) refinedChern-Simons
broken to U(r) × U(r ′) by the potential. This is very reminiscent of the lens space
L(2, 1) matrix model (with eigenvalues placed around two distinct connections),
however, we do not currently have an interpretation in this direction.

3 Summary and Discussion

Motivated by a common algebraic engineering origin, we considered two a priori
distinct matrix-like models: upon localization, one is associated to a coupled 3d-1d
intersecting defect theory arising from Higgsing a parent 5d U(1) theory, the other
one arises from Higgsing a 5d U(1|1) theory. It turns out that the two are essentially
related by analytic continuation in one of the equivariant parameters. This seems to
parallel what is known from other situations [5]: the S

3 U(N1) × U(N2) ABJ(M)
and the L(2, 1) U(N1 + N2) Chern-Simons matrix models are related by analytic
continuation N2 → −N2, while from the combinatorial perspective the role ofmatrix
sizes is played by 1/ ln q, −1/ ln t [40]. Furthermore, we considered yet another
Higgsing of the 5d U(1|1) theory, and the partition function of the resulting single
component defect theory resembles that of refined Chern-Simons on L(2, 1).

It is well-known that the large rank expansion of amatrixmodel and its supergroup
version are equivalent up to non-perturbative effects [11] (in the unrefined case, this
fits with the generic Higgsing being sensitive only to r − c): it would be interesting
to retrace and adapt the existing analysis around supergroups, large rank dualities
and non-perturbative effects in our refined setup, also in view of the vertex/anti-
vertex formalism [41]. The relations between supergroup-like and ordinary theories
was instrumental for understanding non-perturbative effects in topological strings
[10], most notably on the local P1 × P

1 geometry, the closed dual to Chern-Simons
on L(2, 1): a deeper understanding of the subject reviewed in this note may help in
sheddingmore light on seemingly different proposals [42].On themoremathematical
side, it would be interesting to study themoduli space of generalized defects and their
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relations to the parent instanton ones, as well as to explore the possible extension
to the intersecting/supergroup setup intriguing dualities between quivers, knots and
Donaldson-Thomas invariants [43].

Acknowledgements The work of FN is supported by the Simons Bridge Fellowship and the
Alexander von Humboldt Foundation.

Appendix

We summarize the definitions and some property of the special functions we use
throughout the main text. The (infinite) q-Pochhammer symbol or q-factorial is
defined by

(x; q)∞ ≡
∏

k≥0

(1 − qk x) , |q| < 1 , (24)

and it can be extended to |q| > 1 by means of (qx; q)∞ → 1
(x;q−1)∞ . The short Jacobi

Theta function is defined by

Θ(x; q) ≡ (x; q)∞(qx−1; q)∞ . (25)

Nekrasov’s function is defined according to

Nμν(x; q, t) ≡
∏

(i, j)∈μ

(1 − xqμi− j tν
∨
j −i+1)

∏

(i, j)∈ν

(1 − xq−νi+ j−1t−μ∨
j +i ) , (26)

whereμ, ν are integer partitions or Young diagrams (i.e.μi ≥ μi+1 ≥ 0, νi ≥ νi+1 ≥
0) parametrized by the coordinates (i, j) of boxes running over the rows and columns
respectively, with ∨ the transpose operation. Its properties and diverse representations
can be found in [44].
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A New S-matrix Formula and Extension
of the State Space in Open String Field
Theory

Toru Masuda

Abstract In this contribution, I will describe a new S-matrix formula in Witten’s
open string field theory. This formula is a gauge invariant combination of a classical
solutionΨ , a reference tachyon vacuum solutionΨT , on-shell vertex operators {Oj },
and a formal object A which satisfies QΨ A = 1 with QΨ the BRST operator around
the classical solution Ψ . By considering an extension of the state space, one can
interpret this formula from the viewpoint of Feynman rules with what we call the
unconventional propagator. I also plan to comment on the Murata-Schnabl solution,
which is a hypothetical classical solution for multiple D-branes that was proposed
in 2011 but has yet to be realized, and of which a topological interpretation was
claimed by some authors. I argue that the Murata-Schnabl solution is realized in this
extended state space, though its topological interpretation is still not clear.

Keywords Open string field theory · S-matrix · Gauge symmetry

1 Open String Field Theory

String field theory (SFT) is a general term for formulations of string theory in the
style of standard (Lagrangian) formulation of quantum field theory. Witten’s open
SFT [1] is the simplest of the SFTs describing open strings, whose action is given by

S[�] = − 1

g2o

(
1

2

∫
� ∗ Q� + 1

3

∫
� ∗ � ∗ �

)
. (1)

Here, � is an open string field, � ∈ H, whereH is the state space of the open SFT;
go is the open string coupling constant; ∗ is a binary operation H × H → H called
the star product;

∫
is a map from H to C; Q is the worldsheet BRST operator. The

action S[�] is invariant under the gauge transformation
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� → �′ = U (Q + �)U−1, (2)

where U and U−1 are elements of H at the worldsheet ghost number zero. This
theory was formulated on the model of the three-dimensional Chern-Simons theory
(the CS theory), so the two have a similar algebraic structure. In particular, we note
that ∫

Q� = 0 for ∀� ∈ H. (3)

In contrast to the CS theory, there exist elements with negative degrees inH, which
corresponds to states with the negative worldsheet ghost number. The action (1)
can be defined using correlation functions of the boundary conformal field theory
(BCFT) (See Appendix). For recent reviews, see [2–5].1

Witten’s theory is one of the most studied among the SFTs. There is a good
collection of studies on, for example, classical solutions or perturbative calculations
under certain gauge fixing conditions. Some studies have obtained results that could
not be reached by theworldsheet theory (such as description of tachyon condensation
or discovery of a new boundary condition of 2 dimensional BCFT), but it seems that
this is still a small number. We are looking for clues to deepen our understanding of
this theory, which is comparable to the geometric description for the CS theory.

In this contribution, we introduce a recently obtained S-matrix formula [6] and the
Feynman rules with an unconventional propagator [7, 8] in Sect. 2. The next section,
Sect. 3, is a conceptual one, in which we discuss our prospect that the formulas
obtained in Sect. 2 may help us to understand the theory better.

2 On-shell Amplitudes from Classical Solutions

For exploring new formulas, we postulated the following2

Physical quantities can be read off from the classical solution which describes the systems
we are interested in.

Thus, we searched for a formulawhich expresses the physical quantityG as a function
of the classical solution Ψ , G = G(Ψ ). And this G(Ψ ) should be invariant under the
gauge transformation of Ψ ,

G(Ψ ) = G(Ψ ′), Ψ ′ = U (Q + Ψ )U−1. (4)

1 We note that while the literature [3] are excellent lecture notes, some of the unproven perspectives
contained therein may not be consistent with our discussion.
2 The reason we believe this postulate is that the classical solution and the action include all the
information about the fluctuations around the stationary point, and the physical states of our interest
(particles or strings) are described by such fluctuations.
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Note that we use the term gauge invariant quantity in the sense of (4), which is
slightly different from the traditional terminology.

2.1 K Bc Subalgebra

There is an important sub-algebra of the∗-algebra, called the K Bc-subalgebra,which
is generated by the fundamental string fields K , B, and c with the ghost number 0,
−1, and 1, respectively. They satisfy the following commutation relations

[K , B] = 0, [B, c] = 1, Qc = cKc, QB = K . (5)

Note that the (graded) commutator [φ1, φ2] is defined with the star product by φ1 ∗
φ2 − (−)gh(φ1)gh(φ2)φ2 ∗ φ1. Note also that we often omit the symbol ∗when we work
with {K , B, c}.

For practical calculations of physical quantities, it is necessary to formulate K , B,
and c in terms ofBCFT. In such a formulation, K corresponds to the line integral of the
worldsheet energy-momentum tensor, and exK is thewedge state, which is a fragment
of the worldsheet. B represents the line integral of the b-ghost, and c represents an
insertion of the c-ghost at the boundary of the worldsheet. We also define O ∈ H
corresponding to an insertion of a boundary operator O(x). We present a sketchy
description of these definition in Appendix. See Ref. [2] for more comprehensive
description.

2.2 An S-matrix Formula

In this subsectionwewill present a formulawhich represents S-matrix (or the on-shell
scattering amplitudes) around the D-brane configuration represented by a classical
solution Ψ . The inputs of this S-matrix formula are the initial states and the final
states of open strings, which we denote all together by the external states {O j }
( j = 1, ..., N ). Here O j is a ghost-number-one state satisfying the physical state
condition around the classical solution Ψ ,

QΨO j = 0. (6)

In addition, we need to choose a reference tachyon vacuum solution ΨT .
Our S-matrix formula then reads

SΨ (O1, ...,ON ) = (−1)N−1

N − 2

∑′ ∫ N∏
j=1

(A + WΨ )O j , (7)
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where

• A is given by A = AT − AΨ , where AT is a so-called homotopy state for a refer-
ence tachyon vacuum solution ΨT , and AΨ is a formal homotopy state for BRST
operator around the classical solution QΨ , satisfying QΨ AΨ = 1;

• WΨ is given by
WΨ = AT (Ψ − ΨT ) + (Ψ − ΨT )AT ; (8)

and
• ∑′ represents the symmetrization over {O j }.
In particular, if we consider the trivial solution Ψ = 0 (which represents the D-
brane(s) which is used to define the theory) we obtain

WΨ =0 = −eK , A = −eK
B

K
. (9)

Note that the inverse of K cannot be defined in terms of BCFT (as it cannot be
expressed as a superposition of wedge states), but a prescription for calculation is
given in Ref. [6].

Example

Let us consider 4-point amplitude aroundΨ = 0. The right hand side of (7) becomes
(W ≡ WΨ =0)

−1

2

(∫
AO1WO2WO3WO4 +

∫
WO1AO2WO3WO4

+
∫

WO1WO2AO3WO4 +
∫

WO1WO2WO3AO4

)

+ circular permutations with respect to {1, 2, 3, 4}.

(10)

If ΨT is the Schnabl solution, then

AT = B
∫ 1

0
exK dx . (11)

The effect of A0 can be regarded as a minimal subtraction of divergence caused by
collisions of boundary operators (see [6] for details). The following then holds

∫
AO1WO2WO3WO4

=
[∫ 1

0
dx 〈BO1 (z1) O2(z2)O3(z3)O4(z4) 〉C3+x

]
minimal subtraction

, (12)
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where

zi = x − 5

2
+ i (i = 1, 2, 3, 4) (13)

and 〈...〉Cr denotes the correlation function on the semi-infinite cylinder Cr with
circumference r ,

Cr : {z | Im(z) ≥ 0, |Re(z)| ≤ r
2 }/z ∼ z + r. (14)

To make (12) conform to the traditional expression for the S-matrix, we perform a
conformal transformation from C3+x to UHP (the upper half plane). By doing the
same for all terms of (10), we can confirm that (10) is the on-shell 4-point amplitude.

2.3 Feynman Rules with an Unconventional Propagator

Wealso found that the on-shell amplitudes can be calculated correctly using Feynman
rules with the following propagator

P�φ = A

2WΨ

∗ φ + (−1)gh(φ)φ ∗ A

2WΨ

. (15)

Here φ denotes a test state. In the discussion of Ref.[7], the external line ϕ j for this
Feynman rule is chosen as follows

ϕ j = √−WΨO j

√−WΨ . (16)

In particular, the propagator around the perturbative vacuum (when ΨT is the
Schnabl solution) is given by

P�φ = B

2K

1√
eK

∗ φ + (−1)gh(φ)φ ∗ B

2K

1√
eK

. (17)

The inverse of the wedge state in (17) is canceled by the wedge state coming from
(16) when calculating Feynman diagrams. Also, the inverse of K can be handled in
the same way for that in (9).

Originally, the propagator (15) was found in Ref. [8] by using a general theory
based on A∞ and the homological perturbation, but the argument is formal. In partic-
ular, this argument does not give a good definition of the inverse of K , and therefore
does not provide sufficient grounds for extension of this Feynman rule to off-shell
or loop amplitudes.3

3 As shown in Ref. [7], this propagator is related to that of the Schnabl gauge, and therefore, it is
quite possible that the extension to loops requires a special treatment (regularization) as in the case
of the Schnabl gauge.
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3 1/K May Be a Key to Understanding the Theory

Extension of the formulas (7) and (15) to off-shell or loop amplitudes is a natural
question, which can be rephrased as the question whether the undefined object 1/K
can be defined in the case where there exist off-shell boundary operators. We believe
that this question is related to a better understanding of the classical solutions and to
the geometrical interpretation of the theory.

3.1 Extension of the State Space

Let us assume that we can define an extended state space Ĥ ⊃ H, which serves as a
basis for the S-matrix formula (7) and the propagator (15). In particular, Ĥ contains
B/K . In this extended space Ĥ, we must give up the property that corresponds to
the axiom (3), ∫

Q� �= 0 in general, � ∈ Ĥ. (18)

This is because acting Q on B/K gives 1, and any Q-closed state can be written as
Q-exact. The only solution to ensure that the physical state does not drop out of the
S-matrix is to assume that the surface term in (18) is non-zero. This also means that
considering 1/K necessarily implies an extension of the state space, because it can
be shown from the BCFT argument that the conventional states in H satisfies (3).

Incidentally, we wish to comment on the sliver state e∞K , which is a wedge state
with infinite width, e∞K = limx→∞ exK . The sliver state is often used in the past
researches about 1/K or classical solutions. However, sliver state has some serious
problems. One of the problems is that the value of the correlation function involving
multiple sliver states cannot bewell defined.Also, accordingly, the projector property
(i.e. e∞K ∗ e∞K = e∞K ) is broken.

We note that our discussion of the extension of the state space is free from these
problems because we do not need to consider the sliver states.

3.2 Analogy with a Universal Cover of a Manifold

In this subsection, we wish to draw an analogy between the extended state space
Ĥ ⊃ H and a universal cover of a manifold. Let Ωk(M) be the space of k-forms on
a differentiable manifold M and dk : Ωk(S1) → Ωk+1(S1) the exterior derivative.
The de Rham cohomology of M is given by Hk

dR(M) = Ker(dk)/Im(dk+1).
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As a simplest example, consider S1 and its universal covering p : R → S1. We
see the relationship between H and Ĥ as analogous to Ωk(S1) and Ωk(R).4 Since
the universal covering space R is contractible, from the Poincaré lemma, any closed
form in Ωk(R) is exact. This is similar to the story that BRST cohomology is trivial
in Ĥ, which includes B/K .

Also, we can construct an analogue of (18) using multivalued functions on S1. Let
us parameterize S1 with 0 ≤ θ < 2π and consider a function f (θ) = θ as an example.
By extending its domain, f (θ) can be regarded as an element of Ω0(R). Instead, we
regard it as a branch of a multivalued function on S1. Now, the integral of d f = dθ

over S1 is not zero although d f is an exact 1-form in Ω1(R):
∫ 2π
0 dθ = 2π ( �= 0).

The story described abovemight be related to the problem of defining the winding
number in openSFT [9], studied in connectionwith theMurata-Schnabl solution [10].
Murata-Schnabl solution will be briefly introduced in the next subsection.

3.3 Classical Solutions

Some simple correlation functions including 1/K is determined by solving the func-
tional equations from the consistency condition.As a result, the energy of the simplest
case of the Murata-Schnabl solution is uniquely determined,

Ψdouble = 1

K
c
K 2B

K − 1
c. (19)

This solution was expected to represent two D-branes, and the energy density is con-
sistent with this interpretation. Note that this solution appears to live in the extended
state space, and its interpretation may need to be made carefully. Also, the geomet-
rical interpretation of Witten’s theory is still unclear.

Also, in Ref. [11], Ellwood presented the idea of using singular gauge transfor-
mations to understand classical solutions, and the extended state space may shed new
light on this perspective.

Appendix

Here, we shall provide a sketch of the definition of the action (1) and {K , B, c} using
BCFT. Let ξ (Im ξ ≥ 0) denote the coordinate system on the upper half plane (UHP),
which is commonly used to describe open strings using BCFT. The local boundary
operator is placed at the origin ξ = 0 and the state appears on the unit semicircle.

4 However, Ωk(S1) is not a subspace of Ωk(R). In this sense, it may be more appropriate to state
that H corresponds to the pullback of Ωk(S1) by p∗ rather than Ωk(S1) itself, when we consider
the relation Ĥ ⊃ H.
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It is convenient to map this local coordinate to that onC2, which we call the sliver
coordinate, by

z = fs(ξ) = 2

π
arctan ξ, −1 ≤ Re z < 1. (20)

Now, each term of (1) can be defined via a correlation function on Cn:

∫
φstate
1 ∗ φstate

2 =
〈
f

(− 1
2 )

s ◦ φ1(0) f
( 1
2 )

s ◦ φ2(0)
〉
C2

(21)

∫
φstate
1 ∗ φstate

2 ∗ φstate
3 = 〈

f (−1)
s ◦ φ1(0) fs ◦ φ2(0) f (1)

s ◦ φ3(0)
〉
C3

(22)

where f (x)
s (ξ) ≡ fs(ξ) + x . Note that this characterization gives definition of the

star product implicitly.
Three basic building blocks {K , B, c} are now defined by

K =
∫ −i∞

i∞
dz

2π i
T (z)|id〉, B =

∫ −i∞

i∞
dz

2π i
b(z)|id〉, c = c( 12 )|id〉, (23)

where we have used the doubling trick to define T (z) and b(z) for Im(z) < 0; |id〉 is
the identity of the star-product, limx→0 exK .
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Dual Dilaton withR andQ Fluxes

Eugenia Boffo

Abstract In previousworkswe showed that aCourant algebroid in a particular frame
and the differential geometry of the sum bundle T M ⊕ T ∗M provide a very natural
geometric setting for a sector of the low energy effective limit of type II superstring
theories (Supergravity theory). Given our geometric and algebraic considerations,
we reproduced the NS-NS sector of the closed bosonic effective type II sting action,
and an action for the inverse metric G−1 and the bivector Π , related to the tensors
for closed strings as (g + B)−1 = (G−1 + Π). The action depended on the stringy
T-dual fluxes R and Q, but the dual dilaton was missing. This short paper fills the
gap.

Keywords Algebroids · Differential geometry · Supergravity models ·
Lagrangian theories

1 Introduction

The geometric setting for string effective actions and ultimately Supergravity is
notably the generalized tangent bundle T M ⊕ T ∗M , as recognized in [8]. Geometric
actions with fluxes were later constructed in the context of Generalized Geometry
and Double Field Theory [1–3]. The results acquired a further meaning thanks to
the Lie algebroid arguments of [4, 5]. In a recent work [7] we suggested a curvature
scalar for the target space metric seen by the open strings. The T-dual fluxesR andQ
were naturally encoded in the expression for the curvature scalar. To derive our result
in [7] we relied not only on a Courant algebroid and on the differential geometry of
the sum bundle T M ⊕ T ∗M , but also on the canonical correspondence with a dg-
symplectic manifold of degree 2. Relevance was given to the graded description as it
allows for a neat extrapolation of the underlying 2-cocycle structure of the Courant
algebroid (the 1-gerbe B ∈ Ω2(M)). To keep the current paper short we will not
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present this viewpoint here. Moreover, in the graded Poisson structure it is believed
that the dilaton should account for an ambiguity in the quantization of the sheaf of
graded functions [9].

The construction of the curvature invariant goes as follows. Requiring that the
space of sections of the direct sum bundle T M ⊕ T ∗M could have two bilinear prod-
ucts, namely a Courant algebroid bracket and a Lie-type of bracket, is enough to leave
an affinemetric connection,with totally skew-symmetric torsion, completely defined.
A connection on sections of some subbundles, in particular 1-forms in Γ (T ∗M), can
be defined too: One must just ask that a splitting r : T ∗M �→ T M ⊕ T ∗M of the
short exact sequence 0 �→ T M ↪→ T M ⊕ T ∗M � T ∗M �→ 0 can be a morphism
between vector bundles with connections, and apply it to the fully fledged connection
on generalized tangent vectors. The curvature scalar of this “smaller” connection is
retained in the usual fashion, i.e. by contracting the free indices of the commuta-
tor of covariant derivatives. In a similar way, with a split s of the exact Courant
algebroid sequence, s : T M �→ T M ⊕ T ∗M and with the associated connection on
vector fields, the related curvature scalar can reproduce the Lagrangian for the NS-
NS closed bosonic sector of the effective string action, if the appropriate choices are
made.

In the body of the article we will apply this method starting with a particular
choice of frame that depends on all the relevant fields, especially the dual dilaton, so
far missing.

2 Dual Dilaton

A dual dilaton can be introduced by requiring that the volume form rescaled with the
dilaton remains invariant [3], according to the formula:

e−2φ
√
det g dx = e−2φ̃

√
detG−1 dx . (1)

An old lemma by J.Moser [10] states that this is the case if one can find a diffeo-
morphism of a n-dimensional compact oriented manifold with itself, for which the
n-cycles are preserved. We will heavily rely on the relation (1) in our derivation.

2.1 The Courant Algebroid and Its Connection

Let us implement the observation about the dual dilaton in a vielbein E for T M ⊕
T ∗M , as displayed below:

E = eκφ

(
1 γ(G−1 − Π)

−(g + B) γ1

)
, κ ∈ R, (2)

where g(x) ∈ S2(M) and non-degenerate, B(x) ∈ Ω2(M) and G−1(x) − Π(x) ≡
(g(x) − B(x))−1 (open-closed string metrics relations, where G−1 is the symmetric
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part and Π a bivector). Besides, γ is

γ :=
√

det g

detG−1
.

For the sake of completeness, let us just glance at how E transforms a basis (ei ⊕ ẽi )
into another basis:

(ei ⊕ ẽi ) �→ eκφ
(
(ei − (g − B)i j ẽ

j ) ⊕ γ((g + B)−1 i j e j + ẽi )
)

We will exclusively work with the basis induced on T M ⊕ T ∗M by the local chart
on M . Notice moreover that if the bundle had an O(d, d) structure group, then the
vielbein would be reducing the structure group to O(d) × O(d) × R.

Suppose that the vector bundle T M ⊕ T ∗M encodes actually the standard exact
Courant algebroid (T M ⊕ T ∗M, 〈−,−〉, [−,−]D, ρ) (see e.g. [11]). If we take sec-
tionsU = X + α and V = Y + β, the canonical choices for the pairing, theDorfman
bracket and the “anchor map” ρ are:

〈U, V 〉 = ιXβ + ιYα, (3)

[U, V ]D = [X,Y ]Lie + LXβ − ιYdα, (4)

ρ(U ) = pr(U ) = X. (5)

Then E induces a Courant algebroid homomorphism with
(T M ⊕ T ∗M, [−,−]D,G, ρ), where E([U, V ]D) = [EU, EV ]D,1 and the pairing
becomes

G ≡ e2κφ

(−2 g(x) 0
0 2G−1(x)γ2

)
, (6)

whereas
ρ(U ) = eκφ(X + γ(G−1 + Π)(α)) (7)

is the new anchor map.
Let us think of Γ (T M ⊕ T ∗M) as a bimodule, for a Lie-like bracket �−,−�

satisfying Jacobi identity, anti-symmetry andR-linearity. Among all the possibilities,
and in the basis induced by the coordinates on M , we choose it to be:

�U, V � = (
ρ(U )Y i − ρ(V )Xi

)
∂i ⊕ (ρ(U )βi − ρ(V )αi ) dx

i . (8)

The map ρ : Γ (T M ⊕ T ∗M) �→ Γ (T M) is the aforementioned anchor. Then an
affine connection on the sections of the Courant algebroid, with completely skew
torsion, and metric with respect to the Courant algebroid pairing, can be extracted in
the following way, from the difference of the two brackets:

1 More explicitly, the Dorfman bracket on the LHS is just written in the new basis.
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〈[U, V ]D − �U, V �,W 〉 = 〈∇WU, V 〉, W ∈ Γ (T M ⊕ T ∗M). (9)

Conventionally Courant algebroid connections are represented by ∇− rather than
∇ρ(−), i.e. it is usual to not display the anchor map.

The interestingnon-flat connection ariseswhenworking in theE basis for [−,−]D:

G ([U, V ]D − �U, V �,W
) = G (∇WU, V ) .

However we will not need a fully-fledged connection, as we want to look at the dual
vector spaces T M and T ∗M , dual with respect to the canonical pairing of vector
fields with 1-forms. For a specific instance of κ and dimension of the base manifold
M , the T M case was already studied in [6]. We will comment on this later. Let
us hence focus on T ∗M . For our current purpose, we will inspect the short exact
sequence:

0 �→ T M
Δ

↪→ T M ⊕ T ∗M
Δ∗
� T ∗M �→ 0.

Here, Δ embeds T M into T M ⊕ T ∗M in the following way:

Δ(X) = 1

2
e−κφ

(
g−1(g + B)(X) + γ−1G(X)

)
. (10)

Using the Courant algebroid metric G to identify T M ⊕ T ∗M with its dual, we get
the surjective map Δ∗ : Γ (T M ⊕ T ∗M) � Γ (T ∗M), which sends sections of the
generalized tangent bundle into sections of the cotangent bundle in this way:

Δ∗(X + α) = eκφ (−(g − B)(X) + γα) .

A closer inspection should suffice to convince oneself that ker(Δ∗) = im(Δ), as it
should be.

The short exact sequence can be split with the help of r : Γ (T ∗M) �→ Γ (T M ⊕
T ∗M),

r(α) = e−κφγ−1α. (11)

Now one can demand to work with a connection on covectors by implementing only
r -generalized vectors in the formula for the connection (9):

G ([r(α), r(β)] − �r(α), r(β)�, r(ν)
) ≡ G(∇r (ν)r(α), r(β)) =: 2G−1(∇̃ρ(ν)α,β).

(12)
Here we defined ∇̃ : Γ (T ∗M) �→ Γ (T M ⊗ T ∗M) as

∇r(ν)r(α) =: r(∇̃ρ(ν)α)

and used the induced metric G(r(−), r(−)) = 2G−1(−,−).
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Now the splitting (11) combined with the Courant algebroid bracket will exactly
forget all the scalar factors so that, upon a clever extraction of some terms resulting
from �r(α), r(β)�, one obtains, combining all the expressions together, the connec-
tion for the case φ = 0, γ = 1 in the coordinate basis:

2GklΓ i j
k = (

G−1 + Π
)im

∂m
(
G−1 + Π

) jl

+ 2
(
G−1 + Π

)[ j |m
∂m

(
G−1 + Π

)|i]l
. (13)

Of course this is not the end of the story, as some additional terms from the Lie-like
bracket due to the derivative ρ(r(−)) hitting the scalar factors have not been unveiled
yet. Let us denote

− ∂Dκ = eκφγ∂(e−κφγ−1) = −κ∂φ − 1

2
gln∂gln + 1

2
Gln∂G

ln. (14)

Eventually, in the holonomic coordinate basis, the connection coefficients can be
checked to be:

Γ i j
k +

(
δik

(
G−1 + Π

) jm − GpkG
i j

(
G−1 + Π

)pm)
∂mDκ ≡ Γ i j

k + T i j
k . (15)

The partial derivatives are the result of differentiating eκφ and γ. For the sake of
convenience the last two summands are called Ti j

k ∈ C∞(∨2T M ∧ T ∗M). Ti j
k is

antisymmetric in j, k and symmetric in i, k and j, i respectively.

2.2 The Curvature Scalar

A curvature scalar built from the Riemann curvature tensor Riem:

Riem(U, V,W ) = [∇U ,∇V ]W − ∇�U,V �W, U, V,W ∈ Γ (T M ⊕ T ∗M)

yields an invariant Lagrangian. On the r -sections of course the Riemann curva-
ture tensors for the connections ∇ and ∇̃ are related by r(Riem(U, V,W )) =
Riem(r(U ), r(V ), r(W )). We want to focus especially on the Ricci curvature tensor
of the connection (15) contracted with the non-symmetric combination G−1 − Π :

Riemm
li jδmi Glp

(
G−1 − Π

)pq
Gq j . (16)

For the formula of the Riemann curvature due to Γ i j
k we refer to our previous paper

[7]. Now let us instead establish how Ti j
k contributes. Its contribution can be written

as:
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−Tmk
iGmpGqk∇̃ i

φ0,γ1

(
G−1 − Π

)pq

+(
TorimlT

lk
i + 2T [i |l

i T
|m]k

l
) (
G−1 − Π

)pq
GmpGqk (17)

In the above expression, ∇̃ i
φ0,γ1

is the connection when φ = 0, γ = 1, which has the

totally antisymmetric torsion Tori jk :

Tori jk = 2Ri jk + 2Qi j
lG

lk + 4Gr [i |Q| j]k
r . (18)

Here we have introduced the fluxes in the Supergravity frame (which is the frame
withmetric g, 2-form B andφ ∈ C∞(M) solving the bosonic part of the Supergravity
action). Their local expressions are:

Ri jk :=3Π [i |m∂mΠ | jk], (19)

Qi j
k :=∂kΠ

i j . (20)

For the first term in (17) we have integrated by part against the volume form and
used that ∇̃ i

φ0,γ1
is a metric connection for G. Then Tmki = −Tmik dictates that the

covariant derivative of Π must be completely antisymmetrized.2 However, since T
is symmetric in the first two slots, this term drops out of the expression.

The second term in (17) is contracted just with the bivector. Disclosing the torsion
in its components, the final result is:

2
(
G−1 + Π

)st
∂t Dκ

[
Gsi (Rimk − Qimk + Qikm)Πmk + Qmk

sΠmk
]
. (21)

As of the remaining bit, it yields the following:

(1 − d)(d − 2)
(
(G−1 + Π)ki∂i Dκ

)2
(22)

We can now combine all the pieces together and couple the curvature scalar to
e−2φ̃

√
detG−1. In doing so, one must not forget about integration by parts with

∇̃φ0,γ1 , as this hits e
−2φ̃. Before going on with the result, let us follow the strategy of

our work [6]: there, the kinetic term for the dilaton in 10 dimensions turned out to be
accounted by a conformal factor of e−2φ/3, which rescaled the Riemannian metric g.
Thus replacing G �→ e2φ̃/3G twice in (16) and taking care of the square root of its
determinant, but still displaying d dimensions and κ factors though these are actually
fixed:

e−2φ̃
√
det G−1 ≡ e(−4κ+dκ)φ̃

√
det G−1.

2 With a very little effort one can notice that

∇̃[i
φ0,γ1

Π pq] = ∂[iΠ pq] + Tori plΠ
lq − Toriq lΠ

lp + Torpq lΠ
li .

.
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Furthermore, ∂Dκ ≡ eκφ̃∂e−κφ̃ = −κ∂φ̃, so we get:

− κ2(1 − d)(d − 4)
(
(G−1 + Π)ki∂i φ̃

)2
. (23)

Putting (21), (22) and (23) together in the action S, we get

S =
∫

dx
√
det G−1e(d−4)κφ̃

[
2κ2(1 − d)

(
(G−1 + Π)ki∂i φ̃

)2 +
− 2κ

(
G−1 + Π

)st
∂t φ̃

[
Gsi (Rimk − 2Qimk)Πmk + Qmk

sΠmk
]

+ RG − 1

12
R2 − 1

2
RlmiQ jk

iGl jGmk − 1

4
Q jl

mQkn
iG jkGlnG

mi

− 1

2
Ql j

kQkm
lG jm

]
. (24)

In this formula, RG is the Ricci curvature scalar of the symmetric part of the connec-
tion. Remarkably, compared to literature on the topic, it does not simply come from
a tensor constructed with the G metric only, but it entails the bivector Π , because of
the anchor map (7).

In particular, in 10 dimensions and when κ = −1/3, the kinetic term for the dual
dilaton is:

−2
(
(G−1 + Π)ki∂i φ̃

)2
.

3 Conclusion

In this short note we suggested a way to embed the dual dilaton in the construction
of an invariant action for the open strings metric and the T-dual fluxesR andQ. Our
findings complement our previous works on the same topic [6, 7]. More importantly,
one of the features of our particular Ansatz is that it encompasses the effective closed
string action for the NS-NS fields: This is obtained when one deploys a splitting
s : Γ (T M) �→ Γ (T M ⊕ T ∗M), ρ ◦ s = idT M to focus on vector fields in (9), and
then builds the curvature invariant according to the same technique.

Thus with the present work we think to have provided a new clear algebraic and
geometric picture for the background fields for strings and the local fluxes.
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On 1-Dimensional Modules over the
Super-Yangian of the Superalgebra Q(1)

Elena Poletaeva

Abstract Let Q(n) be the queer Lie superalgebra. We determine conditions under
which two 1-dimensional modules over the super-Yangian of Q(1) can be extended
nontrivially, and thus belong to the same block of the category of finite-dimensional
Y Q(1)-modules. We use these results to determine conditions under which two 1-
dimensionalmodules over the finiteW -algebra for Q(n) can be extended nontrivially.

Keywords Queer Lie superalgebra · Yangian · FiniteW -algebra

1 Introduction

In [8] we classified irreducible representations of the finite W -algebra Wn for the
queer Lie superalgebra Q(n) associated with the principal nilpotent coadjoint orbits
(they are all finite-dimensional), as well as irreducible finite-dimensional represen-
tations of the super-Yangian Y Q(1) of Q(1) (Theorem 4.7 and Theorem 5.13).
An interesting problem arising from these classifications is to describe blocks of
the subcategories of finite-dimensional Y Q(1)-modules and finite-dimensionalWn-
modules admitting a given generalized central character χ . If χ = 0, then the simple
modules in these subcategories are 1-dimensional. In this paper we determine when
two 1-dimensional Y Q(1)-modules can be extended nontrivially, and thus belong
to the same block (Theorem 1). We use these results and results of [8] to determine
when two 1-dimensional Wn-modules can be extended nontrivially (Theorem 2).
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2 Preliminaries

Recall that the Lie superalgebra g = Q(n) is defined as follows (see [2]). EquipCn|n
with the odd operator ζ such that ζ 2 = − Id. Then Q(n) is the centralizer of ζ in the
Lie superalgebra gl(n|n). It is easy to see that Q(n) consists of matrices of the form

(
A B
B A

)
,

where A, B are n × n-matrices. Let

{ei, j , fi, j | i, j = 1, . . . , n}

denote the basis in Q(n) consisting of elementary even and odd matrices.

3 The Super Yangian of Q(1)

TheYangians Y Q(n) associated with the Lie superalgebras Q(n)were defined byM.
L. Nazarov ([3, 4]). Recall that Y Q(1) is the associative unital superalgebra over C
with the countable set of generators T (m)

i, j , where m = 1, 2, . . . and i, j = ±1. The
Z2-grading of Y Q(1) is defined as follows:

p(T (m)
i, j ) = p(i) + p( j), where p(1) = 0 and p(−1) = 1.

To write the defining relations for these generators, we employ the formal series in
Y Q(1)[[u−1]]:

Ti, j (u) = δi j · 1 + T (1)
i, j u

−1 + T (2)
i, j u

−2 + . . . .

Then for all possible indices i, j, k, l we have the relations

(u2 − v2)[Ti, j (u), Tk,l(v)] · (−1)p(i)p(k)+p(i)p(l)+p(k)p(l)

= (u + v)(Tk, j (u)Ti,l(v) − Tk, j (v)Ti,l(u))

−(u − v)(T−k, j (u)T−i,l(v) − Tk,− j (v)Ti,−l(u)) · (−1)p(k)+p(l).

(1)

Here v is a formal parameter independent of u, so that (1) is an equality in the algebra
of formal Laurent series in u−1, v−1 with coefficients in Y Q(1). For all indices i, j
we also have the relations

Ti, j (−u) = T−i,− j (u). (2)
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The relations (1) and (2) are equivalent to the following defining relations:

([T (m+1)
i, j , T (r−1)

k,l ] − [T (m−1)
i, j , T (r+1)

k,l ]) · (−1)p(i)p(k)+p(i)p(l)+p(k)p(l) =

T (m)
k, j T

(r−1)
i,l + T (m−1)

k, j T (r)
i,l − T (r−1)

k, j T (m)
i,l − T (r)

k, j T
(m−1)
i,l

+(−1)p(k)+p(l)(−T (m)
−k, j T

(r−1)
−i,l + T (m−1)

−k, j T (r)
−i,l + T (r−1)

k,− j T (m)
i,−l − T (r)

k,− j T
(m−1)
i,−l ),

(3)

T (m)
−i,− j = (−1)mT (m)

i, j , (4)

where m, r = 1, . . . and T (0)
i, j = δi j . Recall that Y Q(1) is a Hopf superalgebra (see

[4]) with comultiplication given by the formula

Δ(T (r)
i, j ) =

r∑
s=0

∑
k

(−1)(p(i)+p(k))(p( j)+p(k))T (s)
i,k ⊗ T (r−s)

k, j .

The evaluation homomorphism ev : Y Q(1) → U (Q(1)) is defined as follows:

T (1)
1,1 �→ −e1,1, T (1)

1,−1 �→ f1,1, T (0)
i, j �→ δi, j , T (r)

i, j �→ 0 for r > 1, i, j = ±1.

4 1-Dimensional Y Q(1)-Modules

We classified simple finite-dimensional Y Q(1)-modules in [8]. Here we recall the
description of 1-dimensional Y Q(1)-modules.

Remark 1 Note that [T (k)
1,1 , T (m)

1,1 ] = 0 if k + m is even (see [6, Proposition 6.4]).

Definition 1 LetA be the commutative subalgebra in Y Q(1) generated by T (2k)
1,1 for

k ≥ 0. Let
f (u) = 1 +

∑
k>0

f2ku
−2k .

Let Γ f be the corresponding 1-dimensional A-module, where the action of

T1,1(u
−2) =

∑
k≥0

T (2k)
1,1 u−2k

is given by the generating function f (u).

Recall that for any Hopf superalgebra R, the ideal (R1) generated by all odd elements
is a Hopf ideal and the quotient R/(R1) is a Hopf algebra.
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Proposition 1 ([8, Lemma 5.11]) The quotient Y Q(1)/(Y Q(1)1) is isomorphic to
A � C[T (2k)

1,1 ]k>0, with comultiplication

ΔT1,1(u
−2) = T1,1(u

−2) ⊗ T1,1(u
−2).

Thus we can lift an A-module Γ f to a Y Q(1)-module.

Proposition 2 ([8,Lemma5.12])The isomorphismclasses of1-dimensional Y Q(1)-
modules are in bijection with the set {Γ f }. Furthermore, we have the identity
Γ f ⊗ Γg � Γ f g .

5 The Category Y Q(1)–Mod

We described the center Z of Y Q(1) in [8]. Let

ηi =
(

−1

2

)i

adi T (2)
1,1 (T (1)

1,−1), Z2i = 1

2
[η0, η2i ],

where adi T (2)
1,1 is the i-power of the adjoint endomorphism ad T (2)

1,1 . The elements
{Z2i | i ∈ N} are algebraically independent generators of the center of Y Q(1).

LetY Q(1)–mod be the category of finite-dimensionalY Q(1)-modules.AY Q(1)-
module M admits generalized central character χ if for any z ∈ Z and m ∈ M ,
there exists n ∈ Z≥0 such that (z − χ(z))n · m = 0. Let (Y Q(1))χ–mod be the full
subcategory of modules admitting generalized central character χ . The category
Y Q(1)–mod is the direct sum of the subcategories (Y Q(1))χ–mod, as χ ranges over
the central characters for which (Y Q(1))χ–mod is nonempty.

Recall that simple modules are partitioned into blocks. If two simple modules
M1 and M2 can be extended nontrivially, i.e., if there is a non-split short exact
sequence 0 −→ Mi −→ M −→ Mj −→ 0 with {i, j} = {1, 2}, then M1 and M2

belong to the same block, and we will say that they are linked. Here we agree that
Mi is linked to itself. More generally, if there is a finite sequence of simple modules
M = M1, M2, . . . , Mn = N such that adjacent pairs belong to the same block, then
modules M and N belong to this block. A module M belongs to a block if all
its composition factors do. Each block lies in a single (Y Q(1))χ–mod. However,
different blocks can belong to the same (Y Q(1))χ–mod: see [1].
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5.1 The Subcategory (Y Q(1))χ=0–Mod

The simple even modules in the subcategory (Y Q(1))χ=0–mod are exactly the
1-dimensional modules Γ f (see [8]). Let Γ f and Γg be two Y Q(1)-modules, where

f (u) =
∑
k≥0

a2ku
−2k, g(u) =

∑
k≥0

b2ku
−2k, a0 = b0 = 1.

Recall that Γ f is linked to itself. If f �= g, then one can easily check that the short
exact sequence

0 −→ Γ f −→ M −→ Γg −→ 0

splits. Indeed, we have the following relations in Y Q(1):

[T (2k)
1,1 , T (1)

1,−1] = 2T (2k)
1,−1. (5)

[T (2)
1,1 , T (2k)

1,−1] = 2T (2k+1)
1,−1 + 2T (2k)

1,−1 − 2T (2k)
1,1 T (1)

1,−1. (6)

[T (1)
1,−1, T

(2k+1)
1,−1 ] = −2T (2k+1)

1,1 . (7)

All odd generators T (r)
1,−1 act on M by zero, since M is a purely even module. Then

T (2k+1)
1,1 also acts on M by zero by (7). Note that T (2k)

1,1 acts on M as

(
a2k c2k
0 b2k

)
, and

there existsm such that a2m �= b2m , since f �= g. We can choose a basis in M so that
c2m = 0. Then c2k = 0 for all k, since T (2k)

1,1 commute. Hence M � Γ f ⊕ Γg .
Let P be the parity functor P(X) = X ⊗ C

0|1. We will determine when Γ f is
linked with P(Γg).

Theorem 1 Ext1(P(Γg), Γ f ) �= 0 if and only if b2k = a2k − x2k , where x2 is an
arbitrary complex number and x2k for k > 1 is defined by the recurrence relation

x2k+2 =
( (x2 − 2)x2k

4
+ a2k

)
x2. (8)

Proof Note that the short exact sequence

0 −→ Γ f −→ M −→ P(Γg) −→ 0

is non-split if and only if T (1)
1,−1 does not act by zero. Indeed, if T

(1)
1,−1 acts by zero, then

T (2k)
1,−1 and T

(2k+1)
1,−1 also act by zero for all k by (5) and (6), but then M � Γ f ⊕ P(Γg).

Clearly, if M � Γ f ⊕ P(Γg), then all odd generators act by zero.
Hence Ext1(P(Γg), Γ f ) �= 0 if and only if one can define a representation ρ :

Y Q(1) −→ End(C1|1) such that (up to equivalence)
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ρ(T (2k)
1,1 ) =

(
a2k 0
0 b2k

)
, ρ(T (1)

1,−1) =
(
0 1
0 0

)
. (9)

Then

ρ(T (2k)
1,−1) =

(
0 a2k−b2k

2
0 0

)
, (10)

ρ(T (2k+1)
1,−1 ) =

(
0 (a2−b2)(a2k−b2k )

4 + a2k+b2k
2

0 0

)
, (11)

ρ(T (2k+1)
1,1 ) = 0. (12)

Here (10) follows from (9) and the relation (5), (11) follows from (9), (10), and (6),
and (12) follows from (11) and (7).

Let x2k = a2k − b2k . The recurrence relation (3)withm = 2k − 1 and r = 2p + 2
gives the relation

([T (2k)
1,1 , T (2p+1)

1,−1 ] − [T (2k−2)
1,1 , T (2p+3)

1,−1 ]) =

T (2k−1)
1,1 T (2p+1)

1,−1 + T (2k−2)
1,1 T (2p+2)

1,−1 − T (2p+1)
1,1 T (2k−1)

1,−1 − T (2p+2)
1,1 T (2k−2)

1,−1

+T (2k−1)
−1,1 T (2p+1)

−1,−1 − T (2k−2)
−1,1 T (2p+2)

−1,−1 − T (2p+1)
1,−1 T (2k−1)

1,1 + T (2p+2)
1,−1 T (2k−2)

1,1 .

(13)

From (13) and (9)–(12) we obtain the relation

x2x2px2k
4

+ 2a2p − x2p
2

x2k − x2x2p+2x2k−2

4
= x2p+2

2
(2a2k−2 − x2k−2).

If p = 0 (and a0 = 1, x0 = 0) we have

x2k = (
x2x2k−2

4
+ a2k−2 − x2k−2

2
)x2,

which is equivalent to (8). One can check that ρ preserves the relations (3). �

Corollary 1 Ext1(Γ f ,P(Γg)) �= 0 if and only if b2k = a2k + x2k , where x2 is an
arbitrary complex number and x2k for k > 1 is defined by the recurrence relation

x2k+2 =
( (x2 + 2)x2k

4
+ a2k

)
x2. (14)
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6 The Finite W -Algebra for Q(n)

Let Wn be the finite W-algebra associated with a principal even nilpotent element
ϕ in the coadjoint representation of g = Q(n). Let us recall its definition (see [10]).
We fix the Cartan subalgebra h ⊂ g to be the set of matrices with diagonal A and B.
By n+ (respectively, n−) we denote the nilpotent subalgebras consisting of matrices
with strictly upper triangular (respectively, low triangular) A and B.

The Lie superalgebra g has the triangular decomposition g = n− ⊕ h ⊕ n+, and
we set b = n+ ⊕ h. Choose ϕ ∈ g∗ such that

ϕ( fi, j ) = 0, ϕ(ei, j ) = δi, j+1.

Let Iϕ be the left ideal inU (g) generated by x − ϕ(x) for all x ∈ n−. Letπ : U (g) →
U (g)/Iϕ be the natural projection. Then

Wn = {π(y) ∈ U (g)/Iϕ | ad(x)y ∈ Iϕ for all x ∈ n−}.

Using the identification of U (g)/Iϕ with the Whittaker module U (g) ⊗U (n−) Cϕ �
U (b) ⊗ C, we can consider Wn as a subalgebra of U (b). The natural projection ϑ :
U (b) → U (h)with the kerneln+U (b) is called theHarish-Chandra homomorphism.
It is proven in [6] that the restriction of ϑ to Wn is injective. We will identify Wn

with ϑ(Wn) ⊂ U (h).

Example 1 n = 2, h = span{e1,1, e2,2 | f1,1, f2,2}, where f 21,1 = e1,1 and f 22,2 =
e2,2. Then W 2 realized as a subalgebra of U (h) has the following generators:

z0 = e1,1 + e2,2, z1 = e1,1e2,2 + f1,1 f2,2 (even),

φ0 = f1,1 − f2,2, φ1 = e1,1 f2,2 + e2,2 f1,1 (odd).

7 Wn Is a Quotient of Y Q(1)

Definition 2 (a) Define Δl : Y Q(1) −→ Y Q(1)⊗l by

Δl := Δl−1,l ◦ · · · ◦ Δ2,3 ◦ Δ.

(b) Let ϕn : Y Q(1) → U (Q(1))⊗n � U (h) be ϕn := ev⊗n ◦ Δn.

Proposition 3 ([7, Corollary 5.16]) The map ϕn is a surjective homomorphism from
Y Q(1) onto Wn, realized as a subalgebra of U (h):

ϕn(Y Q(1)) = ϑ(Wn) � Wn.
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Note that Wm+n is a subalgebra of Wm ⊗ Wn ([8, Lemma 3.3]). The following
diagram commutes:

Y Q(1)
Δ−−−−→ Y Q(1) ⊗ Y Q(1)

ϕm+n

⏐⏐� ϕm⊗ϕn

⏐⏐�
Wm+n −−−−→ Wm ⊗ Wn

(15)

8 1-Dimensional Wn-Modules

We classified simple Wn-modules in [8, Theorem 4.7]. Here we recall the construc-
tion of 1-dimensionalWn-modules. Let r, p ∈ N and r + 2p = n, t = (t1, . . . , tp) ∈
C

p, t1, . . . , tp �= 0. Recall that there is an embedding Wn ↪→ Wr ⊗ (W 2)⊗p ([8],
Corollary 3.4). Let Γt be the simpleW 2-module of dimension (1|0) on which φ0, φ1

and z0 act by zero and z1 acts by the scalar t . Set S(t) := C ⊗ Γt1 ⊗ · · · ⊗ Γtp ,where
the first term C in the tensor product denotes the trivial Wr -module.

Proposition 4 (see [8, Theorem 4.7]) (a) Every 1-dimensional Wn-module is iso-
morphic to S(t) up to change of parity.
(b) Two Wn-modules S(t) and S(t′) are isomorphic if and only if t′ = σ(t) for some
σ ∈ Sp.

Proposition 5 (see [8, Proposition 5.19]) The 1-dimensional Y Q(1)-module Γ f is
lifted from some Wm-module if and only if f ∈ C[u−2]. Moreover, the smallest such
m is equal to the degree of the polynomial f .

Remark 2 Note thatm = 2p is even. Proposition 4 and the diagram (15) imply that
S(t1, . . . , tp) � Γ f , where f = ∏p

i=1(1 + ti u−2).

9 The Category Wn–Mod

Recall that the image of the center ofU (g) under theHarish-Chandra homomorphism
is generated by the Q-symmetric polynomials (see [5]). In [6] we proved that the
center ofWn coincideswith the image of the center ofU (g)under theHarish-Chandra
homomorphism, and hence can also be identified with the ring of Q-symmetric
polynomials. The center of Wn coincides with ϕn(Z), where Z is the center of
Y Q(1) (see [8]).

LetWn–mod be the category of finite-dimensionalWn-modules. Let (Wn)χ–mod
be the full subcategory of modules admitting generalized central character χ . The
category Wn–mod is the direct sum of subcategories (Wn)χ–mod, as χ ranges over
the central characters for which (Wn)χ–mod is nonempty. In [9] we described blocks
of the category W 2–mod.
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9.1 The Subcategory (Wn)χ=0–Mod

Note that simple even modules in the subcategory (Wn)χ=0–mod are exactly the
1-dimensional modules S(t) (see [8]). Let σk denote the kth elementary symmetric
polynomial.

Theorem 2 Fix t = (t1, . . . , tp) and t′ = (t ′1, . . . , t ′q), where p and q are less than
or equal to n

2 . Consider the W
n-modules S(t) and S(t′). Define a2k = σk(t1, . . . , tp)

for k = 1, . . . , p, a2k = 0 for k > p. Similarly, define b2k = σk(t ′1, . . . , t ′q) for k =
1, . . . , q, b2k = 0 for k > q. Let x2k = a2k − b2k .
(a) If S(t) is a nontrivial Wn-module, then Ext1(P(S(t′)), S(t)) �= 0 if and only if
x2 �= 0 and x2k satisfy the recurrence relation (8).
(b) If S(t) = C

1|0 is the trivial Wn-module, then Ext1(P(S(t′)), S(t)) �= 0 if and only
if S(t′) = C

1|0 or t′ = (t ′1) with t ′1 = −2.

Proof Suppose that Ext1(P(S(t′)), S(t)) �= 0. Lift S(t) and S(t′) toY Q(1)-modules
Γ f and Γg, respectively, where

f (u) = 1 +
∑
k>0

a2ku
−2k and g(u) = 1 +

∑
k>0

b2ku
−2k .

Then Ext1(P(Γg), Γ f )) �= 0. Hence by Theorem 1, x2k = a2k − b2k satisfy (8). Note
that x2 �= 0, since otherwise all x2k = 0 and so S(t′) is isomorphic to S(t). However,
S(t) is linked with P(S(t)) only if S(t) is the trivial module (see [9]).

Conversely, if x2k = a2k − b2k satisfy (8), then the lifted modules Γ f and P(Γg)

are linked. Because x2 �= 0, (8) implies that

(x2 − 2)x2k
4

+ a2k = 0

for 2k ≥ n if n is even and for 2k ≥ n − 1 if n is odd. Then ρ(T (r)
1,−1) = 0 if r > n

by (10) and (11), and ρ(T (r)
1,1 ) = 0 if r > n by (9) and (12).

The kernel of the surjective homomorphism ϕn : Y Q(1) −→ Wn is generated by
T (r)
1,1 and T (r)

1,−1, where r > n. This allows one to define a representation μ : Wn −→
End(C1|1) such that ρ = μ ◦ ϕn . Thus S(t) is linked with P(S(t′)).

If S(t) = C
1|0, then a2k = 0 for k ≥ 1. From (8), x2 = 0 or x2 = 2. In the first

case x2k = 0 and b2k = 0 for k ≥ 1. Hence S(t′) is the trivial module. In the second
case, x2 = 2 and x2k = 0 for k ≥ 2, b2 = −2, and b2k = 0 for k ≥ 2. Hence t′ = (t ′1)
with t ′1 = −2. �

Remark 3 Suppose that Γ f is lifted from a nontrivial module S(t), and assume that
Ext1(P(Γg), Γ f ) �= 0. Note that Γg is a lift from some Wn-module S(t′) if and only
if in (8) we have xn+2 = 0 if n is even and xn+1 = 0 if n is odd. This means that x2 is
a (nonzero) root of the polynomial of degree n (respectively, n − 1) defined by the
recurrence relation (8) if n is even (respectively, odd). Then we set b2k = a2k − x2k
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and find t′ = (t ′1, . . . , t ′q) such that b2k = σk(t′). Here t′ is defined up to permutation
of t ′1, . . . , t ′q , and we delete all zero entries. Then Ext1(P(S(t′)), S(t)) �= 0, and
moreover all modules S(t′) satisfying the above formula are obtained in this way.

Example 2 (see [9]) Let n = 2, so that by (8), x4 = (
x22
4 − x2

2 + a2)x2. Then x2 must

satisfy x22
4 − x2

2 + a2 = 0.

Corollary 2 (a) If S(t) is a nontrivial Wn-module, then Ext1(S(t),P(S(t′))) �= 0
if and only if x2k := b2k − a2k satisfies the recurrence relation (14) for all k and
x2 �= 0.
(b) If S(t) is a trivial Wn-module, then Ext1(S(t),P(S(t′))) �= 0 if and only if S(t′) =
C

1|0 or t′ = (t ′1) with t ′1 = −2.
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A Klein Operator for Paraparticles

Nedialka I. Stoilova and Joris Van der Jeugt

Abstract It has been known for a long time that there are two non-trivial possibilities
for the relative commutation relations between a set ofm parafermions and a set of n
parabosons. These two choices are knownas “relative parafermion type” and “relative
paraboson type”, and correspond to quite different underlying algebraic structures.
In this short note we show how the two possibilities are related by a so-called Klein
transformation.

Keywords Parafermions · Parabosons · Klein transformation

The standard creation and annihilation operators of identical particles satisfy canon-
ical commutation (boson) or anticommutation (fermion) relations, expressed by
means of commutators or anticommutators. In 1953 Green [1] generalized bosons to
so-called parabosons and fermions to parafermions, by postulating certain triple rela-
tions for the creation and annihilation operators, rather than just (anti)commutators.
A system of m parafermion creation and annihilation operators f ±

j ( j = 1, . . . ,m)
is determined by

[[ f ξ

j , f η

k ], f ε
l ] = |ε − η|δkl f ξ

j − |ε − ξ |δ jl f
η

k , (1)

where j, k, l ∈ {1, 2, . . . ,m} and η, ε, ξ ∈ {+,−} (to be interpreted as +1 and −1
in the algebraic expressions ε − ξ and ε − η). Similarly, a system of n pairs of
parabosons b±

j satisfies

[{bξ

j , b
η

k }, bε
l ] = (ε − ξ)δ jlb

η

k + (ε − η)δklb
ξ

j . (2)
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These triple relations involve nested (anti)commutators, just like the Jacobi identity
of Lie (super)algebras. And indeed, later it was shown [2, 3] that the parafermionic
algebra determined by (1) is the orthogonal Lie algebra so(2m + 1), and that the
parabosonic algebra determined by (2) is the orthosymplectic Lie superalgebra
osp(1|2n) [4].

Greenberg and Messiah [5] considered combined systems of parafermions and
parabosons. Apart from two trivial combinations (where the parafermions and para-
bosons mutually commute or anticommute), they found two non-trivial relative com-
mutation relations between parafermions and parabosons, also expressed by means
of triple relations. The first of these are the relative parafermion relations, determined
by:

[[ f ξ

j , f η

k ], bε
l ] = 0, [{bξ

j , b
η

k }, f ε
l ] = 0,

[[ f ξ

j , b
η

k ], f ε
l ] = −|ε − ξ |δ jlb

η

k , {[ f ξ

j , b
η

k ], bε
l } = (ε − η)δkl f

ξ

j . (3)

The second are the so-called relative paraboson relations, and will appear later in
this paper.

The parastatistics algebra with relative parafermion relations, determined by (1)–
(3), was identified by Palev [6] and is the Lie superalgebra osp(2m + 1|2n).

When dealing with parastatistics, a major object of study is the Fock space. By
definition the parastatistics Fock space of order p is the Hilbert space with vacuum
vector |0〉, defined by means of

〈0|0〉 = 1, f −
j |0〉 = 0, b−

j |0〉 = 0, ( f ±
j )† = f ∓

j , (b±
j )

† = b∓
j ,

[ f −
j , f +

k ]|0〉 = pδ jk |0〉, {b−
j , b

+
k }|0〉 = pδ jk |0〉, (4)

and by irreducibility under the action of the elements f ±
j , b

±
j .

The purpose of this short contribution is to show that a Klein operator [7–9] can
be constructed, and that new operators b̃±

k and f̃ ±
j can be defined in terms of the

operators b±
k and f ±

j in such a way that these new operators satisfy the parastatistics
algebra with relative paraboson relations.

First of all, let us define the following elements in terms of the paraoperators b±
j

and f ±
i

hi = −1

2
[ f −

i , f +
i ] (i = 1, . . . ,m)

hm+ j = 1

2
{b−

j , b
+
j } ( j = 1, . . . , n). (5)

From the triple relations (1)–(3), it is easy to deduce that
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hi f
±
j = f ±

j (hi ± δi j ) (i = 1, . . . ,m; j = 1, . . . ,m)

hib
±
k = b±

k hi (i = 1, . . . ,m; k = 1, . . . , n)

hm+i f
±
j = f ±

j hm+i (i = 1, . . . , n; j = 1, . . . ,m)

hm+i b
±
k = b±

k (hm+i ± δik) (i = 1, . . . , n; k = 1, . . . , n). (6)

So if we put
H = h1 + h2 + · · · + hm+n, (7)

then

H f ±
j = f ±

j (H ± 1) ( j = 1, . . . ,m)

Hb±
k = b±

k (H ± 1) (k = 1, . . . , n). (8)

All these relations are purely algebraic, i.e. they follow from the triple relations (1)–
(3), and hold in the algebra generated by the 2(m + n) elements b±

k and f ±
j .

Following (8), we would like to define an operator of the form (−1)H . In order
to have a proper meaning for this, it is useful to work in the Fock space of order p,
characterized by (4), so that the abstract algebraic elements become operators acting
in this Fock space. Following (5), one finds that

H |0〉 = − p

2
(m − n)|0〉. (9)

So it is convenient to define

N = H + p

2
(m − n) (10)

and the Klein operator K by
K = (−1)N . (11)

Then K |0〉 = |0〉 and K 2|0〉 = |0〉. Since the commutator of N with f ±
j and b±

k is
the same as that of H (given by (8)), this implies that K 2 acts as the identity operator
in the Fock space. Moreover, from (8) it follows that

K f ±
j + f ±

j K = 0, Kb±
k + b±

k K = 0 ( j = 1, . . . ,m; k = 1, . . . , n). (12)

In fact, one could also continue to work purely algebraically, and extend the algebra
generated by the generators b±

k and f ±
j , subject to the relations (1)–(3), by an abstract

element K satisfying

K 2 = 1, {K , f ±
j } = 0, {K , b±

k } = 0 ( j = 1, . . . ,m; k = 1, . . . , n).

(13)
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The previous analysis just shows that such an operator K exists in the Fock space of
the paraoperators.

Let us now proceed to the main construction. Define new operators

f̃ ±
j = ± f ±

j K = ∓K f ±
j ( j = 1, . . . ,m)

b̃±
k = b±

k (k = 1, . . . , n). (14)

The purpose is now to examine the triple relations for the new set of operators b̃±
k

and f̃ ±
j . Since the b̃

±
k are the same as the b±

k , one has

[{b̃ξ

j , b̃
η

k }, b̃ε
l ] = (ε − ξ)δ jl b̃

η

k + (ε − η)δkl b̃
ξ

j . (15)

Next, using f̃ ξ

j = ξ f ξ

j K , f̃ η

k = η f η

k K , K 2 = 1 and (13), one has

[ f̃ ξ

j , f̃ η

k ] = −ξη[ f ξ

j , f η

k ].

This implies that

[[ f̃ ξ

j , f̃ η

k ], f̃ ε
l ] = −ξηε(|ε − η|δkl f ξ

j − |ε − ξ |δ jl f
η

k )K

= −ηε|ε − η|δkl f̃ ξ

j + ξε|ε − ξ |δ jl f̃
η

k .

But for the allowed values of ξ, η, ε ∈ {−1,+1}, one has −ηε|ε − η| = |ε − η|,
and similar for the second factor above. Therefore, the elements f̃ ±

j satisfy the usual
parafermion triple relations

[[ f̃ ξ

j , f̃ η

k ], f̃ ε
l ] = |ε − η|δkl f̃ ξ

j − |ε − ξ |δ jl f̃
η

k . (16)

Next, let us turn to the “relative relations.” From the earlier observations, it follows
already that

[[ f̃ ξ

j , f̃ η

k ], b̃ε
l ] = 0, [{b̃ξ

j , b̃
η

k }, f̃ ε
l ] = 0.

Furthermore,

{ f̃ ξ

j , b̃
η

k } = ξ f ξ

j Kbη

k + ξbη

k f
ξ

j K = −ξ [ f ξ

j , b
η

k ]K ,

and then

{{ f̃ ξ

j , b̃
η

k }, f̃ ε
l } = −ξ [ f ξ

j , b
η

k ]K ε f ε
l K − ξε f ε

l K [ f ξ

j , b
η

k ]K
= εξ [ f ξ

j , b
η

k ] f ε
l − εξ f ε

l [ f ξ

j , b
η

k ]
= εξ [[ f ξ

j , b
η

k ], f ε
l ] = −εξ |ε − ξ |δ jlb

η

k = |ε − ξ |δ jl b̃
η

k .

In a similar way, one finds
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[{ f̃ ξ

j , b̃
η

k }, b̃ε
l ] = −ξ [ f ξ

j , b
η

k ]Kbε
l + ξbε

l [ f ξ

j , b
η

k ]K
= ξ [ f ξ

j , b
η

k ]bε
l K + ξbε

l [ f ξ

j , b
η

k ]K
= ξ{[ f ξ

j , b
η

k ], bε
l }K = ξ(ε − η)δkl f

ξ

j K = (ε − η)δkl f̃
ξ

j .

In other words, the new operators b̃±
k and f̃ ±

j satisfy (15), (16) and

[[ f̃ ξ

j , f̃ η

k ], b̃ε
l ] = 0, [{b̃ξ

j , b̃
η

k }, f̃ ε
l ] = 0,

{{ f̃ ξ

j , b̃
η

k }, f̃ ε
l } = |ε − ξ |δ jl b̃

η

k , [{ f̃ ξ

j , b̃
η

k }, b̃ε
l ] = (ε − η)δkl f̃

ξ

j . (17)

But (15)–(17) are exactly the relations for a mixed set of paraparticles satisfying the
relative paraboson relations [5, 12].

In short, we have shown that the simple Klein transformation (14) maps the
paraoperators with relative parafermion relations to the paraoperators with relative
paraboson relations.

Observe that the algebra generated by the paraoperators b̃±
k and f̃ ±

j , subject to the
relations (15)–(17), is no longer (the enveloping algebra of) a Lie algebra or a Lie
superalgebra. It was identified as a certain Z2 × Z2-graded Lie superalgebra in [10–
13]. In the notation of Tolstoy [13], the parastatistics algebra with relative paraboson
relations would be osp(1, 2m|2n, 0). In [14], this Z2 × Z2-graded Lie superalgebra
was denoted as pso(2m + 1|2n).

The Fock spaces of order p for the parastatistics algebra with relative parafermion
relations were studied in [15]. They correspond to a class of lowest weight represen-
tations of the Lie superalgebra osp(2m + 1|2n). In a similar way, the Fock spaces of
order p for the parastatistics algebra with relative paraboson relations were studied
in [14], corresponding to a class of lowest weight representations of the Z2 × Z2-
graded Lie superalgebra pso(2m + 1|2n). Although one is dealing with different
algebraic structures (in terms of gradings, commutators and anticommutators), the
similarity between these representations was striking. Now that we have identified
the Klein transformation relating these structures, the similarity becomes completely
clear.

Acknowledgements N. Stoilova was supported by the Bulgarian National Science Fund, grant
KP-06-N28/6, and J. Van der Jeugt was supported by the EOS Research Project 30889451.

References

1. H.S. Green, Phys. Rev. 90, 270–273 (1953)
2. S. Kamefuchi, Y. Takahashi, Nucl. Phys. 36, 177–206 (1962)
3. C. Ryan, E.C.G. Sudarshan, Nucl. Phys. 47, 207–211 (1963)
4. A.Ch. Ganchev, T.D. Palev, J. Math. Phys. 21, 797–799 (1980)
5. O.W. Greenberg, A.M. Messiah, Phys. Rev. 138(5B), 1155–1167 (1965)
6. T.D. Palev, J. Math. Phys. 23, 1100–1102 (1982)



268 N. I. Stoilova and J. Van der Jeugt

7. O. Klein, J. de Phys. 9, 1–12 (1938)
8. G. Lüders, Z. Naturforsch. 13a, 254–260 (1958)
9. M.A. Vasil’ev, JETP Lett. 40, 1261–1264 (1984)
10. W. Yang, S. Jing, Sci China (Ser A) 44, 1167–1173 (2001)
11. W. Yang, S. Jing, Mod. Phys. Lett. A 16, 963–971 (2001)
12. K. Kanakoglou, A. Herrera-Aguilar, J. Phys.: Conf. Ser. 287, 011237 (2011)
13. V.N. Tolstoy, Phys. Part. Nucl. Lett. 11, 933–937 (2014)
14. N.I. Stoilova, J. Van der Jeugt, J. Phys. A: Math. Theor. 51, 135201 (2018). (17pp)
15. N.I. Stoilova, J. Van der Jeugt, J. Phys. A: Math. Theor. 48, 155202 (2015). (16pp)



Principal and Complementary Series
Representations at the Late-Time
Boundary of de Sitter

Gizem Şengör and Constantinos Skordis

Abstract We demonstrate how free massive scalar fields in the set up that usually
appears in early universe inflationary studies, correspond to the principal series and
complementary series representations of the group SO(d+1,1) by introducing late-
time operators and computing their two-point functions.

Keywords Quantum field theory on de Sitter · Realization of de sitter
representations · Principal series representations · Complementary series
representations

1 Introduction

Representations of Lie groups play an important role in quantum field theory since
Wigner pointed out that elementary particles correspond to unitary irreducible rep-
resentations of the isometry group of Minkowski spacetime, the Poincare group
[9]. Of relevance to cosmology, is the de Sitter spacetime, a maximally symmetric
spacetime with a positive cosmological constant, whose isometry group is also the
conformal group of Euclidean space in one less dimension. The presence of con-
formal symmetries in de Sitter suggest the possibility to approach de Sitter physics
in the framework of holography. Holography has been a valuable tool for studies
on Anti de Sitter, a maximally symmetric spacetime with a negative cosmological
constant and its applicability to the other maximally symmetric spacetimes is an
active area of investigation. Following [6] and [7], we summarize how to recognize
the unitary irreducible representations of the de Sitter isometry group SO(d + 1, 1)
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270 G. Şengör and C.Skordis

at the late-time boundary so as to gather clues on the inner workings of quantum
field theory and the holographic nature of de Sitter spacetime.

2 The de Sitter Geometry, The de Sitter Group and the
Late-Time Boundary

The aim of this section is to introduce notation and some background information so
as to establish connection between mathematics and physics literatures with focus
on quantum field theory.

The de Sitter geometry is the vacuum solution to Einstein equations with a pos-
itive cosmological constant [2]. In global coordinates, with the metric convention
diag(−,+,+, . . . ), the metric for d + 1 dimensional de Sitter is

ds2global = gμν
globald X

μdXν = −dT 2 + 1

H 2
cosh2(HT )dΩ2

d , (1)

where dΩ2
d denotes the metric on d dimensional sphere and H is the Hubble con-

stant associated with the de Sitter scale (ldS = H−1
dS ). The time coordinate runs in

the range T ∈ (−∞,∞). Due to the behaviour of the cosine hyperbolic function,
this spacetime undergoes accelerated expansion in the interval T ∈ [0,∞). Within
the cosmic history of our universe we have evidence of two epochs of accelerated
expansion. One of these is the primordial epoch of inflation and the second is the
current epoch of dark energy domination. Inflationary and dark energy epochs cor-
respond to de Sitter like epochs and a lot of information about these epochs can be
obtained by studying quantized fields on de Sitter.

The de Sitter geometry has two conformal boundaries which lie along the time
direction. These are referred to as the early-time boundary, denoted by I−, and
the late-time boundary, I+. Figure 1(left) shows these boundaries in light blue, for
the conformal diagram of de Sitter in global coordinates. We will carry out our
calculations in the so called planar patch or Poincare patch coordinates where the
metric is

ds2planar = −dt2 + e2Htdx2 = −dη2 + dx2

H 2|η|2 . (2)

As shown in Fig. 1(right) these coordinates have access to the entire late-time bound-
ary that we are interested in while they give access to only a single point from the
early-time boundary. We will work in terms of conformal time η which runs in the
range η ∈ (−∞, 0], and the late-time limit corresponds to the limit η → 0. This
coordinate system is the one used in inflationary studies, where late-time correlation
functions [4], mainly two-point and three-point functions, can be used to put observa-
tional constraints on inflationary interactions with comparison to cosmic microwave
background radiation observations [5].
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Fig. 1 Conformal diagrams for de Sitter: in global coordinates (left), in planar coordinates (right)

The isometries of d + 1 dimensional de Sitter geometry correspond to the group
SO(d + 1, 1), also referred to as the de Sitter group. The representation theory of
SO(d + 1, 1) is well established in the mathematics literature initiating from the
works of Harish-Chandra. Here we will follow the monograph [3]. A recent short
review can also be found in [8].

The de Sitter group is composed of linear transformations on the real d + 2 dimen-
sional vector space that leave the following quadratic form invariant

ξ2 = ξγξ = ξ21 + · · · + ξ2d+1 − ξ20 (3)

where γ denotes the metric on flat d + 2 dimensional spacetime with the nonzero
components being γi i = · · · = γd+1d+1 = −γ00 = 1. The de Sitter transformations
include dilatations with the corresponding subgroup denoted by A = SO(1, 1), spa-
tial rotations M = SO(d), spatial translations Ñ and special conformal transforma-
tions N . Moreover there is the maximally compact subgroup K = SO(d + 1). An
important feature of de Sitter spacetime that sets it apart from the other two max-
imally symmetric spacetimes, Minkowski and Anti de Sitter, is that the de Sitter
group does not involve global time translations.

The representations of the de Sitter group are induced by the parabolic subgroup
P = N AM . Under a dilatationwhere x → λx an operator among the representations
of the de Sitter group transform as

O(λx) = λ−ΔO(x). (4)

The exponent Δ is called the scaling dimension and for the group SO(d + 1, 1) it
has the following form

Δ = d

2
+ c (5)
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where c is called the scaling weight and it determines which category a given
representation belongs to.

The eigenvalues of the quadratic Casimir operator are C = l(l + d − 2) + c2 − d2

4
and therefore the representations are labeled by spin l the label for representations
of M = SO(d) and the scaling weight c, denoted in a compact way as χ = [l, c].
The unitary representations of the de Sitter group fall under four different categories
where for each category the range of c and the well defined inner product is different.
Representations with purely imaginary scaling weight belong to the principal series
representations, these are irreducible and have a straightforward inner product. Three
different categories span unitary representations with real scaling weight, the irre-
ducible complementary series and discrete series representations and the reducible
exceptional series representations. Thewell defined inner product involves intertwin-
ing operators for these categories. The range of c and the accompanying intertwining
operator in the inner product differs for each of these categories. We refer the reader
to [3] for the definitions of appropriate intertwining operators and to [6] for a sum-
mary and a practical use of the intertwining operator in the case of complementary
series representations.

3 The Late-Time Operators

We will introduce late-time operators that correspond to free quantized scalar fields
on de Sitter following [6]. Our assumption is that the scalar field does not effect the
geometry, the metric is fixed to be the de Sitter metric. A free, massive scalar field
on de Sitter has the following action

S =
∫

ddxdη
√−g

[
−1

2
gμν∂μφ∂νφ − 1

2
m2φ2

]
(6)

where g denotes the determinant of the metric.
For convenience wewill consider the fourier modes of the field, φk(η), in momen-

tum space k. For a quantized field, the mode decomposition involves annihilation,
ak, and creation, a†k, operators. These operators obey the following nontrivial com-
mutation relation [

ak, a
†
k′

]
= (2π)dδ(d)(k − k′). (7)

The annihilation operator annihilates the vacuum state |0〉, while the creation operator
with a given momentum acting on the vacuum state creates a state with the specified
momentum

ak|0〉 = 0, a†k|0〉 = |k〉. (8)

The states created in this way are normalized with respect to
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〈k|k′〉 = (2π)dδ(d)(k − k′). (9)

With these operators the scalar field is decomposed into its fourier modes as follows

φ(x, η) =
∫

ddk

(2π)d

[
φk(η)ak + φ∗

k(η)a†−k

]
eik·x, (10)

where ∗ denotes complex conjugation and φ(x, η) is a real field while the modes
φk(η) are complex valued.

We demand Bunch-Davies initial conditions [1], which require the field to behave
as if it was onMinkowski at early times. Themode functions that satisfy the equations
of motion with these initial conditions are given in terms of Hankel functions. The
solutions split into two branches depending on how heavy the mass of the field is
with respect to the Hubble scale as follows

f or m <
d

2
H : φL

k (η) = |η| d
2 H (1)

ν (k|η|), where ν2 = d2

4
− m2

H 2
(11)

we call these as light fields, and

f or m >
d

2
H : φH

k (η) = |η| d
2 e−ρπ/2H (1)

iρ (k|η|), where ρ2 = m2

H 2
− d2

4
(12)

we call these as heavy fields. Our notation is such that ν and ρ are real and positive.
In the late-time limit, as η → 0, the field goes to

lim
η→0

φ(x, η) =
∫

ddk

(2π)d

[
|η| d

2 −μpαp(k) + |η| d
2 +μpβ p(k)

]
eik·x (13)

where the label p indicates light and heavy p = L , H and μL = ν, μH = iρ. The
operators αp(k) and β p(k) are the late-time operators. They are build out of annihi-
lation and creation operators. Moreover the late-time operator αp(k) has momentum
dependence k−μp while β p(k) has kμp . Looking at the scaling dimensions of these
operators we recognize that their scaling dimensions match the format of scaling
dimensions for the unitary irreducible representations of the de Sitter group with
scaling weights c = ±μp [6], with plus sign for the β operator, minus for the α
operator.

We can define states by acting on the vacuum state with the late-time operators,
such as

|αp(k)〉 ≡ N pαp(k)|0〉 (14)

whereN p is the normalization to be determined and the same argument follows for
β p(k). Such states build from light late-time operators with c = ±ν are normalizable
with respect to the complementary series inner product in the range 0 < m < d

2 H
while such states build from any of the heavy late-time operators with c = ±iρ are
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normalizable with respect to the principal series inner product. From these observa-
tions we can identify our normalized heavy late-time operators

αH
N(k) = √

ρπ sinh(ρπ)
[
−i Γ (iρ)

π
e−ρπak + 1

sinh(ρπ)Γ (1−iρ)
a†−k

] (
k
2

)−iρ
(15)

βH
N(k) = √

ρπ sinh(ρπ)
[

eρπ

sinh(ρπ)Γ (1+iρ)
ak + i Γ (−iρ)

π
a†−k

] (
k
2

)iρ
(16)

as the principal series representations of the de Sitter group, and the normalized
light late-time operators

αL
N(k) = −i2ν/2

[
ak − a†−k

]
k−ν, (17)

βL
N(k) = 2−ν/2

[
1 + i cot(πν)

1 − i cot(πν)
ak + a†−k

]
kν (18)

as the complementary series representations of the de Sitter group [6, 7]. Theα
p
N and

β
p
N have nontrivial commutation relations inherited from the commutation relation

of the annihilation and creation operators.

4 The Late-Time Two-Point Functions

At this point it is straight forward to calculate the two-point functions defined as
〈O1(k)O2(k)〉 ≡ 〈0|O1(k)O2(k)|0〉. We obtain the following list [7]

〈αL
N(k)αL

N(k′)〉 = 2νk−2ν(2π)dδ(d)(k + k′),

〈βL
N(k)βL

N(k′)〉 = k2ν

2ν

1 + i cot(πν)

1 − i cot(πν)
(2π)dδ(d)(k + k′), (19)

〈αL
N(k)βL

N(k′)〉 = −i(2π)dδ(d)(k + k′), 〈βL
N(k)αL

N(k′)〉 =
= i

1 + i cot(πν)

1 − i cot(πν)
(2π)dδ(d)(k + k′),

for the complementary series two-point functions, while for the principal series

〈αH
N(k)αH

N(k′)〉 = −Γ (1 + iρ)

Γ (1 − iρ)
e−ρπ(2π)dδ(d)(k + k′)

(
k

2

)−2iρ

,

〈βH
N(k)βH

N(k′)〉 = iρ
Γ (−iρ)

Γ (1 + iρ)
eρπ(2π)dδ(d)(k + k′)

(
k

2

)2iρ

(20)

〈αH
N(k)βH

N(k′)〉 = e−ρπ(2π)dδ(d)(k + k′),
〈βH

N(k)αH
N(k′)〉 = eρπ(2π)dδ(d)(k + k′).



Principal and Complementary Series Representations at the Late-Time … 275

In [7] how these two-point functions contribute to field and conjugate momentum
two-point functions at late-times which are related to observable quantities are dis-
cussed, in canonical and wavefunction quantization.

With the list of two-point functions in (19) and (20) we hope to provide further
insight on the structure of two-point functions in momentum space in general dimen-
sions, in the presence of SO(d + 1, 1) invariance, in a way that make the cases of
principal and complementary series representations comparable to each other start-
ing from the case of scalar operators. To do so we have grounded our analysis on how
the unitary irreducible representations present themselves at the late-time boundary
of de Sitter spacetime.

Our work has some overlap with other studies which we now discuss. In [10],
the authors consider a different construction to obtain principal series operators at
the early time boundary of dS3 and analyse their two-point function at large sepa-
ration in terms of cluster decomposition axiom of Euclidean quantum field theory
based on [11]. Another example is [12] that focusses on two dimensions, where the
structure of principal series two-point functions in the presence of SL(2, R) sym-
metries, which include representations of SO(2, 1), is analysed in position space.
Also working in two dimensions, [13] provides a holographic toy model, a quantum
mechanical model that captures the principal series representations. While we con-
sidered operators at the late-time boundary in momentum space that correspond to
unitary irreducible representations of SO(d + 1, 1), [14] considers the construction
of local bulk fields based on the representation theory by incorporating the properties
of the representations into the definition of annihilation and creation operators.
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Bulk Reconstruction from a Scalar CFT
at the Boundary by the Smearing with
the Flow Equation

Sinya Aoki, Janos Balog, Tetsuya Onogi, and Shuichi Yokoyama

Abstract Weexplain our proposal for an alternative bulk reconstruction ofAdS/CFT
correspondences from a scalar field by the flow method. By smearing and then
normalizing a primary field in a d dimensional CFT,we construct a bulk field, through
which a d + 1 dimensional AdS space emerges. The content of this proceeding is
based on a talk given by S. Aoki at the 14th International Workshop “Lie Theory and
its Applications in Physics" (LT-14), 21-25 June 2021, Sofia, Bulgaria (on-line).

Keywords AdS/CFT correspondence · Bulk reconstruction · Flow equation

1 Introduction

The AdS/CFT correspondence [1] is a key to understand a holographic nature of
gravity and may give a hint for quantum gravity. Although plenty of circumstance
evidences exist, an essential mechanism why AdS/CFT correspondence realizes has
not been fully established yet. While the correspondence may be explained by the
string theory, an alternative but more universal mechanism might exist.
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One of key questions is how an additional dimension of the AdS emerges from
the CFT at the boundary. One approach, called the HKLL bulk reconstruction [2, 3],
gives a relation between a bulk local operator in the AdS and CFT operators at the
boundary with Lorentzian signature.

Recently we have proposed an alternative bulk reconstruction by the so-called
flow method by the path-integral with Euclidean signature [4–9], which is explained
in this talk.

2 Bulk Reconstruction by the Flow

2.1 From Conformal Symmetry to Bulk Symmetry

Let us consider a non-singlet primary field of a conformal field theory (CFT) on a d
dimensional Euclidean space, whose 2-pt function behaves as

〈ϕa(x)ϕb(y)〉 = δab
1

|x − y|2Δ , (1)

where Δ is a conformal dimension of ϕa and a, b . . . represent indices of a global
symmetry such as an O(N ) symmetry.

We first make one parameter extension of the field ϕa via the generalized flow
equation as

(−αη∂2
η + β∂η)φ

a(x, η) = �φa(x, η), φa(x, 0) = ϕa(x), (2)

where α, β are parameters to control this extension. We regard this process as the
smearing of the field ϕa , since the flow equation becomes the heat equation at α = 0.
We then normalize φa as

σ a(X) = φa(x, η)√〈φ(x, η) · φ(x, η)〉 ⇒ 〈σ(X) · σ(X)〉 = 1, (3)

where the average is taken for theCFT ind dimensions as in (1), X := (z, x) is ad + 1
dimensional coordinate with η := αz2/4, and F · G := ∑

a F
aGa . The smearing

followed by normalization may be interpreted as a kind of the renormalization group
transformation. The field σ a is expressed in the smeared form by the integral as

σ a(X) =
∫

dd y h(z, x − y)ϕa(y). (4)

The smearing kernel h(z, x) is determined by conditions that the conformal trans-
formation U to ϕa , given by
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Uϕa(y)U † := ϕ̃a(y) = JΔ(y)ϕa(ỹ), (5)

generates the coordinate transformation to σ a in d + 1 dimensions as

Uσ a(X)U † := σ̃ a(X) = σ a(X̃), (6)

where

1. translation ỹμ = yμ + aμ, J (y) = 1, x̃μ = xμ + a, z̃ = z,
2. rotation ỹμ = Ωμ

ν yν , J (y) = 1, x̃μ = Ωμ
νxν , z̃ = z,

3. dilatation ỹμ = λyμ, J (y) = λ, X̃ A = λX A,
4. inversion ỹμ = yμ/y2, J (y) = 1/y2, X̃ A = X A/X2,

which generate SO(d + 1, 1) transformation. Transformations 1–3 imply

σ a(X) = zΔ−d
∫

dd y �

(

1 + (x − y)2

z2

)

ϕa(y), (7)

where � is an arbitrary function. The transformation 4 to the CFT operator in the
above equation generates

zΔ−d
∫

dd y �

(

1 + (x − y)2

z2

)
ϕ(q = ỹ)

(y2)Δ
=

=
∫

ddq �

(

1 + (x − q̃)2

z2

)

(zq2)Δ−dϕ(q) =

=
(

z̃

X̃2

)Δ−d ∫

ddq �

(
X̃2

q2

[

1 + (x̃ − q)2

z̃2

])

(q2)Δ−dϕ(q), (8)

while the bulk operator transforms as

σ a(X̃) = z̃Δ−d
∫

ddq �

(

1 + (x̃ − q)2

z̃2

)

ϕ(q). (9)

Thus the symmetry implies �(u) = �0uΔ−d , which finally gives

σ a(X) =
∫

dd y h(z, x − y)ϕa(y), h(z, x) = �0

(
z

z2 + x2

)d−Δ

, (10)

where Δ < d is necessary for this expression to be regarded as a smearing. After the
Wick rotation, this smearing kernel is identical to the one in the HKLL [3], though
Δ > d − 1 is required for the HKLL.
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2.2 Some properties

It is easy to see the kernel h satisfies (�AdS − m2)h(X) = 0, where�AdS := z2(∂2
z +

�) − (d − 1)z∂z andm2R2 := (Δ − d)Δwith some length scale R, which turns out
to be the AdS radius. Furthermore, h(X) corresponds to a solution to the flow Eq. (2)
with β/α = (d − 2)/2 − Δ. As a result, σ a(X) satisfies equations of motion for a
scalar field in the Euclidean AdS space as

(�AdS − m2)σ a(X) = 0. (11)

Since, for Δ < d/2,

lim
z→0

zd−2Δ

(x2 + z2)d−Δ
∼

{
zd−2Δ → 0, x �= 0,
z−d → ∞, x = 0,

(12)

∫

dd x
zd−2Δ

(x2 + z2)d−Δ
= πd/2Γ (d/2 − Δ)

Γ (d − Δ)
:= 1

Λ
, (13)

we can write

lim
z→0

zd−2Δ

(x2 + z2)d−Δ
= δ(d)(x)

Λ
. (14)

Thus the smearing function satisfies

lim
z→0

h(z, x) = �0

Λ
zΔδ(d)(x), (15)

which leads to a BDHM relation [10] as

lim
z→0

z−Δσ a(X) = �0

Λ
ϕa(x). (16)

Using a singlet bulk composite scalar field S(x) := ∑
a σ a(X)σ a(X), we can

define a bulk to boundary correlation function as

FO(X, y) := 〈S(X)O(y)〉 (17)

where O(y) is an arbitrary singlet scalar primary field with a conformal dimen-
sion ΔO at the boundary. A combination of the conformal symmetry and the bulk
symmetry in the previous subsection leads to

FO(X, y) = CO

(
z

(x − y)2 + z2

)ΔO

, (18)
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which is exact in the sense that only unknown constant CO depends on the detail of
the boundaryCFT such as coupling constants, and reproduces the standard prediction
by the AdS/CFT correspondence. Furthermore, F satisfies

(�X
ADS − m2

O)F(X, y) = 0, m2
O := ΔO(ΔO − d)

R2
. (19)

3 Symmetries and Bulk Geometry

In this section we investigate what kind of space the d + 1 dimensional coordinate
X describes.

3.1 Constraints to a Generic Correlation Function

Let us consider a generic correlation function, which contains m bulk fields and s
boundary fields, given by

〈
m∏

i=1

Gi
Ai
1A

i
2···Ai

ni

(Xi )

s∏

j=1

O j

μ
j
1μ

j
2 ···μ j

l j

(y j )

〉

, (20)

where Ai
1A

i
2 · · · Ai

ni is a tensor index of a bulk operator Gi , while μ
j
1μ

j
2 · · · μ j

l j
is

that for a boundary operator O j . The conformal symmetry at the boundary with the
associated coordinate transformation in the bulk gives an exact quantum relation as

〈
m∏

i=1

Gi
Ai
1A

i
2···Ai

ni

(X̃i )

s∏

j=1

O j

μ
j
1μ

j
2 ···μ j

l j

(ỹ j )

〉

=
m∏

i=1

∂X
Bi
1

I

∂ X̃
Ai
1

I

∂X
Bi
2

I

∂ X̃
Ai
2

I

· · · ∂X
Bi
ni

I

∂ X̃
Ai
ni

I

×
s∏

j=1

J (y j )
−Δ j

∂y
ν
j
1
j

∂ ỹ
μ

j
1

j

∂y
ν
j
2
j

∂ ỹ
μ

j
2

j

· · · ∂y
ν
j
l j

j

∂ ỹ
μ

j
l j

j

〈
m∏

i=1

Gi
Bi
1B

i
2···Bi

ni

(Xi )

s∏

j=1

O j

ν
j
1 ν

j
2 ···ν j

l j

(y j )

〉

.(21)

3.2 Metric Field

We define the bulk metric field as [11]

gAB(X) := �2
N∑

a=1

∂Aσ
a(X)∂Bσ a(X), (22)
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which is the simplest among singlet and symmetric 2nd rank tensors in the bulk,
where � is some length scale. It is worth noting that this metric field is finite without
ultra-violate (UV) divergence thank to the smearing.

The metric becomes classical in the large N limit due to the large N factorization
as [11]

〈gAB(X1)gCD(X2)〉 = 〈gAB(X1)〉〈gCD(X2)〉 + O(1/N ), (23)

which make a vacuum expectation value (VEV) of the quantum Einstein tensor GAB

classical:

〈GAB(gCD)〉 = GAB(〈gCD〉) + O(1/N ). (24)

A classical geometry appears after quantum averages.
The VEV of the metric can be interpreted as the (Bures) information metric [4],

which defines a distance between (mixed state) density matrices ρ and ρ + dρ as

d2(ρ, ρ + dρ) := 1

2
tr[dρ G], (25)

where G satisfies ρG + Gρ = dρ. In our case, ρ is given by a mixed state as

ρ(X) :=
N∑

a=1

|σ a(X)〉〈σ a(X)|, (26)

which represents N entangled pairs, where the inner product between states is defined
by 〈σ a(X)|σ b(Y )〉 = δab〈σ(X) · σ(Y )〉/N . Using this definition, we obtain

�2d2(ρ, ρ + dρ) = 〈gAB(X)〉dX AdX B . (27)

Thus the VEV of the metric field gAB(X) defines a distance in the bulk space through
d2(ρ, ρ + dρ) in unit of �2.

3.3 VEV of the Metric Field

Let us calculate the VEV of the metric field. The constraint (21) applied to gAB leads
to

〈0|gAB(X)|0〉 = R2 δAB

z2
, (28)

which describes the AdS space in the Poincare coordinate, where an unknown con-
stant R is the radius of the AdS space. The explicit form of the 2-pt function of
CFT in (1) gives R2 = �2Δ(d − Δ)/(d + 1), which is positive since Δ < d/2. The
boundary CFT generates the bulkAdS, and the bulk symmetry in the previous section
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is equal to the AdS isometry on 〈0|gAB(X)|0〉. Thus the AdS/CFT correspondence
is realized by the flow construction.

3.4 Scalar Excited State Contribution

We finally consider how excited states modify the AdS structure described by the
VEV of themetric field. As the simplest example, we calculate the VEV of themetric
in the presence of the source J coupled to the singlet CFT scalar field at the origin
in the radial quantization as

ḡAB(X) = 〈0|gAB(X)eJO(0)|0〉 = 〈0|gAB(X)|0〉 + J 〈0|gAB(X)|S〉 + O(J 2),

(29)
where we need to calculate

〈0|gAB(X)|S〉 = lim
y2→0

GAB(X, y), GAB(X, y) := 〈0|gAB(X)O(y)|0〉. (30)

The constraint (21) to GAB reads

J (y)ΔOGAB(X, y) = ∂ X̃C

∂X A

∂ X̃ D

∂XB
GCD(X̃ , ỹ), (31)

which leads to

GAB(X, y) = TΔO (X, y)

[

a1
δAB

z2
+ a2

TA(X, y)TB(X, y)

T 2(X, y)

]

, (32)

where a1 and a2 are unknown constants, and

T (X, y) := z

(x − y)2 + z2
, TA(X, y) := ∂AT (X, y). (33)

We thus obtain

ḡAB(X) = δAB

z2

[

R2 + a1 J

(
z

x2 + z2

)ΔO
]

+ a2 JTATB

(
z

x2 + z2

)ΔO−2

(34)

at the 1st order in J , where

Tz := x2 − z2

(x2 + z2)2
, Tμ := − 2xμz

(x2 + z2)2
. (35)

This metric describes the asymptotically AdS space since
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ḡAB(X) = R2 δAB

z2
[
1 + O

(
zΔO

)]
, (36)

as z → 0.

4 Summary and Discussion

Smearing and normalizing the non-singlet primary field ϕa with Δ < d/2 at the
boundary give the bulk field σ a . Through this process, the conformal symmetry
turns into the bulk coordinate transformation, which leads to the expected behavior
for the bulk to boundary correlation function.As theVEVof themetric field describes
the AdS space, the AdS/CFT correspondence is naturally realized by our method.

As one of future problems, let us consider a bulk to bulk correlation function for
the scalar, which is evaluated as

〈S(X1)S(X2)〉 = 1 + 2

N
G2(X1, X2) + 〈S(X1)S(X2)〉c, (37)

where

G(X1, X2) = 2F1

(
Δ

2
,
d − Δ

2
; d + 1

2
; 1 − R2

12

4

)

, R12 := (x1 − x2)2 + z21 + z22
z1z2

,

(38)
which is non-singular at X1 = X2. Since the connected part given by the last term is
absent for the free CFT, the corresponding bulk theory is non-local (stringy). Thus
the interaction in the CFT is required to recover the locality of the bulk theory.
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Building Momentum Kernel
from Shapovalov Form

Yihong Wang and Chih-Hao Fu

Abstract In this text, we consider structures and physical objects from scattering
amplitudes in the framework of a Lie algebra with space-time momentum as its
simple roots. We identify the momentum kernel for scattering amplitudes with the
Shapovalov form on basis vectors of the Verma module, at both the classical and
quantum level. We then take a step forward and show how the Feynman diagrams
emerges from the Shapovalov dual of the Verma module basis vectors.

Keywords Scattering amplitudes · Colour-kinematics duality · Shapovalov form ·
Planar binary tree · Kawai-Lewellen-tye relations · Feynman propagator

1 Introduction

Although seeking an alternative theoretical construct that can at the same time repro-
duces field theory amplitudes was one of the initial motive and achievement for string
theory, the study of respective amplitudes of string andfield theory later picked up dif-
ferent emphasis. While the field theory amplitude calculations are nowadays largely
driven by the demand for theoretical predictions directly comparable with data from
particle colliders, the study of string amplitudes, besides its original scope to explore
possible consistent theories, later picked up more emphasis in the CFT and quantum
algebra context [4–6], viewing string amplitudes as conformal blocks. The two dis-
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ciplines reunited in recent years [19] and it has become clear to physicists that some
of the observable features of field theory amplitudes are actually linked to properties
which were previously known only for string amplitudes such as the KLT relation
between open and closed string amplitudes [12, 19] and Plahte identity [18]. In
the point particle limit KLT relation reduces to the double copy relation connecting
Yang-Mills and gravity amplitudes [2, 3]

AGR = (−1)n
∑

γ, β∈Sn−2

ÃY M (n, γ (n − 1), ..γ (2), 1) S[γ |β] (1)

AYM (1, β(2), .., β(n − 1), n) /
∑

1≤i< j≤n

2ki · k j ,

whereas the Plahte identity for open string amplitudes reduces to Bern-Carrasco-
Johansson (BCJ) relation for Yang-Mills amplitudes [1], which in turn was under-
stood to be equivalent to the fact that the amplitudes are expressible as sum of terms
indexed by binary trees. In this paper we shall denote the set of full binary trees with
leaves {1, 2, ..., n − 1} as BT ({1, 2, ..., n − 1}), so that according to the assumption
of BCJ, the Yang-Mills amplitude is expressible as the following sum.

AYM (1, 2, ..., n) =
∑

Γ ∈BT ({1,2,...,n−1})

N (Γ )

p (Γ )
, (2)

where p (Γ ) is the Feynman propagator determined by the corresponding tree dia-
gram Γ , namely the associative structure of its leaves. The numerator factor N (Γ ),
known to amplitude theorists as the BCJ numerator, is assumed to carry an addi-
tional algebraic structure: By mapping all the leaves in binary tree Γ to generators
of a Lie algebra and non-leaf nodes to Lie-brackets, one can construct a Lie alge-
bra element that naturally associates with Γ . The numerator N is then a map that
takes the corresponding Lie algebra element to a real number, linearly homomorphic
in the sense that if three binary trees Γi , i = 1, 2, 3 are related by cyclic permu-
tations of sub-trees (so that they are respectively associated to algebra elements
of the form [... [[O1, O2] , O3] ...] , [... [[O2, O3] , O1] ...] , [... [[O3, O1] , O2] ...] ),
then their corresponding BCJ numerators are subject to the constraint imposed by
Jacobi identity.

N (Γ1) + N (Γ2) + N (Γ3) = 0 (3)

We would like to point out that although it is sometimes more efficient to exploit the
above Jacobi identity to translate amplitude as a sum of basis numerators N (Γ ), the
original expression (2), as it was demonstrated in [7, 8, 16], is especially convenient
for algebraic discussion, as it manifest the correspondence between numerators and
binary trees, which naturally characterises the recursive and combinatoric property.

From string theory perspective, the string lift of the BCJ numerators can be under-
stood as conformal blocks, while it was shown in previous work [9] that the screen-
ing operators within naturally define a quantum algebra with the external particle
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momenta identified as its roots. We feel that it is then natural to conjecture that
objects in the settings of BCJ duality such as propagator matrix and momentum ker-
nel can be equally well translated to algebraic terms, in particular that when taking
point particle limit, the momentum kernel should reduce to purely a Lie algebra
object. In this text we confirm this thinking by showing that the momentum ker-
nel S[γ |β] indeed derives from Shapovalov form of the corresponding Lie algebra.
Furthermore, we note that even though field theory scattering amplitudes arise from
seemingly independent definition as sum of Feynman diagrams, the fact that prop-
agator matrix is known to amplitude theorists as the inverse of momentum kernel
[13] suggests a similar algebra interpretation. In this text we show that the same
algebraic setting prescribes dual vectors as trivalent Feynman diagrams dressed with
propagators.

2 Conventions

The aim of this text is to introduce algebraic concept and method into the study of
field theory and string amplitudes. To avoid confusion and repetition, in this section
we assemble a prior summary of notations for the subjects in Lie algebra, quantum
algebra and graph theory we will encounter in the line of our discussion.

First of all, the positive and negative simple root generators in the Chevalley basis
for Lie algebra are denoted by Ei and Fi , and their Lie bracket, the elements in
Cartan sub-algebra are denoted by Hi . For simplicity we normalisation the roots to
αi · αi = 2. Under this normalisation for the roots, the generators are subject to the
following relations.

[
Fi , E j

] = δi j Hi ,
[
Hi , E j

] = αi · α j E j ,
[
Hi , Fj

] = −αi · α j Fj . (4)

TheShapovalov form 〈 , 〉 is defined recursively on aVermamoduleMλ (generated
by the vector vλ with weight equals λ).

〈Vλ, Vλ〉 = 1, 〈FiV1, V2〉 = 〈V1, EiV2〉. (5)

By definition the Shapovalov form is only nonzero between two vector of the same
weight. In this text we usually discuss Shapovalov in the subspacewith a fixedweight∑n

i=1 αi + λ in Mλ, which is spanned by the basis
{
V

(∑n
i=1 αi , σ

)∣∣ σ ∈ Sn
}
, where

V
(∑n

i=1 αi , σ
)
is our shorthand notation for the following vector.

V

(
n∑

i=1

αi , σ

)
=

(∏
Fσ(i)

)
Vλ = Fσ(1)Fσ(2)...Fσ(n)Vλ. (6)

For quantum algebra, we use lower case letters for the generators {ei , fi } and the
module vectors. And we use the subscript q to emphasize objects defined in the
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context of a quantum algebra, for example the Vermamodule generated by the vector
vλ is denoted by Mλ,q and the Shapovalov form is denoted by 〈 , 〉q .

We also follow the frequently used abbreviation expression in quantum group
literature

[z]q = qz − q−z

q − q−1
(7)

to write the defining relations between the generators {ei , fi }

qhαi eα j q
−hαi = qαi ·α j eαi , qhαi fα j q

−hαi = qαi ·α j fαi , (8)
[
eαi , e−α j

] = δαiα j

[
hαi

]
q .

The Shapovalov for quantum algebra 〈 , 〉q is defined on the Verma module Mλ,q

by
〈vλ, vλ〉q = 1, 〈 fiv1, v2〉q = 〈v1, eiv2〉q . (9)

The weight
∑n

i=1 αi + λ subspace of Mλ,q is spanned by the set of vectors{
fσ(1) fσ(2)... fσ(n)

∣∣ σ ∈ Sn
}
. In later discussion we will use the notation

v
(∑n

i=1 αi + λ, σ
)
for the vectors of the form

(∏n
i=1 fσ(i)

)
vλ.

Note that we have not include the non-simple root vector in the definition for Lie
algebra, as in this text we will write them as iterated Lie brackets of the genera-
tors. For an ordered set {E1, E2, ..., En} there are Cn−1 (Catalan number) different
ways to parenthesise and construct a Lie algebra element with root

∑n
i=1 αn . This

set of algebra elements is in bijection with the set of full binary trees with leaves
{1, 2, ..., n}, which we will denote by BT ({1, 2, ..., n}) throughout this text. One
can translate an algebraic element in the form of an iteration of n − 1 Lie brackets
on n generators to a full binary tree by listing n leaves in the order of the generators
and connecting each pair of leaves or sub-trees inside one Lie bracket by a node. By
the same translation, one can read off an algebra element from a full binary tree. For
example, the binary tree corresponds to [[[E5, E4] , E3] , [E2, E1]] is :

Additionally, by identifying Vλ as the last leaf l0, and omitting all bracket nesting
to it, one can map binary trees to vectors in Mλ, for example, the following binary
tree corresponds to [[E5, E4] , E3] [E2, E1] Vλ.
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In the discussion that follows for dual vectors we will need the map from binary
trees to algebra elements and the module vectorsO : BT �→ L and V : BT �→ Mλ,
where BT is the set of all binary trees.

Moreover for simplicity let us introduce some operations on the binary tree. First of
all, we will denote the ordered set of all leaves of Γ as 	 (Γ ), and we will define
deletion \ the insertion ∧ and the joint action ∨ on binary trees: We define Γ \A as
a map from a binary tree Γ and a subset of its leaves to a smaller tree by removing
leaves in the set A, for example for A = {2, 4} and Γ the following binary tree

Γ \A is the following tree

We define the insertion n ∧ Γ as a map from a binary tree and new leaf n to the set
of binary trees with n as their first leaf and will reduce to Γ after deleting the leaf
{n}, that is n ∧ Γ = {

Γ ′∣∣Γ ′\ {n} = Γ, Γ ′ ∈ BT ({n} ∪ 	 (Γ ))
}
. The joint action

Γ1 ∨ Γ2 ∈ BT (	 (Γ1) ∪ 	 (Γ2)) is defined as the binary tree constructed by joining
Γ1 to the left and Γ2 to the right of the root node.

Finally there are two frequently used physical variables associated with the binary
trees that will emerge in later discussions, theMandelstamvariables and the Feynman
propagators. The Mandelstam variables s (A) are defined for a set of root vectors,
s (A) = ∑

Ei ,E j∈A αi · α j . For an edge e of a binary tree, the Mandelstam variable
naturally associate to it is s (	 (e)) where 	 (e) is the set of leaves connecting to the
upper node of the edge e. Following this notation the Feynman propagator for a
binary tree Γ is understood as the product of all Mandelstam variables for its edges

p (Γ ) =
∏

e∈Γ

s (	 (e)) (10)
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3 The Relation Between Momentum Kernel
and Shapovalov Form

The momentum kernel S [σ |τ ] [2, 3] appears as the inner product when pairing two
sets of Yang-Mills amplitudes into a gravity amplitude [12], as well as the transition
matrix in the linear transformation from amplitudes to the BCJ numerators [13]. It
has the following explicit formula as a function of a set of space-time momentum
{ki } , two permutations acting on the set σ and τ , and a reference momentum p:

S [ p, σ (1) , . . . , σ (n)| p, τ (1) , . . . , τ (n)]

=
n∏

t=1

(
p · kσ(t) +

k∑

q>t

θ (σ (t) , σ (q)) kσ(t) · kσ(q)

)
, (11)

where θ (σ (t) , σ (q)) is defined as:

θ (σ (t) , σ (q)) =
{
1, (σ (t) − σ (q))

(
στ−1 (t) − στ−1 (q)

)
< 0

0, (σ (t) − σ (q))
(
στ−1 (t) − στ−1 (q)

)
> 0

. (12)

On the other hand, according to our previous work [9], the string lift of momentum
kernel is the transition coefficient matrix between two basis of state vectors gener-
ated by screening operators with different choices of integration contour. The fact
that the momentum kernel is expressible as a transition matrix implies the that it
might be constructible as a bilinear form between two vectors in a module over a
free Lie algebra with simple roots equal to the space-time momentum, and one of
the two vectors should be of the form Fτ(1)Fτ(2)...Fτ(n−1)Vk1 . Indeed it was shown
by Frost, Mafra and Mason [7, 8] that S [σ |τ ] can be written as a straightforward
Kronecker delta bilinear form imposing on Fτ(1)Fτ(2)...Fτ(n−1)Vk1 and another vector
constructed recursively by the S-map defined in [14]. We in the following discussion
seek an alternative approach by replacing the Kronecker delta by Shapovalov form
and evaluating it on Fτ(1)Fτ(2)...Fτ(n−1)Vλ with another vector of the same weight,
which is straightforward for vectors that are images of a binary tree under the map
V : BT �→ Mλ. For example, for any binary tree Γ with leaves {n, n − 1, ...1, 0},
its Shapovalov with the basis vector V

(∑n
i=1 αi + λ, I

)
can be calculated recur-

sively by flipping Fn in V
(∑n

i=1 αi + λ, I
)
to contract with V (Γ ). The result would

be the product of the Shapovalov between two lower weight vectors and the factor
αn · (

αAd jacent (Γ, n)
)
, where

(
αAd jacent (Γ, n)

)
is the sum of roots of leaves on the

subtree on Γ that is directly connecting to the same node with the leaf n (with a
negative sign if its on the left of n). Therefore by iteration, the Shapovalov form is
equal to the product of factors from the flipping of each Fi in V

(∑n
i=1 αi + λ, I

)
.
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〈
V (Γ ) , V

(
n∑

i=1

αi + λ, I

)〉

= 〈V (Γ ) , Fn . . . F2F1Vλ〉

= αn · (
αAd jacent (Γ, n)

)
〈
V (Γ \ {n}) , V

(
n−2∑

i=1

αi , I

)〉

=
n∏

i=0

αn−i · (
αAd jacent (Γ \ {n, n − 1, ..., n − i + 1} , n − i)

)
. (13)

With this pattern in (13) one can compare it to the formula of the momentum kernel
and construct a tree by matching sub-tree for each factor, which turns out to be a
nested tree corresponding to the vector V

(∑n
i=1 αi + λ, σ

)
. We now have the pair of

vectors which will reproduce S [σ |τ ] in (11) up to the identification λ = p, αl = kl ,

〈V
(

n∑

i=1

αi , σ

)
, V

(
n∑

i=1

αi , τ

)
〉 =

n−2∏

i=0

ατ(n−i) ·

⎛

⎜⎜⎝λ +
∑

τ−1σ( j)<n−i,
τ−1( j)<n−i

α j

⎞

⎟⎟⎠ . (14)

Moreover the q-deformed version of (14) can be immediately identified as an alge-
braic construction for the string KLT kernel defined in [2, 3]

Sα′ [σ (1) , . . . , σ (n)| τ (1) , . . . , τ (n)]

= (
πα′/2

)−n
n∏

t=1

sin

(
πα′

(
p · kσ(t) +

k∑

q>t

θ (σ (t) , σ (q)) kσ(t) · kσ(q)

))
, (15)

where θ (σ (t) , σ (q)) is the same function as in the momentum kernel formula
defined in (12). It is straightforward to verify that the Shapovalov form
〈v (∑n

i=1 αi , σ
)
, v

(∑n
i=1 αi , I

)〉q is exactly the q-deformation of (14), which can

be explicitly written as
∏n−2

i=0

[
αn−i ·

(
λ + ∑

σ( j)<n−i, j<n−i α j

)]

q
. Upon identify-

ing the weights and roots as space-time momentum λ = p, αl = kl , q = eα′π i/2, it

matches (15) up to an overall factor
(

2i
eα′π i/2−e−α′π i/2

)n

4 Explaining Feynman Propagators as Shapovalov Dual
Vectors

As we mentioned earlier, the momentum kernel S [σ |τ ] appears as the transition
matrix from amplitudes to BCJ numerators. Now that we have shown that S [σ |τ ]
is in fact the Shapovalov form 〈V (∑n

i=1 αi + λ, σ
)
, V

(∑n
i=1 αi+ λ, τ)〉, it is rea-
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sonable to assume there is a way to identify the natural transition matrix from BCJ
numerators to amplitudes, namely the Feynman propagators, with the Shapovalov
dual of the vectors V

(∑n
i=1 αi , σ

)
. As it turns out, theφ3-theory Feynman diagrams,

or the binary trees with ordered leaves dressed with Feynman propagators, naturally
emerges as coefficients in the dual vector V ∗ (∑n

i=1 αi , σ
)
:

V ∗
(

n∑

i=1

αi + λ, σ

)
= (

Fσ(n) . . . Fσ(2)Fσ(1)Vλ

)∗

=
∑

Γ ∈BT ({σ(n),...,σ (2),σ (1),0})

V (Γ )

p (Γ )
. (16)

This formula for the Shapovalov dual vectors can be proved inductively. As for a
generic configuration for the roots {αi } and weight λ , the defining property for
Shapovalov form (5) combined with the definition of the dual vectors induces a
recursion relation

EnV
∗
(

n−1∑

i=1

αi + λ, σ

)
= δσ(n),nV

(
n−1∑

i=1

αi + λ, σ |{1,...,n−1}

)∗
(17)

that uniquely determines the dual vectors. Therefore, showing (17) holds for (16) is
sufficient to prove (16) the correct explicit expression for the dual vector. In other
words, we need to show the result of acting El on the binary tree summation formula
(16) is either 0 or a summation of binary trees with one leaf fewer, depending on if
l coincide with the first leaf of the trees:

El

∑

Γ ∈BT ({n,n−1,...,2,1,0})

V (Γ )

p (Γ )
= δl,n

∑

Γ ∈BT ({n−1,...,2,1,0})

V (Γ )

p (Γ )
(18)

In fact this recursion relation (18) holds for individual binary trees, that is, for any
binary tree Γ ∈ BT ({n − 1, ..., 2, 1, 0}), the following identity holds.

El

∑

Γ ′∈n∧Γ

p
(
Γ ′)V (

Γ ′) = δl,n p (Γ )V (Γ ) (19)

which can be proved recursively as one can check if (19) and its algebra analog for
O (Γ ) are true for any binary tree Γ1 , then they hold for Γ1 ∨ Γ2 for any Γ2.

On the other hand, we observe BT ({n, ..., 2, 1, 0}) is the disjoint union of the sets
n ∧ Γ with Γ ∈ BT ({n − 1, ..., 2, 1, 0}). As obviously the intersection of two such
sets is the empty set for any two different binary trees Γ1 and Γ2, and the union of all
n ∧ Γ for all trees in BT ({n − 1, ..., 2, 1, 0}) is the set of all binary trees with leaves
{n, ..., 2, 1, 0}. Combining this observation for the set BT ({n, ..., 2, 1, 0}) with the
recursion for individual tree vectors (19), we have arrived at a proof for (18), and
furthermore for the claimed explicit expression for the dual vectors (16).
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By imposing Jacobi identities and writing Lie brackets as commutators in (16),
we can expand the dual vectors on the basis vectors V

(∑n
i=1 αi , σ

)
.

V ∗
(

n∑

i=1

αi , σ

)

=
∑

τ∈Sn

∑

Γ ∈BT ({τ(n),...,τ (2),τ (1),0})
∩BT ({σ(n),...,σ (2),σ (1),0})

p (Γ ) V

(
n∑

i=1

αi , τ

)
. (20)

The sum b (σ |τ) = ∑
Γ ∈BT ({τ(n),...,τ (2),τ (1),0})

∩BT ({σ(n),...,σ (2),σ (1),0})
p (Γ ) is known to amplitude theo-

rists as the φ3 Berends-Giele current, which was defined and proved recursively to
be the inverse of momentum kernel S [σ |τ ] in [15].

Finallywewant to remark on the Shapovalov dual vectors for the quantumalgebra.
Aswe showed at the end of last section, the waywe constructedmomentum kernel by
Shapovalov form extends naturally to the string KLT kernel. However, the quantum
version of the dual vector expression (16) involves some new structure and therefore
is not as straightforward. In (16) the sum is over all binary trees with ordered leaves,
which are the 0-faces of an associahedron. In principle, as suggested by [17], to get
the quantumanalog for (16), one need to sumover all faces of the associahedron. Each
of the face, when evaluating its Feynman propagator, can be treated as a (contracted)
binary tree, and the Mandelstam variable for each edge s (	 (e)) needs to be replaced
by its quantum counterpart qs(	(e)) − q−s(	(e)). We leave this part of the discussion to
future work.

5 Conclusion and Discussion

In this text we presented an explicit algebraic construction for the momentum kernel
aswell as its quantumparallel for stingKLTkernel.Although themomentumkernel is
structurallymuch simpler comparing to theBCJ numerators forYang-Mills theory, its
algebraic construction captures some of the key features of the algebraic construction
for it. For example, the numerators should be considered as a bilinear form evaluating
on module vectors implied by the string numerator formula. In fact, Yang-Mills BCJ
numerators can also be derived by evaluating Shapovalov form on the Vermamodule
of a Lie algebra with roots {εi , ki − εi }, where ki is the space time momentum and εi
is the polarisation vector for the i th particle [10, 11]. It could be interesting to look
into the detailed structure and physical interpretation of this algebraic construction
of Yang-Mills BCJ numerator.
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Action of w0 on V L for Orthogonal
and Exceptional Groups

Ilia Smilga

Abstract In this note, we present some results that partially answer the following
question. Let G be a simple real Lie group; what is the set of representations V of G
in which the longest element w0 of the restricted Weyl group W acts nontrivially on
the subspace V L of V formed by vectors that are invariant by L , the centralizer of
a maximal split torus of G? We give a conjectural answer to that question, as well
as the experimental results that back this conjecture, when G is either an orthogonal
group (real form of SOn(C) for some n) or an exceptional group.

Keywords Weyl group · Levi subgroup · Branching rules · Highest Weight ·
Representation theory

1 Basic Notations and Statement of Problem

Let G be a semisimple real Lie group, g its Lie algebra, gC the complexification of g.
We start by establishing the notations for some well-known objects related to g.

• We choose in g a Cartan subspace a (an abelian subalgebra of g whose elements
are diagonalizable over R and which is maximal for these properties).

• We choose in gC a Cartan subalgebra hC (an abelian subalgebra of gC whose
elements are diagonalizable and which is maximal for these properties) that con-
tains a.

• We denote L := ZG(a) the centralizer of a in G, l its Lie algebra.
• Let Δ be the set of roots of gC in (hC)∗. We shall identify (hC)∗ with hC via
the Killing form. We call h(R) the R-linear span of Δ; it is given by the formula
h(R) = a ⊕ ia⊥.

• We choose on h(R) a lexicographical ordering that “puts a first”, i.e. such that
every vector whose orthogonal projection onto a is positive is itself positive. We
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call Δ+ the set of roots in Δ that are positive with respect to this ordering, and we
let � = {α1, . . . , αr } be the set of simple roots in Δ+ (where r is the rank of gC).
Let �1, . . . ,�r be the corresponding fundamental weights.

• We introduce the dominant Weyl chamber

h+ := {X ∈ h | ∀i = 1, . . . , r, αi (X) ≥ 0} ,

and the dominant restricted Weyl chamber

a+ := h+ ∩ a.

• We introduce the restricted Weyl group W := NG(a)/ZG(a) of G. Then a+ is a
fundamental domain for the action ofW on a. We define the longest element of the
restricted Weyl group as the unique element w0 ∈ W such that w0(a

+) = −a+.
• For each dominant integral weight λ of gC (i.e. linear combination of the funda-
mental weights �i with nonnegative integer coefficients), we denote by Vλ the
irreducible representation of g with highest weight λ.

Our goal is to study the action of W , and more specifically of w0, on various
representations V of G. Note however that this action is ill-defined: indeed if we
want to see the abstract element w0 ∈ W = NG(a)/ZG(a) as the projection of some
concrete map w̃0 ∈ NG(a) ⊂ G, then w̃0 is defined only up to multiplication by an
element of ZG(a) = L , whose action on V can of course be nontrivial.

This naturally suggests the idea of restricting to L-invariant vectors. Given a
representation V of g, we denote

V L := {v ∈ V | ∀l ∈ L , l · v = v}

the L-invariant subspace of V : thenW , and in particularw0, has a well-defined action
on V L .

Our goal is to characterize, for a given semisimple real Lie group G, the represen-
tations V of G for which the action ofw0 on V L is nontrivial. This problem naturally
splits into two subproblems (see [11] for a more extended discussion):

Problem 1 Given a semisimple Lie algebra g and a dominant integral weight λ, give
a simple necessary and sufficient condition for having V l

λ 
= 0.

Problem 2 Given a simple Lie algebra g and a dominant integral weight λ, assuming
that V l

λ 
= 0, give: (i) a simple necessary and sufficient condition for having w0|V l
λ

=
± Id; (ii) a criterion to determine the actual sign.

In [14], we have already completely solved Problem 1. In [8], we have solved Prob-
lem 2 in the case where g is split. In this note, we shall present our recent work on
this latter problem.
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2 Background and Motivation

These two problems arose from the author’s work in geometry. The interest of this
particular algebraic property is that it furnishes a sufficient, and presumably neces-
sary, condition for another, geometric property of V . Namely, the author obtained
the following result:

Theorem 1 ([13]) Let G be a semisimple real Lie group, V a representation of G.
Suppose that the action of w0 on V L is nontrivial. Then there exists, in the affine
group G � V , a subgroup Γ whose linear part is Zariski-dense in G, which is free of
rank at least 2, and acts properly discontinuously on the affine space corresponding
to V .

He, and other people, also proved the converse statement in some special cases:

Theorem 2 The converse holds, for irreducible V :

• [12] if G is split, but not of type An (n ≥ 2), D2n+1 or E6;
• [12] if G is split, has one of these types, and V satisfies a very restrictive additional
assumption (see [12] for the precise statement);

• [2] if G = SO(p, q) for arbitrary p and q, and V = R
p+q is the standard repre-

sentation.

Moreover, it seems plausible that, by combining the approaches of [2, 12], we might
prove the converse in all generality. This geometric property is related to the so-called
Auslander conjecture [3], which is an important conjecture that has stood for more
than fifty years and generated an enormous amount of work: see e.g. [1, 6, 7, 9, 10]
andmany others. For the statement of the conjecture as well as amore comprehensive
survey of past work on it, we refer to [5].

3 Statement of Main Results

We have run some numerical experiments that allow us to conjecture the answer
to Problem 2(i) in the case where gC is of type Br , Dr or exceptional. Indeed, our
numerical experiments prove this conjecture in some particular cases (see Theorem 1
below).

In the case where gC is of type Ar or Cr , we have also made some computations
in low rank. Unfortunately, the data we have is not sufficient to be able to predict the
general pattern (and we do not have enough computational power to generate more);
see also the final remark in [11] for more details.
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Conjecture 1 Assume that gC is of type Br (for some r ≥ 1), Dr (for some r ≥ 3),
E6, E7, E8, F4 or G2. Let λ be a dominant integral weight of gC, Vλ the irreducible
(complex) representation of g with highest weight λ. Then:
(i) If λ is one of the weights listed in Table1, then w0|V L

λ
= ± Id.

(ii) If V L
λ 
= 0 (this can be looked up in [14, Table2]) but λ does not occur in Table3,

then w0|V L
λ


= ± Id.

Table 1 Values of λ for which w0|V L
λ

= ± Id, for various algebras g. The fundamen-
tal weights �i are numbered using the Bourbaki ordering [4]. The coefficients k, l
and m range in the nonnegative integers. Note that the lists may contain duplicates.
Real forms of Br = so2r+1(C) (r ≥ 1). In so(p, q), we assume p ≤ q

The algebra g Weights λ Conditions on indices Conditions on
coefficients

so(p, q) p ≤ p+q
4

p + q odd
λ = k�i + l�2p i = 1 or 2p − 1 any k, any l

2 = i = 2p − 2 any k, any l

i = 2 or 2p − 2 k ≤ 2, any l

2 < i < 2p − 2
∧ 2|i

k ≤ 1, any l

so(p, q)

p = p+q+1
4

λ = k�i + l�q−p i = 1 any k; l ≤ 2

2 = i = q − p − 1 any k; l ≤ 2

2 = i < q − p − 1 k ≤ 2, l ≤ 2

2 < i < q − p − 1
∧ 2|i

k ≤ 1, l ≤ 2

2 < i = q − p − 1 k ≤ 2, l ≤ 2

i = q − p any k, any l

so(p, q)

p >
p+q+1

4
p + q odd

λ = k�i + l�q−p i = 1 any k; l ≤ 1

2 = i < q − p k ≤ 2, l ≤ 1

2 < i < q − p
∧ 2|i

k ≤ 1, l ≤ 1

λ = k�i 2 = i = p+q−1
2 any k

q − p < i = 2 k ≤ 2

q − p < i k ≤ 1

q − p + 1 = i =
p+q−1

2

k ≤ 4

q − p < i = p+q−1
2 k ≤ 2
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Table 2 Values of λ for which w0|V L
λ

= ± Id, for various algebras g. The fundamen-
tal weights �i are numbered using the Bourbaki ordering [4]. The coefficients k, l
and m range in the nonnegative integers. Note that the lists may contain duplicates.
Real forms of Dr = so2r (C) (r ≥ 3). In so(p, q), we always assume p ≤ q; and we denote by
r := p+q

2 the (complex) rank

The algebra g Weights λ Conditions on indices Conditions on
coefficients

so(p, q) p ≤ p+q
4 − 1

p + q even
Same as for p ≤ p+q

4 in the Br case

so(p, q) p = p+q−2
4 Same as for p ≤ p+q

4 in the Br case, but with �2p replaced by
(�2p + �2p+1)

so(p, q) p = p+q
4 Same as for p ≤ p+q

4 in the Br case

Same as for p ≤ p+q
4 in the Br case, but with �2p replaced by

�2p−1

so(p, q) p >
p+q
4

p + q ≡ 0 (mod 4)
λ = k�i i = 1 any k

i = 2 k ≤ 2

2 < i < r − 1 ∧ 2|i k ≤ 1

i ∈ {r − 1, r} ∧ r = 4 any k

i ∈ {r − 1, r} ∧ p = p+q
4 + 1 k ≤ 4

i ∈ {r − 1, r} k ≤ 2

so(p, q) p >
p+q
4

p + q ≡ 2 (mod 4)
λ = k�i i = 1 any k

2 = i < q − p − 1 k ≤ 2

2 < i < q − p − 1 ∧ 2|i k ≤ 1

i ∈ {r − 1, r} ∧ i ≤ q − p + 1 any k

so∗(6) λ = k�1 + l�i i ∈ {2, 3} any k,

any l

so∗(8): see so(6, 2), to which it is isomorphic

so∗(10) λ = k�i i ∈ {1, 4, 5} any k

so∗(12) λ = k�i i ∈ {1, 2, 6} any k

i = 4 k ≤ 1

i = 5 k ≤ 2

so∗(2r) r > 5, r odd λ = k�i i = 1 any k

so∗(2r) r > 6, r even λ = k�i i = 1 any k

i = 2 k ≤ 2

2 < i < r − 1 ∧ 2|i k ≤ 1

i ∈ {r − 1, r} k ≤ 4
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Table 3 Values of λ for which w0|V L
λ

= ± Id, for various algebras g. The fundamen-
tal weights �i are numbered using the Bourbaki ordering [4]. The coefficients k, l
and m range in the nonnegative integers. Note that the lists may contain duplicates.
Real forms of exceptional algebras

The algebra g Weights λ Conditions on indices Conditions on
coefficients

E I, E II λ = 0

E III λ = k�i i ∈ {1, 6} any k

E IV λ = k�2 + l�i i ∈ {1, 3, 5, 6} any k, any l

E V, E VI λ = k�i i = 1 k ≤ 2

λ = k�i i ∈ {6, 7} k ≤ 1

E VII λ = k�i i = 1 any k

λ = k�i i ∈ {6, 7} k ≤ 1

E VIII, E IX λ = k�i i = 1 k ≤ 1

λ = k�i i = 8 k ≤ 2

F I λ = k�i i ∈ {1, 4} k ≤ 2

F II λ =
k�1 + l�2 + m�i

i ∈ {3, 4} any k,
any l, any m

G λ = k�i i ∈ {1, 2} k ≤ 2

Here are the cases in which we have checked this conjecture. (In a few special
cases, when useful and feasible, we have actually gone a bit beyond the cutoff figures
listed below; these details would be too tedious to list.)

Proposition 1 • Conjecture 1(ii) holds for all real forms of Br with r ≤ 7, of Dr

with r ≤ 9, and of all exceptional algebras.
• Conjecture 1(i) holds for all the algebras in the same list, for weights λ =∑r

i=1 ci�i satisfying ci ≤ 3pi for all coefficients ci , where pi is the least positive
integer such that V L

pi�i

= 0 (except in the case i ∈ {2p, 2p + 1} for g = so(p, q)

with p = p+q−2
4 , where we convene that pi = 1.)

The proof of Proposition 1 relies on the additivity property [11, Proposition 1(iii)],
which reduces it to a finite number of computations; and on an algorithm to compute
the restriction ofw0 to V L that the author has recently developed and implemented in
the LiE software [15]. The details of that algorithm will be published in a subsequent
paper.
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Pairs of Spectral Projections of Spin
Operators

Ood Shabtai

Abstract Wediscuss the semiclassical behavior of an arbitrary bivariate polynomial,
evaluated on certain spectral projections of spin operators, and contrast it with the
behavior of the polynomial when evaluated on random pairs of projections. The
discrepancy is closely related to a type of Slepian concentration problem, which is
also addressed. This is a survey article.

Keywords Spectral projections · Quantization · Slepian concentration problem

1 Introduction

This paper is a survey of recent findings about pairs of spectral projections of spin
operators. The main results (Theorems 1, 2 and 3) can be found in [10], where they
are proven using earlier results from [9]. The only previously unpublished result
included here is Theorem 4.

The real Lie algebra su(2) is often specified by a basis {u1, u2, u3}, such that the
commutation relations between the basis elements are

[u1, u2] = u3, [u2, u3] = u1, [u3, u1] = u2.

For every n ∈ N there exists a unique (up to equivalence) n-dimensional irreducible
representation ρn of su(2). Moreover, we can assume that iρn(u) is self-adjoint for
every u ∈ su(2). The operators

J1 = iρn(u1), J2 = iρn(u2), J3 = iρn(u3)
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are used in quantum mechanics to model spin angular momentum ([1]). Their spec-
trum is identical, and it equals the set σn = { j, j − 1, ...,− j}, where 2 j + 1 = n.

Let A denote the complex unital algebra generated by two non-commuting vari-
ables x, y which satisfy x2 = x , y2 = y. Let

(
Gk(n), μk,n

)
denote the Grassmannian

of k-dimensional subspaces of Cn , equipped with the uniform probability measure1.
In what follows, a subspace V ∈ Gk(n) is identified with the orthogonal projection
P : Cn → V .

The following two questions were raised by D. Kazhdan, who has also essentially
predicted the phenomena described in Theorems 1 and 2.

Questions. Fix 0 < α ≤ 1
2 , and define intervals (0, αn) ⊂ R containing exactly �αn�

elements of σn . Let P1,α,n = 11(0,αn)(J1), P3,α,n = 11(0,αn)(J3). Fix 0 �= f ∈ A.

1. What is the behavior of f
(
P1,α,n, P3,α,n

)
in the semiclassical limit n → ∞?

2. How does it compare with f (P, Q), where P, Q ∈ G�αn�(n) are random?

We note that polynomials in two orthogonal projections can appear quite naturally
in quantum theory ([5, 6, 10]), hence some of our motivation to consider the full
algebraA rather than a few specific elements. The structure of the algebra generated
by two projections is well-understood ([2]), and so are the asymptotic properties of
random pairs of projections ([3]).

As it turns out, the asymptotic behavior of P1,α,n , P3,α,n is quite unlike that of ran-
dom pairs P, Q ∈ G�αn�(n) (see Figs. 1 and 2). The discrepancy is closely related to
the Slepian spectral concentration problem ([4, 11–13]) associated with P1,α,n , P3,α,n

(Theorem 3 addresses the case α = 1
2 ). Roughly speaking, the Slepian spectral con-

centration problem associated with a pair of non-commuting orthogonal projections
is to find vectors which are optimally “localized” with respect to the ranges of both
projections.

2 Main Results

Question 1 is addressed in Theorem 1.When α < 1
2 , Theorems 1 and 2 together shed

some light on Question 2. In the case α = 1
2 , Question 2 is addressed in Theorem 3.

We let σ(A) denote the spectrum of a linear operator A.

Theorem 1 ([10]) There exists M f > 0, depending only on f , such that
limn→∞ ‖ f (P1,α,n, P3,α,n)‖op = M f . M f is a universal, tight upper bound for
‖ f (P, Q)‖op, where P, Q are completely arbitrary orthogonal projections (on some
separable complex Hilbert space).2

1 μk,n is the unique probability measure invariant under the action of the unitary group on Gk(n).
2 Throughout, all Hilbert spaces are assumed to be separable and complex.
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Let C[z, w] be the algebra of complex polynomials in commuting variables, and
let I denote the ideal generated by z2 − z, w2 − w. Let Φ : A → C[z, w]/I map
f (x, y) to f (z, w). For conciseness, we focus on f ∈ ker(Φ).

Theorem 2 ([10]) Let Ωn,α = G�αn�(n) × G�αn�(n), νn = μ�αn�,n × μ�αn�,n. Fix
0 �= f ∈ ker(Φ). There exists a continuous, piecewise smooth function ψ f :
[0, 1] → [0,∞), such that ψ f (0) = ψ f (1) = 0, max[0,1] ψ f = M f , and

max
[0,4α(1−α)]

ψ f = I f
α = lim

n→∞

∫

Ωn,α

‖ f (P, Q)‖opdνn,α.

ψ f essentially appears in the literature on the subject [2]: for any orthogonal pro-
jections P, Q we have that ‖ f (P, Q)‖op = maxσ(PQP) ψ f . Since ψ f (0) = 0, if α is
small enough then 0 ≈ I f

α < M f . Moreover,

Corollary 1 For every 0 < α < 1
2 there exists f ∈ ker(Φ) with I f

α < M f . Thus,
f (P1,α,n, P3,α,n) behave unlike random f (P, Q) as n → ∞.

Example 1 If f ∈ A is of the form f (x, y) = f1(xy)xy − f1(yx)yx , where f1
is a univariate polynomial, then ψ f (t) = | f1(t)|√t (1 − t). Thus, for instance, if
f (x, y) = (xy)k+1 − (yx)k+1, we have that

ψ f (t) = t k
√
t (1 − t), M f = max[0,1] ψ f = ψ f

(
2k + 1

2k + 2

)
,

Fig. 1
∥∥[

P3,α,n, P1,α,n
]∥∥

op as a function of n (left), ‖[P, Q]‖op as a function of n for random

P, Q ∈ G�αn�(n) (right), when α = 1
2 (top), 1

16 (bottom). For f (x, y) = [x, y], I f
1
2

= M f = 1
2 and

I f
1
16

= 7
√
15

64 ≈ 0.423
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and I f
α =

⎧
⎨

⎩

(4α(1 − α))k+
1
2 (1 − 2α) 0 < α < 1

2

(
1 − 1√

2k+2

)

M f
1
2

(
1 − 1√

2k+2

)
≤ α ≤ 1

2

.

The example is illustrated in Fig. 1 for k = 0.

2.1 Slepian Spectral Concentration

Theorems 1 and 2 fail to distinguish between P1, 12 ,n, P3, 12 ,n and random pairs of

projections (since I f
1
2

= M f for every f ∈ A). The following result (which is of

independent interest) implies that P1, 12 ,n , P3,α,n are non-generic as n → ∞ for every

0 < α ≤ 1
2 . Note that dim

(
Im(P3,α,n)

) = �αn�.
Theorem 3 ([10]) Let Nn(s, t) be the number of eigenvalues of

Rα,n = P3,α,n P1, 12 ,n P3,α,n ∈ End
(
Im(P3,α,n)

)

lying in the interval [s, t], where 0 ≤ s < t ≤ 1. Fix 0 < t < 1
2 . Then

lim
n→∞

1

αn
Nn(0, t) = lim

n→∞
1

αn
Nn(1 − t, 1) = 1

2
,

and Nn(t, 1 − t) = O(log n).

The proof of Theorem 3 is modelled on that of an analogous result [4] on pairs
of spectral projections corresponding to generators of finite Heisenberg groups. The
clustering of the eigenvalues of Rα,n near 0 and 1 (see Fig. 2) is typical in the context of
Slepian spectral concentration problems, which normally involve pairs of (spectral)
projections analogous to P3,α,n , P1,α,n . The eigenvectors of Rα,n corresponding to
eigenvaluesλ ≈ 1 canbeviewed as highly "localized"with respect to both Im

(
P3,α,n

)

and Im
(
P1, 12 ,n

)
.

Fig. 2 The sorted eigenvalues of R 1
2 ,n ∈ End

(
Im(P3, 12 ,n)

)
(left) and of PQP ∈ End (Im(P))

(right), where P, Q ∈ G� 1
2 n�(n) are random and n = 2000
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The relatively large gaps between the eigenvalues of Rα,n lying away from 0, 1
cause the convergence rate of the norm of "most" polynomials in P1, 12 ,n , P3,α,n to
be relatively slow. In particular, using simple measure-theoretic arguments, it can be
shown that

Theorem 4 For almost all t0 ∈ (0, 1), if f ∈ ker(Φ) satisfies that M f =
max[0,1] ψ f = ψ f (t0), that the maximum is unique, and that ψ ′′

f (t0) is well defined
and non-zero, then

lim sup
n

(
(log n)2

∣∣∣‖ f (P1, 12 ,n, P3,α,n)‖op − M f

∣∣∣
)

> 0.

It is not difficult to produce quite explicit examples of such f ∈ ker(Φ); at the same
time, in the case of commutators ( f (x, y) = xy − yx), the convergence rate is not
known to us.

3 Concluding Remarks

3.1 More Cases

In [9], we studied several examples of pairs of spectral projections corresponding to
non-commuting quantum observables, with an emphasis on the case of spin operators
and (essentially) on the pairs P1,α,n , P3,α,n . Notably, we also considered pairs of
spectral projections coming from position and momentum operators on L2(R), and
from generators of finite Heisenberg groups (acting on l2(Zn), where Zn = Z/nZ).
The pairs of projections studied in [9] were all found to be unitarily equivalent in the
semi-classical limit. Consequently, Theorem 1 holds for them as well.

3.2 Numerical Phenomena of Spectral Projections of Spin
Operators

The numerical simulations of the spectral projections of J1, J3 feature various curious
properties, and it would be interesting to study them further.

A notable feature of both images on the left of Fig. 1 is the apparent depen-
dence of cn = ∥∥[

P1,α,n, P3,α,n
]∥∥

op on the dimension of the representation n mod-

ulo 4. When α = 1
2 (top-left image), the sub-sequences {c4d+k}d∈N (k = 0, 1, 2, 3)

appear essentially as graphs of four distinct “nice” functions, such that c4d+2 = 1
2

for every d ∈ N. In fact, the latter was established by L. Polterovich, but otherwise
the modulo 4 dependence on n is unproven. Surprisingly, the same type of behavior
is exhibited (numerically) by pairs of projections corresponding to the generators
of finite Heisenberg groups [9]. The case α = 1

16 (bottom-left image) provides an
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Fig. 3 (originally by Y. Le Floch) The modulus of an (unit) eigenvector of
[
P1, 12 ,n, P3, 12 ,n

]
, n =

101, corresponding to the extremal eigenvalue ≈ 1
2 , realized as a polynomial on C, then projected

to S2 using the stereographic projection

example of another curious, unprovenphenomenon:whenα = 1
4p , the sub-sequences{c4d+k}d∈N appear essentially as graphs of four distinct “piecewise nice” functions,

such that every “piece” is of length p.

Remark 1 The dependence on n modulo 4 appears to be a special case of a general
pattern: for pairs of spectral projections associated with J3 and cos π

p J3 + sin π
p J1,

the sequence cn seems to depend on n mod 2p.

Finally, we note that J1, J2 and J3 can be obtained, up to normalization, through
geometric quantization [8] of the Cartesian coordinate functions x1, x2, x3 on
the two-dimensional sphere [7]. In this framework, the properties of the com-
mutator [P1, 12 ,n, P3, 12 ,n] seem to be related to the boundaries of the hemispheres
{x1 > 0}, {x3 > 0} (see Fig. 3).
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Algebraic Engineering and Integrable
Hierarchies

Jean-Emile Bourgine

Abstract Algebraic engineering consists in constructing observables of supersym-
metric gauge theories within the representation theory of a quantum group. It is based
on its realization as a branes system in string theory which is mapped to a network
of modules. This algebraic construction brings new perspectives on many important
properties of gauge theories, including AGT correspondence, dualities and integra-
bility. In this proceeding, recent advances on this topic are briefly reviewed. Then, the
underlying quantum group is used to revisit the relation between topological strings
and integrable hierarchies.

Keywords String theory · Brane systems · Topological strings · Quantum
groups · Integrable hierarchies

1 Introduction

Despite the lack of observational support in high energy physics experiments, the
study of supersymmetric Quantum Field Theories (QFT) remains an active area of
research. One of the main reasons is that supersymmetry provides a class of theories
for which exact non-perturbative calculations are possible, thus giving the opportu-
nity to study phenomena beyond the reach of the standard approach in high energy
physics. These theories form a testing ground for string theory predictions, including
descriptions of black hole, AdS/CFT correspondence, brane constructions of gauge
theories, dualities,... In this way, they serve a similar purpose as the integrable sys-
tems in statistical physics or quantum mechanics. As it turns out, they also share
some of their underlying mathematical structures.

Over the last few years, the algebraic engineering technique has been developed
with the aim of deriving the BPS observables of supersymmetric QFT from the repre-
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sentation theory of a quantum group. In practice, these observables are obtained from
an operator acting on a network of modules which is closely related to the brane sys-
tem engineering the QFT in string theory. Its name derives from this proximity with
the geometric engineering program [1]. The algebraic engineering is non-perturbative
by design, and can also be applied to non-Lagrangian theories. The underlying quan-
tum group structure enters in several of the QFT key properties, like the description
of Coulomb branches (cohomological Hall algebras), and certain dualities and corre-
spondences (BPS/CFT correspondence or S-duality). Besides, these algebras exhibit
many interesting connections with several important topics of mathematical physics
like symmetric polynomials, W-algebras, integrable systems and, as we shall see,
integrable hierarchies.

2 Algebraic Engineering of Supersymmetric Gauge
Theories

To explain how the algebraic constructionworks, we focus here on the example of the
pure U (2) 5DN = 1 gauge theory. It is a five dimensional supersymmetric version
of the Yang-Mills theory with gauge group U (2) that preserves eight supercharges.
This theory is realized in type IIB string theory as a system of 5-branes, called (p, q)-
branes, that are bound states of p D5 and q NS5 branes. They are arranged in the
ten-dimensional spacetime as shown on Fig. 1, and directions 01234 corresponding
to the 5D spacetime of the gauge theory.

The choice of quantum group is mainly determined by the spacetime, here
Cε1 × Cε2 × S1R . The non-compact directions C are regularized by turning-on a B-
field in string theory, which provides the supersymmetry preserving IR regulators
ε1, ε2 (Ω-deformation). These directions are associated to the affinization of the
quantumgroup, and in this case the underlyingLie algebra is toroidal, i.e. twice affine.
Compact directions S1 correspond to trigonometric/elliptic deformations. Here, the
quantum group is the quantum toroidal gl(1) algebra (or Ding-Iohara-Miki algebra)
with parameters (q1, q2) = (eRε1 , eRε2), we will denote it E(q1, q2) for short.

To each 5-brane is associated a bosonic Fock spacewith states labeled by partitions
λ. This space is a module for the Fock representation ρ

(q,p)
u of the algebra E(q1, q2).

Fig. 1 Brane system engineering the U (2) 5D N = 1 gauge theory (left), and its corresponding
network of representations (right)
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The levels correspond to the brane charges (p, q) and the weight u encodes their
position in the (56)-plane. In thisway,weobtain the network of representations shown
on Fig. 1 (right). An intertwining operator between the representations ρ(1,n+1) and
ρ(0,1) ⊗ ρ(1,n) has been attached to each vertex,Φ orΦ∗ depending on the orientation.
Gluing these operators along the internal edges, we can construct an operator T that
intertwines between the representations associated to incoming and outgoing edges.

T =
∑

λ1,λ2

Φ∗
λ1

Φ∗
λ2

⊗ Φλ1Φλ2 . (1)

This operator encodes some of the BPS observables of the QFT. For instance,
the partition function is obtained as the vacuum expectation value Z[U (2)] =
(〈∅| ⊗ 〈∅|)T (|∅〉 ⊗ |∅〉).

The algebraic engineering technique has been applied successfully tomany super-
symmetry QFTwith a known brane realization. Elliptic or degenerate versions of the
original formalism [2] have been applied to 6D and 4D gauge theories respectively
in [3, 4]. Algebras of higher rank were used in [5] to discuss gauge theories on ALE
spaces, a setup that also led to the introduction of a new family of quantum toroidal
algebras [6]. While most applications require the use of a toroidal quantum group,
3DN = 2 gauge theories on Cε × S1 were recently addressed using a shifted quan-
tum affine sl(2) algebra [7], a simpler algebraic framework than the one employed
previously in [8]. Other important results include the study of D-type quiver gauge
theories, the derivation of qq-characters (i.e. generating function of Wilson loops)
[9], and the description of brane crossings using R-matrices [10].

3 Integrable Hierarchies and Topological Strings

3.1 Integrable Hierarchies

An integrable hierarchy is an infinite set of commuting Hamiltonian flows that
form compatible partial differential equations. A typical example is the Kadomtsev-
Petviashvili (KP) hierarchy that starts with the equation 3uyy = ∂x (4ut − 6uux−
uxxx ) modeling water waves with long wavelengths [11]. Solutions of the hierar-
chy can be written using a τ -function τ(t) depending on infinitely many ‘times’
parameters t = (t1, t2, · · · ). It satisfies the Hirota bilinear equation

∮

∞
e
∑

k>0(tk−t ′k )zk τ(t − [z−1])τ (t ′ + [z−1])dz = 0. (2)

with t ± [z] = (t1 ± z, t2 ± 1
2 z

2, · · · ) which implies that the function u(t) = 2∂2
x

log τ(t) solves the KP hierarchy with t1 = x , t2 = y and t3 = t .
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In the 1980’s, the Kyoto School of integrability developed a formalism to con-
struct τ -functions based on the representation of the algebra ĝl(∞) on the 2D Dirac
fermionic Fock space. This Fock space is built upon the vacuum state |∅〉 annihi-
lated by positive modes ψr , ψ̄r with {ψr , ψ̄s} = δr+s [12]. In this construction, the
τ -function takes the canonical form

τG(t) = 〈∅|e
∑

k>0 tk Jk G|∅〉 (3)

where Jk = ∑
r : ψ̄k−rψr are the Heisenberg algebra generators obtained by

bosonization. Solutions are indexed by the operator G that must satisfy the basic
bilinear condition [G ⊗ G, Ψ ] = 0 with Ψ = ∑

r ψ̄−r ⊗ ψr . This condition is sat-
isfied by all the elements of the group

GL(∞) = {e
∑

r,s ar,s :ψ̄rψs :, ar,s ∈ C}, (4)

where Er,s =: ψ̄rψs : are the generators of the Lie algebra ĝl(∞).
The relation between topological strings and integrable hierarchies follows from

the presence of aW1+∞ algebra of symmetries [13]. We will use here its q-deformed
version, with the quantum parameter related to the string coupling as q = egstr . This
algebra is equivalent to ĝl(∞) under the transformation

Wm,n =
∑

r∈Z+1/2

q−(r+1/2)n Em−r,r . (5)

In a series of papers starting from [14], Nakatsu andTakasaki (NT) have developed
a method to associate τ -functions of integrable hierarchies to time-deformations of
certain topological strings amplitudes. In particular, starting from the topological
vertex in the melting crystal picture where it is seen as a counting function for plane
partitions [15], they defined the deformation

Z(q) =
∑

λ

(sλ(q
−ρ))2 → Z(q, t) =

∑

λ

(sλ(q
−ρ))2e

∑
k>0 tkΩk (λ). (6)

Here Z(q) is the MacMahon counting function, sλ(q−ρ) are Schur polynomials
specialized at q−ρ = (q1/2, q3/2, · · · ) andΩk(λ) are the eigenvalues of the operators
W0,−k in a certain basis |λ〉 of the fermionic Fock space. They have shown that
Z(q, t) is a tau function of a trigonometric version of the KP hierarchy called 1D
Toda hierarchy. It takes the canonical form (3) with the operatorG = F−1Φ∅Φ∅F−1.
We will come back to this expression shortly.
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3.2 Refined Topological Strings

Topological strings amplitudes can be refined by the introduction of an extra parame-
ter t which originates from the correspondence with partition functions of 5DN = 1
gauge theories [16]. Starting from the previous observations, our paper [17] addresses
the following questions:

• Can we extend the Nakatsu-Takasaki construction to the refined case?
• Is there any connection with the algebraic engineering?

As we have seen, the construction relies heavily on the presence of the quantum
W1+∞ symmetries. This algebra is deformed into the quantum toroidal gl(1) algebra
E(q1, q2), with (q1, q2) = (q, t−1), which has no longer a fermionic representation,
but still possesses bosonic ones: the Fock representations ρ(q,p) mentioned earlier.
To answer the two previous questions, the NT construction was revisited with an
emphasis on the role of the intertwiner Φ and the group SL(2,Z) of automorphisms
for E(q1, q2).

The refinement deforms Schur polynomials into Macdonald polynomials Pλ, and
the natural deformation of the τ -function is

Z(t, q) =
∑

λ

(ιPλ(t−ρ))2

〈Pλ, Pλ〉q,t
→ Z(t, q, t) =

∑

λ

(ιPλ(t−ρ))2

〈Pλ, Pλ〉q,t
e
∑

k>0 tkΩk (λ), (7)

where
〈
Pλ, Pμ

〉
q,t is Macdonald’s scalar product [18]. The times tk are coupled to

the eigenvalues Ωk(λ) of the dual Cartan modes b−k which indeed act diagonally on
the Macdonald basis |Pλ〉 in the Fock representation ρ(1,0).1 These modes reduce to
W0,−k in the limit q = t where E(q, t−1) → q − W1+∞.

Before going any further, we need to derive two important properties that extend
the shift symmetries observed byNakatsu and Takasaki. In this process, wewill find a
new algebraic understanding for them. To do so, we introduce the generatorsS and T
of the SL(2,Z) group of automorphisms of the algebra E(q1, q2). The automorphism
S has been introduced by Miki in [19], it realizes the S-duality of type IIB string
theory [20, 21], and is used here to define the dual Cartan modes b−k = S · a−k . On
the other hand, T is related to the framing factors of topological strings which also
correspond to the Chern-Simons term in the Lagrangian of 5DN = 1 gauge theories
[9]. These automorphisms generate isomorphisms between Fock representations of
different levels:ρ(0,1) ≈ ρ(1,0) ◦ S,ρ(1,1) ≈ ρ(1,0) ◦ T . Recall thatΦ is an intertwiner
between the representations ρ(1,1) and ρ(0,1) ⊗ ρ(1,0). Using the automorphisms, the
intertwining relation takes the form

ρ(1,0)(T · e)Φ = Φ
(
ρ(1,0) ◦ S ⊗ ρ(1,0) Δ(e)

)
, e ∈ E(q1, q2). (8)

1 This basis built by exploiting the isomorphism with the ring of symmetric polynomials J−k ≡
pk(x).
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where Δ is the coproduct of the quantum group. Projecting Φ on the vacuum state
in the representation ρ(0,1), we find

ρ(1,0)(T · b−k)Φ∅ = Φ∅ρ(1,0)(b−k). (9)

It generalizes the first shift symmetry, with W0,k → b−k and Wk,−k → T · b−k . The
second shift symmetry has a completely different origin: it is the realization of the
automorphism T S−1 on the modes ak in the Fock representation ρ(1,0) as the adjoint
action of an operator F ,

ρ(1,0)(T S−1 · ak) = Fρ(1,0)(ak)F
−1, F |Pλ〉 =

∏

(i, j)∈λ

qi−1
1 q j−1

2 |Pλ〉. (10)

The eigenvalues of F coincide with the framing factors of topological strings and
we call this operator the framing operator. Armed with these two properties, we can
now proceed to study the time-deformed amplitude Z(t, q, t).

From theknownmatrix elements 〈∅|Φ∅|Pλ〉 = ιPλ(t−ρ) and 〈Pλ|Φ∅|∅〉 = ιPλ(t−ρ),
the deformed amplitude 7 can be rewritten in the form of a Fock space correlator

Z(t, q, t) =
∑

λ

〈∅|Φ∅ρ(1,0)(e
∑

k tkb−k )|Pλ〉〈Pλ|Φ∅|∅〉
〈Pλ, Pλ〉q,t

. (11)

The summation is performed using the Macdonald basis closure relation,

Z(t, q, t) = 〈∅|Φ∅ρ(1,0)(e
∑

k tkb−k )Φ∅|∅〉. (12)

At this stage, we need to move the exponential of
∑

k tkb−k to the left, which is a
non-trivial operation. For this purpose, we use the first shift symmetry 9 to write

Z(t, q, t) = 〈∅|ρ(1,0)(T · e
∑

k tkb−k )Φ∅Φ∅|∅〉. (13)

Then, the second shift symmetry 10 together with F |∅〉 = |∅〉 gives

Z(t, q, t) = 〈∅|ρ(1,0)(e
∑

k tkak )F−1Φ∅Φ∅F−1|∅〉. (14)

To conclude, we observe that, in the Fock representation ρ(1,0), the Cartan modes
are identified with the Heisenberg modes: ρ(1,0)(ak) = γk Jk , up to a known factor
γk(q1, q2). Thus, we recover the canonical expression 3 with the rescaled times
tk → γk tk and the operator G = F−1Φ∅Φ∅F−1.
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This derivation is the main result in [17], it provides a direct link with the alge-
braic engineering technique. Indeed, the operator Φ∅ entering in G can be seen as a
trivial version of the operator T discussed in the previous section. This link could be
exploited to generalize the construction to various amplitudes, including the conifold
discussed in [22].

4 Discussion

Can we conclude that the refined quantity Z(t, q, t) is the tau function of an inte-
grable hierarchy? It would be so if the deformed operatorG still obeyed the canonical
bilinear relation [G ⊗ G, Ψ ] = 0. While this is a well-defined question since Ψ can
be bosonized, it is surprisingly difficult to answer directly. Instead, it is possible to
examine theHirota equation perturbatively and checkwhether Z(t, q, t) is a solution.
And it is not. To understand why, we must introduce the more general framework
of Kac and Wakimoto [23] in which Ψ is replaced by the Casimir operator of dif-
ferent algebras. Indeed, writing the group elements G ∈ GL(∞) in the exponential
form G = eg , we observe that the basic bilinear condition becomes [Δ(g), Ψ ] = 0
where Δ(g) = g ⊗ 1 + 1 ⊗ g is the co-commutative coproduct. After refinement,
this coproduct is replaced by the non-trivial Drinfeld coproduct of E(q1, q2), and the
operator Ψ becomes the Casimir satisfying [(ρ(1,0) ⊗ ρ(1,0)

)
Δ(e), Ψ ] = 0 for all

e ∈ E(q1, q2). In fact,Ψ can be identifiedwith the screening charges of the q-Virasoro
algebra [24] using the decomposition of the representation

(
ρ(1,0) ⊗ ρ(1,0)

)
Δ into

q-Virasoro and Heisenberg factors observed in [25]. Work is in progress to show
that Δ(G) does commute with these operators, and derive the refined version of the
Hirota bilinear equation.

Meanwhile, our observation brings the possibility to generalize the correspon-
dencebetween topological strings amplitudes and integrable hierarchies. For instance,
the trinion amplitudes TN studied in [26] are associated to the intertwining operators
Φ(N ) between representations of higher levelsρ(N ,N ) andρ(0,N ) ⊗ ρ(N ,0) which could
be used to define τ -functions of more involved hierarchies. Conversely, it could also
be used to extend the algebraic engineering using the quantum algebras associated
to reduced hierarchies [27].

Finally, topological strings have another equivalent description called theB-model
formulation. In this formulation, amplitudes are written as matrix model integrals
that are also known τ -functions. The refinement replaces the matrix model with a β-
ensemble, its integrals are no-longer τ -functions but still exhibit a rich mathematical
structure: quantum curves, topological recursion,... This work could bring a new
perspective on the mirror symmetry between A and B models.
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Nested Bethe Ansatz for RTT–Algebra
An

Čestmir Burdík and O. Navrátil

Abstract This contribution continues our recent studies on the algebraic Bethe
Ansatz for the RTT–algebras of sp(2n) and o(2n) types. In these studies, we faced
RTT–algebras which we called An . The next step in our construction of the Bethe
vectors for the RTT-algebras of type sp(2n) and o(2n) is to find the Bethe vectors for
the RTT–algebrasAn . This paper deals with the construction of the Bethe vectors of
the RTT–algebra An using the Bethe vectors of the RTT–algebra An−1.

Keywords RTT algebras · Nested algebraic Bethe ansatz · Bethe vectors

1 Introduction

In studying the algebraic Bethe Ansatz for the RTT–algebras of type sp(2n) and
o(2n) [1, 2], we discovered some RTT–algebras which we called An . The main
result of this contribution is the assertion that for the construction of eigenvalues and
eigenvectors of the transfer–matrix of the RTT–algebras of type sp(2n) and o(2n) it
is enough to find eigenvalues and eigenvectors for the RTT–algebra An .

In this work, we deal with the nested Bethe Ansatz for the RTT–algebra An . We
show how to construct eigenvectors for the RTT–algebra An by using eigenvectors
of the RTT–algebra An−1.

Note that the RTT–algebra An−1 is not the RTT–subalgebra An . However, An

contains two RTT–subalgebras A(+)
n and A(−)

n , which are of type gl(n). The RTT–
algebras A(±)

n−1 are already the RTT–subalgebras of A(±)
n . As we will see later, we

can construct some eigenvectors for the RTT–algebras An as Bethe vectors of the
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RTT–algebras A(±)
n , i.e. as the Bethe vectors for the RTT–algebras of type gl(n).

Our result for such eigenvectors is the same as for the nested Bethe Ansatz for the
RTT–algebras of gl(n), which can be found in [4]. In this sense, our construction is a
certain generalization of the nested Bethe Ansatz for the RTT–algebras of type gl(n).

The proofs of many claims are only a suitable but long adjustment of the Yang–
Baxter and the RTT–equations. Due to the limited length of contributions in the
Proceedings, we did not include them in this paper.

2 The RTT–Algebra An

WedenoteEi
k andE−i

−k ,where i, k = 1, . . . , n, thematrices
(
Ei
k

)r
s = (

E−i
−k

)−r

−s = δrkδ
i
s .

Then the relations Ei
kEr

s = δisE
r
k ,

n∑

i=1
Ei
i = I+ and

n∑

i=1
E−i

−i = I− hold.

The RTT–algebraAn is an associative algebra with a unit that is generated by the
elements T i

k (x) and T−i
−k (x), where i, k = 1, . . . , n. If we introduce the monodromy

matrix T(x) = T(+)(x) + T(−)(x), where

T(+)(x) =
n∑

i,k=1
Ek
i ⊗ T i

k (x) , T(−)(x) =
n∑

i,k=1
E−k

−i ⊗ T−i
−k (x) ,

the commutation relations between the generators are defined by the RTT–equation

R1,2(x, y)T1(x)T2(y) = T2(y)T1(x)R1,2(x, y), (1)

where the R–matrix is R(x, y) = R(+,+)(x, y) + R(+,−)(x, y) + R(−,+)(x, y) + R(−,−)(x, y),

R(+,+)(x, y) = 1

f (x, y)

(
I+ ⊗ I+ + g(x, y)

n∑

i,k=1
Ei
k ⊗ Ek

i

)
,

R(+,−)(x, y) = I+ ⊗ I− − k(x, y)
n∑

i,k=1
Ei
k ⊗ E−i

−k ,

R(−,+)(x, y) = I− ⊗ I+ − h(x, y)
n∑

i,k=1
E−i

−k ⊗ Ei
k ,

R(−,−)(x, y) = 1

f (x, y)

(
I− ⊗ I− + g(x, y)

n∑

i,k=1
E−i

−k ⊗ E−k
−i

)
,

g(x, y) = 1

x − y
, f (x, y) = x − y + 1

x − y
,

h(x, y) = 1

x − y + n − η
, k(x, y) = 1

x − y + η

and η is any number. For η = −1 we obtain the RTT–algebra connected with the RTT–algebra of sp(2n)

type and for η = 1 the RTT–algebra connected with the RTT-algebra of o(2n) type.
By direct calculation, it can be verified that this R–matrix satisfies the Yang–Baxter equation

R1,2(x, y)R1,3(x, z)R2,3(y, z) = R2,3(y, z)R1,3(x, z)R1,2(x, y) (2)
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and has the inverse R–matrix. Therefore, it defines the RTT–algebra that we denote byAn .
It is easily seen that the RTT–equation (1) can be written as

R(ε1,ε2)
1,2 (x, y)T(ε1)

1 (x)T(ε2)
2 (y) = T(ε2)

2 (y)T(ε1)
1 (x)R(ε1,ε2)

1,2 (x, y) , (3)

where ε1, ε2 = ±. From this form of the RTT–equation it is clear that in the RTT–algebra An there are

two RTT-subalgebras A(+)
n and A(−)

n , which are generated by the elements T i
k (x) and T−i

−k (x), where
i, k = 1, . . . , n.

Using the RTT–equation (3), it is possible to show that in the RTT–algebraAn the operators

H (+)(x) = TrT(+)(x) =
n∑

i=1
T i
i (x) , H (−)(x) = TrT(−)(x) =

n∑

i=1
T−i
−i (x)

mutually commute.
We deal with the representations of the RTT–algebraAn on the vector space W = Anω, where ω is

a vacuum vector for which the relations

T i
k (x)ω = 0 for 1 ≤ i < k ≤ n , T i

i (x)ω = λi (x) , ω

T−k
−i (x)ω = 0 for 1 ≤ i < k ≤ n , T−i

−i (x)ω = λ−i (x)ω

hold. Our goal is to find in the vector space W common eigenvectors of the operators H (±)(x).

In theRTT–algebraAn there are twoRTT–subalgebras Ã(+) = A(+)
n−1 and Ã(−) = A(−)

n−1 of gl(n − 1)

type, which are generated by the elements T i
k (x) and T−i

−k (x), where i, k = 1, . . . , n − 1.

First, we will consider the subspace W̃ generated by the elements Ã(+)Ã(−)ω.

Proposition 1 The relations

T i
n (x)w = T−n

−i (x)w = 0 , T n
n (x)w = λn(x)w , T−n−n (x)w = λ−n(x)w (4)

hold for any w ∈ W̃ and i = 1, 2, . . . , n − 1.

Proposition 2 The space W̃ is invariant with respect to Ã(+) and Ã(−).

Proposition 3 If we define

T̃(+)(x) =
n−1∑

i,k=1
Ek
i ⊗ T i

k (x) , T̃(−)(x) =
n−1∑

i,k=1
E−k

−i ⊗ T−i
−k (x)

the commutation relations for T i
k (x) and T−i

−k (x), where i, k = 1, . . . , n − 1, reduced to the space W̃
can be written in the form of the RTT–equation

R̃(ε1,ε2)
1,2 (x, y)T̃(ε1)

1 (x)T̃(ε2)
2 (y) = T̃(ε2)

2 (y)T̃(ε1)
1 (x)R̃(ε1,ε2)

1,2 (x, y)

where ε1, ε2 = ± and
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R̃(+,+)
1,2 (x, y) = 1

f (x, y)

(
Ĩ+ ⊗ Ĩ+ + g(x, y)

n−1∑

i,k=1
Ei
k ⊗ Ek

i

)
,

R̃(−,−)
1,2 (x, y) = 1

f (x, y)

(
Ĩ− ⊗ Ĩ− + g(x, y)

n−1∑

i,k=1
E−i

−k ⊗ E−k
−i

)
,

R̃(+,−)
1,2 (x, y) = Ĩ+ ⊗ Ĩ− − k(x, y)

n−1∑

i,k=1
Ei
k ⊗ E−i

−k ,

R̃(−,+)
1,2 (x, y) = Ĩ− ⊗ Ĩ+ − h̃(x, y)

n−1∑

i,k=1
E−i

−k ⊗ Ei
k

Ĩ+ =
n−1∑

k=1
Ek
k , Ĩ− =

n−1∑

k=1
E−k

−k , h̃(x, y) = 1

x − y + n − 1 − η
.

The following theorem immediately follows from Proposition 3.

Theorem 1 The action of the operators T i
k (x) and T−i

−k (x), where i, k = 1, . . . , n − 1, in the space W̃
forms the RTT–algebra An−1.

3 General Form of Common Eigenvectors of H (+)(x) and
H (−)(x)

Let v = (v1, v2, . . . , vP ) and w = (w1, w2, . . . , wQ) be ordered sets of mutually different numbers. We

will search for a general shape of the common eigenvectors H (+)(x) and H (−)(x) in the form

B(v, w) =
n−1∑

k1,...,kP=1

n−1∑

r1,...,rQ=1
T n
k1

(v1) . . . T n
kP

(vP )

T
−r1−n (w1) . . . T

−rQ
−n (wQ)Φ

k1,...,kP−r1,...,−rQ
,

where Φ
k1,...,kP−r1,...,−rQ

∈ W̃ .

We will consider (n − 1)–dimensional spaces V+ and V− with the base ek and e−r and denote fk

and f−r their dual base in dual spaces V∗+ and V∗−.
Let us define

b(+)(v) =
n−1∑

k=1
fk ⊗ T n

k (v) ∈ V∗+ ⊗ An

b(−)(w) =
n−1∑

r=1
e−r ⊗ T−r−n (w) ∈ V− ⊗ An

and denote

b(+)
1∗,...,P∗ (v) = b(+)

1∗ (v1)b
(+)
2∗ (v2) . . . b(+)

P∗ (vP ) ∈ V∗
1 ⊗ V∗

2 ⊗ . . . ⊗ V∗
P ⊗ An

b(−)
1,...,Q(w) = b(−)

1 (w1)b
(−)
2 (w2) . . . b(−)

Q (wQ) ∈ V−1 ⊗ V−2 ⊗ . . . ⊗ V−Q ⊗ An .

Explicitly, we have
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b(+)
1∗,...,P∗ (v) =

n−1∑

k1,...,kP=1
fk1 ⊗ . . . ⊗ fkP ⊗ T n

k1
(v1) . . . T n

kP
(vP )

b(−)
1,...,Q(w) =

n−1∑

r1,...,rQ=1
e−r1 ⊗ . . . ⊗ e−rQ ⊗ T

−r1−n (w1) . . . T
−rQ
−n (wQ) .

If we introduce � ∈ V1 ⊗ · · · ⊗ VP ⊗ V∗−1 ⊗ · · · ⊗ V∗−Q ⊗ W̃

� =
n−1∑

k1,...,kP=1

n−1∑

r1,...,rQ=1
ek1 ⊗ . . . ⊗ ekP ⊗ f−r1 ⊗ . . . ⊗ f−rQ ⊗ Φ

k1,...,kP−r1,...,−rQ
=

= ∑

k,r
ek ⊗ f−r ⊗ Φk−r ,

where
Φ
k1,k2,...,kP−r1,−r2,...,−rQ

= Φk−r ∈ W̃ ,

ek = ek1 ⊗ ek2 ⊗ . . . ⊗ ekP ∈ (V+
)⊗P

,

f−r = f−r1 ⊗ f−r2 ⊗ . . . ⊗ f−rQ ∈ (V∗−
)⊗Q

,

the assumed shape of the eigenvectors can be written as

B(v, w) =
〈
b(+)
1∗,...,P∗ (v)b(−)

1,...,Q(w), �
〉
.

4 Bethe Vectors and Bethe Condition

Our goal is to write the action of the operators T n
n (x), T−n−n (x), T̃(+) and T̃(−) on the assumed form of

the Bethe vectors using the operators that act only on �. We do not explicitly mention these relations in
this paper, even though the Theorems of this part are their consequence.

For v = (v1, v2, . . . , vP ) we introduce a set v = {v1, v2, . . . , vP }, denote

vk = (v1, . . . , vk−1, vk+1, . . . , vP ) , vk = v \ {vk } ,

F(x; v) = ∏

vk∈v

f (x, vk ) , F(v; x) = ∏

vk∈v

f (vk , x) .

and define

T̂(+)
0;1,...,P;1∗,...,Q∗ (x; v; w) = R̂(+,−)

0;1∗,...,Q∗ (x; w)T̃(+)
0 (x)R̂(+,+)

0;1,...,P (x; v) =

=
n−1∑

i,k=1
Ek
i ⊗ T̂ i

k (x; v; w)

T̂(−)
0;1,...,P;1∗,...,Q∗ (x; v; w) = R̂(−,−)

0;1∗,...,Q∗ (x; w)T̃(−)
0 (x)R̂(−,+)

0;1,...,P (x; v) =

=
n−1∑

i,k=1
E−k

−i ⊗ T̂−i
−k (x; v; w) ,

where
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R̂(+,+)
0;1,...,P (x; v) = R̂(+,+)

0+,P+ (x, vP ) . . . R̂(+,+)
0+,2+ (x, v2)R̂

(+,+)
0+,1+ (x, v1)

R̂(+,−)
0;1∗,...,Q∗ (x; w) = R̂(+,−)

0+,1∗−
(x, w1)R̂

(+,−)

0+,2∗−
(x, w2) . . . R̂(+,−)

0+,Q∗−
(x, wQ)

R̂(−,−)
0;1∗,...,Q∗ (x; w) = R̂(−,−)

0−,1∗−
(x, w1)R̂

(−,−)

0−,2∗−
(x, w2) . . . R̂(−,−)

0−,Q∗−
(x, wQ)

R̂(−,+)
0;1,...,P (x; v) = R̂(−,+)

0−,P+ (x, vP ) . . . R̂(−,+)
0−,2+ (x, v2)R̂

(−,+)
0−,1+ (x, v1)

R̂(+,+)
0+,1+ (x, v) = 1

f (x, v)

(
Ĩ+ ⊗ Ĩ+ + g(x, v)

n−1∑

i,k=1
Ei
k ⊗ Ek

i

)

R̂(+,−)

0+,1∗−
(x, w) = Ĩ+ ⊗ Ĩ∗− − h̃(w, x)

n−1∑

r,s=1
Er
s ⊗ F−r−s

R̃(−,+)
0−,1+ (x, v) = Ĩ− ⊗ Ĩ+ − h̃(x, v)

n−1∑

i,k=1
E−i

−k ⊗ Ei
k

R̂(−,−)

0−,1∗−
(x, w) = 1

f (w, x)

(
Ĩ0− ⊗ Ĩ∗1− + g(w, x)

n−1∑

r,s=1
E−r−s ⊗ F−s−r

)
.

The main results of this paper are the following three Theorems.

Theorem 2 Let � = ∑

k,r
ek ⊗ f−r ⊗ Φk−r , where Φk−r ∈ W̃ is a common eigenvector of the operators

Ĥ (+)(x; v; w) = Tr0
(
T̂(+)
0;1,...,P;1∗,...,Q∗ (x; v; w)

) =
n−1∑

i=1
T̂ i
i (x; v; w)

Ĥ (−)(x; v; w) = Tr0
(
T̂(−)
0;1,...,P;1∗,...,Q∗ (x; v; w)

) =
n−1∑

i=1
T̂−i
−i (x; v; w)

with eigenvalues μ(+)(x; v; w) and μ(−)(x; v; w). If the Bethe conditions

λn(v�)F(v�; v�)F(w; v� − n + 1 + η) = μ(+)(v�; v; w)F(v�; v�)

λ−n(ws )F(ws ;ws )F(ws + n − 1 − η; v) = μ(−)(ws ; v; w)F(ws ; ws )
(5)

are fulfilled for any v� ∈ v and ws ∈ w, the vector

B(v; w) =
〈
b(+)
1∗,...,P∗ (v)b(−)

1,...,Q(w), �
〉

is a common eigenvector of the operators H (+)(x) and H (−)(x) with eigenvalues

E(+)(x; v; w) = λn(x)F(v; x)F(w; x − n + 1 + η) + μ(+)(x; v, w)F(x; v)

E(−)(x; v; w) = λ−n(x)F(x; w)F(x + n − 1 − η; v) + μ(−)(x; v; w)F(w; x) .

Theorem 3 The operators T̂ i
k (x; v; w) and T̂−i

−k (x; v; w) are for any v and w generators of the RTT–
algebra ofAn−1 type.

The following Theorem shows that

�̂ = en−1 ⊗ . . . ⊗ en−1︸ ︷︷ ︸
P×

⊗ f−n+1 ⊗ . . . ⊗ f−n+1
︸ ︷︷ ︸

Q×
⊗ω
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is a vacuum vector for the representation of the RTT–algebra An−1, which is generated by T̂ i
k (x; v; w)

and T̂−i
−k (x; v; w).

Theorem 4 For the vector �̂ and i, k = 1, . . . , n − 1

T̂ i
k (x; v, w)�̂ = 0 for i < k , T̂−i

−k (x; v; w)�̂ = 0 for k < i

T̂ i
i (x; v; w)�̂ = νi (x; v; w)�̂ T̂−i

−i (x; v; w)�̂ = ν−i (x; v; w)�̂

where
νi (x; v; w) = λi (x)F(v; x + 1) for 1 ≤ i < n − 1
νn−1(x; v; w) = λn−1(x)F(x − n + 1 + η; w)

ν−i (x; v; w) = λ−i (x)F(x − 1;w) for 1 ≤ i < n − 1
ν−n+1(x; v; w) = λ−n+1(x)F(v; x + n − 1 − η)

are valid.

These three theorems show that to find the Bethe vectorsB(v; w) for the RTT–algebraAn , it is sufficient
to find the Bethe vectors for the RTT–algebra An−1 that is generated by the operators T̂ i

k (x; v; w),

T̂−i
−k (x; v; w), where i, k = 1, . . . , n − 1, and that has a vacuum vector �̂.

5 Conclusion

The paper describes the construction of eigenvectors for the representations of the RTT–algebra An by
using the highest weight vectors for the representation of the RTT–algebra An−1. We meet these RTT–
algebras [1, 2] while studying the algebraic Bethe Ansatz for the RTT–algebras of sp(2n) and o(2n)

types.
In the special cases, when v or w is an empty set, our construction is known as the algebraic nested

Bethe Ansatz, which was formulated in [4]. So our construction of the Bethe vectors is a generalization
of the algebraic nested Bethe Ansatz to the RTT–algebra ofAn type.

For the RTT–algebra of A2 type we get from Theorems 2–4 the Bethe vectors

B2(v; w) = T 2
1 (v)T−1

−2 (w)ω

and the Bethe conditions

λ2(v�)F(v�; v�)F(w; v� − 1 + η) = λ1(v�)F(v� − 1 + η; w)F(v�; v�)

λ−2(ws )F(ws ;ws )F(ws + 1 − η; v) = λ−1(ws )F(v;ws + 1 − η) F(ws ; ws ),

which we found for this algebra and ν = −1 in [3].
For higher n it is possible by means of Theorems 2–4 to step-by-step decrease the value of n and thus

obtain an explicit form of the Bethe vectors. For the RTT–algebra of gl(n) type this procedure leads to
trace-formula [5]. We intend to publish a similar explicit form of the Bethe vectors for the RTT–algebras
An , of sp(2n) and o(2n) types in the near future.
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Lie Reductions and Exact Solutions of
Generalized Kawahara Equations

Olena Vaneeva, Olena Magda, and Alexander Zhalij

Abstract We complete the classical Lie symmetry analysis of a class of general-
ized Kawahara equations with time dependent coefficients by classification of Lie
reductions of equations from this class. Some exact Lie-invariant solutions are also
constructed.

Keywords Kawahara equation · Lie symmetry · Lie reduction · Invariant
solution · Exact solution · Group analysis

1 Introduction

The classical Kawahara equation appeared in the literature as early as in 1972 as
model in solitary wave theory of the form

ut + αuux + βuxxx + σuxxxxx = 0,

where α was fixed as 3/2, while β and σ are nonzero constants representing effect of
dispersion [3]. Later a number of generalizations of Kawahara equations were pro-
posed (see introduction in [4] for literature overview). To the best of our knowledge
Kawahara equations with three time dependent coefficients firstly were considered
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in [2] though the complete Lie symmetry classification for such equations was not
achieved therein.

The most general class of generalized Kawahara equations with time dependent
coefficients has the form

ut + α(t) f (u)ux + β(t)uxxx + σ(t)uxxxxx = 0, fuαβσ �= 0, (1)

where f , α, β and σ are smooth nonvanishing functions of their variables. Some Lie
symmetries and conservation laws of such equations were found in [1]. Transforma-
tion properties of the class (1) were exhaustively investigated in our work [10]. It
was proved that this class is not normalized but can be presented as the union of two
disjoint normalized subclasses which are singled out by the conditions fuu �= 0 and
fuu = 0 (the rigorous theory on the transformation properties of classes of DEs and
the related notions can be found in [9]). The respective extended generalized equiv-
alence groups were constructed. It was shown that the optimal gauging of arbitrary
elements is the gauging α = 1 and it is realized by the family of point transformations
t̃ = ∫ t

t0
α(y) dy, x̃ = x, ũ = u, from the equivalence group of the class. Without loss

of generality we can restrict ourselves by the investigation of the class

ut + f (u)ux + β(t)uxxx + σ(t)uxxxxx = 0, fuβσ �= 0, (2)

instead of its superclass (1). The complete Lie symmetry classification of equa-
tions (2) (resp. (1)) was carried out in [10, Sect. 4]. In order to finalize the classical
group analysis of the generalized Kawahara equations with time dependent coeffi-
cients in this paper we present the classification of their Lie reductions and construct
some exact solutions.

2 Lie Reductions and Exact Solutions

The reduction method with respect to subalgebras of Lie invariance algebras is algo-
rithmic and well-known [5]. As equations from class (2) are (1 + 1)-dimensional
nonlinear partial differential equations, Lie reductions of them with respect to one-
dimensional subalgebras of their maximal Lie invariance algebras will lead to ordi-
nary differential equations (ODEs). In order to get inequivalent reductions one should
use subalgebras from the so called optimal system (see Sect. 3.3 in [5]).

Consider the general form of Lie symmetry operator Q = τ(t, x, u)∂t + ξ(t, x,
u)∂x + η(t, x, u)∂u , which forms a basis of the respective one-dimensional subalge-
bra from the constructed optimal system, then the Ansatz is found as a solution of
the invariant surface condition Q[u] := τut + ξux − η = 0. In practice, the corre-
sponding characteristic system dt

τ
= dx

ξ
= du

η
should be solved.

The kernel of the maximal Lie invariance algebras of equations from the class (2)
with fuu �= 0 coincides with the one-dimensional algebra 〈∂x 〉. Consider one by one
all the inequivalent equations from the class (2)which admit Lie symmetry extensions
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(numbers of cases correspond to those presented in [10, Table 1]. Together with each
equation Li from the class (2) we list its maximal Lie invariance algebra Amax, the
type of Amax according to the classification of low-dimensional algebras presented
in [6], the optimal system (OS) of one-dimensional subalgebras, Ansatze and the
respective invariant variable ω, and finally the reduced ordinary differential equation
RLi . In each case we skip reductions with respect to the subalgebra 〈g0 = ∂x 〉 as
they lead to trivial constant solutions only. Below a, ρ and C are arbitrary constants,
λ and δ are nonzero constants and ε = {−1, 0, 1}.

Case 1. L1 : ut + f (u)ux + λt2uxxx + δt4uxxxxx = 0,

Amax = 〈∂x , t∂t + x∂x 〉 (non-Abelian algebra A2),

OS: {〈g0 = ∂x 〉, 〈g1 = t∂t + x∂x 〉},
g1 : Ansatz is u = ϕ(ω), where ω = x

t
,

RL1 : δϕ′′′′′ + λϕ′′′ + f (ϕ)ϕ′ − ωϕ′ = 0.

Case 2. L2 : ut + f (u)ux + λuxxx + δuxxxxx = 0,

Amax = 〈∂x , ∂t 〉 (Abelian algebra 2A1),

OS: {〈g0 = ∂x 〉, 〈g2 = ∂t + a∂x 〉},
g2 : Ansatz is u = ϕ(ω), where ω = x − at,

RL2 : δϕ′′′′′ + λϕ′′′ + f (ϕ)ϕ′ − aϕ′ = 0.

Case 3. L3 : ut + ln(u)ux + β(t)uxxx + σ(t)uxxxxx = 0,

Amax = 〈∂x , t∂x + u∂u〉 (Abelian algebra 2A1),

OS: {〈g0 = ∂x 〉, 〈g3 = (t + a)∂x + u∂u〉},
g3 : Ansatz is u = e

x
t+a ϕ(ω), where ω = t,

RL3 : ϕ′ + ϕ ln ϕ

ω + a
+ β(ω)ϕ

(ω + a)3
+ σ(ω)ϕ

(ω + a)5
= 0.

This ODE can be integrated, ϕ = exp

(
C − ∫

β(ω)

(ω+a)2
dω − ∫

σ(ω)

(ω+a)4
dω

ω + a

)

. The

respective exact solution of the equation L3 is

u = exp

(
x + C − ∫

β(t)
(t+a)2

dt − ∫
σ(t)

(t+a)4
dt

t + a

)

.

Case 4. L4 : ut + ln(u)ux + λt2uxxx + δt4uxxxxx = 0,

Amax = 〈∂x , t∂x + u∂u, t∂t + x∂x 〉 (algebra of the type A1 ⊕ A2),

OS: {〈g0 = ∂x 〉, 〈ga4 = t∂t + (x + at)∂x + au∂u〉, 〈gε
4 = (t + ε)∂x + u∂u〉},
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ga4 : Ansatz is u = taϕ(ω), where ω = x

t
− a ln t,

RL4,a : δϕ′′′′′ + λϕ′′′ + (ln ϕ − ω − a)ϕ′ + aϕ = 0;

gε
4 : Ansatz is u = e

x
t+ε ϕ(ω), where ω = t,

RL4,ε : ϕ′ + ϕ ln ϕ

ω + ε
+ λω2ϕ

(ω + ε)3
+ δω4ϕ

(ω + ε)5
= 0.

The equation RL4,ε is a particular case of the equation RL3 and can be integrated.
The respective exact solution of the equation L4 is

u = exp

⎛

⎜
⎝
x + C + λ

(
ε2

t+ε + 2ε ln(t + ε) − t
)

+ δ
(

ε2

3
18t2+30εt+13ε2

(t+ε)3
+ 4ε ln(t + ε) − t

)

t + ε

⎞

⎟
⎠ .

Case 5. L5 : ut + ln(u)ux + λuxxx + δuxxxxx = 0,

Amax = 〈∂x , t∂x + u∂u, ∂t 〉 (the Weyl algebra A3.1)

OS: {〈g0 = ∂x 〉, 〈g5 = ∂t 〉, 〈ga5 = a∂t + t∂x + u∂u〉},
g5 : Ansatz is u = ϕ(ω), where ω = x,

RL5 : δϕ′′′′′ + λϕ′′′ + ln ϕϕ′ = 0;

ga5 : Ansatz is u = e
t
a ϕ(ω), where ω = x − t2

2a , a �= 0,

RL5,a : δϕ′′′′′ + λϕ′′′ + ln ϕϕ′ + 1
aϕ = 0;

g05 : Ansatz is u = e
x
t ϕ(ω), where ω = t,

RL5,0 : ϕ′ + ϕ ln ϕ

ω
+ λϕ

ω3
+ δϕ

ω5
= 0.

The solution ϕ = exp
(
Cω3+3λω2+δ

3ω4

)
of the latter equation leads to the following

exact solution of the equation L5

u = exp

(
(3x + C)t3 + 3λt2 + δ

3t4

)

.

It should be noted that the reductions performed with respect to the subalgebras
gε
4 and g05 are particular cases of the reduction with respect to g3.

Case 6.1. L6.1 : ut + unux + λtρuxxx + δt
5ρ+2
3 uxxxxx = 0, ρ �= −1, n �= 0,

Amax = 〈∂x , 3nt∂t + (ρ + 1)nx∂x + (ρ − 2)u∂u〉 (non-Abelian algebra A2),

OS: {〈g0 = ∂x 〉, 〈g6.1 = 3nt∂t + (ρ + 1)nx∂x + (ρ − 2)u∂u〉},
g6.1 : Ansatz is u = t

ρ−2
3n ϕ(ω), where ω = xt−

ρ+1
3 ,
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RL6.1 : δϕ′′′′′ + λϕ′′′ + ϕnϕ′ − ρ+1
3 ωϕ′ + ρ−2

3n ϕ = 0.

Case 6.2. L6.2 : ut + unux + λt−1uxxx + δt−1uxxxxx = 0, n �= 0,

Amax = 〈∂x , nt∂t − u∂u〉 (Abelian algebra 2A1),

OS: {〈g0 = ∂x 〉, 〈g6.2 = nt∂t + a∂x − u∂u〉},
g6.2 : Ansatz is u = t−

1
n ϕ(ω), where ω = x − a

n ln t,

RL6.2 : δϕ′′′′′ + λϕ′′′ + ϕnϕ′ − a
nϕ

′ − 1
nϕ = 0.

Case 7. L7 : ut + unux + λetuxxx + δe
5
3 t uxxxxx = 0, n �= 0,

Amax = 〈∂x , 3n∂t + nx∂x + u∂u〉 (non-Abelian algebra A2),

OS: {〈g0 = ∂x 〉, 〈g7 = 3n∂t + nx∂x + u∂u〉},
g7 : Ansatz is u = e

t
3n ϕ(ω), where ω = xe− t

3 ,

RL7 : δϕ′′′′′ + λϕ′′′ + ϕnϕ′ − 1
3ωϕ′ + 1

3nϕ = 0.

Case 8.1. L8.1 : ut + euux + λtρuxxx + δt
5ρ+2
3 uxxxxx = 0, ρ �= −1,

Amax = 〈∂x , 3t∂t + (ρ + 1)x∂x + (ρ − 2)∂u〉 (non-Abelian algebra A2),

OS: {〈g0 = ∂x 〉, 〈g8.1 = 3t∂t + (ρ + 1)x∂x + (ρ − 2)∂u〉},
g8.1 : Ansatz is u = ϕ(ω) + ρ−2

3 ln t, where ω = xt−
ρ+1
3 ,

RL8.1 : δϕ′′′′′ + λϕ′′′ + eϕϕ′ − ρ+1
3 ωϕ′ + ρ−2

3 = 0.

Case 8.2. L8.2 : ut + euux + λt−1uxxx + δt−1uxxxxx = 0,

Amax = 〈∂x , t∂t − ∂u〉 (Abelian algebra 2A1),

OS: {〈g0 = ∂x 〉, 〈g8.2 = t∂t + a∂x − ∂u〉},
g8.2 : Ansatz is u = ϕ(ω) − ln t, where ω = x − a ln t,

RL8.2 : δϕ′′′′′ + λϕ′′′ + eϕϕ′ − aϕ′ − 1 = 0.

Case 9. L9 : ut + euux + λetuxxx + δe
5
3 t uxxxxx = 0,

Amax = 〈∂x , 3∂t + x∂x + ∂u〉 (non-Abelian algebra A2),

OS: {〈g0 = ∂x 〉, 〈g9 = 3∂t + x∂x + ∂u〉},
g9 : Ansatz is u = ϕ(ω) + t

3 , where ω = xe− t
3 ,

RL9 : δϕ′′′′′ + λϕ′′′ + eϕϕ′ − 1
3ωϕ′ + 1

3 = 0.

The reductions presented in Cases 2, 6.1, 6.2 and 7 are valid also for the case
f (u) = u (or n = 1). Following [4], where this case was investigated in details, we
list three additional inequivalent reductions of the equations

ut + uux + β(t)uxxx + σ(t)uxxxxx = 0, βσ �= 0, (3)
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for the completeness of the presented results.
TheAnsatzu = ϕ(ω) + x

t+a ,whereω = t, constructedusing the subalgebra 〈(t +
a)∂x + ∂u〉 reduces any equation from the class (3)

to the first order ODE (ω + a)ϕ′ + ϕ = 0. Its solution ϕ = C
ω+a leads to the so-

called ’degenerate’ solution u = x+C
t+a of Eq. (3).

The Ansatz u = 2t/a + ϕ(ω), where ω = x − t2/a, a �= 0, resulted from the
subalgebra 〈a∂t + 2t∂x + 2∂u〉, reduces the equation

ut + uux + λuxxx + δuxxxxx = 0,

to the ODE δϕ′′′′′ + λϕ′′′ + ϕϕ′ + 2/a = 0.
The last case concerns the equation

ut + uux + λ(t2+1)
1
2 e3ν arctan t uxxx + δ(t2+1)

3
2 e5ν arctan t uxxxxx = 0, (4)

where ν is an arbitrary constant. The Ansatz u = eν arctan t√
t2+1

ϕ(ω) + xt
t2+1 , where ω =

xe−ν arctan t√
t2+1

, constructed using the subalgebra 〈(t2 + 1)∂t + (t + ν)x∂x + (x + (ν −
t)u)∂u〉 reduces Eq. (4) to the ODE δϕ′′′′′ + λϕ′′′ + (ϕ − νω)ϕ′ + νϕ + ω = 0.

The classification of inequivalent Lie reductions of Eq. (2) (resp. (1)) is completed.
The obtained reductions may be used also for solving the related invariant boundary
value problems (see [7, 8] for the details).
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Several Exactly Solvable Quantum
Mechanical Systems and the SWKB
Quantization Condition

Yuta Nasuda

Abstract We study the SWKB quantization conditions for two classes of exactly
solvable quantum mechanical systems: one is the system whose eigenfunctions con-
tain themulti-indexed polynomials as themain parts and the other is obtained through
the Krein–Adler transformation.We show that the condition equation is always inde-
pendent of � and the condition is not exactly satisfied but holds with a certain degree
of accuracy. These results are based on our previous work [12]. A brief review on
exactly solvable quantum mechanics is also presented.

Keywords Supersymmetric quantum mechanics · SWKB quantization condition ·
Exactly solvable Schrödinger equation · Shape invariance · Multi-indexed
Laguerre and Jacobi polynomials · Krein-Adler transformation

1 Introduction

Supersymmetric quantum mechanics (SUSY QM) [4, 19] has been giving insights
into the solvability in one-dimensional (1-d) quantum mechanics. It answers why
Schrödinger equations with certain class of 1-d potentials are analytically solvable.
Also, several exactly solvable (ES) potentials have been constructed within the con-
text of SUSY QM.

In 1985, Comtet et al. proposed aWKB-like quantization condition in the context
of SUSY QM [3]. This condition, which is referred to as the SWKB quantization
condition, seems to have deep physical insights, for it successfully reproduces the
exact bound-state spectra for a certain class of ES systems [6]. Studies on the con-
dition and other classes of ES potentials have been carried out so far [2, 5, 10, 12,
13]. However, the condition does not give exact energy eigenvalues for other classes
of ES systems. It was once believed that the condition equation is somehow equiva-
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lent to a sufficient condition for the exact solvability known as the shape invariance
(SI) [7]. However, Bougie et al. claimed that a system with SI, whose eigenfunctions
are expressed using the exceptional orthogonal polynomials, does not satisfy the
condition recently [2].

In literature, one often comes across careless treatment on �-dependency. In deal-
ing with �-dependency properly, we have come to realize � is removed completely
from the SWKBquantization condition [12].Also, considering the fact that the super-
potential depends on � in general, the SWKB quantization condition is not derived
from theWKB quantization condition. These mean that the SWKB condition should
not be discussed in the context of the semi-classical regime of the quantum systems
like WKB formalism. In the WKB approximation, one expands a wave function in
powers of �. Then, what is the counterpart of � in the SWKB scheme? Our investi-
gation of the SWKB condition will be completed when this “unknown parameter”
is identified. As an initial step, we verify the claim by Bougie et al. [2] and examine
the SWKB condition for further classes of ES systems to show the breaking of the
condition equation might be depicted by the “unknown parameter”.

2 Exactly Solvable Quantum Mechanics

We discuss time-independent, 1-d ES Schrödinger equation, or the eigenvalue prob-
lem of the Hamiltonian H:

Hψ(x) = Eψ(x) , H = − �
2

2m

d2

dx2
+ V (x) , x ∈ (x1, x2) . (1)

Hereafter, we fix 2m = 1 but retain �. The eigenvalue problem is exactly solvable
(ES), when all the discrete eigenvalues {En} and the corresponding eigenfunctions
{ψn(x)} are obtained explicitly:Hψn(x) = Enψn(x). We assume thatH is bounded
from below so that H has infinitely or finitely many discrete eigenvalues, and also
we set the ground-state eigenvalue to be zero; 0 = E0 < E1 < E2 < · · · . Also, the
eigenfunctions {ψn(x)} are orthogonal

∫ x2

x1

ψ∗
n (x)ψm(x) dx = hnδnm , (2)

where hn is some constant.

2.1 SUSY QM and Shape Invariance

The Hamiltonian we are dealing with, which is denoted by H[0] in this subsection,
can be factorized in the following form:



Several Exactly Solvable Quantum Mechanical Systems … 341

H[0] ≡ A†A , A := �
d

dx
+ W (x) , A† = −�

d

dx
+ W (x) , (3)

where W (x) is often referred to as the superpotential. The superpotential W (x) can
be expressed using the ground-state wave function ψ0(x);

Aψ0(x) = 0 , ∴ W (x) = −�
d

dx
ln |ψ0(x)| . (4)

In the context of SUSY QM, the potential V (x) is formally given by

V (x) = W (x)2 − �
dW

dx
= �

2

[(
d

dx
ln |ψ0(x)|

)2

+ d2

dx2
ln |ψ0(x)|

]
. (5)

Here, we define a Hamiltonian by changing the order of A† and A inH[0];

H[1] := AA† . (6)

The partner Hamiltonians:H[0] andH[1], are shown to be iso-spectral, except for the
ground state ofH[0].Moreover, eigenstates of the partnerHamiltonians are related via
A andA† each other. These are verified through the following intertwining relations:
AH[0] = H[1]A, A†H[1] = H[0]A†.

Those Hamiltonians usually contain several parameters a ≡ (a1, a2, . . .), and we
write the parameter dependency of the Hamiltonians explicitly as H[i] = H[i](a).
When H[1] are related toH[0] by

H[1](a) = H[0]( f (a)) + ε(a) , (7)

with f being some function, e.g., f (a) = a + 1, and ε(a) being a constant, the
Hamiltonians are said to be shape invariant (SI) [7]. The shape invariance (SI) is a
sufficient condition of the exact solvability of the Schrödinger equation. Sometimes,
Eq. (7) is called the SI transformation. We will give three typical examples and a
novel class of potentials with SI in the subsequent subsection.

2.2 Exactly Solvable Quantum Mechanical Systems

ES quantummechanical potentials have been studied since the early days of quantum
mechanics. Among them is the factorization method [8], which is now understood
in connection with SI. This class of ES potentials are referred to as the conventional
SI systems. The term “conventional” reflects the fact that these systems were already
known in the 1950’s.

After that, a number of classes of ES systems have been constructed in relation
to the conventional SI systems. A part of those ES quantum mechanical systems
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Conventional SI Systems
Darboux transf.

virtual states

Multi-indexed
systems

S. Odake, et al.,
Phys. Lett. B 702
(2011)

Scaling SI

SI systems

Krein–Adler systems
V. É. Adler, Theor. and Math. Phys. 101 (1994)

Darboux transf. eigenstates

Counterparts
w/ position-
dependent mass

B. Bagchi, et al.,
J. Phys. A 38 (2005)

cf. Riemann sp.

Conditionally exactly solvable systems
G. Junker, et al., Annals Phys. 270 (1998)

· · · Energy shift by b
Conditionally

SI systems
B. Chakrabarti, et al.,
J. Phys. A 35 (2002)

Abraham–Moses systems
P. Abraham, et al., Phys. Rev. A 22 (1980)

Abraham–Moses transf. · · ·

Quasi-exactly solvable systems
A. Turbiner, et al., Phys. Lett. A 126 (1987)

N → ∞ · · · Natanzon
potentials

G. Natanzon,
Theor. Math.
Phys. 38 (1979)

Fig. 1 Several classes of ES quantum mechanical systems in connection with the conventional SI
systems.We cover the following three systems in this article: the conventional SI, the multi-indexed
and the Krein–Adler systems

(references are given in the figure) and how they are related to the conventional
SI systems are shown in Fig. 1. Among them, we discuss the multi-indexed and
the Krein–Adler systems with the SWKB quantization condition. As we shall see
later in the subsection, these systems are obtained by modifying the conventional SI
systems.

In Ref. [2], Bougie et al. dealt with a special case of the multi-indexed system.
We carry out further investigation on a general case of this class of ES systems. The
Krein–Adler system is another class of ES systems which is constructed through
the same transformation as the multi-indexed system. A difference between the two
classes are the seed solutions of the transformation. This difference causes a different
property on SI of the resulting systems; the multi-indexed system is SI, while the
Krein–Adler system is no longer SI. Then, it is quite natural to ask how about the
exactness of the SWKB condition, which we shall discuss in Sect. 3.

We first introduce three typical examples of the conventional SI systems, and
then by transforming the three, we give the formulae for both the multi-indexed and
Krein–Adler systems corresponding to the three conventional SI systems.

Conventional SI systems: The 1-d harmonic oscillator (H), the radial oscillator
(L) and the Pöschl–Teller potential (J) are significant examples of the conventional
SI systems. The potentials are given by
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V (∗)(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω2x2 − �ω , x ∈ (−∞,∞) ∗ = H ,

ω2x2 + �
2g(g − 1)

x2
− �ω(2g + 1) , x ∈ (0,∞) ∗ = L ,

�
2g(g − 1)

sin2 x
+ �

2h(h − 1)

cos2 x
− �

2(g + h)2 , x ∈
(
0,

π

2

)
∗ = J ,

(8)
where ω > 0 and g, h > 1/2. Parameters change during the SI transformations as
(H): ∅, (L): g → g + 1 and (J): (g, h) → (g + 1, h + 1). The energy eigenvalues
and the corresponding wave functions are given as follows:

E (∗)
n =

⎧⎨
⎩
2n�ω ∗ = H ,

4n�ω ∗ = L ,

4�
2n(n + g + h) ∗ = J ,

(9)

and

ψ(∗)
n (x) =

⎧⎪⎪⎨
⎪⎪⎩
e− ξ2

2 Hn(ξ) ∗ = H ,

e− z
2 z

g
2 L

(g− 1
2 )

n (z) ∗ = L ,

(1 − y)
g
2 (1 + y)

h
2 P

(g− 1
2 ,h− 1

2 )
n (y) ∗ = J .

(10)

For all of them, n ∈ Z≥0. In Eq. (10), Hn , L(α)
n , P (α,β)

n denote the Hermite, Laguerre,
Jacobi polynomials respectively, and ξ ≡ √

ω/� x , z ≡ ξ 2 and y ≡ cos 2x .

Multi-indexed systems: One can obtain another class of SI systems whose eigen-
functions are expressed with the multi-indexed Laguerre and Jacobi polynomials
through themultipleDarboux transformation of the conventional SI systemswith∗ =
L, J [16]. We employ the virtual-state wave functions

{{ϕ(∗),I
n (x)}, {ϕ(∗),II

n (x)}} as
the seed solutions of the transformation, with n ∈ D = DI ∪ DII = {d I

1, . . . , d
I
M } ∪

{d II
1 , . . . , d II

N } where d I
1 < · · · < d I

M , d II
1 < · · · < d II

N ∈ Z>0. Note that the special
cases [DI = {�} and DII = ∅] and [DI = ∅ and DII = {�}] are called the type I and
the type II X�-Laguerre/Jacobi system, respectively [14, 15, 17, 18].

The resulting systems are

H(MI,∗)

D := −�
2 d2

dx2
+ V (∗)(x)

−2�
2 d2

dx2
ln

∣∣∣W
[
ϕ

(∗),I
d I
1

, . . . , ϕ
(∗),I
d I
M

, ϕ
(∗),II
d II
1

, . . . , ϕ
(∗),II
d II
N

]
(x)

∣∣∣ , (11)

in which ∗ = L, J and W[ f1, · · · , fn](x) is the Wronskian. The energy eigenvalues
and the corresponding wave functions are given as follows:

E (MI,∗)

D;n = E (∗)
n , (12)

ψ
(MI,∗)

D;n (x) =
W

[
ϕ

(∗),I
d I
1

, . . . , ϕ
(∗),I
d I
M

, ϕ
(∗),II
d II
1

, . . . , ϕ
(∗),II
d II
N

, ψ(∗)
n

]
(x)

W
[
ϕ

(∗),I
d I
1

, . . . , ϕ
(∗),I
d I
M

, ϕ
(∗),II
d II
1

, . . . , ϕ
(∗),II
d II
N

]
(x)

. (13)
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Krein–Adler systems: The Krein–Adler transformation [1, 11] is a multiple Dar-
boux transformation by choosing several eigenfunctions of the original systems
as the seed solutions. The systems obtained through the Krein–Adler transfor-
mation of the conventional SI systems (8) are called the Krein–Adler systems,
which is not SI any more. To obtain this class of system, one can choose the seed
solutions as {ψ(∗)

n (x)} with n ∈ D = {d1, d1 + 1 < d2, d2 + 1 < · · · < dN , dN + 1}
where d1, . . . , dN ∈ Z≥0 and N ∈ Z>0 in general. This transformation is interpreted
as the deletion of the eigenstates of the original systems labeled by D. Here, we
restrict ourselves to the case where the number of the seed solutions are two, i.e.,
ψ

(∗)
d (x) and ψ

(∗)
d+1(x).

The resulting deformed systems read

H(KA,∗)

D := −�
2 d2

dx2
+ V (∗)(x) − 2�

2 d2

dx2
ln

∣∣∣W
[
ψ

(∗)
d , ψ

(∗)
d+1

]
(x)

∣∣∣ , (14)

in which ∗ = H,L, J. The energy eigenvalues and the corresponding wave functions
are given as follows:

E (KA,∗)

D;n = E (∗)

n̆ , ψ
(KA,∗)

D;n (x) =
W

[
ψ

(∗)
d , ψ

(∗)
d+1, ψ

(∗)

n̆

]
(x)

W
[
ψ

(∗)
d , ψ

(∗)
d+1

]
(x)

, (15)

where

n̆ :=
{
n (0 ≤ n ≤ d − 1)
n + 2 (n ≥ d)

(16)

with the number of nodes n.

3 SWKB Quantization Condition

The well-known WKB quantization condition is given by

∫ xR

xL

√
En − V (x) dx =

(
n + 1

2

)
π� , n ∈ Z≥0 , (17)

in which xL and xR are the classical turning points; V (xL) = V (xR) = En . On the
other hand, in the context of SUSY QM, a WKB-like quantization condition was
proposed by Comtet et al. [3], which reads

∫ b

a

√
En − W (x)2 dx = nπ� , n ∈ Z≥0 , (18)
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where a, b are the roots of W (x)2 = En . This condition is called the SWKB quanti-
zation condition in the literature. In some cases, the equation W (x)2 = En has more
than two roots: {(ai , bi ); i = 1, 2, . . .}. We employ a prescription of replacing the
l.h.s. of Eq. (18) as follows [12]:

∫ b

a

√
En − W (x)2 dx →

∑
i

∫ bi

ai

√
En − W (x)2 dx . (19)

The SWKB condition is exact condition for the ground state of any system by
construction. Also, it has been demonstrated that for all conventional SI systems, the
SWKB condition reproduces exact bound-state spectra [6]. For other ES potentials,
this is not an exact quantization condition [2, 5, 10, 12, 13].

We emphasize here that, the superpotential W (x) depends on � in general, and
the SWKB condition is not derived from the WKB quantization condition. It is
now almost certain that the SWKB formalism means nothing about semi-classical
approximation. Then, what the condition means? Unfortunately, there is still no
answer for the question. In order to get closer to the answer, it is still worth examining
how the SWKB condition works for several ES systems.

3.1 Multi-indexed Systems and SWKB Condition

For the multi-indexed systems, the condition equation (18) reduces to

L :
∫ b′

a′

√
n − z

(
d

dz
ln

∣∣∣ψ(MI,L)
D;0 (x)

∣∣∣
)2 dz√

z
= nπ , (20)

J :
∫ b′

a′

√
n(n + g + h) − (1 − y2)

(
d

dy
ln

∣∣∣ψ(MI,J)
D;0 (x)

∣∣∣
)2 dy√

1 − y2
= nπ , (21)

with a′ and b′ being the roots of the equations where inside the square roots are put
to zero. Note that these formulae depend on g, h, but are independent of �, ω.

We calculate the l.h.s. of Eqs. (20) and (21), which is denoted by I , numerically
to see the accuracy of the SWKB conditions for the multi-indexed systems. Here, we
choose the case of the multi-indexed Laguerre system with g = 5 andD = {1} ∪ {2}
as an illustrative example. For more examples, see Ref. [12]. We plot in Fig. 2 the
integrals I and the relative errors Err defined by

Err := I − nπ

I
, n ∈ Z>0 . (22)

For the special case of n = 0, where the condition equations (20), (21) are exact, we
define Err = 0.
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Fig. 2 The accuracy of the SWKB condition for a multi-indexed Laguerre system. The blue dots
are the values of the l.h.s. of Eq. (20) and the red squares are the corresponding errors Err, while
the blue line and the red chain line mean that the SWKB condition is exact on these lines. We adopt
the following rescaling for the plot of the errors: Err → sgn(Err)2log10 |Err|

From Fig. 2, one can immediately see that, except for the ground state, the con-
dition equation (20) is not exactly satisfied. Also, we have replicated the calculation
in Ref. [2], which contains problematical treatments of �-dependency. Moreover, we
have confirmed that the same thing as the case of Laguerre can be said for the case
of the multi-indexed Jacobi system [12]. In conclusion, the claim by Bougie et al.
still holds after the explicit �-dependency is properly taken into account, and it can
be applied to the wider class of the multi-indexed systems.

Although the SWKB condition is not an exact quantization condition for this class
of potentials, it is notable that the errors are always less than 10−2. As n grows, |Err|
gradually reduces, and in the limit n → ∞, the SWKB condition will be restored.
For larger g, the errors are even smaller. Therefore, one can say that the SWKB con-
dition for the multi-indexed systems is not an exact but an approximate quantization
condition. For further and detailed discussions, see our previous work [12].

3.2 Krein–Adler Systems and SWKB Condition

For the Krein–Adler systems, the condition equation (18) becomes

H :
∫ b′

a′

√
2n̆ −

(
d

dξ
ln

∣∣∣ψ(KA,H)
D;0 (x)

∣∣∣
)2

dξ = nπ , (23)

L :
∫ b′

a′

√
n̆ − z

(
d

dz
ln

∣∣∣ψ(KA,L)
D;0 (x)

∣∣∣
)2 dz√

z
= nπ , (24)
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Fig. 3 The accuracy of the SWKB condition for a Krein–Adler Hermite system. The blue dots are
the values of the l.h.s. of Eq. (23) and the red squares are the corresponding errors Err, while the
blue line and the red chain line mean that the SWKB condition is exact on these lines. We adopt
the following rescaling for the plot of the errors: Err → sgn(Err)2log10 |Err|

J :
∫ b′

a′

√
n̆(n̆ + g + h) − (

1 − y2
) (

d

dy
ln

∣∣∣ψ(KA,J)
D;0 (x)

∣∣∣
)2 dy√

1 − y2
= nπ , (25)

in which a′ and b′ are the roots of the equations where inside the square roots equal
zero. Note that these formulae depend on g, h, but are totally independent of �, ω,
which is just the same as the case of the multi-indexed systems.

We numerically examine the integral of the condition equations (23)–(25), which
is denoted by I , to show how accurate they are for the Krein–Adler systems. Our
example here is Krein–Adler Hermite system withD = {3, 4}, for which we plot the
integrals I and the relative error Err (22) in Fig. 3. For more examples, see Ref. [12].

The numerical analysis shows that, except for n = 0, the condition equation (23)
is not satisfied again.We have also confirmed that the same can be said for the cases of
Krein–Adler Laguerre and Jacobi. Moreover, the results indicate similar behaviors.
First, the integrals deviate around the deleted levels, i.e., around n = 2, 3 or n̆ = 2, 5
for our current example. The maximal errors are |Err| � 10−1. The errors tend to be
of opposite sign between the below and the above of the deleted levels. Second, as n
goes to infinity, |Err| gets closer to zero and the SWKB condition tends to be exact,
which is again the same behavior as the case in the previous subsection. The SWKB
condition for the Krein–Adler systems is also an approximate condition, except for
n’s around the deleted levels.

We would like to discuss from our numerical results what guarantees the approx-
imate satisfaction of the SWKB condition. Considering that the Krein–Adler trans-
formation is a deformation of the distribution of energy spectra, and the fact that the
maximal errors are seen around the deleted levels D and |Err| becomes smaller as n
steps away fromD, it may be the whole distribution of the energy eigenvalues that is
responsible for the approximate satisfaction of the SWKB condition. The modifica-
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tions of the conventional SI systems change the level structures of the systems, and
so do the values of the integral of the SWKB condition. This is how the exactness of
the condition equation breaks.

We note at the end of this subsection that interesting things happen for larger d.
For the details, see our previous work [12].

4 Conclusion

We studied the SWKB conditions for themulti-indexed systems and the Krein–Adler
systems. We showed that � is always factored out of the l.h.s. of Eq. (18), hence
the condition equation is totally independent of �. Then, we numerically computed
the integral in the SWKB conditions. The results clearly show that the condition
equations are not exactly satisfied, but hold with some degree of accuracy for the
systems we studied. As Bougie et al. suggested, the translational SI is not responsible
for the exactness of the SWKB condition.

It seems from our analyses that the level structures of the system play an important
role in the SWKB formalism. We conjecture that the approximate satisfaction of the
SWKB condition is guaranteed by the level structure of the systems. In order to
confirm the conjecture, the analyses on ES potentials where the level structures
are modified with a continuous parameter [9] might help. We report the results in
Ref. [13].

Aswasmentioned in Sect. 1, we believe that identifying the “unknown parameter”
is necessary for a full understanding of the condition. Our works constitute an earlier
stage of this resolution. Once we fully understand the SWKB condition, not only
we can obtain approximate energy spectra for unsolvable systems, which are often
found in context of physical applications, but also we might be able to reach further
mathematical implications of the ES quantum mechanical systems. One also may be
able to construct novel solvable systems through the SWKB formalism.
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Automorphic Symmetries and AdSn
Integrable Deformations

Anton Pribytok

Abstract We develop technique based on boost automorphism for finding new lat-
tice integrable models with various dimensions of local Hilbert spaces. We initiate
the method by implementing it for two-dimensional models and resolve classifi-
cation problem, which not only confirms known vertex model solution space, but
also extends to the new sl2 deformed sector. The generalisation of the approach for
string integrable models is provided and allows to find new integrable deformations
and associated R-matrices. Hence our new integrable solutions appear to be of non-
difference form that admit AdS2 and AdS3 S-matrices as special cases, we also
obtain embedding of double deformed sigma model R-matrix into our solution. The
braiding and crossing for the novel models as well as their emergence with respect to
the deformation parameter k are shown. The present contribution is based on series
of works [21, 23, 25, 27] and relevant to the questions discussed below.

Keywords Boost automorphism · AdS/CFT integrability · Deformations · Sigma
models · R-matrix · Integrable transformations

1 The Method: Automorphic Symmetry

Introduction. An integrable spin chain is characterised by the hierarchy of mutu-
ally commuting conserved quantities, e.g. charge operators Q2, Q3, Q4, . . . , Qr

where r denotes interaction range. In this respect, one considers local vector space
H � Cn , n = 2s + 1. Then spin-s chain configuration space is given by the L-fold
tensor product

Complete Fock space: H = H1 ⊗ · · · ⊗ HL ≡
L⊗

i=1

Hi Hi � H (1)
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We will consider homogeneous periodic integrable spin chains (lattice integrabil-
ity) with the Nearest-Neighbour interaction (NN). In magnon propagating systems
by definition one can obtain an analogue of momentum operator (shifts) Q1 ≡ P
and 2-site NN charge – Hamiltonian Q2 ≡ H . Quantum integrability of such a sys-
tem is now characterised by quantum R-matrix that satisfies quantum Yang-Baxter
Equation [1–3, 5]

R12(u, v)R13(u, w)R23(v,w) = R23(v,w)R13(u, w)R12(u, v) (2)

where R-matrix properties and structure imply underlying integrability of the model.
R-matrix is an operator on spectral parameters associated to the local spaces, specifi-
cally for a number of integrable classes such dependence is of difference (or additive)
form:

Rab(u, v) → Rab(u − v) (3)

Boost operator. In general, in order to obtain conserved charges, one needs to
define R-monodromy and apply log-derivative

Q =
L∑

n=1

R−1
n,n+1(0)

d

du
Rn,n+1 ≡

∑

n

Qn,n+1 (4)

with Q to denote local densities. Range r local density can be defined as

Qr ≡
∑

n

Qn,n+1,...,n+r−1 (5)

however a method is required to construct all higher charges in the commuting
hierarchy. By Master Symmetries it is possible to show that the tower of conserved
charges Qr , r = 2, 3, 4, . . . n can be recursively generated by the boost operator
B [Q2] [4, 20]

B[Q2] ≡
∞∑

k=−∞
kHk,k+1 → Qr+1 � [B[Q2],Qr ] (6)

with Hamiltonian densityHk,k+1. Strictly, the boost operator B [·] is well-defined on
infinite length spin chains, which contrasts our closed spin chain system. However
the B-generated conserved charges and their commutators represent finite range
operators, so that such construction can be shown to be consistently implemented on
spin chains with periodic conditions.

To address the new models, one can demand a generic ansatz for H based
on an appropriate representation of the underlying symmetry algebra and con-
sistent generator basis [21]. Specifically, starting from Qi j = Hi j ≡ Aμν σμ ⊗ σν

ansatz and commutation of Qr charges with finite range tensor embedding σ
μ
k =
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1 ⊗ . . .⊗ σμ ⊗︸ ︷︷ ︸
k

· · · ⊗ 1, as well as use of symmetry algebra, we can obtain an alge-

braic system on the Aμν coefficients. In general, [Qr ,Qs] commutator provides
1
2 (3

r+s−1 − 1) polynomial equations of degree r + s − 2 [13]. To note, that the exis-
tence of the first commutator for the studied systems was sufficient to completely
resolve for the Hamiltonian. However analytic (recursive) proof of the sufficiency of
[Q2,Q3] = 0 is still not present for all integrable sectors [7].

Moreover a set of integrable transformations [21] is needed to reduce the com-
plete solution space to the characteristic generators, which allow to show all distinct
integrable classes. The necessary and sufficient transformation symmetries include:
Norms and shifts of R, Reparametrisation R(f(u), f(v)), Local Basis Transform
RV(u, v) = [V(u) ⊗ V(v)] R(u, v) [V(u) ⊗ V(v)]−1, Discrete Transform of PRP-
type, Twisting [T1(u) ⊗ T2(v)] R [T2(u) ⊗ T1(v)]

−1 as a part of the R-matrix sym-
metry

[
T1,2 ⊗ T1,2, R

] = 0.

Bottom-up construction: R-matrix. The next goal is to construct R-matrix
to each associated generating Hamiltonian H (class), for that one needs to consider
expansion of the R matrix

R = P + PHu +
∑

n≥2

R(n)un (7)

where P is permutation operator. If one substitutes R-matrix Ansatz to YBE, one
could potentially solve it recursively for the coefficients in the expansion, but in fact,
in a number of cases it becomes impossible to identify the right expansion sequence.
Instead the Hamilton-Cayley theorem argument can be imposed on the R-expansion
7 with the specific set of functional constraints, which led to R ≡ R

(
1,H,H2,H3

)

resolution.With this construction one can find allC2 integrable R-matrices, however
in higher dimensions Cn and arbitrary spectral dependence a stronger generalised
approach for finding the R-matrix is proven.

sl2 sector. As a quick test of the technique provided above, one can consider
models with two-dimensional local space C2 and generic ansatz for H. It turned
not only to show full agreement with the set of integrable models that are found
from the YBE resolution (i.e.Heisenberg class, *-magnets, multivertex etc), but also
find new higher parametric integrable models in the sl2 sector. Some of these new
classes exhibit non-diagonalisability and nilpotency of the H, but others develop
conserved charges with non-trivial Jordan blocks, which leads to important results
and corollaries. Some RX matrices from characteristic X classes include

R1(u) =

⎛

⎜⎜⎜⎝

1 a1(ea5u−1)
a5

a2(1−e−a5u)

a5
a1a3+a2a4

a25
(cosh(a5u) − 1)

0 0 e−a5u a4(1−e−a5u)

a5
0 ea5u 0 a3(ea5u−1)

a5
0 0 0 1

⎞

⎟⎟⎟⎠ (8)
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or another extendedmodel, which in the parametric reduction limit admits theKulish-
Stolin model1

R6(u) = (1 − a1u)(1 + 2a1u)

⎛

⎜⎜⎝

1 a2u a2u −a22u
2(2a1u + 1)

0 2a1u
2a1u+1

1
2a1u+1 −a2u

0 1
2a1u+1

2a1u
2a1u+1 −a2u

0 0 0 1

⎞

⎟⎟⎠ (9)

It is important to find all underlying Yangian deformations Y∗[sl2] and associated
quantum groups. Also known that Belavin-Drinfeld cohomological classification of
quantum symmetries for the novel models is an important question on its own.

2 B in AdS Integrability

AdS/CFT integrability [8–10, 12] implies agreement of global symmetries on both
sides of the correspondence, e.g. N = 4 superconformal symmetry and AdS5 ×
S5 superspace isometries are described by covering supergroup P̃ SU (2, 2|4). The
corresponding worldsheet model (σ-models) integrability is based on psu(2, 2|4)
Lie superalgebra and its broken versions. In this setting, the scattering process is
described by the S- or R-matrix with arbitrary dependence on the spectral parameter.

B generalisation. To address novel results in AdS string background sector
we would need to develop boost automorphism method for operators with generic
spectral dependence [24], which intermediately will result in non-additive form of
YBE. One will be able to obtain nontrivial constraint system from the commuting
tower of the new Qr charges

B [Q2] =
+∞∑

k=−∞
kHk,k+1(θ) + ∂θ Qr+1 = [B [Q2] ,Qr ] r > 1 (10)

[
Qr+1,Q2

] ⇒ [[B[Q2],Qr ] ,Q2] + [dθQr ,Q2] = 0 (11)

fromhere follows thefirst order nonlinearODEcoupled system.For the trigonometric
and elliptic sectors in AdS spin chain picture generic ansatz would be

H = h1 1 + h2(σz ⊗ 1 − 1 ⊗ σz) + h3σ+ ⊗ σ− + h4σ− ⊗ σ++
h5(σz ⊗ 1 + 1 ⊗ σz) + h6σz ⊗ σz + h7σ− ⊗ σ− + h8σ+ ⊗ σ+

(12)

with hk to be a function on the spectral parameter and σ± = 1

2
(σx ± iσy).

1 Known one-parameter family of sl2 models, which also could be related to [6]. In the past it was
conjectured, that higher-parametric generalisations might exist, however it appeared non-resolvable
by RT T -approach, and in our computation we prove their existence and relations.
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Sutherland type couple. To obtain R-matrix in such setting, one can expand
YBE to the first order, associate spectral parameters along with R-matrix identifica-
tions, which will result in coupled differential R-system

{
[R13R23,H12(u)] = (∂u R13)R23 − R13(∂u R23) u1 = u2 ≡ u

[R13R12,H23(v)] = (∂vR13)R12 − R13(∂vR12) u2 = u3 ≡ v
(13)

which appears sufficient to fix Ri j = Ri j (u, v) and equations of the system constitute
a reduction from the Sutherland equation.

6v: Trigonometric. We find two classes out of four, whose R-matrices exhibit
completely arbitrary spectral dependence and provide deformations relevant for
AdS3 models (incl. specific worldsheet model deformations).

8v: Elliptic. Also in elliptic sector we find two novel 8-vertex classes

8-vertex A class

r1(u, v) = r4(u, v) = sn(η + z) r3(u, v) = r2(u, v) = sn(z)

r5(u, v) = r6(u, v) = sn(η) r7(u, v) = r8(u, v) = ksn(η)sn(z)sn(η + z)

8-vertex B class

r1(u, v) = 1√
sin η(u) sin η(v)

(
sin η+

cn

dn
− cos η+sn

)

r2(u, v) = ±1√
sin η(u) sin η(v)

(
cos η−sn + sin η−

cn

dn

)

r3(u, v) = ±1√
sin η(u) sin η(v)

(
cos η−sn − sin η−

cn

dn

)

r4(u, v) = 1√
sin η(u) sin η(v)

(
sin η+

cn

dn
+ cos η+sn

)

r5(u, v) = r6(u, v) = 1

r7(u, v) = r8(u, v) = k
sn cn

dn

where ri agree with 8v positions of (12), the deformation parameter k, arbitrary
η(u) in η± ≡ η(u)−η(v)

2 and Jacobi elliptic functions xn = xn(u − v, k2) to be {u, v}
dependent. Current class appears in the AdS2 integrable background.

Free Fermions. Important to note that these classes also satisfy algebraic
integrable constraint – Free fermion condition [25]. The corresponding characteris-
tic constraint [r1r4 + r2r3 − (r5r6 + r7r8)]

2 · [r1r2r3r4]−1 = K implies Baxter con-
dition for K �= 0 or Free fermion when K = 0.
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3 AdS2 and AdS3 Integrable Backgrounds

Completeness of AdS/CFT correspondence requires integrable string backgrounds
of distinct dimensionality, which leads to different amounts of preserved supersym-
metry and distinct properties of integrable model.

AdS3 × S3 ×M4. In our case AdS3/CFT2 [17] defines AdS3 × S3 × M4

background under two geometries that preserve 16 supercharges
{
M4 = T 4,with psu(1, 1|2)2
M4 = S3 × S1,with d(2, 1; α)2 ∼ d(2, 1; α)L ⊕ d(2, 1; α)R ⊕ u(1)

α is related to the relative radii of the spheres. As it was stated, the underlying
R-matrix is of trigonometric type and we find novel 6-vertex B type model to con-
stitute same chirality AdS3 Hamiltonian. It can admit either continuous family of
deformations (spectral functional shifts) when mapped to 6-vB or single-parameter
elliptic deformationwhenmapped to 8-vB. In the present setting, we also confirm that
AdS3 × S3 × T 4 R-/S-matrix [15, 16] can be obtained from AdS3 × S3 × S3 × S1

[18] by appropriate limits. Importantly, we also show that our 6-vB model allows to
embed the two-parameter q-deformed R-matrix [14] that underlies double deformed
Metsaev-Tseytlin model [11].

AdS2 × S2 × T 6. The AdS2 × S2 × T 6 [19] model contains PSU (1,1|2)
SO(1,1)×SO(2)

supercoset, with Z4 ∈ psu(1, 1|2), which implies classical integrability, but the con-
struction lacks gauge fixing of κ-symmetry. Scattering process on this background
can be captured by elliptic deformation of the R-matrix. In this case, the new 8-
vB type, which admits single-parameter deformation, represents deformation of the
(massive) AdS2 × S2 × T 6.

Crossing symmetry. Generically individual blocks 4 × 4 obey YBE, Crossing
symmetry and Braiding unitarity, however it is necessary to show that the full scatter-
ing operator respects them as well.2 Considering the full boso-fermion R-matrix, the
crossing symmetry is satisfied for arbitrary k in both AdS3 and AdS2 deformations.

4 Conclusions and Remarks

We have developed a method that allows to find new integrable models and their
deformations without direct resolution of the YBE. To achieve that, one is required
to use automorphic symmetry to build conserved charges and apply property of
the integrable commuting hierarchy. Application of invariant transformations to the
solution space provides solution generators and the corresponding R-matrix is found
by bottom-up approach from H. That leads to new integrable models or specific
extensions and demonstrates universality of the method for periodic or infinite open
systems described by a variety of symmetry algebras [22, 27].

2 16 × 16 S-/R-matrix in 2-particle representation that is embedded for AdS{2,3} backgrounds.
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For the AdS integrability we considered a generic 8-vertex Ansatz of non-
difference form and developed boost automorphism technique also for the string
integrable sector, which resulted in differential nonlinear ODE problem. Generalised
novel models were found, which also admitted embedding of known integrable mod-
els in AdS{2,3} space [24], and new constructions in AdS5 . Such models obey all
string integrable symmetry constraints and allow for further restrictions on their
structure, as well as provide a proposal for the study of higher parametric σ-models,
their scattering matrices and quantum limits [27].
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Applications to Quantum Theory



The Conformal-Symmetry–Color-
Neutrality Connection in Strong
Interaction

Mariana Kirchbach, Todor Popov, and Jose Antonio Vallejo

Abstract The color neutrality of hadrons is interpreted as an expression of confor-
mal symmetry of strong interaction, the latter being signaled through the detected
“walking” at low transferred momenta, limQ2→0 αs(Q2)/π → 1, of the strong cou-
pling toward afixedvalue (αs “freezing”). The fact is that conformal symmetry admits
quarks and gluons to reside on the compactified AdS5 boundary, whose topology is
S1 × S3, a closed space that can bear exclusively color-charge neutral configura-
tions, precisely as required by color confinement. The compactification radius, once
employed as a second scale alongside withΛQCD , provides for an αs(Q2) “freezing”
mechanism in the infrared regime of QCD, thus making the conformal-symmetry–
color-neutrality connection at low energies evident. In this way, perturbative descrip-
tions of processes in the infrared could acquire meaning. In consequence, it becomes
possible to address QCD by quantummechanics in terms of a conformal wave opera-
tor equation, which leads to an efficient description of a wide range of data on hadron
spectra, electromagnetic form factors, and phase transitions.
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Keywords Conformal symmetry · Color confinement · Perturbative infrared
regime · quantum mechanical limit of QCD

1 The Puzzle of Color Confinement

The non-observability of free quarks, spin-1/2 matter fields bound to hadrons, is
puzzling scientists since the very beginning of their discovery in the 60ies of the past
century. Contrary to traditional composite systems, such as molecules, atoms, and
nuclei, hadrons can not be decomposed into their constituents through interactions
with external probes. This peculiarity of strong interactions is related to the existence
of three “strong” charges carried by the quarks, conditionally termed to as “colors”,
and hypothesized as the fundamental triplet of the gauge group, SU (3)c, of strong
interaction, a non-Abelian group giving rise to a highly non-linear dynamics among
the messengers of strong interaction, the gluons. In one of the cases the dynamics
can be such, that the interaction among the quarks grows with the increase of relative
distances among them, frustrates their release, and also keeps the net charge neutral
(color confinement). Meanwhile, it systematically weakens with the decrease of the
relative distances, thus turning quarks almost non-interacting, though still trapping
them in colorless configurations in the interior of hadrons (asymptotic freedom).
Over the years, various insights into the mechanisms behind the non-observability
of “color” could be gained on the basis of the elaborated fundamental gauge the-
ory of strong interaction, the Quantum Chromodynamics (QCD), though the first
principles provoking the color confinement remained so far as open problems. A
further open problem of QCD is that contrary to Quantum Electrodynamics, it is
still lacking a properly defined quantummechanical limit. To progress in that regard,
some fundamental symmetry principles should be emphasized, and employed in the
construction of a quantum mechanical wave equation that describes quark systems
interacting by a potential, whose magnitude would be entirely determined by the
fundamental parameters furnishing QCD.

The symmetry underlying a quantum mechanical interaction problem is always
reflected by the quantum numbers of the excited states (the spectrum) of the system
under consideration. The spectra of hadrons are dominated, isospin by isospin, by
the quantum numbers of the irreducible representations of SO(4), much alike the
levels of an electron bound within the Coulomb potential, though in the hadronic
case the level splittings are moderately increasing with the energy, while in the H
Atom they are notably decreasing. This observation, made by several authors [1–12],
hints on a possible relevance of conformal symmetry not only in the electromagnetic
but also in the strong interaction sector, at first glance a surprise, given the depen-
dence of the strong coupling, αs on the (negative) square of the transferred momen-

tum, (−q2) := Q2. Nonetheless, the facts that (i) at high Q2 values αs(Q2)
Q2→∞−→ 0

(asymptotic freedom in the ultraviolet), while (ii) at low Q2 values αs(Q2)/π
Q2→0−→ 1

(conformal window in the infrared) point to the possibility that the dynamics in the
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two extreme regimes of QCD, the ultraviolet [13], and the infrared [14], might be
governed by the conformal symmetry, though expected to be realized in different
fashions. Specifically in the infrared, the role of the conformal symmetry turns out
to be a pivotal one. Namely, as it should become clear in due course, it establishes a
close link between color-neutrality and the opening of the conformal window. Such
occurs upon identifying, in accord with the AdS5/CFT4 duality, the conformally
compactified boundary of AdS5, whose topology is S1 × S3, as the space hosting the
QCD degrees of freedom [15]. This space contains a closed space-like hyper-surface,
on which no single charges can exist, so that systems residing on it are necessarily
charge neutral (as required by confinement). As long as in addition the isometry
of S1 × S3 is determined by the conformal group, SO(2, 4) ⊃ SO(4), the poten-
tial obtained from the fundamental solution of the respective Laplacian implements
that very symmetry, and can be employed in the design of a conformally symmetric
instantaneous potential. In this way, the conformal-symmetry (CS)–color-neutrality
(CN) connection in the infrared regime of QCD can be established. It is the purpose
of the present contribution to briefly review recent progress on that topic. The text
is structured as follows. In the next section we briefly outline the genesis of the CS-
CN connection concept in the infrared. In Sect. 3 we discuss the geometric aspects
of color confinement and its relationship to conformal symmetry as introduced via
the AdS5/CFT4 duality. Section 4 is devoted to an alternative interpretation of the
CS-CN connection from the perspective of the Jordan algebra JC2 , with the aim of
hitting the road towards generalization to higher dimensions. The text closes by a
concise summary section.

2 Spectroscopic Evidence for Conformal Symmetry of QCD

Besides the freezing of the strong coupling in the infrared, further evidences for the
relevance of the conformal symmetry for hadron physics are independently provided
by data on hadron scatterings and hadron spectra. In particular, relativistic two-body
scattering amplitudes are well described in terms of exchange between the parti-
cles of physical entities that transform as irreducible representations of the Poincaré
group [4]. Such representations inevitably emerge in the decomposition of the direct
products of the representations describing the incoming and outgoing particle states.
This relevance of conformal symmetry for hadrons has been noticed already in the
early days of Regge’s theory by [1–3], and Regge trajectories with O(4) symmet-
ric poles have been considered [5]. Furthermore, a dynamical conformal symmetry
approach to the description of hadronic electromagnetic form factors has been devel-
oped for example in [6]. More hints come from the hadron spectra, both baryonic and
mesonic, whose quantum numbers are markedly dominated by SO(4) irreducible
representations, easily recognizable as finite sequences of states consisting of K par-
ity pairs of raising spins, terminating by a parity singlet state of highest spin, with K
standing for the value of the four-dimensional angular momentum [7–11]. Specifi-
cally in [12] the possible relation of new data on light meson spectra reported by the
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Crystal Barrel Collaboration to conformal symmetry of massless QCD has been first
indicated. After the 70ies, the conformal symmetry of hadrons has been addressed in
the literature sporadically and treated by purely algebraic means, while for the prac-
tical purposes of continued data evaluation, potential models based on different Lie
symmetries and depending on a large number of free parameters, have been favored.
Within this context, it appears important to find a method to design a potential model
which implements the conformal symmetry, depends on same parameters as QCD,
and which allows for an immediate evaluation of a variety of data. Such a model has
been elaborated over the years in the series of articles [8, 16–21]. At first, in [8],
a two-parameter empirical mass formula has been suggested which resulted quite
adequate for the description of the excitation energies of all light flavor hadrons.
This formula reads.

Mσ ′ − Mσ = m1

(
1

σ 2
− 1

σ ′ 2

)
+ 1

2
m2

(
σ ′ 2 − 1

2
− σ 2 − 1

2

)
, σ = K + 1.

(1)
Here, σ plays a róle similar to the principal quantum number of the H Atom and
describes the well known (K + 1)2-fold degeneracies of states in a level, viewed
as SO(4) irreps. The two parameters m1 and m2 take the values of m2 = 70 MeV,
m1 = 600 MeV for both nucleon and Δ excitations. Later this formula has been
reported in [16] to be interpretive in terms of the eigenvalues, εK�, of the trigonometric
Rosen-Morse (tRM) potential (here in dimensionless units) and given by,

VtRM = �(� + 1)

sin2
(
r
d

) − 2b cot
( r
d

)
. (2)

Here, d so far has been treated as a matching length parameter to the relative distance
r , while the VtRM spectrum reads,

εK� = − b2

(K + 1)2
+ (K + 1)2, εK� ∼ Mσ . (3)

Upon resolving the associated Schrödinger equation, be it with a linear, or quadratic
energy, a surprising result has been obtained regarding the wave functions, which
turned out to express in terms of some real orthogonal polynomials, which have
been entirely absent from the standard mathematical physics literature available at
that time. Later on, these polynomials have been identified in [17] with the Routh-
Romanovski polynomials, scarcely covered by the specialized mathematical litera-
ture. Next, the case could bemade in [18] that upon a suitable change of variables, the
wave equationwithVtRM can be transformed to a quantummotion on the three dimen-
sional hyper-sphere, S3. In so doing, r acquires meaning of the arc length, r −→	

r ,
of a great circle, measured from the North pole of S3, d becomes the sphere’s hyper-
radius, R, and (r/d) takes the part of an angular variable χ , identical to the second
polar angle parametrizing S3 in global geodesic coordinates. Within this context, the
�(� + 1)/ sin2(r/d) term in (2) starts playing the part of the centrifugal term on S3,
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while the cotangent potential solves the Laplace equation on S3, much alike as the
Coulomb potential solves the Laplace equation in the 3D flat space. As long as the
Laplacian shares the symmetry of the isometry group of the manifold on which it
acts, SO(4) in our case, so do the solutions of the Laplace equation, which explains
the SO(2, 4) ⊃ SO(4) patterns of the VtRM eigenvalues. Finally, in [19] the con-
straint to neutrality imposed by the hyper-spherical manifold on the total charge of
systems placed on it was also addressed. In effect, the conformal-symmetry–color-
neutrality connection could be revealed. Moreover, via this connection the solution
of the Laplace equation on S3 could be related to a potential, obtained in [20] from
Wilson loops with cusps at the North and South poles on S3, which allowed us to
express the potential magnitude, b, as 2b = αs Nc, where Nc stands for the number
of colors. In this fashion, the VtRM potential parameters could be directly linked to
the fundamental parameters of QCD. In this parametrization, the potential under dis-
cussion has been successfully used in the description of a variety of hadron physics
phenomena, ranging from meson spectra [19], over nucleon electromagnetic form
factors [21], and more recently, to heavy flavored mesons [22], and thermodynamic
properties of quantum meson gases [23]. Especially in the latter case, a quantum gas
of charmonium was shown to suffer a phase transition to a Bose-Einstein conden-
sate at Hagedorn’s value of the critical temperature. However, so far the question
on the origin of the curved hyper-spherical manifold had remained pending. As a
preliminary hypothesis, it has been seen as the hyper-sphere located at the waist of a
four-dimensional hyperboloid, H4

1, of one sheet, emerging in the time-like foliation
of space-time in dS4 Special Relativity, whose space-like region has been conjec-
tured in [19] as the internal space of hadrons. The aforementioned question has found
a more assertive answer in [15], presented in the subsequent section.

3 The Geometric Foundations of the CS–CN Connection

Within the context of contemporary fundamental concepts, p-dimensional space-like
spherical manifolds, Sp, appear at the compactified boundaries of S1 × Sp anti-de
Sitter spaces in (p + 2) dimensions [24]. Especially the S3 sphere of our interest
appears at the compactified AdS5 boundary, a space of fundamental interest to QCD
from the perspective of the AdS5/CFT4 gauge-gravity duality. In [15] it has been
demonstrated in detail that this boundary is topologically equivalent to the com-
pactified Minkowski space time [25]. Also there, the interest in the compactified
Minkowski space as an internal space of the strong interaction degrees of freedom
has been formulated for the first time. This interest is motivated by the observation
that on such spaces, charges are forced to appear in pairs of vanishing total charge,
much alike the appearance of color charges in mesons. The argument goes as fol-
lows. Be M a compact manifold with finite volume vol(M), which is equipped by
any Riemannian metric g. Then a fundamental solution to the associated Laplacian
Δ is any function G : M × M → R satisfying, for any fixed values of y ∈ M , the
equation
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ΔxG(x, y) = δy − 1

vol(M)
. (4)

Alternatively, on S3 another definition of fundamental solutions to the Laplacian can
be given, namely, taking a base point and its antipodal at the same time, leads to [26]

ΔG(x, x ′) = δ(x, x ′) − δ(−x, x ′) , (5)

which is nothing but the equation for the well known dipole Green function. For
the case of M chosen as S3, and parametrized by global geodesic hyper-spherical
coordinates (χ, θ, ϕ), one has vol(M) = 2π2, and a direct computation [27] shows
that the fundamental solutions at the poles χ = 0, and χ = π , are given as,

G0(χ, θ, ϕ) = 1

4π2
(π − χ) cot χ , Gπ (ρ, θ, χ) = − 1

4π2
χ cot χ , (6)

their dipole combination being,

Gπ (χ, θ, ϕ) − G0(χ, θ, ϕ) = − 1

2π
cot χ, (7)

and thus leading to the cotangent potential in (2). Therefore, the potential in (2) can
be interpreted to be due to the charge neutral configuration of a 21 pole, residing
on S3, such as quark-anti-quark. The charge neutrality allows existence on S3 of
any 2n poles. Furthermore, in employing the compactification radius, R, as another
scale alongΛQCD , and upon reparametrizing Q2c2 as

(
Q2c2 + �

2c2/R2
)
, this in the

spirit of [28], removes the logarithmic divergence of the strong coupling at origin
according to,

αs(0)

π
= lim

Q2→0
4

(
β0 ln

(
Q2c2

Λ2
QCD

+ �
2c2

R2Λ2
QCD

))−1

→ 4

(
β0 ln

(
�
2c2

R2Λ2
QCD

))−1

. (8)

In this fashion, the conformal-symmetry–color-confinement connection at low ener-
gies becomes evident, and avenues open towards perturbative treatments of hadron
processes in the infrared. The compactification radius extracted from data on light
mesons [19] is R = 0.58 fm, while for the charmonium it is R = 0.56 fm [22], i.e.
it seems maintains an universal meaning far beyond the infrared.
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4 The Jordan Algebra View on Conformal Symmetry

So far we have emphasized on the conformal group as isometry of the S1 × S3 space.
Here we focus on an important aspect of its algebra, so(2, 4), namely, on its property
of being patterned after the 3-graded Lie algebra

g+1 ⊕ g0 ⊕ g−1 	 so(2, 4), (9)

where the Abelian sub-algebras g−1, and g+1 are defined in their turn by the com-
mutators of the components Pμ, of the four-momentum operator, and by the com-
ponents, Kμ of the operator of special conformal transformations, respectively.
The Pμ and Kμ vector spaces are related to each other via the conformal inver-

sion I as, Kμ = I Pμ I := P†
μ , with I (x0, x) =

(
x0

x2 ,− x
x2

)
acting as an involu-

tion, I 2 = 1. Moreover, the commutators of the g+1 and g−1 elements are given
by, 1

2 [Kμ, Pν] = Mμ
ν − δμ

ν D , and recover the algebra of the Lorentz group, whose
generators are Mμ

ν , with an associated to it grading operator, D ∈ g0, which acts
as a dilatation, [D, g] = kg, for any g ∈ gk , with k = ±1. This property of the con-
formal group algebra allows one to link it to Jordan triple systems and pairs of
Jordan triples as they appear in the special Jordan algebra, JC2 , of the 2 × 2 Her-
mitian matrices. As a reminder [29], a special Jordan algebra is a non-associative
algebra of a vector space J over a field, whose multiplication, ◦, satisfies the com-
mutative law, x ◦ y = y ◦ x , and the Jordan identity, (x2 ◦ y) ◦ x = x2 ◦ (y ◦ x). A
Jordan triple system (JTS) is a vector space J endowed with a Jordan triple product,
i.e., a trilinear map { , , } : J × J × J −→ J, satisfying the symmetry condition,
{u, v, w} = {w, v, u}, together with the identity

{u, v, {w, x, y}} = {w, x, {u, v, y}} + {w{u, v, x}y} − {{v, y, w}x, y}. (10)

The latter relation implies that if a map, Su,v : J → J, is defined by Su,v(y) =
{u, v, y}, then one finds,

[
Su,v, Sw,x

] = Sw,{u,v,x} − S{v,u,w},x , (11)

so that the space of the linear maps, span{Su,v : u, v ∈ V }, is closed under a commu-
tator bracket, and hence represents a Lie algebra, str(J), termed to as “structure alge-
bra”. Any Jordan algebra induces a Jordan Triple System when we define the Jordan
Triple product through {u, v, w} = u ◦ (v ◦ w) − v ◦ (u ◦ w) + (u ◦ v) ◦ w . More-
over, introducing pairs, denoted by J, and J∗, of JTS, where J and J∗ are dual to each
other, a linear map can be constructed amounting to, J ⊗ J∗ −→ gl(J) ⊕ gl(J∗),
whose image is a Lie sub-algebra str(J), and the Jordan identities imply the Jacobi
identities for a graded Lie bracket on J ⊕ str(J) ⊕ J∗. Then, in a graded algebra
as the one in (9), the pair (g+1, g−1) can be viewed as a Jordan pair, according to
the correspondence, {x∓, y±, z±}± = [[

x∓, y±
]
, z±

]
. The procedure outlined above,

termed to as the Kantor-Koecher-Tits correspondence, when applied to the special
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Jordan algebra, JC2 , allows to interpret the so(2, 4) algebra in terms of Jordan triple
systems and Jordan pairs and be cast as, so(2, 4) 	 co(J) = g+1 ⊕ g0 ⊕ g−1 :=
J∗ ⊕ str(J) ⊕ J∗, meaning that the Abelian sub-algebra g−1(g+1) is generated in
the space J(J∗) (see [30] for details). The advantage of the Jordan algebra view on
the conformal symmetry consists in the possibility of its straightforward generaliza-
tion to higher symmetry groups. Specifically in [31, 32], attention has been drawn
to the fact that the exceptional group F4, hypothesized as internal space symmetry
of a unified theory of strong and electroweak interactions, can be approached over
the octonion Jordan algebra JO

3 .

5 Summary

We provided a concise review of recent progress on revealing the conformal-
symmetry–color-neutrality connection in and near the infrared regime of QCD [15].
The work has been based on the assumption that the compactified boundary of the
AdS5 space, whose relevance to QCD follows from the AdS5/CFT4 duality conjec-
ture, can be employed as space hosting the strong interaction degrees of freedom of
QCD. As long as the topology of this space is S1 × S3, it contains a closed space-like
hyper-surface (S3 in this case), on which only charge neutral configurations of the
type 2n poles, all necessarily neutral, can reside. In this way, the color-neutrality of
hadrons finds a possible explanation. In addition, the space has the conformal group
as isometry, a quality which allows to motivate the opening of the conformal win-
dow in the infrared by admitting the compactification radius as a second scale next
to ΛQCD . In consequence, the infrared regime acquires features of a perturbative
one, permits for the approximation by Abelian color charges, and thus allows one to
conclude on the quantum mechanical limit of QCD as represented by the following
wave equation,

[
�S1×S3 − αs Nc cot χ + α2

s N
2
c

4(K + 1)2

]
ψ = 0, (12)

where �S1×S3 stands for the conformal wave operator on S1 × S3. This wave equa-
tion describes quite realistically a broad range on hadron physics experiments from
excitation spectra, over electromagnetic form factors, up to phase transitions.
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s�(2) Gaudin Model with General
Boundary Terms

Igor Salom and N. Manojlović

Abstract We study the s�(2) Gaudin model with general boundary K-matrix in
the framework of the algebraic Bethe ansatz. The off-shell action of the generating
function of the so(3) Gaudin Hamiltonians is determined without any restriction
whatsoever on the boundary parameters.

Keywords Gaudin model · Generalized classical Yang-Baxter equation ·
Algebraic Bethe ansatz

1 Introduction

In the framework of the Bethe ansatz, Gaudin has studied the system obtained as
the quasi-classical limit of the Heisenberg spin chain [1, 2]. This system has been
recast in the framework of the quantum inverse scattering method with the help of
the so-called Sklyanin linear bracket, corresponding to an s�(2) invariant, unitary
classical r-matrix [3]. This result enabled further generalizations based on other
unitary solutions to the classical Yang-Baxter equation corresponding to higher-
rank simple Lie algebras as well as Lie superalgebras [4–6] and the corresponding
Jordanian deformation [7–9].

In our considerations of the non-periodic rational as well as trigonometric Gaudin
model we have studied them as the quasi-classical limit, respectively, of the open
XXX and XXZ Heisenberg spin chains [10, 11]. Also, we have shown how the
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expansion of the XXZ transfer matrix, calculated at the special values of the spectral
parameter, yields the Gaudin Hamiltonians in the trigonometric case [12] as well
as for the Jordanian deformation of the ration s�(2) Gaudin model with generic
boundaries [13]. Returning back to the quasi-classical limit, following the Sklyanin
proposal for the periodic boundary conditions [3, 14], we have derived the generating
function of the Gaudin Hamiltonians both for the XXX [10], the XXZ chain [11] and
for the Jordanian deformation of the XXX Heisenberg spin chain [15]. Moreover,
we have shown [16] how, in the context of the quasi-classical limit, the solutions
to the classical Yang-Baxter equation can be combined with the solutions to the
classical reflection equation to yield solutions to the so-called generalized classical
Yang-Baxter equation. These solutions are the non-unitary classical r-matrices [17].
In particular, the generic elliptic s�(2) non-unitary r-matrix was studied in [18]. Also,
we have developed an approach to the implementation of the algebraic Bethe ansatz
for the rational as well as the trigonometric s�(2) Gaudin model, in the case when
the classical boundary K-matrix has a triangular form [19–22].

Following our approach to the generic so(3) Gaudin [23, 24], here we study the
non-periodic s�(2) Gaudin model with the general boundary K-matrix. Namely, we
show that it is possible to keep all of the K-matrix parameters arbitrary, though this
requires a more complex form of the vacuum state.

The paper is organized as follows. In Sect. 2 we study the s�(2) linear bracket
which provides the algebraic framework for implementation of the Bethe ansatz. In
the same section we propose the novel set of generators with simplified commutation
relations. In Sect. 3 we will introduce an explicit form of the vacuum state which,
together with the suitable choice of algebra generators, allows the implementation
of the algebraic Bethe ansatz without reducing generality of the K-matrix. In this
way, we will finally obtain the expression for the off-shell action of the generating
function of the s�(2) Gaudin Hamiltonians with general boundary terms.

2 The s�(2) Linear Bracket

We consider the classical r-matrix

r(λ) = −P
λ

, (1)

where P is the permutation matrix in C
2 ⊗ C

2. This classical r-matrix (1) has the
unitarity property

r21(−λ) = −r12(λ), (2)

and it satisfies the classical Yang-Baxter equation

[r12(λ − μ), r13(λ − ν)] + [r12(λ − μ), r23(μ − ν)] + [r13(λ − ν), r23(μ − ν)] = 0. (3)
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The corresponding Gaudin Lax matrix is defined by [3]

L0(λ) =
N∑

m=1

σ0 · Sm
λ − αm

, (4)

as usual, {αm,m = 1, . . . , N } are the inhomogeneous parameters, σα
0 , with α =

+,−, 3, are the Pauli matrices

σα =
(

δα3 2δα+
2δα− −δα3

)
, (5)

in the auxiliary space V0 = C
2 and the spin 1

2 operators Sα = 1
2σ

α are acting on the
local space Vm = C

2 at each site of the chain

Sα
m = 1 ⊗ · · · ⊗ Sα

︸︷︷︸
m

⊗ · · · ⊗ 1, (6)

withα = +,−, 3 andm = 1, 2, . . . , N . The Gaudin Lax matrix (4) and the classical
r-matrix (1) obey the so-called Sklyanin linear bracket [3]

[L1(λ), L2(μ)] = [r12(λ − μ), L1(λ) + L2(μ)] . (7)

The next step is the generalization of the model by introduction of the K -matrix,
whichmust satisfy the reflection equation. The general, spectral parameter dependent
solutions of the classical reflection equation [10]:

r12(λ − μ)K1(λ)K2(μ) + K1(λ)r21(λ + μ)K2(μ) =
= K2(μ)r12(λ + μ)K1(λ) + K2(μ)K1(λ)r21(λ − μ) ,

(8)

where the classical r-matrix is the one given in (1), can be written as follows [10]

K (λ) =
(

ξ − λ ψλ
φλ ξ + λ

)
. (9)

Moreover, by introducing the non-unitary, classical r-matrix [16]

r K12(λ,μ) = r12(λ − μ) − K2(μ)r12(λ + μ)K−1
2 (μ) , (10)

the two Eqs. (3) and (8) can be combined into the generalized classical Yang-Baxter
equation [16]

[
r K32(ν,μ), r K13(λ, ν)

] + [
r K12(λ,μ), r K13(λ, ν)

] + [
r K12(λ,μ), r K23(μ, ν)

] = 0. (11)
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As we have shown [16], the appropriate Lax matrix is given by

L0(λ) = L0(λ) − K0(λ)L0(−λ)K−1
0 (λ) =

(
H(λ) F(λ)

E(λ) −H(λ)

)

=
N∑

m=1

(
σ0 · Sm
λ − αm

+ K0(λ)σ0K
−1
0 (λ) · Sm

λ + αm

)
.

(12)

The corresponding linear bracket based on the r-matrix r K (λ,μ) (10) is defined by
[16]

[L0(λ),L0′(μ)] = [
r K00′(λ,μ),L0(λ)

] − [
r K0′0(μ,λ),L0′(μ)

]
. (13)

This linear bracket is obviously anti-symmetric and it obeys the Jacobi identity
because the r -matrix r K00′(λ,μ) (10) satisfies the generalized classical Yang-Baxter
equation (11).

As it is well known [16], the linear bracket (13) yields the expression for the
generating function of the s�(2) Gaudin Hamiltonians with general boundary terms
in terms of the Lax operator (12)

τ (λ) = 1

2
tr0

(L2
0(λ)

) = H 2(λ) + 1

2
(E(λ)F(λ) + F(λ)E(λ)) . (14)

Using the bracket (13), it is straightforward to check that the operator τ (λ) commutes
for different values of the spectral parameter

[τ (λ), τ (μ)] = 0 . (15)

Our aim here is to study the Gaudin system without any restriction whatsoever
on the boundary parameters. Consequently, the commutation relations for the gen-
erators H(λ), E(λ) and F(λ) turn out to be long and cumbersome and, thus, we will
not present them here. Technically, these commutation relations are the principal
difficulty in implementing the algebraic Bethe ansatz in this, fully general, case. To
overcome this problem we propose the new set of generators

H(λ) = 1

2ν
(2H(λ) − ϕF(λ) − ψE(λ)) , (16)

E(λ) = −1 − ν

2ν

(
2H(λ) − ϕ

1 + ν
F(λ) − ψ

1 − ν
E(λ)

)
, (17)

F(λ) = 1 + ν

2ν

(
2H(λ) − ϕ

1 − ν
F(λ) − ψ

1 + ν
E(λ)

)
. (18)

The commutation relations for the new generators are substantially simpler than
the relations for the initial generators. In particular,

[E(λ),E(μ)] = [F(λ),F(μ)] = [H(λ),H(μ)] = 0 , (19)
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and the three non-trivial relations are

[H(λ),E(μ)] = −2

λ2 − μ2

(
μ

ξ − λν

ξ − μν
E(λ) − λ E(μ)

)
, (20)

[H(λ),F(μ)] = 2

λ2 − μ2

(
μ

ξ + λν

ξ + μν
F(λ) − λF(μ)

)
, (21)

[E(λ),F(μ)] = −4

λ2 − μ2

(
μ

ξ + λν

ξ + μν
H(λ) − λ

ξ − μν

ξ − λν
H(μ)

)
. (22)

A straightforward but somewhat lengthy calculation shows that the generating
function τ (λ) (14) has exactly the same form when expressed in terms of the new
generators

τ (λ) = H2(λ) + 1

2
(E(λ)F(λ) + F(λ)E(λ)) . (23)

Our main result in this section are the new generators of the generalized s�(2)
Gaudin algebra (16)–(18). Due to their strikingly simple commutation relations (19)–
(22) they provide a suitable framework for applying the algebraic Bethe ansatz with-
out any restrictions on boundary parameters.

3 Implementation of the Algebraic Bethe Ansatz

A necessary prerequisite for the implementation of the algebraic Bethe ansatz is the
existence of an appropriate vacuum vector Ω+ ∈ H in the Hilbert space

H = N⊗
m=1

Vm = (C2)⊗N . (24)

The standard approach relies on its property to be annihilated by one of the algebra
generators – usually: E(λ) Ω+ = 0. To this end we obtain the local representation
of the generators (16)–(18):

H(λ) = λ

ν

N∑

m=1

2S3m − ψS+
m − ϕS−

m

(λ − αm)(λ + αm)
, (25)

E(λ) = −λ (1 − ν)

ν

N∑

m=1

ξ − αmν

ξ − λν

2S3m − ψ
1−ν

S+
m − ϕ

1+ν
S−
m

(λ − αm)(λ + αm)
, (26)

F(λ) = λ (1 + ν)

ν

N∑

m=1

ξ + αmν

ξ + λν

2S3m − ψ
1+ν

S+
m − ϕ

1−ν
S−
m

(λ − αm)(λ + αm)
. (27)
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A simple approach to ensure E(λ) Ω+ = 0 is by fixing some of the K -matrix param-
eters – e.g. setting φ = 0 and choosing the vacuum state as the tensorial product of
highest spin states in each of the local spaces Vm [22]. Another approach, allowing
for general boundary parameter in a set of special cases can be found in [25].

However, herewe show that, for the s�(2)Gaudinmodel, it is possible to retain the
full generality of the K -matrix parameters by choosing a somewhatmore complicated
vacuum vector. To this purpose we observe that in every local space Vm = C

2, m ∈
{1, . . . , N } there exists a vector ωm ∈ Vm given by

ωm =
(

ψ
1−√

1+ψϕ

1

)
∈ C

2 = Vm , (28)

where the parameters ν, ψ and ϕ are the parameters of the boundary K-matrix (9).
Then it is easy to check that

(
2S3m − ψ

1 − ν
S+
m − ϕ

1 + ν
S−
m

)
ωm = 0 , (29)

(
2S3m − ψS+

m − ϕS−
m

)
ωm = ν ωm . (30)

Therefore the vacuum vector Ω+, defined as

Ω+ = ω1 ⊗ · · · ⊗ ωN ∈ H (31)

is annihilated by the generator E(λ) (26) and, at the same time, it is an eigenvector
of the generator H(λ) (25), that is

E(λ) Ω+ = 0 and H(λ) Ω+ = ρ(λ) Ω+ with ρ(λ) =
N∑

m=1

λ

λ2 − α2
m

. (32)

Our next aim is to rewrite the formula for τ (λ) (23) in a more suitable way so that
the action of the generating function τ (λ) on the vacuum vector Ω+ (31) becomes
more transparent. As it can be shown, the generating function τ (λ) (23) can be
expressed as follows

τ (λ) = H2(λ) + 1

λ

ξ2 + λ2ν2

ξ2 − λ2ν2
H(λ) − H′(λ) + F(λ)E(λ) . (33)

Taking into account (32) and (33), it is evident that the vacuum vector Ω+ (31) is an
eigenvector of the generating function

τ (λ)Ω+ = χ0(λ)Ω+ with χ0(λ) = ρ2(λ) + ξ2 + λ2ν2

ξ2 − λ2ν2

ρ(λ)

λ
− ρ′(λ) . (34)
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Now we can compute the commutator by a straightforward calculation, based on
the formulae (33), (21) and (22)

[τ (λ),F(μ)] = − 4

λ2 − μ2
F(μ)

(
λH(λ) + λ2ν2

ξ2 − λ2ν2

)

+ 4

λ2 − μ2

λ

μ

ξ − μν

ξ − λν
F(λ)

(
μH(μ) + μ2ν2

ξ2 − μ2ν2

)
.

(35)

The relative simplicity of the right hand side of the equation above has encouraged
us to seek the commutator between the operator τ (λ) and the product F(μ1)F(μ2)

as the next step. In this case, an analogous direct calculation based on the previous
formulae, leads to

[τ (λ),F(μ1)F(μ2)] = − 4

λ2 − μ2
1

F(μ1)F(μ2)

(
λH(λ) + λ2ν2

ξ2 − λ2ν2
− λ2

λ2 − μ2
2

)

− 4

λ2 − μ2
2

F(μ1)F(μ2)

(
λH(λ) + λ2ν2

ξ2 − λ2ν2
− λ2

λ2 − μ2
1

)

+ 4

λ2 − μ2
1

λ

μ1

ξ − μ1ν

ξ − λν
F(λ)F(μ2)

(
μ1H(μ1) + μ2

1ν
2

ξ2 − μ2
1ν

2
− 2μ2

1

μ2
1 − μ2

2

)

+ 4

λ2 − μ2
2

λ

μ2

ξ − μ2ν

ξ − λν
F(μ1)F(λ)

(
μ2H(μ2) + μ2

2ν
2

ξ2 − μ2
2ν

2
− 2μ2

2

μ2
2 − μ2

1

)
.

(36)
From these relations it is not difficult to infer, and to prove by mathematical

induction, e.g. as in [22] that, for an arbitrary natural number M , the off-shell action
of the generating function τ (λ) on the Bethe vectors takes the form:

ΦM(μ1,μ2, . . . ,μM) = F(μ1)F(μ2) · · ·F(μM)Ω+ , (37)

is given by

τ (λ)ΦM(μ1,μ2, . . . ,μM) = χM(λ,μ1,μ2, . . . ,μM) ΦM(μ1,μ2, . . . ,μM)

+
M∑

j=1

4λ

λ2 − μ2
j

ξ − μ jν

ξ − λν

⎛

⎝ρ(μ j ) + μ jν
2

ξ2 − μ2
jν

2
−

M∑

k �= j

2μ j

μ2
j − μ2

k

⎞

⎠ ×

× ΦM(λ,μ1, . . . , μ̂ j , . . . ,μM) ,

(38)

where the eigenvalue χM(λ,μ1,μ2, . . . ,μM) is given by
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χM(λ,μ1,μ2, . . . ,μM) = χ0(λ) −
M∑

j=1

4λ

λ2 − μ2
j

×

×
⎛

⎝ρ(λ) + λν2

ξ2 − λ2ν2
−

M∑

k �= j

λ

λ2 − μ2
k

⎞

⎠ .

(39)

The unwanted terms on the right hand side of (38) are annihilated once the Bethe
equations

ρ(μ j ) + μ jν
2

ξ2 − μ2
jν

2
−

M∑

k �= j

2μ j

μ2
j − μ2

k

= 0 , j = 1, 2, . . . , M , (40)

are imposed on the parameters μ1,μ2, . . . ,μM .

4 Conclusion

The usual approaches to nontrivial boundary conditions for the s�(2) Gaudin model
commonly require additional constraints on the K -matrix parameters [22], with the
exception of some special cases for the trigonometric s�(2) Gaudin model [25]. In
this paper, we have demonstrated that, by the suitable choices of generators of the
generalized s�(2) Gaudin algebra and of the corresponding vacuum vector, it is pos-
sible to retain full generality of the K-matrix, i.e. without any restriction whatsoever
on the boundary parameters. While here this was realized for fixed values of spin –
1
2 at each node, we believe that the approach can be further generalized to the case
of arbitrary spins.
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Entanglement of Mixed States in Kähler
Quantization

Tatyana Barron and Alexander Kazachek

Abstract Let M is a product of two integral compact Kähler manifolds. Fix a suf-
ficiently large positive integer N . With a submanifold Λ of M one can associate a
specific mixed state, and entanglement of formation FN (Λ) of this mixed state. We
show that ifΛ1 andΛ2 are two connected submanifolds of M such thatΛ1 ∩ Λ2 = ∅,
then FN (Λ ∪ Λ2) ≤ FN (Λ1) + FN (Λ2).

Keywords Submanifolds · Line bundles · Entanglement of formation

1 Preliminaries

To a compact integral Kähler manifold M geometric quantization associates a pre-
quantum line bundle L . The prototypical case is when M is a coadjoint orbit of a com-
pact Lie group with the Kirillov–Kostant–Souriau symplectic form. The most basic
example is M = CP1 with the Fubini-Study form, a coadjoint orbit of SU (2). Rep-
resentation theorists typically deal with the infinite-dimensional Lie algebra C∞(M)

or with representations in the spaces of sections of tensor powers of L . From a some-
what different perspective, semiclassical analysis dealswith L N , N ∈ N, as N → ∞,
and uses that to study the geometric aspects of M . In [1, 2] we attempted to bring
entanglement entropy and entanglement of formation into this analytic setting. This
note is a continuation of the same line of work.

Let (M1,ω1), (M2,ω2) be compact integral Kähler manifolds. W.l.o.g. dim M1 ≤
dim M2. Let L1 → M1 and L2 → M2 be holomorphic hermitian line bundles such
that for each m ∈ {1, 2} the curvature of the Chern connection in Lm equals −iωm .
There is a sufficiently large N0 ∈ N such that for all N ≥ N0, L N

1 and L N
2 are very

ample,
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dim H 0(M1, L N
1 ) ≤ dim H 0(M2, L N

2 )

and
H 0(M1 × M2, L N

1 � L N
2 ) ∼= H 0(M1, L N

1 ) ⊗ H 0(M2, L N
2 )

(isomorphism of Hilbert spaces) (see Lemma 3.1 [2]). Let N be sufficiently large
(i.e. N ≥ N0).

In this paper, a mixed state will mean a (Hermitian) positive semidefinite linear
operator of trace 1 on a finite-dimensional complex Hilbert space.

As in [2], we can associate with a connected submanifold Λ of M1 × M2 a mixed
state ρN as follows. Let

RN : H 0(M1 × M2, L N
1 � L N

2 ) → L2(Λ, (L N
1 � L N

2 )

∣
∣
∣
Λ
)

s �→ s
∣
∣
∣
Λ

be the restriction operator. Denote by VN the image of H 0(M1 × M2, L N
1 � L N

2 )

under RN . Let Π∗
N be the Hilbert space adjoint of the operator

ΠN : H 0(M1 × M2, L N
1 � L N

2 ) → VN

s �→ RN (s).

Define

ρN := 1

tr(Π∗
N ΠN )

Π∗
N ΠN ∈ End(H 0(M1 × M2, L N

1 � L N
2 )).

Now, denote WN = H 0(M1, L N
1 ) ⊗ H 0(M2, L N

2 ) and define maps

α : WN → WN ⊕ WN

s �→ s ⊕ s

β : WN ⊕ WN → WN

s ⊕ τ �→ s + τ .
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Suppose X and Y are connected submanifolds of M1 × M2 such that X ∩ Y = ∅.
For X , use the notations Π

(1)
N and ρ(1)

N for the operators ΠN and ρN defined above,
and for Y , denote these operators by Π

(2)
N and ρ(2)

N . Associate to X ∪ Y the map

ρ̃N = β ◦ (Π
(1)
N ⊕ Π

(2)
N )∗ ◦ (Π

(1)
N ⊕ Π

(2)
N ) ◦ α.

To unwrap this, it means that for each s ∈ WN

ρ̃N (s) = (Π
(1)
N )∗Π(1)

N s + (Π
(2)
N )∗Π(2)

N s.

Now define the mixed state

ρN = 1

trρ̃N
ρ̃N .

Let v ∈ WN be a vector of norm 1. Denote by Pv the orthogonal projection onto the
1-dimensional C-linear subspace of WN spanned by v. Recall that the entanglement
entropy of v is

E(v) = −
d

∑

k=1

λk logλk,

whered = dim H 0(M1, L N
1 ),λ1,…,λd are the eigenvalues of T r2(Pv), by convention

0 log 0 = 0, and T r2 is the reduced trace map (see e.g. [3]). For a mixed state A ∈
End(WN ), its entanglement of formation [4] is

inf
∑

i

pi E(vi )

where the inf is taken over all finite decompositions A = ∑

i pi Pvi with positive
coefficients pi such that

∑

i pi = 1. Such a decomposition of A always exists. We
note that when A = Pv for some v, the entanglement of formation of A equals E(v)

(so, in this case, if v is decomposable, then entanglement of formation of A is zero,
and if v is not decomposable, then entanglement of formation of A is strictly positive).

In the discussion above, for a submanifold Λ of M1 × M2 with a corresponding
mixed state ρN , we will denote by FN (Λ) the entanglement of formation of ρN .

2 Main Result

Theorem 1 Let (M1,ω1), (M2,ω2) be compact integral Kähler manifolds. Let
L1 → M1 and L2 → M2 be holomorphic hermitian line bundles such that for each
m ∈ {1, 2} the curvature of the Chern connection in Lm equals −iωm. Let N ∈ N be
sufficiently large, so that L N

1 and L N
2 are very ample. Suppose X and Y are connected

submanifolds of M1 × M2 such that X ∩ Y = ∅. Then
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FN (X ∪ Y ) ≤ FN (X) + FN (Y ).

Proof For every ε > 0 there are k, m ∈ N, positive real numbers p1,…,pk , q1,…,qm

such that p1 + · · · + pk = 1 and q1 + · · · + qm = 1, and vectors u1,…,uk , v1,…,vm

in H 0(M1, L N
1 ) ⊗ H 0(M2, L N

2 ) of norm 1, such that

1

tr((Π(1)
N )∗Π(1)

N )
(Π

(1)
N )∗Π(1)

N =
k

∑

i=1

pi Pui ,

1

tr((Π(2)
N )∗Π(2)

N )
(Π

(2)
N )∗Π(2)

N =
m

∑

j=1

q j Pv j

k
∑

i=1

pi E(ui ) − FN (X) < ε, (1)

m
∑

j=1

q j E(v j ) − FN (Y ) < ε. (2)

We have:
1

tr(ρ̃N )
ρ̃N =

k
∑

i=1

p̃i Pui +
m

∑

j=1

q̃ j Pv j

where

p̃i = tr((Π(1)
N )∗Π(1)

N )

tr(ρ̃N )
pi > 0, 1 ≤ i ≤ k (3)

and

q̃ j = tr((Π(2)
N )∗Π(2)

N )

tr(ρ̃N )
q j > 0, 1 ≤ j ≤ m, (4)

and we have:
k

∑

i=1

p̃i +
m

∑

j=1

q̃ j = 1.

Then
k

∑

i=1

p̃i E(ui ) +
m

∑

j=1

q̃ j E(v j ) ≥ FN (X ∪ Y ),

also because of (1), (2), (3), (4)
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k
∑

i=1

p̃i E(ui ) +
m

∑

j=1

q̃ j E(v j ) − (FN (X) + FN (Y )) < 2ε.

Since there are ensembles of pure states as above for every ε > 0, the desired state-
ment follows.

Remark 1 The statement of the Theorem extends from two disjoint connected sub-
manifolds to finitely many pairwise disjoint connected submanifolds.
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The Chirality-Flow Formalism for
Standard Model Calculations

Joakim Alnefjord, Andrew Lifson, Christian Reuschle, and Malin Sjödahl

Abstract Scattering amplitudes are often split up into their color (su(N )) and kine-
matic components. Since the su(N ) gauge part can be described using flows of color,
one may anticipate that the su(2) ⊕ su(2) kinematic part can be described in terms
of flows of chirality. In two recent papers we showed that this is indeed the case,
introducing the chirality-flow formalism for standard model calculations. Using the
chirality-flow method—which builds on and further simplifies the spinor-helicity
formalism—Feynman diagrams can be directly written down in terms of Lorentz-
invariant spinor inner products, allowing the simplest and most direct path from
a Feynman diagram to a complex number. In this presentation, we introduce this
method and show some examples.

Keywords Chirality flow · Feynman rules · Spinor-helicity formalism

1 Introduction

Since a fewdecades it is known that calculations in SU(3) color space can be elegantly
simplified using a flow picture for color [1, 2]. In this talk we ask the question if we
can similarly simplify the Lorentz structure, which at the algebra level is associated
with a left and a right chiral su(2).

More specifically, bearing in mind that for color, one can formulate color-flow
Feynman rules, we ask whether we can analogously formulate a set of chirality-flow
Feynman rules to simplify calculations of Lorentz structure. In this presentation we
will answer this question affirmatively and show how Feynman rules can be recast
into chirality flows and that this beautifully simplifies calculations [3–6].
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On the QCD side, we can translate every color structure to flows of color using
the su(N) Fierz identity to remove adjoint indices

i

k l

j

g

tg
ijtg

kl

=
i

k l

j

il kj

− 1
N

i

k l

j

ij kl

. (1)

Similarly, external gluons can be rewritten in terms of color-anticolor pairs (with
a color suppressed “U(1)” gluon contribution), and the color structure of triple-gluon
vertices can be expressed in terms of traces, such that in the end, every amplitude is
a linear combination of products of Kronecker deltas in color space [1, 2].

Before attempting the same procedure for the Lorentz structure, we recall that at
the level of the (complexified) algebra, the Lorentz group consists of two copies of
su(2), su(2)left ⊕ su(2)right, and that the Dirac spinor structure transforms under the
direct sum representation ( 12 , 0) ⊕ (0, 1

2 ). In the chiral (or Weyl) basis we have (for
some conventions)

(
uL

uR

)
→

(
e−i θ̄· σ̄

2 +η̄· σ̄
2 0

0 e−i θ̄· σ̄
2 −η̄· σ̄

2

)(
uL

uR

)
, (2)

i.e. we actually have two copies of SL(2,C), generated by the complexified su(2)
algebra.

We will build heavily on the chiral representation and the spinor-helicity formal-
ism [7–16], and start with considering the massless case, for which

u+(p) =
(

0
|p〉

)
, u−(p) =

(|p]
0

)
, ū+(p) = ([p|, 0) , ū−(p) = (

0, 〈p|) . (3)

From the spinor-helicity formalism we also borrow the expressions for the polar-
ization vectors [13, 16], expressed in terms of the physical momentum p, and a
reference momentum r

εL
μ(p, r) → |r〉[p|

〈rp〉 or
|p]〈r |
〈rp〉 , ε

μ
R(p, r) → |r ]〈p|

[pr ] or
|p〉[r |
[pr ] , (4)

where εL is for incoming negative helicity or outgoing positive helicity and εR is for
incoming positive helicity or outgoing negative helicity.

To construct Lorentz invariant amplitudes we build invariant spinor inner products
using the only SL(2,C) invariant tensor, εαβ (ε12 = −ε21 = ε21 = −ε12 = 1). With
〈i | = 〈pi | etc., we have
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εαβ |i〉β︸ ︷︷ ︸
≡〈i |α

| j〉α = 〈i |α| j〉α = 〈i j〉, εα̇β̇ |i]β̇︸ ︷︷ ︸
≡[i |α̇

| j]α̇ = [i |α̇| j]α̇ = [i j] . (5)

Amplitudes are thus built up out of contractions of the form 〈i j〉, [i j] ∼ √
si j , and if

we manage to create a flow picture, the “flow” must contract left (dotted) and right
(undotted) indices separately.

2 Towards Chirality Flow

For the Lorentz structure, a fermion-photon vertex is associated with a factor γμ =
√
2

(
0 τμ

τ̄ μ 0

)
(τμ = σμ/

√
2 normalized in analogy with Eq. (1)). This can be split

into two terms, and when a τμ from one vertex is contracted with a τ̄ μ from another
vertex, we have (always reading indices along arrows),

α β̇

γ̇η

τ̄μ

αβ̇
τ γ̇η

μ

=

η

α β̇

γ̇

η
α

γ̇

β̇

. (6)

We note that due to the presence of τ 0 there is no 1/N -suppressed term. In this sense
chirality flow is even simpler than color flow.

When a τ (τ̄ ) is contracted with a τ (τ̄ ) from the other vertex, the situation is more
subtle, andwe have to apply charge conjugation at the level of expressions contracted
with spinors before removing the vector index

1

34

2

︸ ︷︷ ︸
(〈1|ατ̄μ

αβ̇
|2]β̇)(〈3|γ τ̄μ,γη̇|4]η̇)

=

1

34

2

︸ ︷︷ ︸
(〈1|ατ̄μ

αβ̇
|2]β̇) ([4|η̇τ η̇γ

μ |3〉γ)

charge conjugated

=

1

34

2

︸ ︷︷ ︸
〈13〉[42]

,
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were we have implicitly used the identification of spinors and their graphical repre-
sentation

j] = j , [i = i , j = j , i = i .

In a similar way, charge conjugation can be applied when additional photons are
attached to a quark-line [4]. A consistent arrow direction with opposing arrows for
spin-1 particles can therefore always be chosen [4], and the fermion-photon vertex
can be translated to

R

L
μ → ie

√
2 ,

L

R
μ → ie

√
2 .

We also need to recast Fermion propagators to the flow picture. To this end, we

split pμγ
μ = pμ

√
2

(
0 τμ

τ̄ μ 0

)
into two terms

/p ≡
√
2pμτ α̇β

μ =
p

, /̄p ≡
√
2pμτ̄μ

αβ̇
=

p
, (7)

where we have introduced a graphical “momentum-dot” notation for momenta
slashed with σ or σ̄.

We further note that for massless momenta we have

√
2pμτμ ≡ /p = |p]〈p| ,

√
2pμτ̄μ ≡ /̄p = |p〉[p| . (8)

Thus any sum of light-like momenta, pμ = ∑
pμ
i , p2i = 0, can be written

/p =
∑
i pi

=
∑

i

|i]α̇〈i|β , /̄p =
∑
i pi

=
∑

i

|i〉α[i|β̇ for p2i = 0 .

In particular, this gives for the fermion propagator

p←− → i

p2

∑
i pi

or
i

p2

∑
i pi

, (9)

where the momentum is read along the fermion arrow. (It may be aligned or anti-
aligned with the chirality-flow arrows, any arrow assignment with opposing gauge
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boson arrows will do for massless tree-level QED and QCD since there is always an
even number of spinor contractions [4]).

For the photon propagator we have [4]

p−→μ ν → − i

p2
or − i

p2
. (10)

Finally, it is straightforward to translate the spinor structure of external gauge
bosons to the flow picture, for example

εL
μ(p, r) → 1

rp

p
r or

1
rp

p
r . (11)

In a similar way, Feynman rules can be written down for massless QCD. The
main complication is the introduction of a momentum-dot in the triple-gluon vertex,
whereas the four-gluon vertex is just a linear combination of chirality-flows with one
dotted and one undotted line for each metric factor [4].

3 Examples

Equipped with the Feynman rules for QED, we consider the standard example of
e+e− → μ+μ−. For assigned helicities, it is not hard to calculate this amplitude
within the spinor helicity formalism,

e−
L

e+

R

μ+

L

μ−
R

1

2 3

4

= 2ie2

se+e−
([2|α̇τ α̇β

μ |1〉β)(〈4|ατ̄μ

αβ̇
|3]β̇)

= 2ie2

se+e−
[2|α̇|3]α̇〈4|β |1〉β = 2ie2

se+e−
[2 3]〈4 1〉 ,

(12)

but with chirality flow the answer can directly be drawn

e−
L

e+

R

μ+

L

μ−
R

1

2 3

4

=
2ie2

se+e−

2

1

3

4

[2 3] 4 1

. (13)
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Similarly, the value of even a very complicated massless tree-level diagram can
just be written down, for example (for reference vectors r8 and r9)

1L

6R
5L

4R3L2R

7R

8R rL
8 rR

9 9L

10L

−p1 − p2 − p5

p3 + p4 + p6

p9 + p10

p8 + p9 + p10

5L

rR
9 9LrR
9 9L

p9 + p10

= (
√
2ei)8︸ ︷︷ ︸

vertices

(−i)3

s1 2 s3 4 s7 8 9 10︸ ︷︷ ︸
photon propagators

× (i)4

s1 2 5 s3 4 6 s8 9 10 s9 10︸ ︷︷ ︸
fermion propagators

× 1
[8r8]〈r99〉︸ ︷︷ ︸

polarization vectors

×[15]〈64〉[10 9]

(
〈r99〉[9r8] + 〈r910〉[10r8]

)(
[33]︸︷︷︸
0

〈37〉 + [34]〈47〉 + [36]〈67〉
)

× − 〈89〉[91]〈12〉 − 〈89〉[95]〈52〉 − 〈8 10〉[10 1]〈12〉 − 〈8 10〉[10 5]〈52〉 .

(14)

4 Massive Chirality Flow

To treat mass, we first note that a massive momentum p always can be written as
a linear combination of two lightlike momenta, p� and q, pμ = p�,μ + αqμ where
α = p2

2p·q . This decomposition canbe achieved in infinitelymanyways—as is obvious
from considering the system in its rest frame,where themomenta can be taken to have
any opposing direction. Different decompositions correspond to different directions
of measuring the spin [5, 17, 18], and in general the spin is measured along

sμ = 1

m
(p�,μ − αqμ) = 1

m
(pμ − 2αqμ) (15)

for, for example, a u+ spinor of the form [5]

u+(p) =
− m

[qp�]
q

p� . (16)

The standard choice of measuring spin along the direction of motion (i.e. helicity)
corresponds to decomposing p into a forward and backward direction, sμ = 1

m (pμ
f −

pμ
b ) = 1

m (|p|, p0 p̂).



The Chirality-Flow Formalism for Standard Model Calculations 393

Aside from massive spinors we need treat massive fermion propagators

i

p2 − m2
f

mf
α̇

β̇ 2pα̇β

√
2p̄αβ̇ mf α

β =
i

p2 − m2
f

mf
α̇ β̇

p

p

mf
α β

. (17)

The presence of Kronecker delta functions may give rise to an odd number of spinor
inner products, implying that signs will have to be carefully tracked in the massive
case. We also need to treat the third polarization degree of freedom for a massive
vector boson, but other than that, the massive case follows quite straightforwardly
from the massless case and using the above decompositions, all Feynman rules of
the standard model can be written down [5].

5 Conclusion

Splitting Lorentz structure into su(2)left and su(2)right, we have been able to recast
all standard model Feynman rules to chirality-flow rules, giving a transparent and
intuitive way of understanding the Lorentz inner products appearing in amplitudes.

If the ordinary spinor helicity method takes us from 4 × 4 Dirac matrices to 2 × 2
Pauli matrices, the chirality-flow method takes us from Pauli matrices to scalars.
This significantly simplifies calculations with Feynman diagrams. Many processes
are within range of quick pen and paper calculations, often without intermediate
steps and the final result is transparent and intuitive.

More practically, we expect our method to be useful for event simulations with
Monte Carlo event generators, in particular when sampling over helicity. Work
towards consistent loop calculations is ongoing.
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Spacetime Stochasticity and Second
Order Geometry

Folkert Kuipers

Abstract We discuss the Schwartz–Meyer second order geometry framework and
its relevance to theories of quantum gravity that incorporate a notion of spacetime
stochasticity or quantum foam.We illustrate the framework in the context of Nelson’s
stochastic quantization.

Keywords Second order geometry · Second order Lie derivative · Stochastic
mechanics · Stochastic quantization · Quantum foam

1 Introduction

Since the introduction of the path integral formulation in quantum field theory,
stochastic analysis has played a pivotal role in the mathematical construction of
quantum field theories [7, 8, 13]. Closely related to these developments is the theory
of stochastic mechanics which showed that several quantum theories are equivalent
to a certain class of stochastic theories [6, 14]. In addition, the stochastic quantization
framework used in this theory has proved to be a useful computational tool in the
study of quantum field theories [3, 6, 15].

In this paper, we argue that the success of stochastic analysis in the study of
quantum theories is not limited to flat spaces, but can help to elucidate the interplay
between quantum theories and gravity, and could in the future provide handles in the
formulation of a theory of quantum gravity.

The main argument for this statement is that the tools of stochastic analysis that
provide a mathematical basis for Euclidean quantum theories can be extended to the
context of pseudo-Riemannian manifolds using second order geometry as developed
by Schwartz and Meyer [5, 12, 16]. Such extensions allow to construct and study
physical theories on a fluctuating spacetime or quantum foam.
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2 Dynamics on Manifolds

We illustrate the framework by considering a particle moving on a d-dimensional
Riemannian manifold (M, g). In classical physics, its trajectory is described by a
map x(t) : T → M, where T ⊆ R. The trajectory is the solution of the geodesic
equation

ẍ j + Γ
j
kl(x) ẋ

k ẋ l = 0, (1)

which can be rewritten in a first order form for (x, v)(t) : T → TM. Alternatively,
the velocity can be treated as a vector field on the manifold. In this case the governing
equations become

v j (x)∇ jv
i (x) = 0,

ẋ i = vi (x). (2)

We will now introduce a notion of stochasticity in this trajectory. We must thus
introduce a probability space (Ω,Σ, P) and promote the position x to a random
variable X : (Ω,Σ, P) → (M,B(M), μ) with μ = P ◦ X−1. This allows to study
continuous semi-martingale processes {Xt : t ∈ T }, i.e. Xt = Ct + Mt with Ct a
càdlàg process and Mt a local martingale

In a stochastic theory, one would then like to derive a set of governing stochas-
tic differential equations, similar to the set of ordinary differential equations in the
deterministic theory. These stochastic differential equations should then be inter-
preted either in the sense of Itô or Stratonovich. However, the formulation of such
systems onmanifolds is complicated due to the presence of a non-vanishing quadratic
variation

[[Xi , X j ]] = lim
k→∞

∑

[tl ,tl+1]∈πk

[
Xi (tl+1) − Xi (tl)

][
X j (tl+1) − X j (ll)

]
. (3)

In the Itô formulation this quadratic variation leads to a violation of the Leibniz rule.
Indeed for functions f, g : M → R, one obtains a modified Leibniz rule of the form

d2( f g) = f d2g + g d2 f + 2 d f · dg, (4)

where

d2 f = ∂i f d X
i + 1

2
∂i∂ j f d[[Xi , X j ]],

d f · dg = 1

2
∂i f ∂ j g d[[Xi , X j ]]. (5)
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3 Second Order Geometry

The violation of Leibniz’ rule implies that many notions from ordinary differential
geometry are no longer applicable in a stochastic framework. However, this can be
resolved by extending to second order geometry [5, 12, 16].

In second order geometry, first order tangent spaces TM are extended to second
order tangent spaces T2M such that a second order vector V can be represented
in a local coordinate frame as V = vμ∂μ + vμν∂μ∂ν . Similarly one can construct
second order forms Ω ∈ T ∗

2 M, which in a local coordinate system are given by
Ω = ωμd2xμ + ωμνdxμ · dxν .

The link between second order geometry and stochastic motion can now be made
explicit by constructing second order vectors as

vμ(x) = lim
h→0

1

h
E

[
Xμ(t + h) − Xμ(t)

∣∣X (t) = x
]
, (6)

vνρ(x) = lim
h→0

1

2h
E

[(
Xμ(t + h) − Xμ(t)

)(
X ν(t + h) − X ν(t)

)∣∣X (t) = x
]
.

Here, the first order part is constructed as usual, while the second order part reflects
the non-vanishing quadratic variation of the stochastic process. It is important to
note that when regarded as a second order vector, v

μ
νρ does not transform covariantly.

However, one can construct contravariant vectors v̂
μ
νρ such that

v̂μ := vμ + Γ μ
νρv

νρ,

v̂νρ := vνρ. (7)

In a similar fashion, one can construct covariant forms ω̂μ
νρ
by

ω̂μ := ωμ,

ω̂νρ := ωνρ − Γ μ
νρωμ. (8)

4 Lie Derivatives and Killing Vectors

It is possible to generalizemany notions fromfirst order geometry to the second order
geometry framework, see e.g. [5, 9]. One way of doing so is by using the fact that
a d-dimensional manifold equipped with a second order geometry can be mapped
bijectively onto a d-dimensional brane embedded in a d(d+3)

2 -dimensional manifold
equipped with first order geometry [9].

Here, we focus on the constructions of a Lie derivative in second order geometry
[9]. The second order Lie derivative of a scalar is simply given by

LV f = V f = vμ∂μ f + vμν∂μ∂ν f. (9)
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It is also possible to construct a Lie derivative of a second order vector U along
a second order vector V . However, this requires that the second order parts of the
vector fields are scalar multiples of each other. The Lie derivative is then given by
the commutator

LVU = [V,U ]. (10)

Let us now turn to the construction of a Lie derivative of a first order (k, l)-tensor
along a second order vector field. The result is a first order (k, l)-tensor given by

LV T = LF(V )T + vμν
(∇μ∇ν + R·

μ·ν
)
T, (11)

where the first part denotes an ordinary first order Lie derivative along the first order
vector field, as F : T2M → TM s.t. V 	→ v̂μ∂μ. Moreover,

R ·
α ·βT

μ1...μk
ν1...νl

=
k∑

i=1

Rμi
αλβT

μ1...μi−1λμi+1...μk
ν1...νl

−
l∑

j=1

Rλ
αν jβ

T μ1...μk
ν1...ν j−1λν j+1...νl

. (12)

The construction of Lie derivatives of tensors along second order vector fields
allows to construct a notion of a second order Killing vector. We find

LK gμν = ∇μk̂ν + ∇ν k̂μ − 2 k̂ρσRμρνσ , (13)

setting this to 0 leads to the second order Killing equation

∇(μk̂ν) = k̂ρσRμρνσ , (14)

We thus find that a first order killing vector kμ must be promoted to the covariant first
order part of a second order vector k̂μ. Secondly, a second order Killing vector has a
non-vanishing divergence proportional to the curvature of space. A classical observer
will interpret this deviation as a symmetry breaking of the classical spacetime due
to the fluctuations.

5 Stochastic Dynamics on Manifolds

After setting up the machinery of second order geometry, one can derive stochastic
differential equations of motions on amanifold.Wewill consider a Brownian motion
for which the quadratic variation is well known to be

d[[Xi , X j ]]t = α gi j (Xt ) dt (15)

with α ∈ [0,∞). The system given in Eq. (2) now becomes [9, 11, 14]
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[
gi j v̂

k∇k + α

2

(
gi j� − Ri j

)]
v̂ j = α2

12
∇iR,

dXi = vi dt + dMi , (16)

which should be interpreted as a system of stochastic differential equations in the
sense of Itô.

As we have only discussed non-relativistic processes on Riemannian manifolds,
while the physical world is relativistic, we must extend our discussion to relativis-
tic processes on Lorentzian manifolds. Extensions of second order geometry to
Lorentzian manifolds are straightforward [9], as the framework is developed for any
smoothmanifoldwith a connection [5]. Furthermore, similar to a classical relativistic
theory, the formulation of a relativistic theory on Lorentzian manifolds introduces a
relativistic constraint equation [10, 11]. The the velocity field is then a solution of
the system

[
gμνv̂

ρ∇ρ + α

2

(
gμν� − Rμν

)]
v̂ν = α2

12
∇μR,

gμνv̂
μv̂ν + α∇μv̂μ − α2

6
R = ε (17)

with ε ∈ {−1, 0,+1} for respectively time-like, light-like and space-like particles.
Moreover, after splitting themanifold in time-like, light-like and space-like segments,
one can construct a positive definite non-degenerate metric gEucl., on these segments
using a Wick rotation. The stochastic motion is then given by the solution of the Itô
system [4, 10]

dXμ = vμ dτ + dMμ,

d[[Xμ, X ν]] = α gμν
Eucl. dτ. (18)

Onemight object that we have only discussed a classical Brownian motion, which
is not obviously related to quantum mechanics. However, one can analytically con-
tinue the manifold and define a process by

[[Zμ, Z ν]]t = α gμν(Zt ) (19)

with Z = X + iY and α ∈ C. Then, for the choice α = i �, the real projection of this
process is equivalent to quantum mechanics of a free scalar particle on the manifold
[11].
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6 Conclusions and Outlook

We have discussed the second order geometry framework and shown that it allows to
describe stochastic dynamics on manifolds. Moreover we have discussed extensions
to relativistic stochastic dynamics and discussed the relation between stochastic and
quantum dynamics.

We should note that in this paper we have only described free particles moving in
a fixed geometry. Although this picture can be extended to include external forces
derived from scalar or vector potential and the notion of spin, see e.g. [14], a field
theoretic formulation will be necessary to consider dynamical geometries, and to
study quantum aspects of gravity. Stochastic field theories have been discussed in
the context of Nelson’s stochastic quantization, cf. e.g. Ref. [6], but the subject is not
yet as mature as it is in the Paris-Wu formulation of stochastic quantization [3, 15].

Nevertheless, the discussion of point particles presented in this paper provides an
indication of the geometrical structure that is necessary to formulate such theories.
Indeed, the configuration space of a classical particle is the tangent bundle TM,
which, in the stochastic framework, is promoted to a second order tangent bundle
T2M. The configuration space of a classical field theory, on the other hand, is a first
order jet bundle J 1π over the manifoldM. It is thus expected that the configuration
space for a stochastic field theory is a second order jet bundle J 2π . We note that
the possibility of constructing classical field theories on higher order jet bundles has
already been discussed in the literature [1, 2].
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Velocity Reciprocity in Flat and Curved
Space-Time

Patrick Moylan

Abstract There is a widely held misconception that velocity reciprocity follows
solely from the relativity of motion principle, where by velocity reciprocity is meant
that the velocity of a reference frame S relative to another reference frame S′ is equal
and opposite to the velocity of S′ relative to S. This misconception still persists
even today among many physicists, in spite of efforts by others to explain why it is
wrong. In view of this situation, we consider it worthwhile to give some interesting
examples illustrating why this misconception is wrong. Our examples include ones
in both curved and flat spacetimes.

Keywords Relativity principle · Velocity reciprocity · de Sitter space ·
Anisotropic space-time

1 Introduction

There is a longstanding and widespread misconception among many physicists con-
cerning the relativity principle and one of its inferences velocity reciprocity. Velocity
reciprocity just amounts to the fact that the inverse transformation relating a given
inertial system S to another one S′ is always obtained from the direct transforma-
tion from S to S′ simply by replacing the velocity of S′ relative to S by its negative.
However, this need not always be the case and it is a misconception that velocity reci-
procity is a consequence only of the relativity principle. This misconception comes
from an improper understanding of the relativity principle and lack of appreciation
for its universality. It has found its way into many monographs and articles on rel-
ativity [1–3], including some very recent ones [4, 5]. In view of the important role
that the relativity of motion principle holds in physics, we consider a clarification of
the matter to be of some importance.
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While velocity reciprocity is easily seen to be true for the Galilean and Lorentz
transformations, we shall see that it does not always hold true in all situations. If we
follow Poincaré and insist on universal validity to the relativity principle [6], then
velocity reciprocity being a direct consequence only of the relativity principle would
imply that it always must be true. However, velocity reciprocity need not always be
true, even in relativistic theories where the relativity principle is assumed to hold [7].
Thus it cannot possibly follow solely from the relativity of motion.

Regarding necessary assumptions for velocity reciprocity to hold true, it is, in
fact, much more complicated than most of us seem to be aware. Essentially the only
thing the relativity principle implies is a group structure to the set of all inertial
transformations, which are the transformations between various inertial systems, all
equivalent regarding the form of natural law [8]. For two dimensional space-times
with the topology of R2 and coordinates of points (events) being labelled by (t, x),
with t the time and x the spatial location of the event, we have the following theorem:

Theorem 1 Let G be the group of all inertial transformations, which, in addition
to space-time translations, consists of linear transformations1 of R2 that include the

one parameter subgroup of inertial boosts {Λv|v ∈ R} where v = dx

dt
is the velocity

of the origin of S′ as measured in S. (Λv takes the coordinates (t, x) of an event in
a reference frame S into the coordinates (t ′, x ′) for the same event in the inertial

frame S′.) Reciprocally let u = dx ′

dt ′
be the velocity of S relative to S′. Suppose Λv

is spatial orientation preserving and causality preserving. In addition, we assume
spatial isotropy, which means that there are no preferred directions in space [7,
9]. Then, assuming the reciprocal velocity u is a continuous, real-valued, surjective
mapping of its domain, the setΓ of all admissible velocities, and thatΓ is an interval
in R, which is symmetric about zero, we have u = −v.

For a proof of this important theorem we refer the reader to either Ref. [9] or Ref.
[8]. By causality preserving transformation we mean that the transformation should
not alter the causal order of events, and by spatial orientation preserving we mean
that the inertial transformation Λv does not change the orientation of the space axis
[7–9].

2 Examples in Flat Space-Times

Here we consider some examples of velocity reciprocity in space-times with the
topology of Rn , which is what we mean by flat space-time. Our examples include
ones for which velocity reciprocity is true and also examples for which in it does not
hold true.

1 It was Einstein in his first paper on relativity, who, by an appeal to space-time homogeneity, first
justified the linearity of the transformations fixing the origin [9].
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2.1 Some Examples for which Velocity Reciprocity Holds

A. The Galilean transformation:
[
t ′
x ′

]
= Λv

[
t
x

]
=

[
1 0

−v 1

] [
t
x

]
(1)

(y and z directions suppressed), and
[
t
x

]
= Λ−1

v

[
t ′
x ′

]
=

[
1 0
v 1

] [
t ′
x ′

]
= Λ−v

[
t ′
x ′

]
. (1bis)

So

Λ−1
v = Λ−v. (2)

B. Velocity Dependent Scale-Extended Lorentz Transformation:
In 1 + 1 dimensions enlarge the Lorentz transformation to include an arbitrary

velocity dependent change of scale λv:

[
t ′
x ′

]
= λvΛv

[
t
x

]
(3)

and [
t
x

]
= λ−1

v Λ−1
v

[
t ′
x ′

]
. (3bis)

Here Λv is a pure Lorentz boost in the x direction with velocity v is (for v < c)

Λv = γ (v)

[
1 − v

c2−v 1

]
(4)

where γ (v) = 1√
1 − v2/c2

.

The requirement that the set {λvΛv|v ∈ R} has the structure of a group forces
the set of all λv to be a one dimensional representation of the group of Lorentz

boosts Λv which implies λvλv′ = λv′′ where v′′ = v + v′

1 + vv′

c2

. A family of solutions to

λvλv′ = λv′′ , depending upon a parameter β, is

λv(β) = eβarctanhv/c =
⎛
⎜⎝

1 + v

c

1 − v

c

⎞
⎟⎠

β/2

(β ∈ R). (5)
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For each β the set of all

Λ̃v(β) = λv(β)γ (v)

[
1 − v

c2−v 1

]
= λv(β)Λv, (6)

as v varies over R (v �= ±c), forms a group as required by the relativity principle (at
least for transformations which don’t mix tachyonic and subluminal velocities). Thus
in two space-time dimensions there is no obstacle to having a non-trivial velocity
dependent scale factor, unlike the case where space is three dimensional [6]. Since
λv(β)−1 = λ−v(β) and also Λ−1

v = Λ−v we have

Λ̃v(β)−1 = Λ̃−v(β) (7)

so that velocity reciprocity is true for this example. Notice that the Lorentz transfor-
mation is the special case β = 0.

2.2 Some Examples for which Velocity Reciprocity Does Not
Hold

Doppler Group in 1 + 1 Dimensions: let αv =
(
1 − v

c

)
so that

t ′ = αv t =
(
1 − v

c

)
t. (8)

and
x ′ = x − vt. (9)

The matrix of the transformation specified by Eqs. (8) and (9) is

Λv =
[

αv 0
−v 1

]
. (10)

Since αvα
′
v = αv+αvv′ , then

Λv′′ = ΛvΛv′ (11)

with v′′ = v + αvv
′. The inverse of Λv is Λ−1

v =
⎡
⎢⎣

1

αv

0
v

αv

1

⎤
⎥⎦. To have a group we

need to express Λ−1
v as a product of inertial transformations. To this end we write

1

1 − x
=

(
1 −

(
x

x − 1

))
for x �= 1. Thus with x = v

c
we obtain
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Λ−1
v =

⎡
⎢⎣

1

αv

0
v

αv

1

⎤
⎥⎦ =

[
αṽ 0
−ṽ 1

]
= Λṽ (v �= c). (12)

where ṽ = − v

1 − v

c

. Since ṽ �= −v, velocity reciprocity does not hold.

An invariant line element for the flat space-time described by this example is

ds2 = c2dt2 − 2cdtdx + dx2. (13)

We can associate with this line element the degenerate symmetric bilinear form

gμν =
(

c2 −c
−c 1

)
. (14)

For the infinitesimal generator of Λv (inertial boost) we have

L01 = − x0
c

(
∂

∂x0
+ ∂

∂x1

)
= − x0

c
(P0 + P1) = −1

c
(S0 + x0P1) = L̂01 − 1

c
S0

(15)

where P0 = ∂

∂x0
, P1 = ∂

∂x1
are the translation generators in time and space, respec-

tively, and S0 = x0
∂

∂x0
is the scale generator in the time direction. L̂01 = −x0

∂

∂x1
is

the Galilean boost. The generators S0, L̂01,P0,P1 are a basis for a four dimensional
real Lie algebra with commutation relations:

[L̂01,P0] = P1, [L̂01,P1] = 0, [P0,P1] = 0︸ ︷︷ ︸
h ∼= ig1

(16a)

[S0, L̂01] = L̂01, [S0,P0] = −P0, [S0,P1] = 0 (16b)

where h is the Heisenberg Lie algebra and ig1 is the inhomogeneous Galilei algebra
in 1 + 1 dimensions.

The generators S0,L01,P0,P1 are a basis for another four dimensional real Lie
algebra with commutation relations:

[L01,P0] = P1 + 1

c
P0, [L01,P1] = 0, [P0,P1] = 0, (17a)

[S0,L01] = L̂01, [S0,P0] = −P0, [S0,P1] = 0. (17b)

Lemma 1 Let g and g′ be two finite dimensional Lie algebras. Suppose each has a
basis with respect to which the structure constants are the same. Then g ∼= g′.
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Since L01 = L̂01 − 1

c
S0, it follows from the Lemma that the two Lie algebras are

isomorphic. This solvable Lie algebra is ig1 extended by scaling in time and is Ab=−1
4,8

in Ref. [10] and is s4,6 in Ref. [11].
For a description of the Doppler group in higher dimensions, specifically in the

physically important case of three spatial dimensions, we refer the reader to the
Supplementary Material in Ref. [7]. The two dimensional version presented here
goes back to a 1911 Annalen der Physik paper by Frank and Rothe [12] and they
point out that velocity reciprocity does not hold [12]. Their paper forms the basis
for Lalan’s 1937 classification of all possible two-dimensional linear kinematics
compatible with the relativity principle [13]. There are many other examples of
kinematical models in his classification where velocity reciprocity is not valid [13].

3 Examples in Curved Space-Time

Two dimensional de Sitter space

V 2 = {ξ a ∈ R
3 | ξ 02 − ξ 12 − ξ 22 = − R2} (18)

with R being the radius of the de Sitter space. Pseudo-spherical coordinates on V 2

are
ξ 0 = Rshα, ξ 1 = Rchα cosφ, ξ 1 = Rchα sin φ (19)

with−∞ < α < ∞, 0 ≤ φ < 2π. Lemêitre or horospherical coordinates on V 2 are

ξ0 = R

2
(λ − λ−1) − 1

2R
y2λ−1 , ξ1 = λ−1y , ξ4 = − R

2
(λ + λ−1) + 1

2R
y2λ−1

(20)

where −∞ < y, λ < ∞ (λ �= 0). One dimensional spaces of “equal time" on V 2

are the parabolas ξ 0 + ξ 4 = −Rλ−1 = const. If we let λ = ∓eτ we can rewrite Eq.
(20) as

ξ 0 = ±(Rshτ − 1

2R
y2e−τ ) , ξ 1 = ∓e−τ y , ξ 2 = ∓(Rchτ − 1

2R
y2e−τ ) (21)

where the upper signs are for λ > 0 and the lower signs for λ < 0. Let V 2+ = {ξ i ∈
V 2|ξ 0 + ξ 2 > 0} and V 2− = {ξ i ∈ V 2|ξ 0 + ξ 2 < 0}. We have

V 2 = V 2
+ ∪ V 2

0 ∪ V 2
− (22)

where V0 = {ξ i ∈ V 2|ξ 0 + ξ 2 = 0}. The antipodalmapJ0 : ξ i → −ξ i permutes V 2+
with V 2−.
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Let ξ̂ μ = ξμ

R
, u = y

R
. Define the cross section (ε = +1) V 2+ � ξ̂ → τξ̂ =

n(−u) a(−τ)e+ ∈ SO0(1, 2) where

n(u) =

⎡
⎢⎢⎢⎣
1 + u2

2
u

u2

2
u 1 u

−u2

2
−u 1 − u2

2

⎤
⎥⎥⎥⎦ and a(τ ) =

⎡
⎣ cosh τ 0 sinh τ

0 1 0
sinh τ 0 cosh τ

⎤
⎦

with e†+ = (0, 0,−1). A cross section for V 2−, the other half of de Sitter space, is
similarly defined. The cross-sections specify the de Sitter parallelization for induced
representations of SO0(2, 2) (cf. Ref. [14]). Coordinates adapted to the de Sitter

parallelization are (λ = ∓eτ ): x0 = 1

λ
, x1 = u

λ
.

Denote by L01 the infinitesimal generator of the subgroup of SO0(1, 2) which
corresponds to the hyperbolic rotation in (0, 1) plane of the embedding space R

3

specified in Eq. (18) and similarly let L12 be the infinitesimal generator of a rotation
in the (1, 2) plane of R3. The action of the inertial (Galilean) boost Λv = ev {L01−L12}
in the (x0, x1) coordinates is x ′

0 = x0 , x ′
1 = x1 − vx0 [15] on both V 2+ and V 2− which

implies Λ−1
v = Λ−v so that velocity reciprocity is valid.

Similarly we show for the action of time translations etL02 , which consist of hyper-
bolic rotations in the (0, 2) plane of the embedding space, that x ′

0 = et x0 , x ′
1 = x1

on V 2+. Following Ref. [15] we are thus led to a representation of the Lie algebra
so(1, 2) of the de Sitter group on functions of the (x0, x1) coordinates on V 2+, the
action of the basic generators being

L01 = S0 + 1

2
, L02 − L12 = −x0

∂

∂x1
, L02 + L12 = 1

x0

{
∂

∂x1
+ x21

∂

∂x1
− 2x1S

}

(23)

where S0 = x0
∂

∂x0
and S = x0

∂

∂x0
+ x1

∂

∂x1
. (For this representation we chose ic +

1

2
= 0 in Ref. [15].) It is easy to show that the L12, L01, and L02 satisfy the basic

commutation relations of so(1, 2).
To get at an example in curved space where velocity reciprocity is not upheld

we modify the above action of the Galilean boost in this representation in the same
way as we modified it to obtain the Lie algebra defined by Eqs. (17a) and (17b).
Specifically, the modification is

x ′
0 = αvx0 , x ′

1 = x1 − vx0 (24)

with αv given by Eq. (8). The treatment is almost identical to that described above.
Basis generators are S0 together with
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L̂01 = L01, L̂02 − L̂12 = L02 − L12 + 1

c
S0, L̂01 + L̂12 = L01 + L12. (25)

L̂02 − L̂12 is the infinitesimal generator for the modified Galilean boost specified by
Eq. (24). It is easy to see that Eqs. (23) and (25) together with S0 lead to isomorphic
Lie algebras just as in the Doppler group case.

4 Conclusions

Regarding relevance of our investigation to current research, we mention interest
in inhomogeneous and/or anisotropic models of the universe as an explanation of
current cosmic acceleration without invoking dark energy or modified gravity [16].
In addition to clarifying by way of examples misunderstanding regarding velocity
reciprocity, the above provides a starting framework for introducing inhomogeneity
and anisotropy into cosmological models.
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Meta-Schrödinger Transformations

Stoimen Stoimenov and Malte Henkel

Abstract Meta-Schrödinger transformations are the dynamical symmetries of equa-
tions of combined ballistic and diffusive transport. Their Lie algebra is derived in
1 + 1 space dimensions and the infinite-dimensional generalisation is constructed.
Representationswithout time-translation-invariance are given and the co-variant two-
point functions are computed.

Keywords Schrödinger algebra · Meta-conformal algebra · Critical phenomena ·
Non-equilibrium phase transition

1 Introduction

While 2D conformal invariance [4] is an essential ingredient in string theory [35]
or equilibrium critical phenomena [19, 23], non-equilibrium statistical mechanics
furnishes different examples where a naturally realised dilatation-symmetry can be
extended to larger (eventually infinite-dimensional) symmetry algebra. Besides the
conformal algebra vir ⊕ vir itself, see e.g. [5, 8, 9, 13] and also the example of
generalised hydrodynamics after quantum quenches [6, 11, 14, 34, 36], the most
simple example are systems described by an underlying simple diffusion equation
whose dynamical symmetry was recognised by Jacobi [29] and Lie [30] and is called
today Schrödinger algebra sch(d) [33]. Its infinite-dimensional extension is the
Schrödinger-Virasoro algebra sv(d) [22].Contra awide-held belief, the Schrödinger
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algebra is not the non-relativistic limit obtained from the conformal algebra by a Lie
algebra contraction. Rather this procedure leads to the conformal Galilean algebra,
e.g. [1, 16, 17, 21, 24, 32] (including its infinite-dimensional extension), which also
arises independently in gravitational physics [2, 3, 7]. On the other hand, the dynam-
ical symmetries of simple ballistic transport equations has recently been identified as
the new meta-conformal algebra meta(1, d) [28], whose infinite-dimensional exten-
sions are isomorphic to the direct sum of two Virasoro algebras in d = 1 spatial
dimensions and of three Virasoro algebras for d = 2. Again, the non-relativistic
limit of these are the conformal Galilean algebras.

The physical context of these application is physical ageing: a many-body system
is prepared in a disordered state and then quenched to either a critical point or else
into the ordered phase where several equivalent equilibrium states coexist. After the
quench, such systems (i) relax slowly, (ii) break time-translation-invariance and (iii)
obey dynamical scaling, which are the three defining properties of physical ageing
[26]. Schrödinger-invariance is realised in quenches to the ordered phase, see [26]
for a detailed review. Meta-conformal invariance may be realised if the underlying
microscopic dynamics has a directional bias [20, 28].

Here, we shall describe the new ‘meta-Schrödinger algebra’metasch(1, 1) [38]. It
arises for combined ballistic and diffusive transport in different spatial directions, see
Eq. (2) below. Such equations also arise in the study of driven diffusive systems, see
[37] for a classic review. Section 2 outlines the construction, including of the infinite-
dimensional extension, called meta-Schrödinger-Virasoro algebra msv(1, 1). We
prove the semi-direct sum [38]

msv(1, 1) ∼= (
vir ⊕ vir

)
� gal(1) ∼= vir � sv(1) (1)

(where gal(1) is the infinite-dimensional algebra of generalised Galilei transforma-
tions in the y-direction). Subsection 2.4 considers the necessary generalisations for
physical ageing, when the time-translation generator−∂t must bemodified. Section 3
lists the co-variant two-point functions of quasi-primary scaling operators.

2 Construction of the Meta-Schrödinger Algebra

Definition: The meta-Schrödinger algebrametasch(1, 1) acts as dynamical symme-
try algebra of the following biased evolution equation

SΦ(t, x, y) :=
(

∂t − S1∂x − S2∂
2
y

)
Φ(t, x, y) = 0. (2)

Following [33], infinitesimal symmetries of (2) are written in the form

X = −A(t, x, y)∂t − B(t, x, y)∂x − C(t, x, y)∂y − D(t, x, y), (3)
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where the functions A, B, C, D depend all on t, x, y and must satisfy

[S , X ]Φ(t, x, y) = λ(t, x, y)SΦ(t, x, y) (4)

for an arbitrary field Φ = Φ(t, x, y). The functions A, B, C, D must obey the sys-
tem1

S2 Ayy + S1Ax − Ȧ − λ = 0 , S2Byy + S1Bx − Ḃ + λS1 = 0
2S2Cy + λS2 = 0 , S2Cyy + S1Cx − Ċ + 2S2Dy = 0

S2Dyy + S1Dx − Ḋ = 0 , 2S2 Ay = 0 , 2S2By = 0
(5)

The solution of (5) is aided by considering two sub-algebras.

1. For fields Φ = Φ(t, x), Eq. (2) becomes the ballistic transport equation in
the spatial x-direction. Its dynamical symmetry is the meta-conformal algebra
meta(1, 1).

2. For fields Φ = Φ(t, y), Eq. (2) becomes the diffusion equation in the spatial
y-direction. Its dynamical symmetry is the Schrödinger algebra sch(1).

Both should be sub-algebras of the sought Lie algebra metasch(1, 1). A natural
starting point for the construction of metasch(1, 1) will be representations of the
meta-conformal algebra which obey the condition (4) with the Schrödinger operator
(2). Recall the algebraic structure of the meta-conformal and Schrödinger algebras

meta(1, 1) ∼= sl(2, R) ⊕ sl(2, R), sch(1) ∼= sl(2, R) � hei(1) (6)

(the Heisenberg algebra hei(1) includes the central extension). We start from
Ansatz: Representations ofmetasch(1, 1) are given by semi-direct sums of represen-
tations of the meta-conformal algebra meta(1, 1), with known action in the spatial
direction x and the Heisenberg algebra hei(1), with known action in the spatial
direction y.
We write X−1 = −∂t , Y x

−1 = −∂x , Y y
− 1

2
= −∂y , M0 = −M and

X0 = −t∂t − x∂x − 1

2
y∂y − δ

X1 = −(t2 + αx2)∂t − (2t x + βx2)∂x − C X1(t, x, y)∂y − DX1(t, x, y) − 2δt − 2γ x

Y x
0 = −αx∂t − (t + βx)∂x − CY0 (t, x, y)∂y − DY0 (t, x, y) − γ (7)

Y x
1 = −α(2t x + βx2)∂t − ((t + βx)2 + αx2)∂x − CY1(t, x, y)∂y − DY1(t, x, y)

−2γ t − 2(αδ + βγ )x

Y y
1
2

= −A
Y 1
2 (t, x)∂t − B

Y 1
2 (t, x)∂x − C

Y 1
2 (t, x, y)∂y − D

Y 1
2 (t, x, y) − M y

where α, β are constants. To find A, B, C, D of each generator, use the sub-algebras:

1 We use the notations Ȧ = ∂t A(t, x, y), Axy = ∂x∂y A(t, x, y) etc.
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• the meta-conformal algebra meta(1, 1) = 〈
Xn, Y x

n

〉
n∈Z, with the commutators

[Xn, Xm] = (n − m)Xn+m, [Xn, Y x
m] = (n − m)Y x

n+m

[Y x
n , Y x

m] = (n − m)
(
αXn+m + βY x

n+m

)
(8)

• the Schrödinger sub-algebra sch(1) = 〈
X0,±1, Y y

± 1
2
, M0

〉
and

[Xn, Xm] = (n − m)Xn+m, [Xn, Y y
p ] =

(n

2
− p

)
Y y

n+p,

[Y y
p , Y y

q ] = (p − q)Mp+q , [Xn, Mm] − m Mn+m (9)

For n ∈ Z and p ∈ Z + 1
2 , one has the infinite-dimensional algebras metav(1, 1) =〈

Xn, Y x
n

〉
and sv(1) = 〈

Xn, Y x
n , Y y

p , Mn
〉
.

We should find sl(2, R) = 〈
X0,±1

〉
as sub-algebra acting on both x and y, but such

that the commutator [Y x
n , Y y

p ] closes into the algebra. All unknown functions in the
generators (7) are found from the above commutator relations (8), (9) and the Eq. (5).
The first equation of the system (5) gives λX1 = −2t + 2αS1x . Upon substitution
into the second equation (5), this leads to a quadratic equation for S1

αS2
1 + βS1 − 1 = 0. (10)

Set c := −αS1, then α = c(c − β) �= 0. It is enough to construct X1 explicitly.

2.1 The General Case: α �= 0

The algebra metasch(1, 1) is spanned by the generators [38]:

X−1 = −∂t , X0 = −t∂t − x∂x − y

2
∂y − δ

X1 = −(t2 + αx2)∂t − (2t x + βx2)∂x − (t + cx)y∂y − 2tδ − 2γ x − M

2
y2

Y x
−1 = −∂x , Y x

0 = −αx∂t − (t + βx)∂x − c

2
y∂y − γ

Y x
1 = −α(2t x + βx2)∂t − (t2 + 2βt x + (α + β2)x2)∂x − (ct + (α + βc)x)y∂y

−2γ t − 2(αδ + βγ )x − cM

2
y2

Y y
1
2

= −∂y, Y y
1
2

= −(t + cx)∂y − M y, M0 = −M , (11)

with the non-vanishing commutation relations, with n, m = ±1, 0 and p = ± 1
2
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[Xn, Xm] = (n − m)Xn+m, [Xn, Y x
m] = (n − m)Y x

n+m

[Xn, Y y
p ] = (n

2
− p

)
Y y

n+p, [Y x
n , Y x

m] = (n − m)
(
αXn+m + βY x

n+m

)

[Y x
n , Y y

p ] = c
(n

2
− p

)
Y y

n+p, [Y y
1/2, Y y

−1/2] = M0. (12)

Next, if we let

S1 = − c

α
= − 1

c − β
, S2 = 1

2M

2c − β

c − β
, and γ = 2c − β

4
+ (β − c)δ

(13)
then the Schrödinger operator (2) becomesS = ∂t + 1

c−β
∂x − 1

2M
2c−β

c−β
∂2

y . It is read-
ily checked that all symmetry conditions (4) are obeyed [38]. Notice that the repre-
sentation (11) and all consequences are valid only for c �= β and c �= β/2.

2.2 Infinite-Dimensional Extension

The infinite-dimensional extension of the representation (11) is constructed as fol-
lows [38]. First, in terms of the of the variable ρ = t + cx , the infinite-dimensional
extension of the Heisenberg algebra is

Y y
p = −ρ p+1/2∂y − (p + 1/2)Mρ p−1/2y , Mn = −Mρn (14)

such that for p, q ∈ Z + 1
2 we have the commutator [Y y

p , Y y
q ] = (p − q)Mp+q . Next,

following [28], define a new family of generatorsYn := N
(
aXn + Y x

n

)
whose nor-

malisationN will be fixed shortly. The new generators satisfy

[Yn,Ym] = (n − m)(2a + β)N Yn+m (15)

provided that a satisfies a2 + βa − c(c − β) = 0. The two solutions a1,2 of this
quadratic equation, namely a1 = −c and a2 = c − β, produce two distinct forms,
denoted Y (1,2)

n , of the generators. We then obtain

Y (1)
n = N (1)

(−cXn + Y x
n

)
, Y (2)

n = N (2)
(
(c − β)Xn + Y x

n

)
(16)

which both satisfy the commutator (15). We now fix the normalisations from the

requirements (β − 2c)N (1) != 1
!= (2c − β)N (2).

Analogously, we construct

An := Xn + bYn ; with [An,Am] = (n − m)An+m . (17)

Since a has the admissible values a1,2, it follows that either b = 0 or b = −1 [38].
Then three distinct forms of the An are possible, namely
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A (0)
n = Xn with

[
A (0)

n ,Y (1,2)
m

] = (n − m)Y (1,2)
n+m if b = 0

(18)

A (1)
n = (c−β)Xn+Y x

n
2c−β

= Y (2)
n

A (2)
n = −−cXn+Y x

n
2c−β

= Y (1)
n

}

with
[
A (0)

n ,Y (1,2)
m

] = 0 if b = −1

This construction is valid2 ifβ �= 2c andβ �= c. Then themaximal finite-dimensional
sub-algebra (11) is the dynamical symmetry of the Eq. (2).

We write down the generators explicitly3 for b = −1. Because of (18), we have
A (1)

n = Y (2)
n , and A (2)

n = Y (1)
n . Hence, these possibilities are not independent. Let

An = A (1)
n and Yn = Y (1)

n . They are readily obtained from the explicit expressions
for Xn, Y x

n in (11), but working with light-cone-like variables σ = t + (β − c)x and
ρ = (t + cx) leads to the more elegant form

Yn = −σ n+1∂σ + (n + 1)
cδ − γ

2c − β
σ n (19a)

An = −ρn+1∂ρ − (n + 1)

(
(c − β)δ + γ

2c − β
+ y

2
∂y

)
ρn − n(n + 1)

4
M y2ρn−1

(19b)

Hence the Lie algebra
〈
An,Yn, Y y

p , Mn
〉
has the non-vanishing commutators, for

n, m ∈ Z and p, q ∈ Z + 1
2 , using (14)

[An,Am ] = (n − m)An+m , [Yn,Ym ] = (n − m)Yn+m (20)

[An, Y y
p ] =

(n

2
− p

)
Y y

n+p, [Y y
p , Y y

q ] = (p − q)Mp+q , [An, Mm ] = −m Mn+m

which are those of the meta-Schrödinger-Virasoro Lie algebra (1). The Schrödinger-
Virasoro algebra sv(1) = 〈

A B
n , Y y

p , Mn
〉 ⊂ msv(1, 1) is an obvious sub-algebra.

Since in light-cone coordinates,S =
(
2c−β

c−β
∂ρ − 1

2M ∂2
y

)
, the dynamical symme-

try follows from, if γ = 2c−β

4 + (β − c)δ,

[
S ,An

] = 2c − β

c − β

(
(n + 1)ρnS

+n(n + 1)ρn−1

(
(c − β)δ + γ

2c − β
− 1

4

)
+ n3 − n

4
ρn−2M y2

)
(21)

[
S , Y y

p

] = 2c − β

c − β
M (p − 1

2
)(p + 1

2
)ρ p−3/2y ; [S ,Yn] = [S , M0] = 0

2 In the limit β − 2c → 0, a Lie algebra contraction should lead to representations related to the
conformal Galilean algebra.
3 The case b = 0 gives the same algebra, up to a change of basis [38].
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such that either the maximal finite-dimensional sub-algebra metasch(1, 1) or else〈
A±1,0,Yn, Y± 1

2
, M0

〉
leave the solution space of (2) invariant.

2.3 The Special Case α = 0

If α = 0, one has λX1 = −2t and from (10) S1 = 1/β. Since we had before
α = c(c − β), the results for α = 0 can be obtained from those of the previous
sub-section by setting c = 0 (but not c = β !) in the generators (11) as well as in
commutation relations (12). This directly produces an infinite-dimensional repre-
sentation of msv(1, 1) whose commutators follow from (12) with α = c = 0 In the
light-cone variables τ = t, v = t + βx, y, an elegant form is

An := Xn − 1

β
Y x

n = −τ n+1∂τ − (n + 1)

(
1

2
τ n y∂y + (

δ − γ

β

)
τ n + n

4
M τ n−1y2

)

Y x
n = −βvn+1∂v − (n + 1)γ vn,

Y y
p = −τ p+ 1

2 ∂y − (p + 1

2
)M τ p− 1

2 y, Mn = −M τ n, (22)

whose non-vanishing commutators (n, m ∈ Z and p, q ∈ Z + 1
2 )

[An, Am] = (n − m)An+m, [An, Y y
p ] = (n

2
− p

)
Y y

n+p,

[Y x
n , Y x

m] = (n − m)βY x
n+m [Y y

p , Y y
q ] = (p − q)Mp+q (23)

again reproduce (1). In light-cone variables the Schrödinger operator (2) simplifies
into S = ∂t − 1

β
∂x − 1

2M ∂2
y = ∂τ − 1

2M ∂2
y and if γ

β
= δ − 1

4 , the dynamical sym-
metries are obvious, as before [38].

2.4 Representations Without Time-Translation-Invariance

A system undergoing physical ageing is brought out of equilibrium by a quench in
its thermodynamic parameters. It cannot be at equilibrium which suggests that the
generator X−1 = −∂t of time-translations should not be part of the symmetry algebra
[25]. However, for themeta-Schrödinger algebra, such a restrictive prescription is not
adequate, because Eq. (12) shows thatwithout the generator X−1 of time-translations,
the conformal algebra of the generators Y x

n does not close, especially

[Y x
0 , Y x

−1] = αX−1 + βY x
−1. (24)
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For the Schrödinger-Virasoro algebra, it can be shown how to generalise [31] the
defining representation such that (a) time-translation-invariance is broken and (b)
the full Lie algebra sv(d) is kept [27]. This procedure can be applied to the meta-
Schrödinger-Virasoro algebra as well. In the special case α = 0, to which we restrict
here, we find for the generator An = Xn − 1

β
Y x

n , in light cone variables [38]

An = −τ n+1∂τ − n + 1

2
τ n y∂y − (n + 1)

(
δ − γ

β

)
τ n − nξτ n − n(n + 1)

4
M τ n−1y2

(25)
All other generators maintain their form stated in (23). The only new element is a
‘second scaling dimension’ ξ . Together with the ‘first scaling dimension’ δ and the
‘rapidity’ γ , it can be used to characterise scaling operators out of stationary states.

In light-cone variables, the invariant Schrödinger operator becomes S = ∂τ −
1

2M ∂2
y + ξ

τ
For checking the symmetry, all commutators of the time-translation-

invariant case can be taken over. The only exception is

[S , A1] = −2tS + (
2M S2 − 1

)
y∂y − 2

(
δ + ξ − γ

β
− 1

4

)
(26)

Hence the conditions for a symmetry are now S2 = 1
2M and γ

β
= δ + ξ − 1

4 .

3 Covariant Two-Point Functions

As an application, we consider the form of the co-variant two point-function

F(t1, t2, x1, x2, y1, y1) := 〈
Φ1(t1, x1, y1)Φ2(t2, x2, y2)

〉
(27)

where Φ1, Φ2 are quasi-primary scaling operators ofmetasch(1, 1). From the repre-
sentations constructed before, the scaling operators are characterised by the several
parameters introduced. Physically, we distinguish between the stationary case, which
is time-translation-invariant and the ageing case, which is not [38].

3.1 Stationary Case

In the time-translation-invariant case we consider scaling operators Φi (i = 1, 2),
characterised by the parameters (δi ,

γi

βi
,Mi , βi ), transforming covariantly under the

representation with α = 0 (called case A). Lifting the single-body representation of
Sect. 2 to a two-body representation, this produces a set of Ward identities which fix
the form of F(t, x, y) = G(A)(t, t + βx, y). Because of the translation-invariance,
F will only depend on the differences t := t1 − t2, x := x1 − x2 and y := y1 − y2
and it can also be shown that β1 = β2 = β. Letting v = t + βx , the final result is
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G(A)(t, v, y) = G0 δM 1+M 2,0 δδ1,δ2δγ1,γ2 t−2δ1+2γ1/β v−2γ1/β exp

(
−M1

2

y2

t

)
,

(28)
where G0 is a normalisation constant. This form combines aspects of Schrödinger-
invariance in the transverse coordinate y and of meta-conformal invariance in the
parallel coordinate x .

Similarly, if α �= 0 (called case B) one works with the coordinates ρ = t + cx
and σ = t + (β − c)x . Again, β := β1 = β2 and c := c1 = c2. Using the definitions
Γ := cδ−γ

2c−β
and Δ := δ and writing F(t, x, y) = G(B)(ρ, σ, y), we find

G(B)(ρ, σ, y) = G0 δM 1+M 2,0 δ�1,�2δΓ1,Γ2 ρ−2Δ1+2Γ1 σ−2Γ1 exp

(
−M1

2

y2

ρ

)
(29)

and where we also have ρ = ρ1 − ρ2, σ = σ1 − σ2 and y = y1 − y2.

3.2 Ageing Case

For non-equilibrium dynamics, as it occurs in ageing systems, time-translation-
invariance does not hold and the scaling operatorsΦ1,2 are quasi-primarywith respect
to the representations derived in Sect. 3. The time variables are now t = t1 − t2
and u = t1/t2. We confine ourselves to the case α = 0 (case A) and find, with
F(t, u, x, y) = G(A)(t, u, v, y) and v = t + βx

G(A)(t, u, v, y) = G0δM 1+M 2,0 δγ1,γ2δδ1+ξ1,δ2+ξ2 (30)

×t−δ1−δ2+2γ1/βuξ1(u − 1)−ξ1−ξ2v−2γ1/β exp

(
−M1

2

y2

t

)
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The Quantum Mirror to the Quartic del
Pezzo Surface

Hülya Argüz

Abstract A log Calabi–Yau surface (X, D) is given by a smooth projective surface
X , togetherwith an anti-canonical cycle of rational curves D ⊂ X . The homogeneous
coordinate ring of the mirror to such a surface—or to the complement X \ D—is
constructed using wall structures and is generated by theta functions [6, 7]. In [1], we
provide a recipe to concretely compute these theta functions from a combinatorially
constructed wall structure in R2, called the heart of the canonical wall structure.
In this paper, we first apply this recipe to obtain the mirror to the quartic del Pezzo
surface, denotedbydP4, togetherwith an anti-canonical cycle of 4 rational curves.We
afterwards describe the deformation quantization of this coordinate ring, following
[4]. This gives a non-commutative algebra, generated by quantum theta functions.
There is a totally different approach to construct deformation quantizations using the
realization of the mirror as the monodromy manifold of the Painlevé IV equation [5,
8]. We show that these two approaches agree.

Keywords Mirror symmetry · del Pezzo surfaces · Quantization

1 The Mirror to (d P4, D)

We construct the mirror to (dP4, D), following the recipe in [1]. To obtain the theta
functions generating the coordinate ring of the mirror, we define an initial wall
structure associated to (X, D), using the following data:

• A choice of a toric model, that is, a birational morphism (X, D) → (X , D) to a
smooth toric surface X with its toric boundary D̄ such that D → D is an iso-
morphism. For the quartic del Pezzo surface X = dP4, obtained by blowing up 5
general points in P2, we consider the toric model given by a toric blow-up of P2,
illustrated as in Fig. 1.
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Fig. 1 On the left hand figure H is the class of a general line on the projective plane P2, which is
illustrated by its momentum map image. In the middle X is the blow up of P2 at a toric point, E1
is the class of the exceptional curve, and by abuse of notation H denotes the class of the pull-back
of a general line. On the right hand figure we illustrate dP4 together with the exceptional divisors
obtained by 4 further non-toric blow-ups

Fig. 2 The kinks of the
MVPL function ϕ on the
rays of the fan ΣX associated
to the toric model X , drawn
in dashed blue lines to
distinguish them in what
follows from walls

H−E

H−EE1

H

1

1

We choose D to be the toric boundary divisor in X , and let D be the strict transform
of D. We note that the equations of the mirror will be independent of the choice
of the toric model [1, 6].
This choice defines a natural subdivision of MR, where M ∼= Z2 is a fixed lattice,
and MR = M ⊗ R ∼= R2, given by the toric fan ΣX ⊂ MR of X . We denote MR

together with this subdivision by (MR,ΣX ).
• A multi-valued piecewise linear (MVPL) function ϕ on (MR,ΣX ) with values
in the monoid of integral points of the cone of effective curves on X , denoted by
NE(X). Up to a linear function, we uniquely define ϕ by specifying its kinks along
each ray of ΣX to be the pullback of the class of the curve in X corresponding to
this ray, as illustrated in Fig. 2.

Definition 1 A wall structure on (MR,ΣX ) is a collection of pairs (ρ, fρ), called
walls, consisting of rays ρ ⊂ MR, together with functions fρ ∈ C[NE(X)gp][M],
referred to as wall-crossing functions. Each wall crossing function defines a wall-
crossing transformation

θγ,ρ : zv �−→ f
〈nρ ,v〉
ρ zv , (1)

prescribing how a monomial zv changes when crossing the wall (ρ, fρ). Here, nρ is
the normal vector to ρ chosen with a sign convention as in [2, Sect. 2.2.1].

We note that in general one might need to work with infinitely many walls, and
then to work modulo an ideal of NE(X) while defining the wall crossing functions.
However, in the case of the quartic del Pezzo surface we will only need finitely many
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(1,0)

(0,1)

(1,0)

(0,1)Perturbation

1
(−1,−1)

(−1,−1)
(−1,−1)

Fig. 3 Walls of the initial wall structure associated to (dP4, D), and their perturbations obtained by
translating some walls, so that each intersection is formed by only two walls meeting at a point. The
dashed blue lines indicate where the kinks of the MVPL function ϕ are, the black rays with arrows
are walls. On the left hand figure the function attached to wall with direction (1, 0) is given by
1 + t−E2 x−1, the function on the wall wit direction (0, 1) is 1 + t−E5 y−1, and the one on the wall
with direction (−1,−1) is (1 + t−E3 xy)(1 + t−E4 xy), as there are two walls on top of each other.
On the right hand figure the functions on the walls with (1, 0) and (0, 1) remain same. However,
we have now two separate walls in direction (−1,−1), with attached functions (1 + t−E3 xy) and
(1 + t−E4 xy) respectively—we choose to attach the latter to the most right ray

walls, and the wall crossing functions will be elements of a polynomial ring, as in
Definition 1.

To obtain the equation of the mirror to (X, D), we first define an initial wall
structure associated to (X, D). To do this, we first define an initial set of walls in
(MR,ΣX ). For every non-toric blow-up in the toric model, we include a wall (ρ, fρ),
where ρ is the ray in ΣX corresponding to the divisor on which we do the non-toric
blow-up, and

fρ = 1 + t−Ei z−vρ = 1 + t−Ei x−a y−b ,

where Ei ∈ NE(X) is the class of the exceptional curve, zvρ denotes the element in
themonoid ringC[M], corresponding to the primitive direction vρ ∈ M of ρ pointing
towards 0 referred to as the direction vector, and we use the convention x = z(1,0)

and y = z(0,1). The negative signs on the powers of t and z are chosen following the
sign conventions of [2].

The walls of the initial wall structure do not generally intersect only pairwise, but
there can be triple or more complicated intersections as illustrated on the left hand
Fig. 3, where we have 4 walls intersecting - two of these walls lie on top of each other
and have direction vector (−1,−1), and the other two have direction vectors (1, 0)
and (0, 1). However, we can always move these walls, so that any of the intersection
points of the initial walls will be formed by only two walls intersecting. The initial
wall structure after a choice of such a perturbation is illustrated on the right hand
side of Fig. 3. In this situation, only when two walls intersect each time, we can
easily describe a consistent wall structure obtained from the initial wall structure by
inserting newwalls to it, so that the composition of the wall crossing transformations
around each intersection point is identity. This diagram is referred as the heart of the
canonical wall structure in [1].
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Roughly put, each time a wall with support on a ray ρi with direction vi and
with attached function 1 + t−Ei z−vi intersects another wall with support on a ray ρ j

with direction v j and with attached function 1 + t−E j z−v j , we first extend these rays
to lines, so that on the new rays we form while doing this we attach the functions
1 + tκi−Ei z−vi and 1 + tκ j−E j z−v j respectively. Here κi and κ j denote the sums of
the kinks of the MVPL function ϕ, lying on rays that intersect the initial rays. We
furthermore insert an additionalwall with support on a rayρi+ j with direction vi + v j

and with attached function

1 + t (κi+κ j )−(Ei+E j )z−(vi+v j ) .

Note that this simple prescription describes the consistent wall structure, because
each time two walls with direction vectors say vi and v j intersect, the determinant
of vi and vi is ±1.

The coordinate ring of the mirror to (X, D) is generated by theta functions,
determined by keeping track of how a set of initial monomials change under
wall crossing in this consistent wall structure [1, Sect. 3]. We have as many
theta functions as the number of rays of the toric model associated to (dP4, D),
whose fan is illustrated in Fig. 2. The direction vectors of these rays are given by
(−1,−1), (−1, 0), (1, 1), (0,−1), which correspond to the initial set of monomials
x−1y−1, x−1, xy, y−1. The corresponding 4 theta functions, respectively denoted by
ϑ1, . . . , ϑ4, are determined by tracing how these monomials change as the corre-
sponding rays cross walls in the consistent wall structure associated to (dP4, D)

illustrated in Fig. 4. To determine the wall crossings we first fix a general point P as
in Fig. 4 , and look at the rays coming from the directions (−1,−1), (−1, 0), (1, 1),
(0,−1) and stopping at this point—note that, we made a choice of the point P so
that each ray will cross exactly two walls and the situation will be symmetric, and it
will make it easier to calculate the theta functions.

Each of the 4 theta functions is then obtained by the following wall crossings: The
red ray labelled with I crosses the two walls with attached functions 1 + t H−E4−E5x
and 1 + t E1−E5 y−1, the functions on the two walls crossed by the red ray labelled
by II are 1 + t E1−E5 y−1 and 1 + t H−E1−E3xy, the functions on the walls crossed by
the red ray labelled by III are 1 + t−E2x−1 (in this case there is also the kink of
the MVPL function H − E1 we take into account in the computation of the theta
functions) and 1 + t H−E1−E2−E3 y, and finally the red ray labelled by IV crosses the
walls with attached functions 1 + t2H−E1−E2−E3−E4xy2 and 1 + t H−E1−E4xy (and in
this case there is also a kink of the MVPL function given by E1). Hence, we obtain;
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Fig. 4 The consistent wall
structure obtained from the
perturbed initial wall
structure with 4 incoming
rays, illustrated in Fig. 3. The
kinks of the MVPL function
ϕ are on the 4 blued dashed
rays, whereas all the black
rays are walls. Tracing the
red rays labelled by I, II, III,
and IV, and the walls crossed
by them while they reach the
point P , we determine the
theta 4 functions
ϑ1, ϑ2, ϑ3, ϑ4

(1,1)

(1,0)

(0,1) (−1,−1)

(0,−1)(0,1) (0,−1)(−1,−1)

(−1,−2)

(−1,−1)

(−1,−1)

(−2,−1)

(−1,0)

(−1,0)

(1,0)

(−1,−1)

P

I

II

IV

III

x−1y−1 �→ x−1y−1 + t H−E4−E5 y−1 �→ x−1y−1 + t E1−E5x−1y−2 +
+ t H−E4−E5 y−1 =: ϑ1 ;
x−1 �→ x−1 + t E1−E5x−1y−1 �→ x−1 + t H−E1−E3 y + t E1−E5x−1y−1 =: ϑ2 ;
xy �→ t H−E1xy + t H−E1−E2 y �→ t H−E1xy + t2H−2E1−E2−E3xy2 +
+ t H−E1−E2 y =: ϑ3 ;
y−1 �→ y−1 + t2H−E1−E2−E3−E4xy �→ t E1 y−1 + t H−E4x +
+ t2H−E1−E2−E3−E4xy =: ϑ4 ;

The above theta functions generate the mirror to (dP4, D), which is obtained
as a family of log Calabi–Yau surfaces (dP4, D) given as Spec of the quotient of
C[NE(X)][ϑ1, ϑ2, ϑ3, ϑ4] by the following two quadratic equations:

ϑ1ϑ3 = C1 + t H−E1−E2ϑ2 + t H−E1−E5ϑ4 (2)

ϑ2ϑ4 = C2 + t E1ϑ1 + t H−E3−E4ϑ3

where

C1 = t H−E1 + t2H−E1−E2−E3−E5 + t2H−E1−E2−E4−E5 (3)

C2 = t H−E4 + t H−E3 + t2H−E2−E3−E4−E5 .

Note that the resulting equations for the mirror given above, agrees with the one
obtained in [3] using computer algebra.
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2 The Quantum Mirror to (d P4, D)

A general recipe to construct a deformation quantization of mirrors of log Calabi–
Yau surfaces is given in [4]. For (dP4, D), as the consistent wall structure consists
of only finitely many walls, the general recipe reduces to the following simple pre-
scription: the quantum theta functions, denoted by ϑ̂1, . . . , ϑ̂4, are obtained from
the theta functions above by replacing the monomials zv ∈ C[M], by quantum vari-
ables, denoted by ẑv , which are elements of the quantum torus, that is such that
ẑv ẑv′ = q

1
2 det(v,v′) ẑv+v′

, where q is the quantum deformation parameter. Hence, from
the equations for the theta functions above, we obtain:

ϑ̂1 = ẑ(−1,−1) + t E1−E5 ẑ(−1,−2) + t H−E4−E5 ẑ(0,−1) (4)

ϑ̂2 = ẑ(−1,0) + t H−E1−E3 ẑ(0,1) + t E1−E5 ẑ(−1,−1)

ϑ̂3 = t H−E1 ẑ(1,1) + t2H−2E1−E2−E3 ẑ(1,2) + t H−E1−E2 ẑ(0,1)

ϑ̂4 = t E1 ẑ(0,−1) + t H−E4 ẑ(1,0) + t2H−E1−E2−E3−E4 ẑ(1,1)

Thesequantum theta functions satisfy the following8 relations—first twoobtained
as deformations of the two quadric equations in (2), and the latter 6 equations deter-
mining the non-commutativity of the products of each two among four quantum theta
functions.

ϑ̂1ϑ̂3 = C1 + q− 1
2 t H−E1−E2 ϑ̂2 + q

1
2 t H−E1−E5 ϑ̂4 (5)

ϑ̂2ϑ̂4 = C2 + q
1
2 t E1 ϑ̂1 + q− 1

2 t H−E3−E4 ϑ̂3

q
1
2 ϑ̂1ϑ̂3 − q− 1

2 ϑ̂3ϑ̂1 = (q
1
2 − q− 1

2 )C1 + (q − q−1)t H−E1−E5 ϑ̂4

q
1
2 ϑ̂2ϑ̂4 − q− 1

2 ϑ̂4ϑ̂2 = (q
1
2 − q− 1

2 )C2 + (q − q−1)t E1 ϑ̂1

q
1
2 ϑ̂1ϑ̂2 − q− 1

2 ϑ̂2ϑ̂1 = (q
1
2 − q− 1

2 )t2H−E1−E3−E4−E5

q
1
2 ϑ̂2ϑ̂3 − q− 1

2 ϑ̂3ϑ̂2 = (q
1
2 − q− 1

2 )t H−E5

q
1
2 ϑ̂3ϑ̂4 − q− 1

2 ϑ̂4ϑ̂3 = (q
1
2 − q− 1

2 )t H−E2

q
1
2 ϑ̂4ϑ̂1 − q− 1

2 ϑ̂1ϑ̂4 = (q
1
2 − q− 1

2 )t2H−E1−E2−E3−E4

Eliminating ϑ̂4 in (5), we obtain the same equations as in [8, Corollary 4.6],
obtained there using a totally different approach based on the fact that the cubic
equation obtained from (2) by eliminating ϑ4 is the defining equation of the wild
character variety arising as the monodromy manifold of the Painlevé IV equation.
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Bidirectional Processes—In Category
Theory, Physics, Engineering, …

Alexander Ganchev

Abstract This is a brief on the categorical view of bidirectional processes (aka cat-
egorical optics) which appear in such diverse areas as learning, quantum physics,
dynamical systems and control, etc. We note that both quantum processes and trans-
mission are also examples of categorical optics.

Keywords Bidirectional processes · Categorical optics · CPM construction of
Selinger · Linear transport described by transfer matrices

1 Introduction

Functions are ubiquitous in mathematics. With functions we can model one-
directional flow—from the source to the target. But the examples of bidirectional
flow of information are abundant. Bidirectionality is key in cybernetics, control the-
ory, and systems theory where the actions of the environment on a system cause
the back reaction of the environment on the system. Learning is also bidirectional—
assessment is the back reaction of the environment on the learner and one learns from
mistakes. Functions can be composed, i.e., we can form categories of certain func-
tions. Also bidirectional processes can be composed and form appropriate categories.
A clean mathematical formulation of bidirectionality is achieved in category theory
based on the notion of categorical lenses and more generally categorical optics. By
“bending wires” one can turn a bidirectional process into a super-process and vice
versa.

After introducing the necessary notions to define categorical optics we will give
two examples. We note that quantum processes, obtained by doubling of pure quan-
tum processes and partial tracing, are given by optics and thus the CPM construction
of Selinger is a particular case of categorical optics. We also give the example, prob-
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ably the simplest one of a bidirectional process, of linear transport described by a
transfer matrix which factorizes into two optics. For this example we have to very
briefly recall graphical linear algebra (the presentation of matrix theory in terms of
generators and relations, i.e., as a prop). We end with a short discussion.

2 String Diagrams, (co)ends, Optics

String diagrams are a very convenient graphical presentation of monoidal categories
where the coherence rules are implicit in the invariance of the diagrams under topo-
logical moves. Objects are represented by strings/wires. Morphisms are depicted
by boxes/nodes with wires coming in and out. Placing wires in parallel depicts the
monoidal product. Bending strings around depicts dualities. String diagrams are the
Poincare dual of commutative diagrams. For a survey on string diagrams see [26,
33] or the nLab entry.

Yoneda introduced (co)ends in 1960 [38]. They appear peripherally in textbooks
such as MacLane [25] or Bourceux [8] but take central stage in [24]. Given a functor

P : Cop × C → D

the coend
∫ c∈C P(c, c) is the coequilizer:

∐

a,b∈C
P(a, b) ⇒

∐

c∈C
P(c, c) →

∫ c∈C
P(c, c)

where the elements of the coend are equivalence classes of the coproduct∐
c∈C P(c, c) given by u ∼ v, for u ∈ P(a, a) and v ∈ P(b, b), if there exists an

f ∈ P(a, b) such that v ◦ f = f ◦ u; that is, two arrows u and v are equivalent if
we can ‘slide’ some f between them. An example is given by the tensor product of a
two R modules where R is a commutative ring and the “sliding” above is the sliding
of scalars through the tensor product. Another example is Tannaka reconstruction.
The application of coends in Conformal Field Theory are described in [17–19].

Categorical optics was first introduced by Pasto and Street [27] where they are
called doubles of monoidal categories. Boisseau and Gibbons [5] and Riley [29]
gave it the name of categorical optics showing how it covers all kinds of different
data accessories from computer science, in particular lenses. The building blocks of a
deep neural networks are lenses [14, 15, 21] andmore generally optics. A foundation
for cybernetics will also be based on optics [9, 34]. String diagrams for optics were
introduced in [6, 30]. Another recent paper on categorical optics is [11]. The blog
of Bartosz Milewski is a excellent source for profunctor optics, the blog of Jules
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Fig. 1 String diagrams for
optics in Boisseau style on
the left and Riley-Roman
style on the right

Hedges gives a quick tour of lenses, and of course the n-category cafe has several
entries on optics.1

Let M be a autonomous2 category, C is an M-category if there is an action of M
on C , i.e., a functor • : M × C → C with the necessary natural isomorphisms. Let
C and D be two M-categories. (To simplify we can assume C = D = M acting on
itself by the monoidal product.) The category OpticC,D has objects (c, d) ∈ C × D
and hom-set of arrows from (c, d) to (c′, d ′) given by

OpticC,D((c, d), (c
′, d ′)) =

∫ m∈M
C(c,m • c′) × D(m • d ′, d)

where for m an object in M and two arrows f ∈ C(c,m • c′) and g ∈ D(m • d ′, d),
the arrow 〈 f |g〉m : (c, d) → (c′, d ′) is obtained by imposing the equivalence 〈(µ ×
c′) ◦ f |g〉n = 〈 f |g ◦ (µ × d ′)〉m for any µ ∈ M(m, n).

In the simpler case when C = D = V = Set with the cartesian product as
monoidal product and action it is known that optics are lenses.

String diagrams for optics (Fig. 1) appear in [30] as diagrams with ‘holes’ (on the
right) and in [6] as bidirectional transformation (on the left). The intuition for optics
as data accessories is the following: the object cwewant to split into a part of interest
c′ and the rest or the residual m. Updating the part c′ to d ′ we combine it back with
the rest m obtaining d.

3 Quantum Mechanics

Abramsky and Coecke [1] introduced dagger compact closed categories in abstract-
ing the standard axiomatization of quantummechanics in terms of Hilbert spaces and
pure states. On the other hand Selinger approached quantum mechanical axiomati-
zation in terms of mixed states, density matrices, and completely positive maps [32].
In this paper Selinger introduced the CPM construction, that associates to any dagger

1 https://bartoszmilewski.com/2016/01/21/tambara-modules/
https://julesh.com/2018/08/16/lenses-for-philosophers/
https://golem.ph.utexas.edu/category/2019/11/doubles_for_monoidal_categorie.html
https://golem.ph.utexas.edu/category/2020/01/profunctor_optics_the_categori.html.
2 For the applications bellow we would like to “bend” wires so we ask that the category is
rigid/autonomous. Generalizations are possible where this is relaxed [6] but then one has to go
to the presheaf category of optics/monoidal-doubles which is the category of Tambara modules.

https://bartoszmilewski.com/2016/01/21/tambara-modules/
https://julesh.com/2018/08/16/lenses-for-philosophers/
https://golem.ph.utexas.edu/category/2019/11/doubles_for_monoidal_categorie.html
https://golem.ph.utexas.edu/category/2020/01/profunctor_optics_the_categori.html
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Fig. 2 Completely positive map on the left and super-operator on the right

compact closed category its category of completely positive maps thus relating the
two approaches (Fig. 2).

In fact theCPMconstruction is an optic. Corollary 4.13 (d) in [32] can be rephrased
as follows. For objects A and B in a dagger compact closed category a map f : A∗ ⊗
A → B∗ ⊗ B is a completely positive map if it is an optic. Corollary 4.13 (d) in [32]
appears as Proposition 6.46 in the book on categorical quantum mechanics [12] and
as exercise 7.7 in [22]. The string diagram for a completely positive map is on the
left in the figure above. The string diagram on the right side depicting an optic as a
diagramwith a hole describes a super-operator (Remark 6.50 of [12]). (N.B. the term
super-operator indicates that it is a map taking an operator as input and producing
another operator as output.) Super-operators are examples of combs introduced in
[10]. Combs and generalizations from the point of view of optics are the subject of
[31].

All completely positive maps are obtained by purification, i.e., by discarding, or
tracing out, the environment part of a pure map, i.e., a applying the doubling to a
Hilbert space morphism. In the language of optics the environment is the residual
and the discarding is taking the coend. According to [10] purification is the axiom
that distinguishes quantum mechanics.

4 Graphical Linear Algebra

To proceed further we give pointers to the literature on graphical linear algebra
(GLA). A starting point could be the blog of Sobocinski.3 These developments are
grounded in the compositional approach of networks by Baez et al. [2–4] and Bonci-
Sobocinski-Zanasi et al. [7, 39].

The goal is to present the category of matrices, i.e., the skeleton of the category
of finite dimensional vector spaces, in terms of generators and relations. A PROP
(a PROduct and Permutation category) is a strict symmetric monoidal category gen-
erated on one object by the monoidal product, i.e., whose objects are the natural
numbers 0, 1, 2, . . . , the monoidal product is addition, and 0 is the monoidal unit.

One starts with ‘white’ generators standing for addition and the zero and ‘black’
generators standing for copying and deleting. (This black/white convention is used

3 https://graphicallinearalgebra.net/.

https://graphicallinearalgebra.net/
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Fig. 3 Generators for graphical linear algebra

in Bonchi et al. while in the ZX-calculus [12, 22] another coloring style is used.)
The white structure satisfies relations for commutativity, associativity, and the zero
(unit) thus forms a commutative monoid. The black structure forms a cocommutative
comonoid. One also needs the adjoints of the white and black generators, co-addition
and co-zero and co-copy and co-delete which are depicted by turning the pictures
to run backwards but not changing the color. The generators and the co-generators
of the same color form a Frobenius algebra of that color. On the other hand the
generators of opposite colors form a bialgebra and similarly for the co-generators
of opposite colors. One also has to introduce scaling, the action of the field or PID
of scalars. The multiplication by a scalar r is depicted by putting an oriented box
containing the scalar on the corresponding wire. Lack’s theory [23] of composing
PROPs is used in putting together the different structures. The first main result in
GLA is that the bialgebra of addition, copy, and scaling is a presentation of the prop
of matrices (Fig. 3).

A linear relation between two vector spaces is a linear subspace in the direct sum
of the two spaces. The second main result in GLA is that the prop of interacting Hopf
algebra provides a presentation for the prop of linear relations [7, 39].

5 Scattering and Transmission

In a process of scattering the on-coming waves/particles/radiation/. . . enter a region
of obstacles and are reflected, transmitted, and/or absorbed. We will follow the paper
of Redheffer [28]. As a simple example one can consider the wave function solv-
ing the Schroedinger equation in one spacial dimension where the potential is zero
but for a bounded region of obstacles where it is positive. In the left free region
the solutions are free waves propagating to the right/left (forward/backward) with
amplitudes A f

L and Ab
L respectively. In the free region to the right of the obsta-

cle denote the amplitudes A f/b
R . The scattering matrix S transforms the on-coming

Ain = (A f
L , Ab

R)
T into the out-going Aout = (A f

R, Ab
L)

T . One has S =
(
t f r b

r f tb

)

.

Here t and r are the transmission and reflection coefficients and the superscript
indicates forward versus backward. The problem with the S-matrix is that it does
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Fig. 4 Factorization of a
transfer matrix into two
optics

not compose.4 The composable matrix is the transfer matrix T which transforms
AR = T AL where AX = (A f

X , Ab
X )

T and X indicates the region L , I , or R. (I is
the intermediate region, the region of the obstacle.) We will build T by factoring it
T = T−1

R TL where AI = TL AL and AI = TR AR . Using the notation from graphical
linear algebra the situation is illustrated in Fig. 4. (The white dot describes copying
while the black—addition.)

It is straight forward to find TL =
(

t f 0
−r f 1

)

and TR =
(
1 −rb

0 tb

)

. The two trans-

fer matrices TL and TR can be interpreted as optics in the prop of matrices. I can-
not resist the temptation to mention that the factorization T = T−1

R TL looks like a
Wiener-Hopf factorization.

6 Discussion

The numerous examples of bidirectional processes indicate that categorical optics
could be viewed as the “Lego” elements out of which any bidirectional process can
be built. Besides the well known examples we have also noted that CMP construction
of Selinger is an optic and that transmission processes can be described as optics.

One area of active study is optics in machine learning. It is known that supervised
learning can be viewed as a problem of optimal control (Pontryagin’s maximum prin-
ciple). One should be able to formulate optimal control in the language of categorical
optics. A possible route is to formulate port-Hamiltonian systems in categorical lan-
guage. The work of Willems (e.g., [37]) was an inspiration both for the development
of the port-Hamiltonian approach [36] and the categorical approach to dynamical sys-
tems (Baez, Spivak, Fong, et al. [3, 16, 35]) but interestingly these two approaches
have been practically disjoint. Port-Hamiltonian systems are interconnected byDirac
structures. The closely related Lagrangian relations have been formulated [13] in the
language of GLA and one can show that they are instances of categorical optics.
Thus the first step in the categorical formulation of port-Hamiltonian systems is to
express Dirac structures as categorical optics. This will be the subject of future work.

4 To compose two S-matrices instead of matrix multiplication one should use the Redheffer star
product, i.e., pass to the transfer matrix.
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Nonholomorphic Superpotentials in
Heterotic Landau-Ginzburg Models

Richard S. Garavuso

Abstract The aim of this talk is to derive two constraints imposed by supersym-
metry for a class of heterotic Landau-Ginzburg models with nonholomorphic super-
potentials. One of these constraints relates the nonholomorphic parameters of the
superpotential to the Hermitian curvature. Various special cases of this constraint
have been used to establish properties of Mathai-Quillen form analogues which arise
in the corresponding heterotic Landau-Ginzburg models. The other constraint was
not anticipated from studies of Mathai-Quillen form analogues.

Keywords Superstrings and heterotic strings · Supersymmetry and duality ·
Topological field theories

1 Introduction

A Landau-Ginzburg model is a nonlinear sigma model with a superpotential. For a
heterotic Landau-Ginzburg model [1–8], the nonlinear sigma model possesses only
(0, 2) supersymmetry and the superpotential is a Grassmann-odd function of the
superfields which may or may not be holomorphic. It was claimed in [7] that, for
various heterotic Landau-Ginzburg models with nonholomorphic superpotentials,
supersymmetry imposes a constraint which relates the nonholomorphic parameters
of the superpotential to the Hermitian curvature. Details supporting that claim were
worked out in [8]. The analysis revealed an additional constraint imposed by super-
symmetry which was not anticipated in [7]. This talk will summarize the analysis
found in [8].

This talk is organized as follows: In Sect. 2, we will write down the action for the
class of heterotic Landau-Ginzburg models that we are considering. In Sect. 3, for
the case of a holomorphic superpotential, we demonstrate that the action is invariant
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on-shell under supersymmetry transformations up to a total derivative. Finally, in
Sect. 4, we will extend the analysis to the case in which the superpotential is not
holomorphic. In this case, we obtain two constraints imposed by supersymmetry.

2 Action

Heterotic Landau-Ginzburg models have field content consisting of (0, 2) bosonic
chiral superfields �i = (φi ,ψi+) and (0, 2) fermionic chiral superfields �a =(
λa−, Ha, Ea

)
, along with their conjugate antichiral superfields �ı = (

φı ,ψı+
)
and

�a =
(
λa−, H

a
, E

a
)
. The φi are local complex coordinates on a Kähler manifold

X . The Ea are local smooth sections of a Hermitian vector bundle E over X , i.e.
Ea ∈ �(X, E). The Ha are nonpropagating auxiliary fields. The fermions couple to
bundles as follows:

ψi
+ ∈ �

(
K 1/2

� ⊗ �∗(T 1,0X
))

, λa
− ∈ �

(
K

1/2
� ⊗ (

�∗E)∨)
,

ψı
+ ∈ �

(
K 1/2

� ⊗ (
�∗(T 1,0X

))∨)
, λa

− ∈ �
(
K

1/2
� ⊗ �∗E

)
,

where � : � → X and K� is the canonical bundle on the worldsheet �.
In [5], heterotic Landau-Ginzburg models with superpotential of the form

W = �a Fa , (2.1)

where Fa ∈ �
(
X, E∨)

, were considered. In this talk, we will study supersymmetry
in these heterotic Landau-Ginzburg models with Ea = 0. Assume that X has metric
g, antisymmetric tensor B, and local real coordinates φμ. Furthermore, assume that
E has Hermitian fiber metric h. Then the action of a Landau-Ginzburg model on X
with gauge bundle E and Ea = 0 can be written [8]

S = 2t
∫

�

d2z

[
1

2

(
gμν + i Bμν

)
∂zφ

μ∂zφ
ν

+ igı iψ
ı
+Dzψ

i
+ + ihaaλ

a
−Dzλ

a
− + Fiıaa ψi

+ψı
+λa

−λa
−

+ haa FaFa + ψi
+λa

−Di Fa + ψı
+λa

−Dı Fa

]
. (2.2)

Here, t is a coupling constant, d2z = −i dz ∧ dz, and
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Dz ψi
+ = ∂z ψi

+ + ∂z φ j �i
jkψ

k
+ , Dzλ

a
− = ∂zλ

a
− + ∂zφ

ı Aa
ıb

λb
− ,

Di Fa = ∂i Fa − Ab
ia Fb , Dı Fa = ∂ı Fa − Ab

ı a Fb ,

Ab
ia = hbb hba,i , Ab

ı a = hbb hba,ı ,

�i
jk = gi ı gık, j , Fiıaa = hab A

b
ı a,i .

The action (2.2) is invariant on-shell under the supersymmetry transformations

δφi = iα−ψi
+ ,

δφı = i α̃−ψı
+ ,

δψi
+ = −α̃−∂zφ

i ,

δψı
+ = −α−∂zφ

ı ,

δλa
− = −iα−ψ

j
+ Aa

jb λb
− + iα−haa Fa ,

δλa
− = −i α̃−ψ

j
+ Aa

j b
λb

− + i α̃−haa Fa

(2.3)

up to a total derivative.

3 Supersymmetry Invariance for Holomorphic
Superpotential

In this section, we will show that, when the superpotential is holomorphic, the action
(2.2) is invariant on shell under the supersymmetry transformations (2.3) up to a total
derivative. For this purpose, it is sufficient to set α̃− = 0,1 yielding

δφi = iα−ψi
+ , δφı = 0 ,

δψi
+ = 0 , δψı

+ = −α−∂zφ
ı ,

δλa
− = −iα−ψ

j
+ Aa

jb λb
− + iα−haa Fa , δλa

− = 0 .

(3.1)

With this simplification, using the λa− equation of motion,2 the action (2.2) can be
written [8]

1 The calculations for the case in whichα− = 0 and α̃− �= 0 are analogous to those we will perform
explicitly for the case in whichα− �= 0 and α̃− = 0. The general case, i.e.α− and α̃− both nonzero,
is obtained by combining the above two cases.
2 This is valid because we have integrated out the auxiliary fields Ha .
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S = i t
∫

�

d2z {Q, V } + t
∫

�

�∗(K )

+ 2t
∫

�

d2z
(
ψı

+λa
−Dı Fa − ψi

+λa
−DaFa

)
, (3.2)

where Q is the BRST operator,

V = 2
(
gı iψ

ı
+∂zφ

i + iλa
−Fa

)
, (3.3)

and ∫

�

�∗(K ) =
∫

�

d2z (gi ı + i Biı )
(
∂zφ

i ∂zφ
ı − ∂zφ

i∂zφ
ı
)

(3.4)

is the integral over the worldsheet � of the pullback to � of the complexified Kähler
form K = −i (gi ı + i Biı ) dφi ∧ dφı .

Since δ f = −iα−{Q, f }, where f is any field, the Q-exact part of (3.2) is δ-
exact and hence δ-closed.We will now establish that the remaining terms of (3.2) are
δ-closed on shell up to a total derivative. For the non-exact term of (3.2) involving
�∗(K ), note that

∫

�

�∗(K ) =
∫

�(�)

K =
∫

�(�)

[−i (gi ı + i Biı )] dφi ∧ dφı

and K satisfies

∂K = −i ∂k (gi ı + i Biı ) dφk ∧ dφi ∧ dφı = 0 .

Thus,
δ
[
�∗(K )

] = [
�∗(K )

]
k δφk = 0 . (3.5)

It remains to consider the non-exact expression of (3.2) involving

ψı
+λa

−Dı Fa − ψi
+λa

−Di Fa .

First, we compute

δ
(
ψı

+λa
−Dı Fa

) = (
δψı

+
)
λa

− Dı Fa + ψı
+

(
δλa

−
)
Dı Fa + ψı

+λa
i

[
δ
(
Dı Fa

)]

= (−α−∂zφ
ı
)
λa

− Dı Fa + ψı
+λa

−
[
δ
(
∂ı Fa − Ab

ı a Fb

)]

= (−α−∂zφ
ı
)
λa

− Dı Fa + ψı
+λa

−
{
∂ı

[
Fa,k

(
δφk

)]

−
[
Ab
ı a,k

(
δφk

)]
Fb − Ab

ı a

[
Fb,k

(
δφk

)]}

= (−α−∂zφ
ı
)
λa

− Dı Fa − ψı
+λa

−Ab
ı a,k

(
iα−ψk

+
)
Fb , (3.6)
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where we have used Fa,k = 0 in the last step. Now, we compute

δ
(−ψi

+λa
−Di Fa

) = − (
δψi

+
)
λa

−Di Fa − ψi
+

(
δλa

−
)
Di Fa

− ψi
+λa

− [δ(Di Fa)]

= −α−FaDzλ
a
− +

(
iα−hab Fb

)
Fiıaa ψi

+ψı
+λa

− , (3.7)

where we have used the λa− equation of motion. Note that the first term on the right-
hand side of (3.7) cancels the first term on the right-hand side of (3.6) up to a total
derivative:

−α−Fa Dzλ
a
− = −α−Fa

(
∂zλ

a
− + ∂zφ

ı Aa
ı b

λb
−
)

= α−
(
Fa,k ∂zφ

k + Fa,k ∂zφ
k
)

λa
− − α−∂z

(
Fa λa

−
)

− α−Fa ∂zφ
ı Aa

ı b
λb

−

= (
α−∂zφ

ı
)
λa

−
(
∂ı Fa − Ab

ı a Fb

)
− α−∂z

(
Fa λa

−
)

= (
α−∂zφ

ı
)
λa

− Dı Fa − α−∂z
(
Fa λa

−
)
, (3.8)

where we used Fa,k = 0 in the third step. Furthermore, the second term on the right-
hand side of (3.7) cancels the second term on the right-hand side of (3.6):

(
iα−hab Fb

)
Fiıaa ψi

+ψı
+λa

− = (
iα−hac Fc

) (
hab A

b
ı a,i

)
ψı

+λa
−ψi

+

= ψı
+λa

− Ab
ı a,k

(
iα−ψk

+
)
Fb , (3.9)

where we have used Fiıaa = hab A
b
ı a,i in the first step. It follows that (3.7) cancels

(3.6) up to a total derivative, i.e.

δ
(−ψi

+λa
−Di Fa

) = − δ
(
ψı

+λa
− Dı Fa

) − α−∂z
(
Fa λa

−
)
. (3.10)

This completes our argument for the case of a holomorphic superpotential.

4 Supersymmetry Invariance for Nonholomorphic
Superpotential

In this section, we will extend the analysis of Sect. 3 to the case in which the superpo-
tential is not holomorphic. This requires revisiting the steps in (3.6) and (3.8) where
we used Fa,k = 0. Allowing for Fa,k �= 0, (3.8) becomes

−α−Fa Dzλ
a
− = (

α−∂zφ
ı
)
λa

− Dı Fa − α−∂z
(
Fa λa

−
) + α−Fa,k ∂zφ

kλa
− .
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It follows that the cancellation described by (3.8) will still apply provided that the
constraint

Fa,k ∂zφ
kλa

− = 0 (4.1)

is satisfied. Furthermore, in the next to last step of (3.6), we now have

ψı
+λa

−
{
∂ı

[
Fa,k

(
δφk

)] − Ab
ı a

[
Fb,k

(
δφk

)]}

= ψı
+λa

−
{
∂ı

[
Fa,k

(
iα−ψk

+
)] − Ab

ı a Fb,k

(
iα−ψk

+
)}

= ψı
+λa

−
(
∂ı Fa,i − Ab

ı a Fb,i

) (
iα−ψi

+
)

= ψı
+λa

−
[
∂ı Fa,i + Ab

ı a,i Fb − ∂i

(
Ab
ı a Fb

)] (
iα−ψi

+
)

= ψı
+λa

−
[
∂i

(
∂ı Fa − Ab

ı a Fb

)
+ Ab

ı a,i Fb

] (
iα−ψi

+
)

= ψı
+λa

−
(
∂i Dı Fa + Fiı aa h

ab Fb

) (
iα−ψi

+
)
, (4.2)

where we have used Ab
ı a,i = hab Fiı aa in the last step. It follows that, in addition to

requiring (4.1), supersymmetry imposes the constraint

∂i Dı Fa + Fiı aa h
ab Fb = 0 . (4.3)

Various special cases of (4.3) were used in [7] to establish properties of Mathai-
Quillen form analogues which arise in the corresponding heterotic Landau-Ginzburg
models. In that paper, it was claimed that supersymmetry imposes those constraints.
In this talk, we have presented details worked out in [8] supporting that claim. It
would be interesting to see what constraints are imposed by supersymmetry in other
models when the superpotential is nonholomorphic.
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Automorphic Forms and Fermion Masses

Ferruccio Feruglio

Abstract Symmetry principles have long been applied to the flavour puzzle. In a
bottom-up approach, the variety of possible symmetry groups and symmetry breaking
sectors is huge, the predictability is reduced and the number of allowed models
diverges. A relatively well-motivated and more constrained framework is provided
by supersymmetric theories where a discrete subgroupΓ of a non-compact Lie group
G plays the role of flavour symmetry and the symmetry breaking sector spans a coset
space G/K , K being a compact subgroup of G. For a general choice of G, K , Γ and
a generic matter content, we show how to construct a minimal Kähler potential and
a general superpotential, for both rigid and local N = 1 supersymmetric theories.

Keywords Flavour symmetries · Symplectic modular invariance · Automorphic
forms

1 A Fresh Look into an Old Matter

Traditional (linearly realized) flavour symmetries act in generation space. In their
simplest implementation the flavour groupG f commutes with both the Poincaré and
the gauge groups, but it can be also combined with CP resulting in an additional non-
trivial action in flavour space. The most important fact about this type of symmetries
is that in any realistic construction they need to be broken [1]. Broken symmetries are
well understood and ubiquitous in particle physics and, at first sight, do not represent
a problem in their implementation. Why should we be worried about them? A first
unpleasant aspect is that the freedom is huge: the flavour group can be Abelian or
not, continuous or discrete, global or local. There is no accepted baseline model in a
bottom-up approach and inmost of the existing constructions the predictability is very
limited. Usually the symmetry breaking sector consists of a set {τα} of dimensionless,
gauge-invariant fields charged under G f . When space-time coordinates are varied,

F. Feruglio (B)
Department of Physics and Astronomy and INFN Padova, Via Marzolo 8 Padova, Padua, Italy
e-mail: feruglio@pd.infn.it

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
V. Dobrev (ed.), Lie Theory and Its Applications in Physics,
Springer Proceedings in Mathematics & Statistics 396,
https://doi.org/10.1007/978-981-19-4751-3_41

449

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-4751-3_41&domain=pdf
mailto:feruglio@pd.infn.it
https://doi.org/10.1007/978-981-19-4751-3_41


450 F. Feruglio

these fields span a moduli spaceM describing the possible vacua of the system. We
can expand a fermion mass matrix mi j (τ ) in powers of τα

1:

mi j (τ ) = m(0)
i j + m(1) α

i j τα + m(1) ᾱ
i j τ̄ᾱ + m(2) αβ

i j τατβ + · · · (1)

A realistic model requires at least few terms in the series (1). Additional parame-
ters are brought in by the renormalization group evolution needed to translate the
high-energy predictions into low-energy physical parameters. If the theory is super-
symmetric, extra parameters associated to supersymmetry breaking are needed.Most
of realistic models depend on a large number of free parameters to the detriment of
predictability.

On top of that, a very unattractive feature is the need of a mechanism producing
τα with appropriate size and orientation in flavour space. This alignment problem
is typically solved at the expenses of enlarging both the symmetry group, including
additional “shaping” factors in G f , and the symmetry breaking sector, including a
pletora of driving fields, not directly entering the expression (1). In model building
the usual path proceeds from the choice of G f and its representations ρ( f )(g) in field
space, to an ad hoc and often baroque construction of the symmetry breaking sector
{τα}. In this way the central ingredient of the whole construction is relegated to the
very last step.

Can we reverse the logic? If the symmetry breaking sector is so crucial, why not
look for physically and/or mathematically motivated symmetry breaking sectors and
inspect their symmetry properties? Consider the following simple example. Imagine
that the moduli space M describes the (non-oriented) lines of the plane passing
through the origin. To parametrize this set we can choose points lying on the unit
circle centered at the origin of the complex plane: M = {τ ∈ C, |τ | = 1}, with the
agreement that τ and γτ = −τ should be identified, since they describe the same
line. The Γ ≡ Z2 parity symmetry τ → γτ is a gauge symmetry, since it reflects the
redundancy of the adopted parametrization. The moduli spaceM is “too large” and
a one-to-one correspondence with the lines of the plane is obtained by considering
the quotientM/Γ .2 In a putative field theory where τ is a scalar field, we should also
assign matter fields Ψ (x) to (possibly non-linear and projective) Γ representations.
By consistency, the low-energy EFT should satisfy the gauge symmetry under Γ .
Following this procedure, the flavour group Γ and its representations are derived
from the moduli spaceM, that in turns describes the allowed vacua. We also notice
that the gauge symmetry Γ is always realized in the broken phase, since there is no
point on the unit circle that is left invariant by Γ .

A less trivial example is that of a theory where the physically inequivalent vacua
are in a one-to-one correspondence with classes of conformally equivalent metrics
on the torus [2]. The moduli space is the upper half-planeM = SL(2,R)/SO(2) =
{τ | �(τ ) > 0}. Since tori related by a transformation γ of Γ = SL(2,Z) are confor-

1 We make no distinction between a field τα and its VEV.
2 In the string terminology, the moduli space isM/Γ . Here we remain closer to the QFT dictionary:
we distinguish M and Γ , call moduli space the whole M and interpret Γ as a gauge symmetry.
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mally equivalent, we can adopt as candidate flavour symmetry SL(2,Z). Indeed the
most general transformation of matter fields under this group is:

Ψ (x)
γ−→ (cτ + d)kΨ ρΨ (γ)Ψ (x) , (2)

where ρΨ (γ) is a unitary representation of a finite modular group SL(2,ZN ),3 kΨ

is the weight and N is the level of the representation. When non-vanishing weights
are present, Yukawa couplings should be functions of the modulus τ with the appro-
priate transformation property to enforce invariance under Γ . In a supersymmetric
construction Yukawa couplings Y (τ ) are modular forms of given weight kY and
level NY . Since such forms span a finite-dimensional linear space, we have a limited
number of allowed couplings and mass/mixing parameters are sharply constrained.

To generalize the above framework we can adopt an Hermitian Symmetric Space
(HSS) as moduli space M [3]. HSS have several attractive features. They have
been completely classified. They are Kähler and therefore support supersymmetric
realizations. Non-compact HSS naturally arise as moduli space in supergravity and
string compactifications. They are nicely related to the theory of automorphic forms,
a generalization of modular forms, that are the building blocks of Yukawa couplings.
Every HSS is a coset space of the typeM = G/K for some connected Lie group G
and a compact subgroup K of G.4 The generic element τ of M can be obtained by
performing a generic G transformation on an element τ0 left invariant by K :

τ = g τ0 g ∈ G & h τ0 = τ0 for any h ∈ K . (3)

We choose as flavour symmetry group a discrete subgroup Γ of G, whose action on
τ is given by

τ
γ−→ γτ ≡ (γg)τ0 γ ∈ Γ . (4)

To build a (supersymmetric) model incorporating a local symmetry under Γ and
possessing physically inequivalent vacua described byM/Γ , we need the transfor-
mation laws of the matter fields Ψ (x) under Γ . To this purpose we introduce an
automorphic factor j (g, τ ) (g ∈ G) with the property:

3 The group SL(2,ZN ), N being an integer, can be view as an unfaithful finite copy of SL(2,Z).
While the latter is infinite and does not possess finite unitary representations, the former is finite
and its representations are unitary and finite dimensional.
4 The Lie algebra G of G decomposes as G = V ⊕ A, V being the Lie algebra of K . The algebra
G is invariant under V + A → V − A and satisfies [V,V] ⊂ V , [V,A] ⊂ A and [A,A] ⊂ V . An
hermitian symmetric space M can be of compact type, of noncompact type or of Euclidean type. In
general none of these cases applies and M decomposes as a product M = Mc × Mnc × Me, where
the three factors are hermitian symmetric spaces of compact, noncompact and Euclidean type,
respectively. A hermitian symmetric space is irreducible if it is not the product of two hermitian
symmetric spaces of lower dimension. Irreducible hermitian symmetric spaces of compact type can
be obtained from the noncompact ones, by means of a transformation on the generators of the Lie
algebra G: (V, A) → (V, i A).
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j (g1g2, τ ) = j (g1, g2τ ) j (g2, τ ) . (5)

In general Γ is an infinite group and does not admit finite unitary representations.
These can be recovered by building an unfaithful finite copy of Γ . Given a normal
subgroupGn ofΓ with finite index, we define the finite groupΓn = Γ/Gn . A general
transformation law for matter fields under Γ reads:{

τ
γ−→ γτ

Ψ (I )(x)
γ−→ j (γ, τ )kI ρ(I )(γ)Ψ (I )(x) ,

(6)

wherewe have separated thematter fields {Ψ (I )(x)} in subsets with a commonweight
kI and ρ(I )(γ) is a unitary representation of Γn . The property (5) guarantees that the
transformation is a (non-linear) realization of Γ .

We consider the case of rigidN = 1 supersymmetry and collect all chiral super-
fields in a multipletΦ = (τ , Ψ (I )). Focussing on the Yukawa interactions, the action
S is defined in terms of a Kähler potential K (Φ, Φ̄) and a superpotential w(Φ):

S =
∫

d4xd2θd2θ̄ K (Φ, Φ̄) +
[ ∫

d4xd2θ w(Φ) + h.c.
]
, (7)

where the Kähler potential K (Φ, Φ̄), is a real gauge-invariant function of the chiral
superfields Φ and their conjugates and the superpotential w(Φ) is a holomorphic
gauge-invariant function of the chiral superfields Φ. The invariance of the action S
under Eq. (6) requires the invariance of the superpotential w(Φ) and the invariance
of the Kähler potential up to a Kähler transformation5

{
w(Φ) → w(Φ)

K (Φ, Φ̄) → K (Φ, Φ̄) + f (Φ) + f̄ (Φ̄)
. (8)

A candidate minimal Kähler potential is given by:

Kmin(Φ, Φ̄) = −c log Z(τ , τ̄ ) +
∑
I

Z(τ , τ̄ )kI |Ψ (I )|2 . (9)

Here

Z(τ , τ̄ ) ≡ [ j†(g, τ0) j (g, τ0)]−1 , (10)

where the dependence on τ is through the element g via the correspondence in Eq. (3)
and c is a real constant whose sign is chosen to guarantee local positivity of themetric
for the moduli τ . By construction, the above potential is invariant under Γ up to a

5 In N = 1 local supersymmetry these requirements are relaxed and replaced by the invariance of
the real gauge-invariant function G = K + log |w|2. The superpotential is not necessarily invariant
and its variation under Γ can be compensated by the transformation of K [3].
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Kähler transformation for a general choice of G, K , Γ , Gn and j (g, τ ). This is not
the most general Kähler potential invariant under Γ . Invariance under Γ allows to
add to Kmin(Φ, Φ̄) other terms, that cannot be excluded or constrained in a pure
bottom-up approach. In general these terms can modify the flavour properties of the
theory such as physical fermion masses and mixing angles. Additional assumptions
or inputs from a top-down approach are needed in order to reduce the arbitrariness
of the predictions.

The conditions for the invariance of the superpotential under Γ can be deduced
by expanding w(Φ) in powers of the supermultiplets Ψ (I ):

w(Φ) =
∑
p

YI1...Ip (τ ) Ψ (I1) · · · Ψ (Ip) . (11)

The p-th order term is invariant provided the functions YI1...Ip (τ ) obey:

YI1...Ip (γτ ) = j (γ, τ )kY (p)ρ(Y )(γ) YI1...Ip (τ ) , (12)

with kY (p) and ρ(Y ) such that:

(i) The weight kY (p) compensates the total weight of the product Ψ (I1) · · · Ψ (Ip):

kY (p) + kI1 + · · · + kIp = 0 . (13)

(i i) The product ρ(Y ) × ρ(I1) × ... × ρ(Ip) contains an invariant singlet.

The field-dependent Yukawa couplings YI1...In (τ ) are closely related to automor-
phic forms. Indeed when we restrict to transformations γ of the groupGn in Eq. (12),
we obtain:

YI1...In (γτ ) = j (γ, τ )kY (n) YI1...In (τ ) , γ ∈ Gn , (14)

Thus the function

A(g) ≡ j (g, τ0)
−kY (n)YI1...In (gτ0) (15)

is an automorphic form for G, K and Gn , that is a smooth complex function A(g)

that is invariant under the action of the discrete group Gn:

A(γg) = A(g), γ ∈ Gn , (16)

and that under K transforms as

A(gh) = j (h, τ0)
−1 A(g) , h ∈ K . (17)
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Moreover A(g) is required to be an eigenfunction of the algebra D of invariant
differential operators on G, that is an eigenfunction of all the Casimir operators of
G. The definition is completed by suitable growth conditions [4].

As an example of the general framework outlined above, we analyze the caseG =
Sp(2m,R), K = U (m) and Γ = Sp(2m,Z). The related automorphic forms are
provided by Siegel modular forms. The elements of the symplectic group Sp(2m,R)

are 2m × 2m real matrices of the type:

g =
(
A B
C D

)
gT J g = J J ≡

(
0 I1m

−I1m 0

)
. (18)

The symplectic group Sp(2m,R) has a maximal compact subgroup, K = U (m). An
element g of Sp(2m,R) can be uniquely decomposed as:

g =
(√

Y X
√
Y−1

0
√
Y−1

)
h , (19)

where X and Y are real symmetric m × m matrices, Y is positive definite (Y > 0)
and h is an element of K . We see that the moduli space M = G/K , of complex
dimensionm(m + 1)/2, can be parametrized by a symmetric complexm × m matrix
τ with positive definite imaginary part, τ = X + iY . This space is called Siegel upper
half-plane,Hm , a natural generalization of the complex upper half-plane. The integer
m is the genus. The action of Sp(2m,R) on τ is given by:

τ → gτ = (Aτ + B)(Cτ + D)−1 . (20)

As automorphy factor, satisfying the cocycle condition of Eq. (5), we can choose:

j (g, τ ) = det(Cτ + D) . (21)

A natural candidate for the discrete gauge group is the Siegel modular group Γm =
Sp(2m,Z). Other discrete subgroups of G = Sp(2m,R) relevant to our purposes
are the principal congruence subgroups Γm(n) of level n, defined as:

Γm(n) =
{
γ ∈ Γm

∣∣∣ γ ≡ I12m (mod n)
}

, (22)

where n is a generic positive integer, and Γm(1) = Γm . The group Γm(n) is a normal
subgroup of Γm , and the quotient group Γm,n = Γm/Γm(n), which is known as finite
Siegel modular group, has finite order [5]. By keeping both the genusm and the level
n fixed throughout our construction, the supermultiplets Ψ (I ) of each sector I are
assumed to transform in a representation ρ(I )(γ) of the finite Siegel modular group
Γm,n , with a weight kI . Under a discrete gauge transformation γ ∈ Γm we have:
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{
τ

γ−→ γτ = (Aτ + B)(Cτ + D)−1 ,

Ψ (I ) γ−→ [det(Cτ + D)]kI ρ(I )(γ) Ψ (I ) ,
γ =

(
A B
C D

)
∈ Γm . (23)

Due to the cocycle condition in Eq. (5) and the properties of ρ(I )(γ), the above
definition satisfies the group law. A minimal Kähler potential is given by:

K = −c Λ2 log det(−iτ + iτ †) +
∑
I

[det(−iτ + iτ †)]kI |Ψ (I )|2 c > 0. (24)

For the p-th order term of the expansion (11) to be modular invariant, the func-
tions YI1...Ip (τ ) should transform as Siegel modular forms with weight kY (p) in the
representation ρ(Y )(γ) of Γm,n:

YI1...Ip (γτ ) = [det(Cτ + D)]kY (p)ρ(Y )(γ) YI1...Ip (τ ) , (25)

with kY (p) and ρ(Y )(γ) satisfying the conditions i) and i i) seen above.
In a generic point τ of the moduli space Hm the discrete symmetry Γm is com-

pletely broken (i.e. γτ = γ has no solution for γ ∈ Γm), but there can be regions
where a part of Γm is preserved. The invariant locus ΩH is a region of Hm whose
points τ are individually left invariant by some subgroup H of Γm . The group that,
as a whole, leaves the region ΩH invariant is the normalizer N (H) of H , whose
elements γN satisfy γ−1

N HγN = H . As a consequence, in our supersymmetric action
we can restrict themoduli τ to the regionΩH , which supersedes the full moduli space
Hm , and replace the group Γm with N (H). Consistent CP transformations can be
defined on moduli, matter multiplets and modular forms [6]. These tools allow the
construction of viable and predictive models of lepton masses and mixing angles.
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Wilson Lines and Their Laurent
Positivity

Tsukasa Ishibashi

Abstract Wilson loops are functions of particular interest on the moduli space of
G-local systems associated with closed curves. In this article, we study an analo-
gous functions associated with open arcs connecting boundary intervals of a marked
surface, which we call the Wilson lines. We see that they have nice multiplicative
properties for concatenation, and positive Laurent expressions in certain cluster Pois-
son charts on the moduli space. The contents are based on the joint work [6] with
Hironori Oya.

Keywords Moduli space of G-local systems · Wilson lines · Cluster algebra ·
Laurent positivity

1 Wilson Loops

Let us begin with the moduli space LocG,Σ of G-local systems (or equivalently, flat
G-bundles) on a closed surface Σ . Here G is any semisimple algebraic group. This
moduli space can be identified with the character stack:

LocG,Σ = [Hom(π1(Σ),G)/G],

where the right-hand side describes the monodromy homomorphisms of local sys-
tems. For any conjugacy class [γ] in π1(Σ) (i.e., free homotopy class of a loop on
Σ), associated is a function

ρ[γ] : LocG,Σ → [G/AdG]
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obtained by evaluating the loop γ by the monodromy homomorphism, which we
call theWilson loop along [γ]. It is a classical fact that the trace functions TrV (ρ[γ]),
when V runs over all finite-dimensional representations of G and [γ] runs over all
conjugacy classes, generate the function ring O(LocG,Σ).

2 Cluster Varieties Related to the Moduli Space LocG,Σ

When G is a semisimple algebraic group with trivial center (e.g., G = PGLn),
Fock–Goncharov–Shen [1, 5] introduced two kinds of extensions A

˜G,Σ , PG,Σ of
the moduli space LocG,Σ . Here ˜G denotes the universal cover of G. These moduli
spaces parametrize local systems on Σ equipped with additional decoration data,
and fit into the following diagram:

A
˜G,Σ

↓ ↘p

LocG,Σ ↪→ PG,Σ

Now let us assume that our surfaceΣ is amarked surface,which is a compact oriented
surface equippedwith a finite set ofmarked points. In this slightly variated setting, the
extra data of decorations upgrade the moduli spaces A

˜G,Σ and PG,Σ into a cluster
K2-variety and a cluster Poisson variety, respectively. Namely, they are equipped
with a distinguished collection of coordinate charts (birational isomorphisms with
algebraic tori), whose transitions have two kinds of particular forms called the
cluster K2-/Poisson transformations. These cluster structures automatically lead
to the following additional structures:

• The positive real points of these moduli spaces, which form contractible real-
analyticmanifolds. In particular, we get themanifold Loc+

G,Σ of positive real points
of LocG,Σ . When G = PGLn , Loc

+
PGLn ,Σ

reproduces the Hitchin component of
the PSLn(R)-character variety [13], which is also regarded as the phase space of
the Toda CFT of type An−1 (Liouville CFT for n = 2).

• Quantization of these moduli spaces [2, 5]. In particular, the cluster Poisson
algebra Ocl(PG,Σ) is naturally accompanied with a non-commutative deforma-
tion Oq(PG,Σ), and the latter is represented as positive operators on a certain
Hilbert spaceH+

G,Σ . The Hilbert spaceH+
G,Σ is expected to be identified with the

space of conformal blocks in the Toda CFT (Modular Functor Conjecture: see [2,
5, 11, 12]).

• Fock–Goncharov duality [3, 4]. This is a duality between A
˜G,Σ and PG,Σ , which

expects a “canonical basis” of the function ring of each one, parametrized by the
integral tropical points of the other. The basis is required to have positive structure
constants and Laurent expressions with positive coefficients in each cluster charts,
among other axioms.
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3 Wilson Lines

LetG be a semisimple algebraic group with trivial center. LetΣ be amarked surface,
which is a compact oriented surface with boundary equipped with a finite set M of
marked points (see Figs. 1 and 2). An interior marked point is called a puncture.
Let Σ∗ := Σ \ {punctures} be the punctured surface. A connected component of
the punctured boundary ∂×Σ := ∂Σ \ M is called a boundary interval. The moduli
space PG,Σ introduced by Goncharov–Shen [5] parametrizes G-local systems L on
Σ∗ equipped with some additional data assigned to the marked points and boundary
intervals. In particular, it contains a local trivialization datum pE of L assigned to
each boundary interval E called the pinning. The data of pinnings allow one to glue
the G-local systems along boundary intervals in an unambiguous way. Thus we have
the gluing morphism [5]

qE1,E2 : PG,Σ1 × PG,Σ2 → PG,Σ ,

E0 E1

[c1]

E2

E3

[c2] Glue E1 and E2

E1

[c]

E3

Fig. 1 Gluingmarked surfaces: the case where E1 and E2 belong to distinct connected components

E1

E2

[c]
Glue E1 and E2 |γ|

Fig. 2 Gluing marked surfaces: the case where E1 and E2 belong to a common connected com-
ponent
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whereΣ is obtained by gluing two marked surfacesΣ1 andΣ2 along their boundary
intervals E1 and E2.

The data of pinnings also allow us to introduce the Wilson lines. Let Ein, Eout be
two boundary intervals (which may be identical), and [c] : Ein → Eout an arc class
onΣ , bywhichwemean a homotopy class of continuous paths c running from a point
on Ein to a point on Eout. Then theWilson line along the arc class [c] is the morphism
g[c] : PG,Σ → G defined as the “comparison element” of two pinnings assigned to
Ein and Eout via the parallel-transport along c. Precisely, given a point m ∈ PG,Σ

that contains a G-local system L with pinnings (pE )E , the element g[c](m) ∈ G is
defined as follows.

• The pinning pEin assigned to Ein determines a local trivialization of L near Ein.
Extend this local trivialization by the parallel-transport along c until the terminal
point.

• Under this extended trivialization, we have a relation pEout = g.p∗
Ein

with a unique
element g ∈ G. Here for a pinning p, the symbol p∗ refers to the opposite pinning
corresponding to the reversal of orientation of the boundary intervals (see [5] for
a detail).

The last element is the Wilson line: g[c](m) := g.

4 Multiplicativity of Wilson Lines

The following multiplicative properties of Wilson lines immediately follow from the
definition.

1. Internal multiplicativity. Let [c1] : E1 → E2 and [c2] : E2 → E3 be arc classes
on a marked surface Σ , and [c] = [c1] ∗ [c2] : E1 → E3 the arc class obtained
by their concatenation. Then we have

g[c] = g[c1]w0g[c2],

where w0 ∈ NG(H) is a lift of the longest element in the Weyl group W (G) =
NG(H)/H . For instance, w0 =

(

0 −1
1 0

)

for G = PGL2.

2. Gluing multiplicativity. Let Σ1,Σ2 be marked surfaces. Let [c1] : E0 → E1 and
[c2] : E2 → E3 be arc classes of Σ1 and Σ2, respectively. Gluing Σ1 and Σ2

along the boundary intervals E1 and E2, we get a new marked surface Σ , on
which the concatenation [c] := [c1] ∗ [c2] : E0 → E3 defines an arc class. In this
setting, we have

q∗
E1,E2

g[c] = g[c1] · g[c2],

where qE1,E2 : PG,Σ1 × PG,Σ2 → PG,Σ is the gluing morphism.
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Similarly, wemay glue the initial and terminal intervals of an arc class [c] : E1 →
E2 (see Fig. 2). In this case, the arc class [c] naturally closes up to produce a free
loop [γ] on the new marked surface. Then the Wilson line g[c] represents the
conjugacy class q∗

E1,E2
ρ[γ] (i.e., Wilson loop).

The internal multiplicativity can be restated that the twisted Wilson line gtw[c] :=
g[c]w0 satisfy a simpler relation gtw[c] = gtw[c1]g

tw
[c2]. However, it turns out that theWilson

lines have a nice positivity property while the twisted ones lose this property. The
gluing multiplicativity allows us to compute the Wilson loops from Wilson lines.

5 Positivity of Wilson Lines

Since the Wilson lines g[c] : PG,Σ → G are morphisms of stacks, they induces ring
homomorphisms

g∗
[c] : O(G) → O(PG,Σ)

between the function rings. The ring O(G) is generated by matrix coefficients
cVf,v(g) := 〈 f, g.v〉V in finite dimensional representations V , where v ∈ V and
f ∈ V ∗. The images cVf,v(g[c]) := g∗

[c](c
V
f,v) ∈ O(PG,Σ) are called the matrix coeffi-

cients of the Wilson line g[c].

Proposition 1 ([6, Corollary 3.32]) When Σ has no punctures, the function ring
O(PG,Σ) is generated by the matrix coefficients of the Wilson lines.

Moreover, the relations among the generators can be computed from the multiplica-
tive relations among Wilson lines. When Σ has punctures, a similar result holds for
a subalgebra of O(PG,Σ) of finite index.

As briefly mentioned in Sect. 2, the moduli space PG,Σ admits a natural clus-
ter Poisson structure [1, 5, 9]. Moreover, Shen [10] proved that the function ring
O(PG,Σ) is isomorphic to the cluster Poisson algebra:

O(PG,Σ) ∼= Ocl(PG,Σ) =
⋂

cluster chart

Z[X±1
1 , . . . , X±1

N ].

It ensures that any global functions on PG,Σ are expressed as Laurent polynomials
in each cluster chart.

Our main result concerns the positivity of coefficients of these Laurent polyno-
mials. We remark that in the construction of cluster Poisson structure, we begin
with an explicit chart associated with an ideal triangulation of Σ , and then generate
other charts by cluster Poisson transformations. Hence we typically have infinitely
many “unknown charts” whose geometric description is not yet obtained. Let us call
the charts associated with triangulations the Goncharov–Shen charts (GS charts for
short).
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Theorem 1 ([6, Theorem 6.2]) For any finite-dimensional representation V of G,
there exists a basis B ⊂ V (with the dual basis B∗ ⊂ V ∗) such that for any arc class
[c] : Ein → Eout on Σ , the matrix coefficients

cVf,v(g[c]) ∈ O(PG,Σ)

for v ∈ B and f ∈ B
∗ are expressed as Laurent polynomials with positive coefficients

in any GS chart.

The existence of such a nice basis B ⊂ V comes from the deep theory on categorifi-
cation of quiver Hecke algebras (see, for instance, [7, 8]). We expect that the Laurent
expressions of the matrix coefficients in Theorem 1 have positive coefficients in any
cluster charts.
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Abstract Well established approaches to gauging U(1) transformations or space-
time translations lead to theories of interacting bosons of spin 1 or spin 2.We describe
a novel approach to gauging their higher derivative generalizations (i.e. higher-spin-
like symmetries), leading to a Yang-Mills like theory defined over a symplectic
manifold dubbed “master space”. The theory incorporates the starting symmetries
by using the Moyal product, has a weakly non-local action functional and it is per-
turbatively stable. Coupling to matter in various representations is displayed. In the
spin-2 sector we find a geometric description reminiscent of teleparallelism, with the
induced linear connection related to Weitzenböck’s.
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1 Introduction

Theoretical descriptions of free massless fields of any integer spin1 are well known
in the literature, while their complete interacting counterparts in flat spacetime are
known only for the “low-spins” s = 1, 2. One naturally wonders whether a complete
interacting higher spin theory could provide us with more tools for describing nature
and hopefully teach us more about field theory.

Apart from pure curiosity, a more concrete motivation comes from attempts to
explain dark matter and approaches to a quantum theory of gravity [2–5].

One of the most direct ways of establishing the research program to study inter-
acting higher spin theory was formulated by Fronsdal [6]. Even though the problem
seems to be well- posed, solving it in a direct way is a very hard task and one must
also be careful to take into account the “no-go” theorems which severely constrain2

some properties of the sought-for theory [7].
Some progress can be made, as is evidenced by current contemporary research.

For instance, the famous Vasiliev’s theory [8] describes interacting higher spin fields
on AdS spacetime. In flat spacetime, a closed solution to the deformation program
was found in the “Chiral Higher Spin Gravity” [9]. Since the obtained Hamiltonian
is complex it is not completely clear if unitarity is present.

We propose to use symmetries of matter as a proxy, building on the research in
[10–14]. The aim of our construction is to explore the gauging procedure for a whole
tower of higher-derivative symmetries dubbed higher spin-like symmetries built as
an extension of the lower spin cases and approach the construction of a gauge field
model. To make this analysis and construction consistent, it proves fruitful to use a
symplectic manifold as a domain and realize the Lie algebra of symmetries with a
Moyal-commutator of functions on this manifold.

2 Moyal-Higher-Spin Theory

Moyal-Higher-Spin (MHS) symmetries were first realized in [14] and the gauge
field models were analyzed in a different context in [15, 16]. A novel perspective
on the MHS gauge field, with its stability, symmetries and geometric interpretations
was provided in [17]. Coupling to matter, spacetime content and simple scattering
amplitudes were explored in [18].

1 Contemporary terminology is degenerate between spin and helicity. These numbers find their
origin in Wigner’s classification [1].
2 Strict locality, finite number of particle species, existence of higher spin states in the asymptotic
regions and a flat background are not altogether compatible with higher-spin particles interacting
non-trivially.
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2.1 Gauging Free Field Symmetries

The matter model, a complex scalar field S[φ] = 1
2

∫
dd x

(
∂μφ ∂μφ† − m2φφ†

)
, is

symmetric under the following field transformation

δεφ(x) =
∞∑

n=0

(−i)n+1εμ1...μn ∂μ1 · · · ∂μnφ(x) . (1)

By itself, the n = 0 term leads to U (1) transformations whose gauging produces a
massless spin 1 field, while the n = 1 term leads to spacetime translations whose
gauging is related to a massless spin 2 field. The generalization to higher derivative
terms led to the name higher spin-like symmetries.

To promote the transformation parameters of the whole tower from rigid tensors
to functions on spacetime, following [13] we rewrite both the matter action and (1)
using an auxiliary space with coordinates uμ, which makes the symplectic manifold
M × U the domain. We use the non-commutative Moyal product [19] denoted by
�.3 The matter action becomes

S[φ] =
∫

ddxddu (ηabuaub − m2) � Wφ(x, u) (2)

where Wφ = φ(x) � δ(u) � φ†(x) is formally the Wigner’s function. The symmetry
parameters can be represented by ε(u) = ∑∞

n=0 εμ1...μn uμ1 ...uμn and it can be shown
[17] that the transformation (1) is now realized as

δεWφ(x, u) = i[Wφ(x, u) �, ε(u)] . (3)

This setup allows us to view ε(u) as a function and promote ε(u) → ε(x, u). If we
demand that the localized parameter still creates a symmetry transformation it proves
necessary to introduce a compensating field:

ua → ua + ha(x, u), δha(x, u) = ∂aε(x, u) + i[ha(x, u) �, ε(x, u)] . (4)

The infinite-dimensional Lie algebra of symmetries is thus realized through the
Moyal commutator

[δε1 , δε2 ] = δi[ε1�,ε2] . (5)

3 Note that the non-commutativity is realized only between spacetime and auxiliary space coordi-
nates. Spacetime in itself remains commutative.
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2.2 Mimicking the Yang-Mills Construction

We now define the covariant derivative as D�
a ≡ ∂x

a + i[ha(x, u) �, ], and build the
curvature tensor

Fab(x, u) = ∂x
a hb(x, u) − ∂x

b ha(x, u) + i [ha(x, u) �, hb(x, u)] (6)

which transforms in a covariantway δεFab(x, u) = i [Fab(x, u) �, ε(x, u)]. The action
is defined as

Sym = − 1

4g2ym

∫
dd x ddu Fab(x, u) � Fab(x, u) (7)

and an important criterion for the physical viability of the theory is positivity of
energy in the linear regime

U ≈ 1

2g2ym

∫
dd−1x

∫
ddu

( ∑

j

F0 j (x, u)2 +
∑

j<k

Fjk(x, u)2
)

. (8)

2.3 Spacetime Content

The conventional approach to understanding the spacetime content of our model
would be to expand ha(x, u) in a Taylor series in the auxiliary space4

ha(x, u) =
∞∑

n=0

h(n)μ1···μn
a (x) uμ1 . . . uμn . (9)

Even though this expansion provides coefficient functions with familiar behavior
under Lorentz transformations, it can lead to some manifestly divergent expressions
when used in integrals. The novelty in our approach [17, 18] is to impose suitable
fall-off conditions for ha(x, u) in all directions of u, ensuring integrability. A good
choice are multidimensional Hermite functions, and the expansion becomes

ha(x, u) =
∑

n0,··· ,nd−1∈N0

ha
n0···nd−1(x) fn0(u0) · · · fnd−1(ud−1) (10)

with fni (ui ) = (2ni ni !√π)−1/2Hni (ui )e
−(u2i )/2 and Hni (ui ) being a Hermite polyno-

mial of order ni . The chosen basis furnishes a unitary infinite-dimensional represen-
tation of the Lorentz group [18], which in turn guarantees that we can build a unitary

4 We emphasize that not all indices are symmetrized by using a Latin index outside the expansion.
This has a further interpretation in the geometric picture [17].
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Hilbert space for the linearized theory. MHS Yang-Mills theory does not contain
perturbative ghosts.

It is possible to show that the helicity content in a single coefficient function
han0···nd (x) is equal to ±r,±r − 2, . . . , 0 for r even or ending with ±1 for r odd,
with r = ∑d

i=1 ni .

2.4 Coupling to Matter

It proves useful to consider ea(x, u) = ua + ha(x, u), dubbed MHS vielbein as, a
more fundamental object in the MHS theory. The gauge field can be coupled to
matter in the minimal way used in the gauging procedure. For instance, coupling to
the Dirac field is given with Wψ = ψ(x) � δ(d)(u) � ψ̄(x)

Sm [φ, e] =
∫

dd x ddu Wψ(x, u) � K (e(x, u)), K (x, u) = −γ0
(
γaea(x, u) + M

)
.

(11)
We can calculate a simple 4-point tree level amplitude [18], and obtain a non trivial
scattering only for equal sets of momenta in the incoming and outgoing states, which
might point to compatibility with the no-go theorems

M = 1

2
M(QED)

t δd
(
�h(p1 − p′

2)
) − 1

2
M(QED)

u δd
(
�h(p1 − p′

1)
)
. (12)

Besides the minimal description, we can model matter actions in the master space by
defining them as master fields. In case a matter field transforms in the fundamental
representation as δεφ(x, u) = −iε(x, u) � ψ(x, u), we define the covariant derivative
as Daφ(x, u) = iea(x, u) � ψ(x, u) and the action for a master space Dirac field as

SD[ψ, e] =
∫

ddxdduψ̄(x, u) �
(
iγaD�

a − M
)
ψ(x, u) . (13)

Fundamental matter tree level scattering amplitudes show a softer UV behavior when
compared to QED [18].

2.5 Geometric Interpretation

The Taylor expansion (9), though of limited validity, can nevertheless be used to
examine some properties of our theory. The linear terms in the expansion of the
MHS vielbein ea(x, u) ≈ e(0)

a (x) + ea (1)μ(x)uμ + . . . and the quadratic terms in
the expansion of the MHS metric g(x, u) ≡ ea(x, u) � ea(x, u) ≈ g(0) + g(1)μuμ +
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g(2)μν(x)uμuν + . . . transform under MHS transformations as a vielbein or a metric
would under diffeomorphisms.

To explore a possible induced geometric picture [17],we define a linear connection
by demanding compatibility between the linear part in the expansion of the MHS
covariant derivative and the induced geometric covariant derivative

(D�
aV )

μ
(1)(x) = (

ea
(1)ν∂νV

μ
(1) − V ν

(1)∂νea
(1)μ

) ≡ ea
(1)ν∇νV

μ . (14)

The resulting connection
Γ μ

ρν = ea
(1)μ∂ρe

(1)a
ν (15)

is very interesting as it has a non-vanishing torsion, Riemann curvature and non-
metricity tensors. It can be related to the Weitzenböck connection by simply adding
the respective torsion tensor Γ μ

νρ = Γ
μ
Wρν = T μ

νρ + Γ
μ
Wνρ.

3 Summary

We have displayed the construction and the most important properties of the MHS
Yang Mills theory, along with possible couplings to matter. The spacetime content
was explained in terms of an expansion in a suitable basis of Hermite functions,
which by construction compels our theory to respect unitarity. Further knowledge of
the behavior of our basis under Lorentz transformations will enable classifying our
field in terms of Wigner’s classification.
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Integration of Double Field Theory
Algebroids and Pre-rackoid in Doubled
Geometry

Noriaki Ikeda and Shin Sasaki

Abstract We study the integration problem of the D-bracket and a Vaisman (metric,
pre-DFT) algebroid which are geometric structures of double field theory (DFT).We
introduce a notion of a pre-rackoid as a global group-like object for the infinitesimal
algebroid structure. The pre-rackoid is defined by cotangent paths along doubled
foliations in a para-Hermitian manifold. We show that when the strong constraint
of DFT is imposed, the self-distributivity of the rack action is recovered and the
pre-rackoid reduces to a rackoid that is an integration of the Courant algebroid.

Keywords Double field theory · Algebroid · Rack

1 Introduction

Double field theory (DFT) is a supergravity where T-duality is realized manifestly
[3, 8]. DFT is defined in a 2D-dimensional doubled spaceMwhich is characterized
by the space-time coordinate xμ together with its T-dual counterpart x̃μ. The NSNS
sector of type II supergravities, namely, the space-time metric gμν , the B-field Bμν

and the dilation φ are packaged into the generalized metricHMN (x, x̃) and the gen-
eralized dilation d(x, x̃). T-duality is implemented as a global O(D, D) symmetry
in the doubled space M. The geometry of M that incorporates the DFT structure
is given by a para-Hermitian manifold [10, 11]. Due to the para-complex structure
K : TM → TM satisfying K 2 = 1, the tangent bundle TM is decomposed into
the K = ±1 eigenbundles TM+, TM−. There are doubled foliations F , F̃ of M
associated with the integrability of TM+, TM−. The decomposition of the local
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coordinates xM = (xμ, x̃μ) follows from this double foliation structure of the para-
Hermitian manifold.

In order to define the D-dimensional physical space-time in the doubled space
M, it is necessary to impose the constraints on any quantities in DFT. This is known
as the strong constraint. Once the strong constraint is imposed, DFT has the gauge
symmetry that encompasses the diffeomorphism invariance and the B-field gauge
symmetry. The D-dimensional physical space-time is realized as a leaf in the doubled
foliations on which the strong constraint is satisfied trivially [2].

The infinitesimal gauge transformation in DFT is governed by the C-bracket
that defines the Vaisman (metric, pre-DFT) algebroids on TM [1, 9, 11]. This
is a generalization of the Courant algebroid based on the Courant bracket. In this
contribution, we introduce an integration problem of the Vaisman algebroid which
uncovers the global group-like structures of the gauge symmetry of DFT. This is a
kind of coquecigrue problem [7]. The details are found in our published paper [4].

2 Leibniz, Courant and Vaisman Algebroids

We first introduce the notion of the Courant algebroid.

Definition 1 (Courant algebroid) Let E
π−→ M be a vector bundle over a manifold

M . A Courant algebroid is a quadruple (E, [·, ·], ρ, (·, ·)) where [·, ·] is a bilinear
bracket on Γ (E), ρ : E → T M is an anchor map, and (·, ·) is a non-degenerate
bilinear form on Γ (E). They satisfy the following axioms for any ei ∈ Γ (E) and
f ∈ C∞(M):

1. [a, [b, c]] = [[a, b], c] + [b, [a, c]].
2. ρ([e1, e2]) = [ρ(e1), ρ(e2)]T M .
3. [e1, f e2] = f [e1, e2] + (ρ(e1) · f )e2.
4. [e, e] = 1

2D(e, e).
5. ρ(e1) · (e2, e3) = ([e1, e2], e3) + (e2, [e1, e3]).
Here D is a generalized exterior derivative on Γ (E) and [·, ·]T M is the Lie bracket
of vector fields on T M .

We note that [·, ·] is not skew-symmetric in general. We also note that the axioms
1, 2, 3 define the Leibniz algebroid. Therefore any Courant algebroids are Leibniz
algebroids. When M is a point M = {pt} and ρ = 0, the Leibniz algebroid becomes
a Leibniz algebra. We next define the Vaisman algebroid.

Definition 2 (Vaisman algebroid) A Vaisman algebroid is a quadruple (E, [[·, ·]]D,

ρ, (·, ·)) which satisfies the axioms of 2 and 5 for the Courant algebroid.

The bracket [[·, ·]]D is called a D-bracket. The Vaisman algebroid is a generalization
of the Courant algebroid. There is an alternative but equivalent definition based on
a skew-symmetric bracket. The skew symmetrization of a D-bracket is called a C-
bracket. The skew-symmetric bracket of the Vaisman algebroid on a para-Hermitian
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manifold is nothing but theC-bracket that governs the gauge symmetry ofDFT.When
the strong constraint is imposed on the gauge parameters, the D-bracket reduces to
the Dorfman bracket of generalized geometry. In this case, the Vaisman algebroid
reduces to the Courant algebroid.

3 Racks and Rackoids

In this section, we focus on the integration problem of algebroids in DFT. As a first
step, we introduce a rack.

Definition 3 (Rack) The set S together with a binary operation (x, y) �→ x � y for
any x, y ∈ S is called a rack if the map y �→ x � y is bijective and the operation �
satisfies the following left self-distributivity:

x � (y � z) = (x � y) � (x � z), (1)

for any x, y, z ∈ S. x � y and the map y �→ x � y are called the rack product and the
rack action of x on y, respectively.

One finds that the differentiation of the self-distributivity (1) gives the Leibniz iden-
tity [5]. Therefore a rack embodies an integration of Leibniz algebra. In order to
incorporate algebroid structure, we generalize the notion of the rack. Before that, we
define the bisection.

Definition 4 (Bisection) Let G ⇒ M be a semi-precategory. A bisection of G is
defined by the following equivalent data:

1. A subsetΣ ⊂ G such that the restricted source and the target maps s, t : Σ → M
are bijection.

2. AmapΣ = t ◦ Σ : M → M that is bijection. HereΣ : M → G is a right inverse
of s, namely, it is defined by s ◦ Σ = idM .

Now we define the notion of rackoids.

Definition 5 (Rackoid) For a semi-precategory G ⇒ M , a bisection Σ ⊂ G and
g ∈ G y

x , one defines an action of Σ on g

� : (Σ, g) �→ Σ � g ∈ GΣ(y)
Σ(x) . (2)

For bisections Σ, T ⊂ G, we define Σ � T as the image of an assignment Σ � (·) on
T . When the action � satisfies the following properties, this becomes a rack action:

1. For any bisections Σ , an assignment Σ � (·) : G → G is bijective.
2. For any bisections Σ, T and any g ∈ G, the action � satisfies the following self-

distributivity,
Σ � (T � g) = (Σ � T ) � (Σ � g). (3)
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Here G y
x is a set of all the morphisms g ∈ G that satisfy s(g) = x , t (g) = y for

all x, y ∈ M .

Then, (G ⇒ M, �) is called a non-unital rackoid. In addition, for any x ∈ M , g ∈ G,
when there exists ε(x) = 1x ∈ G such that

1M � g = g, Σ(x) � 1x = 1Σ(x), (4)

then (G ⇒ M, �) is called a unital (or pointed) rackoid. Here 1M stands for the
bisection ε(M), namely, the collection of 1x for all x ∈ M . When all the structures
defined above are smooth, (G ⇒ M, �) is called a Lie rackoid.

It was shown that a rackoid is an integration of a Courant algebroid [6]. We next
generalize the notion of rackoids and find an example of integration of the Vaisman
algebroid.

4 Pre-rackoids and Doubled Cotangent Paths

The D-bracket on the doubled space M is defined by

[[e1, e2]]D = [X1, X2]TM+ + Lξ1X2 − ιξ2d
∗X1

+[ξ1, ξ2]TM− + LX1ξ2 − ιX2dξ1. (5)

Here ei = Xi + ξi and Xi , ξi are vectors and dual vectors, d∗, d are exterior deriva-
tives on the vector and its dual vector spaces. [·, ·]TM+ , [·, ·]TM− are Lie brackets
on vector and dual vector spaces and LX ,Lξ are Lie derivatives associated with the
vectors and their duals. We now examine an structure on which the differentiation
reproduces (5). We note that the D-bracket (5) violates the Leibniz identity. This
means that the rackoid is not an integration of the Vaisman algebroid. We define the
notion of the pre-rackoids.

Definition 6 (Pre-rackoid) Let G ⇒ M be a semi-precategory. Bisections of G are
defined as in the definition 4. For any bisection Σ and g ∈ G y

x , we define an action
of Σ on g

�: (Σ, g) �→ Σ � g ∈ GΣ ·y
Σ ·x . (6)

Here Σ · x stands for a smooth action of Σ on x ∈ M . When the assignment Σ �
(·) : G → G is bijective, we call this the pre-rack action (product). We then call
(G ⇒ M,�) the pre-rackoid.

We now exhibit an explicit realization of the pre-rackoid product which is
an integration of the D-bracket (5). Let us consider a path (φ, η) ⊂ PT ∗M =
C∞([0, 1], T ∗M) in a leaf Fx,[x̃] given by x̃ = const. Here φ = π ◦ η on T ∗M π−→
M is a path in the base space and η is the associated path in the cotangent bun-
dle. One defines a cotangent path rackoid (PT ∗M ⇒ Fx,[x̃], �) whose rack action
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Fig. 1 Leaves for the
doubled foliations of M
(thin lines). The doubled path
is the concatenation of the
paths along the leaves Fx, [x̃]
and F̃[φt (x)], x̃ (bold lines)

(x, x̃)

(φt(x), x̃)

(φt(x), φ̃t(x̃))

F̃[φt(x)],x̃

F̃[x],x̃

Fx,[x̃]

φ

φ̃

is defined by the adjoint action on paths (ψ � ϕ)t∈[0,1] = ψ1 ◦ ϕt ◦ ψ−1
1 . One also

defines another cotangent path rackoid ( ˜PT ∗M ⇒ F̃[x],x̃ , �) based on the cotangent

path (φ̃, η̃) ⊂ ˜PT ∗M on the leaf F̃[x],x̃ at x = const. Now we introduce a new path

based on a pair of paths (φ, η) ⊂ PT ∗M, (φ̃, η̃) ⊂ ˜PT ∗M in the doubled foliations
onM and the cotangent bundle T ∗M. The new path on the base spaceM is defined
by the concatenation of the pathsφ : [0, 1] → Fx,[x̃] and φ̃ : [0, 1] → F̃[φt (x)],x̃ along
the leaves Fx,[x̃] and F̃φt (x),[x̃], respectively (see Fig. 1). The paths in the cotangent
space is defined similarly by the concatenation of η and η̃ on (TM+)∗ and (TM−)∗.
We call this the doubled cotangent path and denote it PT ∗M 
 ˜PT ∗M ≡ PT∗M.
We define the source and the target maps PT∗M → M as s and t̃ . Here s, t̃ are

the source and the target maps of PT ∗M ⇒ Fx,[x̃] and ˜PT ∗M ⇒ F̃[φt (x)],x̃ . Then,
PT∗M ⇒ M becomes a semi-precategory. If we employ the pair of the unit maps

(ε, ε̃) of PT ∗M and ˜PT ∗M as the unit map of PT∗M ⇒ M, it becomes a smooth
precategory. Bisections of PT∗M are defined similarly through the ones in the pre-

categories PT ∗M, ˜PT ∗M. For bisections Σ = (φ, η), Σ̃ = (φ̃, η̃) of PT ∗M and
˜PT ∗M, a bisection � of PT∗M is given by � = Σ 
 Σ̃ .
We then define a pre-rack product � in the precategory PT∗M ⇒ M. A product

of bisections between � = Σ̃ 
 Σ and T = T̃ 
 T of PT∗M ⇒ M is defined by

� � T =
(
φ1 ◦ ψt ◦ φ−1

1 
 φ̃1 ◦ ψ̃t ◦ φ̃−1
1 ,

((φ−1
1 )∗(ζt ) − (φ−1

1 )∗ιψ̇φ∗
1dβΣ) + ((φ̃−1

1 )∗(ζ̃t ) − (φ̃−1)∗1 ι̃ ˙̃ψφ̃∗
1d̃β̃Σ̃ )

)
.

(7)

Here βΣ = ∫ 1
0 ds φ∗

sηs , β̃Σ̃ = ∫ 1
0 ds φ̃s η̃s are 1-forms associated with the bisec-

tions Σ, Σ̃ . The product (7) does not satisfy the self-distributivity in general and
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(PT∗M ⇒ M,�) defines a pre-rackoid. One can show that by differentiating the
pre-rack product (7), the structure of the D-bracket (5) is recovered. The other struc-
tures of algebroids are also obtained from the pre-rackoid [4] and it provides an
integration of the Vaisman algebroid.

5 Summary

In this contribution, we studied a global aspect of the doubled geometry in DFT
through the coquecigrue problem, namely, an integration of the Vaisman algebroid.

We first introduce an integration of the Leibniz algebroid. An integrated structure
corresponding to the Leibniz algebroid is a rackoid, which is a groupoid-like gener-
alization of a rack. Since the Courant algebroid is a Leibniz algebroid, its integration
is a rackoid with additional structures. This is given by the cotangent path rackoid
proposed in [6].

It is obvious that the Vaisman algebroid fail to satisfy the Leibniz identity in the
Courant algebroid. Since the Leibniz identity is encoded into the self-distributivity of
the rack product, an integration of the Vaisman algebroid is given by a rackoid type
structure without the self-distributivity. We called this structure the pre-rackoid. We
showed that this structure is encoded in the doubled cotangent path on the doubled
foliations of the para-Hermitian manifoldM. Due to the intermediate shift between
different leaves of the doubled foliations, the self-distributivity of the pre-rack prod-
uct is explicitly broken. When the strong constraint is imposed, the pre-rack product
is restricted only on a leaf (physical space-time) and the self-distributivity is trivially
recovered. This indicates that the pre-rackoid becomes a rackoid and the Vaisman
algebroid becomes a Courant algebroid.

Acknowledgements The work of S. S. was supported by Grant-in-Aid for Scientific Research (C),
JSPS KAKENHI Grant Number JP20K03952.
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Doubled Aspects of Algebroids
and Gauge Symmetry in Double Field
Theory

Haruka Mori, Shin Sasaki, and Kenta Shiozawa

Abstract The metric algebroid proposed by Vaisman (the Vaisman algebroid) gov-
erns the gauge symmetry algebra generated by theC-bracket in Double Field Theory
(DFT). We show that the Vaisman algebroid is obtained by an analogue of the Drin-
fel’d double of Lie algebroids. We examine geometric implementations of this alge-
broid in the para-Hermitianmanifold which is a realization of the doubled space-time
in DFT.

Keywords Double Field Theory · T-duality · Algebroid · Para-Hermitian
manifold

1 Introduction

T-duality in string theory is important to understand the nature of space-time. It has
been studied in the framework of Hitchin’s generalized geometry [1]. A Courant
algebroid naturally appears as an algebraic structure in the geometry [2].

DoubleFieldTheory (DFT) [3] is one of the effective theories of superstring theory
where T-duality is realized manifestly. DFT has a T-duality covariantized gauge
symmetry. It originates from the diffeomorphismand theU (1) gauge symmetry of the
NSNS B-field. This gauge symmetry in DFT is described by aC-bracket. It does not
satisfy the Jacobi identity. Therefore, the algebraic structure of the gauge symmetry in
DFT is not Lie algebra but a metric (Vaisman) algebroid [4]. The Vaisman algebroid
is a generalization of a Courant algebroid. The Vaisman algebroid is also known as a
pre-DFT algebroid [5]. In this proceeding, we show that the Vaisman algebroid has
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a doubled structure. This algebroid is constructed by a pair of Lie algebroids. This
doubled structure is closely related with a Drinfel’d double of the Lie bialgebroid
[6].

The geometry of DFT is called “doubled geometry.” This is related to the para-
Hermitian geometry [8] and the Born geometry [9]. In the latter part of our paper [7],
we construct the Vaisman algebroid with the doubled structure in the para-Hermitian
geometry, and we discuss the mathematical origin of the strong constraint which is
the physical constraint of DFT. In this proceeding, we give a brief outline of the
results.

2 Lie Bialgebroid

A Lie algebroid is defined as a generalization of a Lie algebra. It is defined by a
vector bundle E on a manifold M , an anchor map ρ : E → T M , a section of E , and
a Lie algebroid bracket [·, ·]E : Γ (E) × Γ (E) → Γ (E). The Lie algebroid bracket
satisfies the Jacobi identity. In addition, the following two conditions are required:

[X, f Y ]E = (ρ(X) · f )Y + f [X,Y ]E , (1)

ρ([X,Y ]E ) = [ρ(X), ρ(Y )], (2)

where f ∈ C∞(M) and the [·, ·] is the Lie bracket of Γ (T M). Considering the dual
bundle E∗ for E , we can also define a dual Lie algebroid (E∗, ρ∗, [·, ·]E∗). The inner
product 〈·, ·〉 is naturally introduced between E and E∗.

If we consider the multi vector Γ (∧•E) and the multi form Γ (∧•E∗), we can
introduce exterior derivatives d and d∗ for Γ (∧•E) and Γ (∧•E∗) respectively. It
acts for ξ ∈ Γ (∧pE∗) as follows [10]:

dξ(X1, . . . , X p+1) =
p+1∑

i=1

(−)i+1ρ(Xi ) ·
(
ξ(X1, . . . , X̌i , . . . , X p+1)

)

+
∑

i< j

(−)i+ jξ([Xi , X j ]E , X1, . . . , X̌i , . . . , X̌ j , . . . , X p+1).

(3)

Here Xi ∈ Γ (E) and X̌i stands for that the term is omitted in the expression. Simi-
larly, we can also define the Lie derivative L and the interior product ι.

The Schouten-Nijenhuis bracket [·, ·]S is a generalization of the Lie algebroid
bracket for multi vectors (forms). The bracket [·, ·]S has the following properties:

(i) [X,Y ]S = −(−)pq [Y, X ]S.
(ii) [X, f ]S = ρ(X) · f for X ∈ Γ (E).
(iii) For X ∈ Γ (∧p+1E), the bracket [X, ·]S acts on Γ (∧q E) as a degree-p deriva-

tion.
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If the following derivation condition

d∗[X,Y ]S = [d∗X,Y ]S + [X, d∗Y ]S (4)

is satisfied between the algebroids E and E∗, this Lie algebroid pair becomes a Lie
bialgebroid [10].

3 Doubled Structure of Vaisman Algebroid

A Vaisman algebroid (V , ρ, (·, ·), [·, ·]V) is defined by a vector bundle V on a
manifold M , an anchor map ρ : V → T M , a nondegenerate bilinear form (·, ·) and
an antisymmetric bracket (Vaisman bracket) [·, ·]V : Γ (V ) × Γ (V ) → Γ (V ). The
quadruple (V , ρ, (·, ·), [·, ·]V) satisfies these two axioms

Axiom V1 [e1, f e2]V = f [e1, e2]V + (ρ(e1) · f )e2 − (e1, e2)D f ,

Axiom V2 ρ(e1) · (e2, e3) = ([e1, e2]V + D(e1, e2), e3) + (e2, [e1, e3]V + D(e1, e3)),

where e1, e2, e3 ∈ Γ (V ) and D is an exterior derivative for f ∈ C∞(M).
In our paper [7], we obtain the Vaisman algebroid by considering a double of two

Lie algebroids. In the following, we give a brief outline of the results. We consider
V = E ⊕ E∗ and examine the Axioms V1 and V2 using only the properties of a
Lie algebroid. In the following, we denote X ∈ Γ (E) and ξ ∈ Γ (E∗). The Vaisman
bracket is defined by

[e1, e2]V = [X1, X2]E + Lξ1X2 − Lξ2X1 − d∗(e1, e2)−
+ [ξ1, ξ2]E∗ + LX1ξ2 − LX2ξ1 + d(e1, e2)−, (5)

where

(e1, e2)± = 1

2

(
〈ξ1, X2〉 ± 〈ξ2, X1〉

)
. (6)

As a nondegenerate symmetric bilinear form (·, ·), we take (·, ·)+.
AxiomV1 is the Leibniz rule of the Vaisman bracket. The left-hand side of Axiom

V1 becomes

[e1, f e2]V = [X1, f X2]V + [X1, f ξ2]V + [ξ1, f X2]V + [ξ1, f ξ2]V. (7)

If we calculate the right-hand side of (7), we obtain
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[X1, f ξ2]V = f [X1, ξ2]V + (ρ(X1) · f )ξ2 − 1

2
Dg〈ξ2, X1〉,

[ξ1, f X2]V = f [ξ1, X2]V + (ρ∗(ξ1) · f )X2 − 1

2
D f 〈ξ1, X2〉,

[X1, f X2]V = f [X1, X2]V + (ρ(X1) · f )X2,

[ξ1, f ξ2]V = f [ξ1, ξ2]V + (ρ∗(ξ1) · f )ξ2. (8)

Adding up all the terms on the right-hand side of (8), we obtain

[e1, f e2]V = f [e1, e2]V + (ρ(e1) · f )e2 − (e1, e2)+D f. (9)

Therefore, Axiom V1 holds.
Axiom V2 is the compatibility condition with (·, ·) and D . From the property of

(·, ·), we can calculate the left-hand side of Axiom V2 as follows:

ρV(e) · (e1, e2)+ = ([e, e1]V, e2)+ + (e1, [e, e2]V)+

+ 1

2
ρV(e1) · (e, e2) + 1

2
ρV(e2) · (e, e1), (10)

and

1

2
ρV(e1) · (e, e2) = (D(e, e2)+, e1)+, (11)

1

2
ρV(e2) · (e, e1) = (D(e, e1)+, e2)+. (12)

Then, the left-hand side of Axiom V2 becomes

ρ(e1) · (e2, e3)+ = ([e1, e2]V + D(e1, e2), e3)+ + (e2, [e1, e3]V + D(e1, e3))+.

(13)

Therefore, Axiom V2 is satisfied.

4 The Vaisman Algebroid on a Para-Hermitian Geometry

Aflat para-Hermitian geometry is a geometric realization of doubled geometry. In this
section, we construct the Vaisman algebroid with the doubled structure on the para-
Hermitian manifold. We also explain that the derivation condition (4) corresponds
to the strong constraint in the context of DFT. Here is a brief outline of the results.
See [7] for details.

Let M be a 2D dimensional flat para-Hermitian manifold. In other words, M
has an inner product η,
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η(Ξ1, Ξ2) = ηMNΞ1
MΞ2

N , Ξ1, Ξ2 ∈ Γ (TM ), (14)

and a para-complex structure K 2 = 1. If we consider the projection operator with K

P = 1

2
(1 + K ), P̃ = 1

2
(1 − K ), (15)

then the tangent bundle ofM can be decomposed into P(TM ) = L and P̃(TM ) =
L∗. The vector fields on L and L∗ are defined as follows respectively:

X = Xμ∂μ ∈ Γ (L), ξ = ξμ∂̃μ ∈ Γ (L∗). (16)

Therefore, the Lie bracket on L , L∗ are given as

[X1, X2]L = (X1
ν∂νX2

μ − X2
ν∂νX1

μ)∂μ, (17)

[ξ1, ξ2]L∗ = (ξ1ν ∂̃
μξ1μ − ξ2ν ∂̃

μξ1μ)∂̃ν . (18)

Bydefining the anchormaps L and L∗ appropriately, L and L∗ becomeaLie algebroid
respectively. We define the k-vector A ∈ Γ (∧k L) and the k-form α ∈ Γ (∧k L∗) as

A = 1

k! A
μ1···μk∂μ1 ∧ · · · ∧ ∂μk , (19)

α = 1

k!αμ1···μk ∂̃
μ1 ∧ · · · ∧ ∂̃μk . (20)

The differential operators on L and L∗ are given as

d∗A = 1

k! ∂̃
μAν1···νk∂μ ∧ ∂ν1 ∧ · · · ∧ ∂νk , (21)

dα = 1

k!∂μαν1···νk ∂̃
μ ∧ ∂̃ν1 ∧ · · · ∧ ∂̃μk . (22)

The d and d∗ become a para-Dolbeault operator because they have the following
properties.

d2 = 0, dd∗ + d∗d = 0, d2∗ = 0. (23)

We now examine the derivation condition onM . In order to make the calculation
be apparent, we introduce the Grassmannian coordinates ζμ = ∂μ and replace the
basis of the k-vector on L:

A = 1

k! A
μ1···μk ζμ1 · · · ζμk . (24)

The Schouten-Nijenhuis bracket is given by
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[A, B]S =
(

∂

∂ζμ

)
∂μB − (−1)(p−1)(q−1)

(
∂

∂ζμ

)
∂μA, (25)

where the zeta derivative is defined as the right derivative. We calculate the three
terms constituting the derivation condition (4). The left-hand side of (4) becomes

d∗[A, B]S = (∂̃μAρ∂ρB
ν + Aρ∂ρ∂̃

μBν − ∂̃μBρ∂ρ A
ν − Bρ∂ρ∂̃

μAν)∂μ ∧ ∂ν. (26)

Similarly, we can calculate the right-hand side of (4):

[d∗A, B]S = (∂̃μAρ∂ρB
ν − ∂̃ρ Aμ∂ρB

ν − Bρ∂ρ∂̃
μAν)∂μ ∧ ∂ν, (27)

[A, d∗B]S = −(Aρ∂ρ∂̃
μBν − ∂̃ρ Aμ∂ρ A

ν − ∂̃μBρ∂ρ A
ν)∂μ ∧ ∂ν. (28)

Therefore, we obtain the following result:

d̃[A, B]S = [d̃A, B]S + [A, d̃B]S + (∂M Aμ∂M Bν)∂μ ∧ ∂ν. (29)

The third term on the right-hand side is the violation of the derivation condition. In
order to hold the derivation condition on the para-Hermitian manifold M , we need
to impose an additional condition:

∂M Aμ∂M Bν = 0. (30)

This is exactly the same form as the strong constraint inDFT. Therefore, the algebraic
origin of the strong constraint is the derivation condition.

5 Conclusion and Discussion

In this proceeding, we consider the Vaisman algebroid. It appears as a gauge symme-
try algebra in DFT. We showed that the Vaisman algebroid has a doubled structure.
From a physical viewpoint, the doubled structure of the gauge symmetry in DFT
consists of the Kaluza-Klein modes and the winding modes of strings. On the other
hand, mathematically, it can be interpreted as an analogue of the Drinfel’d double
for Lie algebroids. We also see the Vaisman algebroid based on a doubled structure
which appears naturally on a para-Hermitian manifoldM . Then, we check the vio-
lation of the derivation condition on M and we show that it is the algebraic origin
of the strong constraint in DFT.
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Moreover, there is a family of algebroids described by the C-bracket—pre- and
ante-Courant algebroids and so on. We discuss these algebroids focusing on the dou-
bled structure in [11]. The algebroid structures discussed in this proceeding provide
the local structure in a para-Hermitian manifold. The global nature of the symmetry
is discussed in [12], it is closely related to a rackoid structure.
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Lie Algebroids and Weight Systems

Cristian Anghel and Dorin Cheptea

Abstract Weput theRozansky-Wittenweight systems obtained fromLie algebroids
by Voglaire & Xu, into the general machine provided by Kontsevich in the context
of foliations and formal geometry.

Keywords Weight systems · Lie algebroids · Rozansky-Witten invariants ·
Gelfand-Fuks cohomology · Atiyah class

1 Introduction

Weight systems appeared first time inKontsevich (1993), in the context of Vassiliev’s
theory of finite type invariants. The first concrete examples come from classical
Lie algebras, and recover the Reshetikhin-Turaev invariants constructed from the
corresponding quantum group.

A few years later, Rozansky &Witten (1997) discovered a totally different source
of weight systems, namely one coming from the world of complex geometry; for
any hyperkahler manifold X they associate a canonical weight system using the
curvature tensor of X . Their work was formalized in (1999) by Kapranov, using the
Atiyah class and simultaneously, vastly generalized, by Kontsevich for the context
of symplectic foliations, using Gelfand-Fuks cohomology, characteristic classes of
foliations, the Lie algebra of formalHamiltonian vector fields and the graph complex.
More recently, Voglaire & Xu, using the formalism of Atiyah classes, constructed
RW-type weight systems using Lie algebroids.
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Our aim is to put the Voglaire-Xu machine into the general context of Kontsevich
and to suggest, along the same ideas, some other possible sources of weight systems
coming from holomorphic foliations, holomorphic Poisson and generalized complex
geometry.

2 Weight Systems

2.1 What Is a Weight System

Roughly speaking, a weight system is a linear map defined on the spaceA of Jacobi
diagrams (defined in the sequel), valued in a finite dimensional vector space, for
example Q or C. A diagram D is a trivalent graph with a distinguished oriented
cycle and a specified cyclic order at each vertex.

Example:

Definition 1 A is the C-vector space generated by all diagrams.

Definition 2 The space A of Jacobi diagrams is the quotient of A by the subspace
generated by the following AS, IHX and STU local relations:

In fact A is a graded vector space, the grading being by half the total number of
vertices. It is also an algebra under connected sum of the specified oriented cycles.

Definition 3 Aweight system is a linearmapw : A → V , whereV is a finite dimen-
sional vector space.
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2.2 Motivation: 3-Manifold Invariants from Weight Systems

Why would we be interested in weight systems? The fundamental reason is the
Kontsevich integral

K : { f ramed knots ∈ S3mod isotopy} → Â

where Â is the grading completion of the algebraA. Although it is unknown ifK is a
complete knot invariant, it is equivalent with all Vassiliev’s finite type invariants and
has been vastly generalized by Le, Murakami and Ohtsuki to links and 3-manifolds.
One of the main inconvenience of K is that its values are infinite series and con-
sequently it is very hard to compute. In this respect, the idea of weight systems
gives a major simplification; if a weight system w vanishes in high degree, then the
composition w ◦ K is a coarser, but a much more tractable knot invariant.

At this moment, there are 4 main sources of weight systems:

– the “classical” introduced by Kontsevich [4] and coming from Lie algebras
– the Rozansky-Witten ones [6], coming from hyperkahler manifolds
– the Kontsevich ones [5], coming from symplectic foliations
– and the Voglaire-Xu ones [7], coming from Lie algebroids.

In the sequelwewill briefly describe all of them.Then,wewill put theVoglaire-Xu
one, into the general context of symplectic foliations. Finally, wewill give some other
potential sources of weight systems coming from many areas of complex geometry.

2.3 Weight Systems from Classical Lie Algebras

The basic input of this construction is a metric Lie algebra g, i.e. a finite dimensional
one, with a symmetric, non-degenerate, Ad-invariant bilinear form h := < ·, · >:
g × g → k. g alone, with its metric h induces the universal g-weight system

Tg : A → U (g)

to the enveloping algebra U (g). The strategy is to cut every Jacobi diagram into
elementary pieces and to assign to these, canonical tensors in T (g), the tensor algebra
of g. By projecting then ontoU (g), one gets a well definedmapmodulo AS, IHX and
STU (independent of the cutting of the diagram). The last step, is to introduce into the
picture a g-module V . By composing Tg with the canonical actionU (g) → End(V )

and taking the trace, one obtains the final C-valued weight system wg,V .
More precisely denote the metric as an isomorphism g → g�, x →< ·, x >;

take e1, e2, . . . a basis in g, e1, e2, . . . its dual basis and denote: the bracket
[ei , e j ] = ∑

k γk
i, j ek , themetric< ·, · > ei → ∑

j hi, j e
j , its inverse ei → ∑

j h
i, j e j

and Sa,b,c = −∑
i, j γ

c
i, j h

i,ah j,b. Then, decompose the diagram D into elementary
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pieces, label the endpoints by indices of the g-basis and make the following assign-
ments and contractions:

The resulting element Tg(D) ∈ U (g) is what we are searching for.
Example 1, cf. [2]: for the diagram and the cutting

we have the following value in U (g):

Example 2, cf. [2]: for the diagram and the cutting

we have the following value in U (g):
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3 The Rozansky-Witten Weight System

3.1 Hyperkahler Manifolds

The second series of examples of weight systems comes from the world of complex
geometry. They appeared in’97 in the work of Rozansky & Witten, coming from
physics and was formalised by Kapranov in’99 from the mathematical viewpoint.
The main characters in this story are the hyperkahler manifolds and their cousins the
holomorphic symplectic manifolds:

Definition 4 A Riemannian manifold (M, g) is hyperkahler if it satisfies one of the
following equivalent conditions:

1. is of dimension 4k and the Riemannian holonomy is contained in Sp(k).
2. it has three complexKahler structuresw.r.t. g, I, J, K which satisfy the quaternion

relations.

A related class of manifolds is the one of holomorphic symplectic ones:

Definition 5 A Kahler manifold is holomorphic symplectic if it has a nowhere
degenerated holomorphic two form.

There is a close relation between the two:

Proposition 1 1. Any hyperkahler manifold is holomorphic symplectic. 2. If com-
pact, any holomorphic symplectic manifold is hyperkahler. (The proof uses the
Calabi-Yau theorem)

Despite the simplicity of the definition, in the compact case there are only a few
known hyperkahler examples:

– in every even dimension, the Hilbert schemes of K3 or abelian algebraic surfaces,
– two sporadic examples in dimension 6 and 10 constructed by O’Grady.

However, in the noncompact case, the examples abound, a good source being for
example various moduli spaces of Higgs bundles. In what follows, it is essential the
hyperkahler manifold to be compact, for integration on it to obtain C-valued weight
systems. Otherwise, the values are only in the Dolbeault cohomology of the variety.

3.2 RW-Weight Systems from Hyperkahler Manifolds

The main point in Rozansky-Witten theory is to use the curvature tensor R on a
hyperkahler manifold M , in the vertices of a Jacobi diagram instead of the structure
constants of a Lie algebra.

In general, on any complex manifold, R satisfies an IHX type relation modulo
∂̄-co-boundaries. However, in general we don’t know the same thing for the AS type
relation.



490 C. Anghel and D. Cheptea

In the hyperkahler setting, or in fact even only on holomorphic symplectic one,
the “magic” is the fact that also the AS type relation is a ∂̄-co-boundary. As a conse-
quence, in the presence of a holomorphic symplectic structure, we obtain a weight
system with values in the Dolbeault cohomology of the manifold M . If addition-
ally M is compact, we can integrate top degree forms, obtaining Rozansky-Witten
numbers associated to the couple M and the initial 3-manifold.

4 The Kontsevich Weight System

4.1 The Lie Algebra of Formal Hamiltonian Vector Fields

The previous Rozansky-Witten construction was vastly generalized by Kontsevich
using two main ingredients:

1. the cohomology of the Lie algebra of formal hamiltonian vector fields [1]
2. characteristic classes of foliations with transversal symplectic structure.

Formal vector fields on Rn for n even, are usual sums �ai∂i , where the ai ’s are
formal series in the n co-ordinates x1, . . . , xn . They form an infinite dimensional Lie
algebra under the usual bracket and H is its Lie-subalgebra of hamiltonian formal
vector fields.

4.2 Foliations and the Kontsevich Weight System

The main point in the Kontsevich construction is the fact that the graph cohomology
(more or less the space of Jacobi diagrams) is a subspace in the cohomology ofH if
we work with hamiltonian vector fields:

A ⊂ H∗(H).

If we compose this with the characteristic class morphism

H∗(H) → H∗(M)

for a symplectic foliation, we arrive at the Kontsevich general weight system asso-
ciated with any symplectic foliation. In the particular case of the anti-holomorphic
foliation on a holomorphic symplectic manifold, one obtains the Rozansky-Witten
weight system.
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5 Lie Algebroids and Voglaire-Xu Weight System

In 2015, Voglaire and Xu extended the Rozansky-Witten construction in the context
of Lie algebroids. Roughly speaking, a Lie algebroid L on a manifold M is a vector
bundle, with a bracket on the space of sections, and a morphism to TM , the tangent
bundle of M , satisfying a Leibniz rule.

A Lie pair (L , A) is composed of two algebroids A ⊂ L . There is a notion of
symplectic structure on a pair, and any holomorphic symplecticmanifold gives rise to
a symplectic Lie pair using the anti-holomorphic bundle in the complexified tangent
bundle. Using a substitute of the curvature tensor in the case of a symplectic Lie pair
(L , A), Voglaire and Xu arrive at a weight system with values in the cohomology
of A.

Our main result mimics Kontsevich idea:We factorize the Voglaire-Xumorphism
A → H∗(A) intoA → H∗(H) → H∗(A), where the second one H∗(H) → H∗(A)

is a universal characteristic class morphism associated to any symplectic Lie pair
(L , A).

6 Conclusions and Future Directions

We overviewed the 4 main sources of weight systems known in literature. We
sketched the idea to view the Voglaire-Xu weight system through Kontsevich’s gen-
eral machine using the characteristic class morphism for symplectic Lie pairs. For
the future, we intend to extend this idea to other cases coming from the geometry of
the symplectic world: holomorphic foliations, holomorphic Poisson manifolds and
generalized complex geometry.
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Visible Actions of Certain Affine
Transformation Groups of a Siegel
Domain of the Second Kind

Koichi Arashi

Abstract In this contribution we give results concerning visible and strongly visi-
ble actions introduced by T. Kobayashi for a uniform treatment of multiplicity-free
representations of Lie groups. We are concerned with the actions of certain affine
transformation groups of a Siegel domain of the second kind, which is a generaliza-
tion of a non-compact Hermitian symmetric space of non-tube type. More precisely,
we show that an action of a two-step nilpotent Lie group on a Siegel domain is visi-
ble, and for a Siegel domain and an affine transformation group we give a sufficient
condition that the action is strongly visible. Moreover, we discuss some examples to
illustrate the latter result.

Keywords Visible action · Coisotropic action · Polar action · Siegel domain ·
Hermitian symmetric space · Multiplicity-free representation

1 Introduction

Multiplicity-free representations of Lie groups are intimately related to some geo-
metric notions, such as coisotropic action [3], polar action [11], spherical variety
[16], and visible action [8]. Especially, multiplicity-free representations for various
Lie groups can be understood from the perspective of visible action and propaga-
tion of multiplicity-freeness property for holomorphic vector bundles [7, 9, 13]. On
the other hand, visible action itself has been extensively studied, especially for real
reductive groups and complex spherical varieties (see [15] and references therein).

Motivated by these results, we consider visible and strongly visible actions of
certain affine transformation groups of a Siegel domain of the second kind, which
is a generalization of a non-compact Hermitian symmetric space of non-tube type.
For complex analysis related to such affine automorphism groups, we refer to [1,
4]. Our main result can be considered as a variant of the following result: For a
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Hermitian symmetric space D = G/K without compact factor, the action of a max-
imal unipotent subgroup of G is strongly visible [8, Theorem 1.10].

Let Ω ⊂ R
N be a regular cone, that is, a nonempty open convex cone which

contains no entire straight line. LetQ : CM × C
M → C

N be anΩ-positiveHermitian
map, i.e. a sesquilinear map satisfying Q(u, u) ∈ Ω\{0} (u ∈ C

M\{0}), where Ω is
the closure of Ω . Then we call the following domain a Siegel domain of the second
kind:

D := {(z, u) ∈ C
N × C

M | Im z − Q(u, u) ∈ Ω}.

For x0 ∈ R
N and u0 ∈ C

M , we denote by n(x0, u0) the following affine transforma-
tion of CN × C

M :

(z, u) �→ (z + x0 + 2
√−1Q(u, u0) + √−1Q(u0, u0), u + u0) ((z, u) ∈ D).

The set N := {n(x, u) | x ∈ R
N , u ∈ C

M} is closed under composition, and has
the natural structure of a group. Let G(Ω) := {g ∈ GL(RN ) | g(Ω) = Ω}. We can
extend a map g ∈ G(Ω) to a unique complex-linear map g : CN → C

N . Let

Aff0(D) :=
{
(g, l) ∈ G(Ω) × GL(CM) | gQ(u1, u2) = Q(lu1, lu2)

for all u1, u2 ∈ C
M

}
.

Then it is known [5, 10, 12] that the group Aff(D) of affine transformations of
C

N × C
M which leaveD fixed admits the natural structure of a Lie group and is the

semidirect product of Aff0(D) and N.
We will show that the action ofN onD is visible, as well as coisotropic and polar

with respect to the Kähler structure defined by the Bergman metric onD . Moreover,
for a Siegel domain D of the second kind and a subgroup G0 ⊂ Aff0(D) we will
give a sufficient condition that the action of G := G0N onD is strongly visible (see
Theorem 4).

2 Coisotropic Action, Polar Action, and Visible Action

Let us briefly recall the definitions of coisotropic, polar, visible and strongly visible
actions [3, 7, 11].

Suppose that a Lie group H acts on a connected complexmanifold D by holomor-
phic automorphisms.We call the action previsible if there exist a totally real subman-
ifold S in D and a (non-empty) H -invariant open subset D′ of D such that S meets
every H -orbit in D′. A previsible action is called visible if Jx (Tx S) ⊂ Tx (H · x)
for all x ∈ S, where Jx ∈ End(Tx D) denotes the complex structure. In addition, a
previsible action is called strongly visible if there exist an anti-holomorphic diffeo-
morphism σ of an H -invariant open subset D′ and a submanifold S of D′ such
that
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σ|S = id,

σ preserves each H -orbit in D′.

Next, suppose a Lie group H acts on a symplectic manifold (D,ω) by symplectic
automorphisms. The action is called coisotropic if Tx (H · x)⊥,ω ⊂ Tx (H · x) for
every principal orbit H · x . Last, suppose a Lie group H acts on a Riemannian
manifold D by isometries. The action is called polar if there exist a closed connected
submanifold S (called a section) that meets every H -orbit orthogonally.

Nowwe shall see an integral expression for the Bergman kernel ofD [2]. By using
the expression, we will show that the action of N is visible, as well as coisotropic
and polar with respect to the Kähler structure defined by the Bergman metric, which
is positive-definite since the domain D is biholomorphic to a bounded domain [10].
Let

Ω∗ := {ξ ∈ (RN )∗ | 〈ξ, y〉 > 0 for all y ∈ Ω\{0}}.

For ξ ∈ Ω∗, let I (ξ) := ∫
Ω
e−2〈ξ,y〉 dy and IQ(ξ) := ∫

CM e−2〈ξ,Q(u,u)〉 du.

Theorem 1 ([2, Theorem 5.4]) The Bergman kernel K of D is given by

K (z, u, w, v) := 1

(2π)N

∫
Ω∗

e
√−1〈ξ,z−w−2

√−1Q(u,v)〉 I (ξ)−1 IQ(ξ)−1 dξ

((z, u), (w, v) ∈ D).

By Theorem 1, we get the following theorem.

Theorem 2 The action of N on D is polar with a section
√−1Ω ⊂ D .

Proof For (z, u) ∈ D , we have

n(−Re z,−u)(z, u) = (
√−1(Im z − Q(u, u)), 0) ∈ √−1Ω, (1)

which implies that
√−1Ω meets everyN-orbit. Next, let us denote the standard bases

of RN and CM by ei (1 ≤ i ≤ N ) and e′
j (1 ≤ j ≤ M), respectively. For (z, u) ∈ D

we have

∂2

∂zi∂u j
log K (z, u, z, u) = 1

K (z, u, z, u)2
(K (z, u, z, u)

·
∫

Ω∗
2
√−1〈ξ, ei 〉〈ξ, Q(u, e′

j )〉e
√−1〈ξ,z−z−2

√−1Q(u,u)〉 I (ξ)−1 IQ(ξ)−1 dξ

−
∫

Ω∗

√−1〈ξ, ei 〉e
√−1〈ξ,z−z−2

√−1Q(u,u)〉 I (ξ)−1 IQ(ξ)−1 dξ

·
∫

Ω∗
2〈ξ, Q(u, e′

j )〉e
√−1〈ξ,z−z−2

√−1Q(u,u)〉 I (ξ)−1 IQ(ξ)−1 dξ),

from which we can see that
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∂2

∂zi∂u j
log K (z, 0, z, 0) = 0 ((z, 0) ∈ D). (2)

Since the tangent space T√−1y(N · √−1y) ⊂ T√−1y(D) for any y ∈ Ω can be nat-
urally identified with R

N ⊕ C
M , it follows from the equality (2) that every N-orbit

meets
√−1Ω orthogonally. �

The following result can be applied to the action of N on D .

Theorem 3 ([7, Theorems 6, 8]) Suppose that a connected Lie group acts on a
connected Kähler manifold D by holomorphic isometries. If the action is polar with
a totally real section S ⊂ D, then the action is visible and coisotropic.

Combining Theorems 2 and 3, we obtain the following result.

Corollary 1 The action of N on D is visible and coisotropic.

3 Strongly Visible Action

Before proceeding with a sufficient condition for a strongly visible action, we shall
take a look at anti-holomorphic diffeomorphisms of D .

Suppose that a linear bijective map σ1 : RN → R
N and an antilinear bijective

map σ2 : CM → C
M satisfy the following condition:

− σ1 ∈ G(Ω),

−σ1(Q(u, u)) = Q(σ2(u),σ2(u)) (u ∈ C
M).

(3)

If we extend σ1 to an antilinear map σ1 : CN → C
N , then we have

Im(σ1(z)) − Q(σ2(u),σ2(u)) = −σ1(Im z − Q(u, u)) ∈ Ω ((z, u) ∈ D). (4)

Hence the map (z, u) �→ (σ1(z),σ2(u)) induces an anti-holomorphic diffeomor-
phism σ of D (cf. [6, Theorem 11]). A closed subgroup G0 ⊂ Aff0(D) acts on
Ω by (g, l)y := gy ((g, l) ∈ G0, y ∈ Ω). Let Ω−σ1 := {y ∈ Ω | −σ1(y) = y}. We
can consider the following condition (C):

−σ1 : Ω → Ω preserves each G0-orbit in Ω, (C-1)

Ω−σ1 meets every G0-orbit in Ω. (C-2)

Let G := G0N ⊂ Aff(D). Our main result can be stated as follows.
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Theorem 4 The condition (C-1) implies that σ preserves each G-orbit in D . In
addition, the condition (C) implies that the action of G on D is strongly visible.

Proof Let (z, u) ∈ D . Suppose that the condition (C-1) holds. Then we can find
(g, l) ∈ G0 such that

(−σ1(Im z − Q(u, u)), 0) = (g(Im z − Q(u, u)), 0).

For (g, l) ∈ Aff0(D), let R(g, l) denote the map (z, u) �→ (gz, lu). By (1) and (4),
we have

n(−Re σ1(z),−σ2(u))(σ1(z),σ2(u))

= (
√−1(Im(σ1(z) − Q(σ2(u),σ2(u))), 0)

= (−√−1σ1(Im z − Q(u, u)), 0) = (
√−1g(Im z − Q(u, u)), 0)

= R(g, l)(
√−1(Im z − Q(u, u)), 0).

Therefore, we obtain

(σ1(z),σ2(u)) = n(Re σ1(z),σ2(u))R(g, l)n(−Re z,−u)(z, u)

with n(Re σ1(z),σ2(u))R(g, l)n(−Re z,−u) ∈ G. Hence σ preserves each G-orbit
in D . The latter assertion is immediate from (C-2). �

We shall give some examples of anti-holomorphic diffeomorphisms σ and groups
G0 which satisfy the conditions (C-1) and (C). In the examples below, ν and r stand
for natural numbers. For a complex matrix X we denote its transpose and conjugate
by t X and X , respectively.

• Let ν ≥ 2 and r ≥ 1. Let Hermν(C) be the set of ν-by-ν Hermitian matrices
and Pν(C) the subset of positive-definite matrices. When N = ν2 and M = νr ,
we can identify Hermν(C) with R

N , Matν(C) with C
N , and Matν,r (C) with

C
M . The regular cone Pν(C) ⊂ Hermν(C) and the Hermitian map Q given by

Q(U, V ) := 1
2U

tV (U, V ∈ Matν,r (C)) define aHermitian symmetric spaceD of
type Iν+r,ν . The pair of maps (σ1,σ2) defined by σ1(X) := −t X (X ∈ Hermν(C))

and σ2(U ) := U (U ∈ Matν,r (C)) satisfy the condition (3). In this case, we have
a natural injection ι : GLν(C) ↪→ Aff0(D) defined by

R(ι(g))(Z ,U ) = (gZtg, gU ) (g ∈ GLν(C), (Z ,U ) ∈ D).

The following subgroups ofGLν(C) are examples ofG0 inTheorem4:Thegeneral
linear group GLν(R) (which satisfies only (C-1)), the unitary groupU (ν), and the
lower-triangular group L with 1 in each diagonal entries. Note that G = ι(L)N is
isomorphic to a maximal unipotent subgroup of SU (ν + r, ν).
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• Let r, ν ≥ 1. Let Hermν(R) be the set of ν-by-ν real symmetric matrices, and
Pν(R) the subset of positive-definite matrices. The regular cone Pν(R) ⊂ Hermν

(R) and the Hermitian map Q(U, V ) := 1
4 (U

tV + V tU ) (U, V ∈ Matν,r (C))

define a quasi-symmetric Siegel domain D of type IIIν,r (see [14]). The pair of
maps (σ1,σ2) defined by σ1(X) := −X (X ∈ Hermr (R)) and σ2(U ) := U (U ∈
Matν,r (C)) satisfy the condition (3). In this case, the trivial subgroup of Aff0(D)

satisfies the condition (C).
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Quantum Particle on Lattices in Weyl
Alcoves

Adam Brus, Jiří Hrivnák, and Lenka Motlochová

Abstract The application of the generalized discrete Fourier–Weyl transforms to a
quantum particle propagation on the lattice fragments inside Weyl alcoves is sum-
marized. The rescaled dual weight and dual root lattices intersected with the signed
fundamental domains of the affine Weyl groups induce the position bases of the
associated Hilbert spaces. The generalized dual-weight and dual-root Fourier–Weyl
transforms provide unitary transition matrices between the position and momentum
bases. The vectors of the momentum bases satisfy the time-independent Schrödinger
equations and the corresponding eigenenergies are determined as sums of the sym-
metric Weyl orbit functions. The matrix forms of the Hamiltonians together with the
eigenenergies of the A3 dual-weight lattice model are exemplified.

Keywords Quantum dot · Weyl group · Fourier–Weyl transform

1 Position and Momentum Bases

The current notation stems from articles [1–4]. The irreducible root systemsΠ of the
four series An (n ≥ 1), Bn (n ≥ 3),Cn (n ≥ 2), Dn (n ≥ 4) togetherwith exceptional
systems E6, E7, E8, F4 and G2 contain the set Δ = {α1, . . . ,αn} ⊂ Π of the simple
roots [5]. The linear span of the set Δ forms the Euclidean space R

n that is equipped
with the scalar product 〈 , 〉. The setsΔ containing two different root-lengths decom-
pose into the corresponding sets of short simple roots Δs and sets of long simple
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rootsΔl . The set of vectorsΔ∨ = {α∨
1 , . . . ,α∨

n }, with α∨
i = 2αi/〈αi , αi 〉, forms the

set of dual simple roots of the dual root system Π∨.
The roots and dual roots Z-span the root lattice Q = Zα1 + · · · + Zαn and

dual root lattice Q∨ = Zα∨
1 + · · · + Zα∨

n . The bases of the fundamental weights
ω1, . . . ,ωn and dual fundamental weights ω∨

1 , . . . ,ω∨
n , determined by the relations

〈α∨
i , ω j 〉 = 〈αi , ω∨

j 〉 = δi j , span the weight lattice P = Zω1 + · · · + Zω j and dual
weight lattice P∨ = Zω∨

1 + · · · + Zω∨
n . The cone of the dual weights is given as

P∨+ = Z
≥0ω∨

1 + · · · + Z
≥0ω∨

n .

The determinant of the Cartanmatrix c ∈ N provides the orders of the lattice quotient
groups, |P∨/Q∨| = |P/Q| = c.

Generated by reflections with respect to the simple roots rα1 , . . . , rαn ∈ O(Rn),
theWeyl groupW ⊂ O(Rn) together with the affineWeyl groupW aff = Q∨

� W ⊂
R

n
� O(Rn) induce the map τ : W aff → Q∨ and standard retraction homomor-

phism ψ : W aff → W given for z = T (q∨)w ∈ W aff by the relations τ (z) = q∨ and
ψ(z) = w. The extended dual affine Weyl groupW aff

P = P � W along with the dual
affine Weyl group W aff

Q = Q � W ⊂ W aff
P induce the map τ̂ : W aff

P → P and dual

retraction homomorphism ̂ψ : W aff
P → W determined for y = T (p)w ∈ W aff

P by the
relations τ̂ (y) = p and ̂ψ(y) = w.

The admissible shifts ν, ν∨, ρ, ρ∨ ∈ R
n of the root, dual root, weight and dual

weight lattices preserve the W -invariance of the shifted lattices [3, 4],

W (ν + Q) = ν + Q,

W (ν∨ + Q∨) = ν∨ + Q∨,

W (ρ + P) = ρ + P,

W (ρ∨ + P∨) = ρ∨ + P∨.

The fundamental domains F, FQ, FP ⊂ R
n of the standard action of the affine

groups W aff , W aff
Q and W aff

P on R
n , respectively, contain exactly one point from the

corresponding group orbit [6]. The discrete counting functions ε, hQ,M and hP,M are
defined for points a, b ∈ R

n and anymagnifying factorM ∈ N via the corresponding
stabilizers as

ε(a) = |W | · |StabW aff (a)|−1,

hQ,M(b) =
∣

∣

∣StabW aff
Q

( b
M )

∣

∣

∣ ,

hP,M(b) =
∣

∣

∣StabW aff
P

( b
M )

∣

∣

∣ .

The four sign homomorphisms 1, σe, σs, σl : W → {±1} are given on the gen-
erators of the Weyl group W [7] by the defining relations:
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1(rα) = 1, σe(rα) = −1,

σs(rα) =
{

1, α ∈ Δl,

−1, α ∈ Δs,
σl(rα) =

{

1, α ∈ Δs,

−1, α ∈ Δl .

For any sign homomorphism σ ∈ {1, σe, σs, σl}, any point a ∈ R
n and label b ∈

ρ + P , the Weyl orbit functions ϕσ
b : R

n → C are given by the general relation [3,
4],

ϕσ
b (a) =

∑

w∈W
σ(w) e2πi〈wb, a〉.

The symmetric orbit C-functions [8] are determined by the renormalization

Cb = |StabW (b)|−1 ϕ1
b .

Employing the multiplicative group of c-th roots of unity Uc, the three γ-
homomorphisms γσ

ρ : W aff → U2, γ̂σ
ρ∨ : W aff

Q → U2 and γ̂σ
ν∨ : W aff

P → U2c are given
for w ∈ W aff , y ∈ W aff

Q and z ∈ W aff
P by the defining formulas [3, 4],

γρ (w) = e2πi〈τ (w), ρ〉[σ ◦ ψ(w)],
γ̂ρ∨(y) = e2πi〈̂τ (y), ρ∨〉[σ ◦ ̂ψ(y)],
γ̂ν∨(z) = e2πi〈̂τ (z), ν∨〉[σ ◦ ̂ψ(z)].

For any a ∈ R
n there exists a′ ∈ F and w[a] ∈ W aff such that a = w[a]a′. The

function χσ
ρ : R

n → {−1, 0, 1} is introduced via the relation [1, 2],

χσ
ρ (a) =

{

γσ
ρ (w[a]) , γσ

ρ (StabW aff (a)) = 1,

0, γσ
ρ (StabW aff (a)) = U2.

The signed fundamental domains Fσ(ρ) ⊂ F , Fσ
Q(ρ∨) ⊂ FQ and Fσ

P (ν∨) ⊂ FP

are defined as [3, 4]

Fσ(ρ) = {

a ∈ F
∣

∣ γσ
ρ (StabW aff (a)) = 1

}

,

Fσ
Q(ρ∨) =

{

b ∈ FQ

∣

∣ γ̂σ
ρ∨

(

StabW aff
Q

(b)
)

= 1
}

,

Fσ
P (ν∨) =

{

b ∈ FP | γ̂σ
ν∨

(

StabW aff
P

(b)
)

= 1
}

.

The finite sets of points Fσ
P∨,M(ρ, ρ∨) and Fσ

Q∨,M(ρ, ν∨) from refined shifted dual
root and weight lattices in Weyl alcove F are introduced via the signed fundamental
domain Fσ(ρ) ⊂ F as
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Fσ
P∨,M(ρ, ρ∨) = 1

M (ρ∨ + P∨) ∩ Fσ(ρ), (1)

Fσ
Q∨,M(ρ, ν∨) = 1

M (ν∨ + Q∨) ∩ Fσ(ρ).

The corresponding finite sets of labels Λσ
Q,M(ρ, ρ∨) and Λσ

P,M(ρ, ν∨) from shifted
weight lattice are determined as

Λσ
Q,M(ρ, ρ∨) = (ρ + P) ∩ MFσ

Q(ρ∨), (2)

Λσ
P,M(ρ, ν∨) = (ρ + P) ∩ MFσ

P (ν∨).

The ordered sets of points Fσ
P∨,M(ρ, ρ∨) and Fσ

Q∨,M(ρ, ν∨) induce the orthonormal
positionbases

∣

∣a; P∨〉

,a ∈ Fσ
P∨,M(ρ, ρ∨) and

∣

∣b; Q∨〉

,b ∈ Fσ
Q∨,M(ρ, ν∨)of thefinite-

dimensional complex Hilbert spacesHσ
P∨,M(ρ, ρ∨) andHσ

Q∨,M(ρ, ν∨), respectively.
Considering a length factor l ∈ R, the states determined by the vectors

∣

∣a; P∨〉 ∈
Hσ

P∨,M(ρ, ρ∨) and
∣

∣b; Q∨〉 ∈ Hσ
Q∨,M(ρ, ν∨) represent a quantum particle positioned

inside the rescaled Weyl alcove l F at points la and lb, respectively.
Theorthonormalmomentumbases |λ; Q〉 ∈ Hσ

P∨,M(ρ, ρ∨),λ ∈ Λσ
Q,M(ρ, ρ∨) and

|μ; P〉 ∈ Hσ
Q∨,M(ρ, ν∨), μ ∈ Λσ

P,M(ρ, ν∨) are defined with respect to the position
bases by defining the unitary transition matrices elements via the generalized dual-
weight and dual-root Fourier–Weyl transforms [1, 2],

〈

a; P∨∣

∣ λ; Q〉 = ε
1
2 (a)

(

c |W | MnhQ,M(λ)
)− 1

2 ϕσ
λ(a), (3)

〈

b; Q∨∣

∣ μ; P〉 = ε
1
2 (b)

(|W | MnhP,M(μ)
)− 1

2 ϕσ
μ(b).

2 Hamiltonians and Energy Spectra

The dual-weight and dual-root hopping functionsP∨ : P∨ → C andQ∨ : Q∨ → C

of finite support areW -invariant andHermitian [1, 2], i.e. for any p∨ ∈ P∨, q∨ ∈ Q∨
and w ∈ W it holds that

P∨(wp∨) = P∨(p∨), P∨(−p∨) = P∨∗(p∨),

Q∨(wq∨) = Q∨(q∨), Q∨(−q∨) = Q∨∗(q∨).

The finite sets supp+(Q∨) and supp+(P∨) are determined as intersections of the
supports of the hopping functions with the cone of the dual weights P∨+, i.e.
supp+(Q∨) = supp(Q∨) ∩ P∨+ and supp+(P∨) = supp(P∨) ∩ P∨+.

The dual-weight and dual-root coupling sets Np∨,M(a, a′), p∨ ∈ supp+(P∨),
a, a′ ∈ Fσ

P∨,M(ρ, ρ∨) and Nq∨,M(b, b′), q∨ ∈ supp+(Q∨), b, b′ ∈ Fσ
Q∨,M(ρ, ν∨) are

introduced as
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Np∨,M(a, a′) = W affa′ ∩ (

a + 1
MWp∨)

,

Nq∨,M(b, b′) = W affb′ ∩ (

b + 1
MWq∨)

.

The dual-weight and dual-root hopping operators ̂Aσ
p∨,M(ρ, ρ∨), p∨ ∈ supp+(P∨)

and Aσ
q∨,M(ρ, ν∨), q∨ ∈ supp+(Q∨) are defined via the following relations,

〈

a; P∨ ∣

∣ ̂Aσ
p∨,M(ρ, ρ∨)

∣

∣ a′; P∨ 〉 = −ε
1
2 (a)ε− 1

2 (a′)P∨ (

p∨)
∑

d∈Np∨ ,M (a,a′)

χσ
ρ (d) ,

〈

b; Q∨ ∣

∣ ̂Aσ
q∨,M(ρ, ν∨)

∣

∣ b′; Q∨ 〉 = −ε
1
2 (b)ε− 1

2 (b′)Q∨ (

q∨)
∑

d∈Nq∨ ,M (b,b′)

χσ
ρ (d) .

The dual-weight and dual-rootHamiltonian operatorswhich describe the quantum
particle propagating on the rescaled dual-weight and dual-root lattice fragments
inside rescaled Weyl alcoves, are given via the corresponding hopping operators
as

̂Hσ
P∨,M(ρ, ρ∨) =

∑

p∨∈ supp+(P∨)

̂Aσ
p∨,M(ρ, ρ∨),

̂Hσ
Q∨,M(ρ, ν∨) =

∑

q∨∈ supp+(Q∨)

̂Aσ
q∨,M(ρ, ν∨).

The vectors of the momentum bases |λ; Q〉 ∈ Hσ
P∨,M(ρ, ρ∨), λ ∈ Λσ

Q,M(ρ, ρ∨) and
|μ; P〉 ∈ Hσ

Q∨,M(ρ, ν∨), μ ∈ Λσ
P,M(ρ, ν∨) satisfy the time-independent Schrödinger

equations

̂Hσ
P∨,M(ρ, ρ∨) |λ; Q〉 = Eσ

P∨,λ,M(ρ, ρ∨) |λ; Q〉 ,

̂Hσ
Q∨,M(ρ, ν∨) |μ; P〉 = Eσ

Q∨,μ,M(ρ, ν∨) |μ; P〉 ,

with the eigenenergies given by relations

Eσ
P∨,λ,M(ρ, ρ∨) = −

∑

p∨∈supp+(P∨)

P∨(p∨)Cp∨
(

λ
M

)

, (4)

Eσ
Q∨,μ,M(ρ, ν∨) = −

∑

q∨∈ supp+(Q∨)

Q∨(q∨)Cq∨
( μ
M

)

.

3 Dual-Weight Models of A3

For the root system A3, the fundamental weights and dual fundamental weights
coincide and only trivial shifts ρ = ρ∨ = 0 of the weight lattice exist [3]. The identity
sign homomorphism weight lattice point and label sets (1) and (2) are for M = 2
given in ω-basis as
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F1
P∨,2(0, 0) = {

(0, 0, 0) ,
( 1
2 , 0, 0

)

,
(

0, 1
2 , 0

)

,
(

0, 0, 1
2

)

, (1, 0, 0) ,
( 1
2 , 1

2 , 0
)

,
( 1
2 , 0, 1

2

)

, (0, 1, 0) ,
(

0, 1
2 , 1

2

)

, (0, 0, 1)
}

,

Λ1
Q,2(0, 0) = {

(0, 0, 0) , (1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (2, 0, 0) , (1, 1, 0) ,

(1, 0, 1) , (0, 2, 0) , (0, 1, 1) , (0, 0, 2)
}

.

Chosen to characterize the nearest and next-to-nearest neighbour couplings,
the dual-weight hopping function P∨ is determined by the following three val-
ues: P∨(ω1) = P∨∗(ω3) = I = B + Di, P∨(ω2) = A with A, B, D ∈ R. The cor-
responding three identity sign homomorphism hopping operators, evaluated in the
position basis ordered as the point set F1

P∨,2(0, 0), are given in matrix form as

̂A1
ω1,2(0, 0) = [

̂A1
ω3,2(0, 0)

]† = −I

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 2 0 0 0 0 0 0 0 0
0 0

√
6 0 2 0 0 0 0 0

0 0 0
√
6 0

√
6 0 0 0 0

2 0 0 0 0 0
√
6 0 0 0

0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0

√
6 2 0 0

0
√
6 0 0 0 0 0 0

√
6 0

0 0 0 0 0 0 0 0 2 0
0 0

√
6 0 0 0 0 0 0 2

0 0 0 2 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and

̂A1
ω2,2(0, 0) = −A

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0
√
6 0 0 0 0 0 0 0

0 0 0 3 0 3 0 0 0 0√
6 0 0 0 0 0 4

√
6 0 0

0 3 0 0 0 0 0 0 3 0
0 0 0 0 0 0

√
6 0 0 0

0 3 0 0 0 0 0 0 3 0
0 0 4 0

√
6 0 0 0 0

√
6

0 0
√
6 0 0 0 0 0 0 0

0 0 0 3 0 3 0 0 0 0
0 0 0 0 0 0

√
6 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The eigenenergies, ordered as the labels from the set Λ1
Q,2(0, 0), are calculated

exactly using C-function expression (4) as

(

E1
P∨,λ,2(0, 0),λ ∈ Λ1

Q,2(0, 0)
)

=A (−6, 0,−2, 0, 6, 0, 2,−6, 0, 6)

+ B
(

−8,−2
√
2, 0,−2

√
2, 0, 2

√
2, 0, 8, 2

√
2, 0

)

+ D
(

0,−2
√
2, 0, 2

√
2,−8,−2

√
2, 0, 0, 2

√
2, 8

)

.

The exact forms of the wave functions together with the inherent discrete probability
densities can be computed similarly from analytic relation (3).
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Abelian J-Invariant Ideals on Nilpotent
Lie Algebras

Adela Latorre and Luis Ugarte

Abstract We study the existence of non-trivial Abelian J -invariant ideals f in nilpo-
tent Lie algebras g endowed with a complex structure J . This condition appears as
one of the hypotheses in a recent theorem by A. Fino, S. Rollenske and J. Ruppenthal
on theDolbeault cohomology of complex nilmanifolds. Among other results, we find
a pair (g, J ) for which the only Abelian J -invariant ideal f in g is the zero one.

Keywords Nilpotent Lie algebra · Complex structure · Abelian J-invariant ideal

1 Introduction

A nilmanifold is a compact quotient M = Γ \G, where G is a real simply connected
nilpotent Lie group and Γ is a discrete cocompact subgroup of G. Let us suppose
that g, the Lie algebra of G, admits a complex structure J (see Sect. 2 for defini-
tions). Then, J determines a left-invariant complex structure on G and one has a
compact complex manifold X = (M, J ) given by the nilmanifold M endowed with
the induced complex structure J .

The natural map ι : H •,•(g, J ) −→ H •,•
∂̄

(X) from the Dolbeault cohomology
of left-invariant forms to the usual Dolbeault cohomology of X = (M, J ) is always
injective.Moreover, themap ι has been proved to be an isomorphism in the following
cases:

• J is complex parallelizable [11];
• g admits a principal torus bundle series with respect to J [2, 3];
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• g admits a stable torus bundle series [7–9];
• the complex nilmanifold X is suitably foliated in toroidal groups [4];
• the complex structure J is nilpotent [10] (more generally, the holomorphic tangent
bundle of X has a complex nilpotent frame).

These results require that (g, J ) satisfies some special algebraic properties, which
vary for the different cases above. In this short note we focus on one of the hypotheses
in the main result of Fino, Rollenske and Ruppenthal [4]: the existence of a non-
trivial Abelian J -invariant ideal f in the nilpotent Lie algebra g. Concretely, we prove
the following two propositions.

Proposition 1 Let g be a nilpotent Lie algebra endowed with a complex structure
J . Then, g has a non-trivial Abelian J -invariant ideal in the following cases:

• the complex structure J is quasi-nilpotent;
• the Lie algebra g has dimension ≤ 6.

This result implies that there exist many nilpotent Lie algebras with complex
structures having such an ideal. In particular, a complex structure on any 2-step
nilpotent Lie algebra is (quasi-)nilpotent [7, Proposition 3.3]. However, we have

Proposition 2 There is an 8-dimensional nilpotent Lie algebra g such that, for any
complex structure J on g, the only Abelian J -invariant ideal in g is the trivial one.

To our knowledge, this seems to be the first example in the literature of such
behaviour. In view of these propositions and the role that Abelian J -invariant ideals
play in [4], we ask the following question:

Which nilpotent Lie algebras g admit complex structures J having a non-trivial
Abelian J -invariant ideal?

This note is structured as follows. In Sect. 2 we recall the main definitions about
Lie algebras with complex structures and prove Proposition 1. Section 3 is devoted
to the proof of Proposition 2.

2 Complex Structures on Nilpotent Lie Algebras

Let g be a real Lie algebra of dimension 2n. An almost complex structure on g is
an endomorphism J : g −→ g such that J 2 = −Id. If J additionally satisfies the
integrability condition

NJ (X,Y ) := [X,Y ] + J [J X,Y ] + J [X, JY ] − [J X, JY ] = 0, (1)

for all X,Y ∈ g, then J is called a complex structure.
Let gC∗ be the dual of the complexification gC of g, and denote by d : ∧∗ gC∗ −→∧∗+1 gC

∗ the extension of the usual Chevalley-Eilenberg differential to the complex-
ified exterior algebra. Given an almost complex structure J on g, there is a natural
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bigraduation induced by J on
∧∗ gC

∗ = ⊕
p,q

∧p,q
J (g∗), where the space

∧1,0
J (g∗),

resp.
∧0,1

J (g∗), is the eigenspace of the eigenvalue i , resp. −i , of J as an endomor-
phism of gC∗. The integrability condition (1) is equivalent to

π0,2 ◦ d|∧1,0
J (g∗) ≡ 0, (2)

where π0,2 : ∧2 gC
∗ −→ ∧0,2

J (g∗) denotes the canonical projection.
Hence, a pair (g, J ) consisting of a Lie algebra g and a complex structure J on g

can be defined just by taking equations of the form

dωk =
∑

1≤r<s≤n

Ak
rs ωrs +

∑

1≤r,s≤n

Bk
rs̄ ωr s̄, 1 ≤ k ≤ n, (3)

where we declare {ωk}nk=1 to be a basis of
∧1,0

J (g∗). Here, Ak
r s, B

k
r s̄ are complex

coefficients and the Eqs. (3) satisfy d ◦ d = 0 (which is equivalent to the Jacobi
identity).Moreover,ωrs , resp.ωrs , denotes thewedge productωr ∧ ωs , resp.ωr ∧ ωs ,
where ωs is the complex conjugate of ωs .

When g is a nilpotent Lie algebra (NLA for short), there is a stronger character-
ization provided by Salamon in [12]: J is a complex structure on g if and only if∧1,0

J (g∗) has a basis {ωk}nk=1 such that

dω1 = 0 and dωk ∈ I(ω1, . . . ,ωk−1), for k = 2, . . . , n,

where I(ω1, . . . ,ωk−1) is the ideal in
∧∗ gC∗ generated by {ω1, . . . ,ωk−1}. More-

over, if there exists a basis {ωk}nk=1 for
∧1,0

J (g∗) satisfying dω1 = 0 and

dωk ∈
∧

2 〈ω1, . . . ,ωk−1,ω1, . . . ,ωk−1〉, for k = 2, . . . , n,

then the complex structure J is called nilpotent. These complex structures were
first introduced and studied in [3]. They are characterized by the fact that the
series {al(J )}l≥0, defined by a0(J ) = {0} and

al(J ) = {X ∈ g | [X, g] ⊆ al−1(J ) and [J X, g] ⊆ al−1(J )}, for l ≥ 1,

satisfies al(J ) = g for some positive integer l.
Observe that in general every al(J ) is a J -invariant ideal in g, possibly zero if the

complex structure J is not nilpotent. In fact, the ideal a1(J ) is the largest subspace
of the center of the NLA g that is J -invariant.

Definition 1 ([5])A complex structure J is said to be quasi-nilpotent if a1(J ) = {0}.
Otherwise, J is called strongly non-nilpotent (SnN for short).

It is clear from the definitions above that any nilpotent complex structure is quasi-
nilpotent.



512 A. Latorre and L. Ugarte

Let {Zk, Z̄k}nk=1 be the complex basis for gC dual to the basis {ωk,ωk̄}nk=1. The
brackets [Zr , Zs], [Zr , Z̄s] and [Z̄r , Z̄s] can be directly computed from (3) and their
complex conjugate equations by using the well-known formula

ψ([W, T ]) = −dψ(W, T ), (4)

for any W, T ∈ gC and ψ ∈ gC
∗. We will also consider the J -adapted real basis for

g given by {Xk = Zk + Z̄k, J Xk = i (Zk − Z̄k)}nk=1.

Proof of Proposition 1 For the first part, it is clear by definition that if J is quasi-
nilpotent then f = a1(J ) is a non-trivial J -invariant ideal in g. To get the result, it
suffices to recall that a1(J ) is a subspace of the center of g.

For the second part, we first observe that any complex structure J on an NLA
g of dimension ≤ 4 is nilpotent. In real dimension 6 all the complex structures are
either nilpotent or SnN. Indeed, the SnN complex structures only exist on the NLAs
labelled as h−

19 and h
+
26 in [13]. Furthermore, there are exactly four complex structures

(up to isomorphism) on these two NLAs (see for instance [1]), parametrized by the
complex equations:

(gδ, J±) : dω1 = 0, dω2 = ω13 + ω13̄, dω3 = i δ ω11̄ ± i(ω12̄ − ω21̄),

where δ ∈ {0, 1}. For δ = 0 the Lie algebra g0 is isomorphic to h−
19, and for δ = 1

the Lie algebra g1 is isomorphic to h+
26.

Let {Zk, Z̄k}3k=1 be the complex basis for (gδ)C dual to {ωk,ωk̄}3k=1, and consider
the J±-adapted real basis {Yk = Zk + Z̄k, J±Yk = i (Zk − Z̄k)}3k=1 for the NLA gδ .
From the complex structure equations above and (4), we get the following non-zero
brackets:

[Y1,Y2] = ∓J±Y3, [Y1,Y3] = −2 Y2, [Y1, J±Y1] = −2δ Y3,
[Y3, J±Y1] = 2 J±Y2, [J±Y1, J±Y2] = ∓2 J±Y3.

Therefore, we have that
f = 〈Y2, J±Y2,Y3, J±Y3〉

is a J±-invariant ideal in the corresponding Lie algebra gδ . Note that f is clearly
Abelian. �

Remark 1 In [7, Theorem 4.4], it is proved that the NLAs h−
19 and h

+
26 admit a stable

torus bundle series; in particular, it is proved that there are certain J -invariant ideals
for any J . One can check that those ideals are Abelian.
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3 Proof of Proposition 2

According to Sect. 2, the complex structure equations

dω1 = 0, dω2 = ω14 + ω14̄, dω3 = i (ω24 + ω24̄), dω4 = −ω22̄ + i (ω13̄ − ω31̄),

define a pair (g, J ) consisting of a Lie algebra g endowedwith a complex structure J .
In fact, these equations satisfy (2) as well as the Jacobi identity condition d ◦ d = 0.
Let {Zk, Z̄k}4k=1 be the complex basis for gC dual to {ωk,ωk̄}4k=1, and let {Xk =
Zk + Z̄k, J Xk = i (Zk − Z̄k)}4k=1 be the J -adapted real basis for g. Using (4) one
can check that the non-zero Lie brackets of the elements in this basis are

[X1, X3] = −2 J X4,

[X1, X4] = −2 X2,

[X2, X4] = −2 J X3.

[X2, J X2] = −2 J X4,

[X4, J X1] = 2 J X2,

[X4, J X2] = −2 X3,

[J X1, J X3] = −2 J X4,

(5)

We look for Abelian J -invariant ideals f in the Lie algebra g. Any element Y ∈ g
can be written, in terms of the real basis above, as

Y =
4∑

k=1

(
ak Xk + bk J Xk

)
, for some ak, bk ∈ R. (6)

Using (5), one can easily compute

[Y, X1] = 2
(
a4 X2 + a3 J X4

)
, [Y, J X1] = 2

(
a4 J X2 + b3 J X4

)
,

[Y, X2] = 2
(
a4 J X3 + b2 J X4

)
, [Y, J X2] = −2

(
a4 X3 + a2 J X4

)
,

[Y, X3] = −2 a1 J X4, [Y, J X3] = −2 b1 J X4,

[Y, X4] = −2
(
a1 X2 − b2 X3 + b1 J X2 + a2 J X3

)
, [Y, J X4] = 0.

(7)

Wefirst observe that anynon-zero J -invariant idealI ing (not necessarilyAbelian)
must contain X4 and J X4. Indeed, let us suppose that there exists a J -invariant
ideal I in g such that X4, J X4 /∈ I. Then, any element Y ∈ I is given by (6) with
a4 = b4 = 0. Since [Y,U ] ∈ I for any U ∈ g, the brackets (7) immediately give
a1 = b1 = a2 = b2 = a3 = b3 = 0. Therefore, I = {0}.

Now, if I is a non-zero J -invariant ideal in g then X4, J X4 ∈ I, and thus
[X4,U ] and [J X4,U ] ∈ I for any U ∈ g. Consequently, one has from (5) that
X2, J X2, X3, J X3 ∈ I. Note that X1 and J X1 could also belong to I, but then
I = g. Therefore, the only non-trivial J -invariant ideal in g is

I = 〈X2, J X2, X3, J X3, X4, J X4〉.

This ideal is clearly nonAbelian due to (5). Hence, we conclude that the only Abelian
J -invariant ideal in g is the trivial one, i.e. f = {0}.
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It remains to show that the same property holds for any complex structure on the
NLA g. For this, we first consider the real basis {E1, . . . , E8} for g obtained from
the J -adapted real basis above by reordering and rescaling its generators as follows:

E1 = 2X1, E2 = 2J X1, E3 = 1
2 X4, E4 = 2X2,

E5 = 2J X2, E6 = 2X3, E7 = 2J X3, E8 = 8J X4.

By (5), the non-zero brackets of the elements in this basis are

[E1, E3] = −E4, [E2, E3] = −E5, [E3, E5] = −E6, [E3, E4] = E7,

[E1, E6] = [E2, E7] = [E4, E5] = −E8.

Note that the Lie algebra is rational, and the center of g is generated by E8, so
any complex structure on g is SnN. Complex structures on 8-dimensional nilpotent
Lie algebras with one-dimensional center are classified in [6]. Using (4) one can see
that g is isomorphic to the Lie algebra labelled as g09 in [6, Theorem 1.2]. Moreover,
it is proved that there is only one (up to isomorphism) complex structure on g09 (see
Appendix B in [6] for details).

In conclusion, for any complex structure J on g the only Abelian J -invariant ideal
in g is the zero one. This completes the proof of Proposition 2.
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The Dihedral Dunkl–Dirac Symmetry
Algebra with Negative Clifford Signature

Alexis Langlois-Rémillard

Abstract The Dunkl–Dirac symmetry algebra is an associative subalgebra of the
tensor product of a Clifford algebra and the faithful polynomial representation of a
rational Cherednik algebra. In previous work, the finite-dimensional representations
of the Dunkl–Dirac symmetry algebra in three dimensions linked with a dihedral
group were given. We give here the necessary results to proceed to the same con-
struction when the Clifford algebra in the tensor product has negative signature.

Keywords Dunkl operator · Dunkl–Dirac equation · Symmetry algebra · Total
angular momentum algebra · Dihedral root systems

1 Introduction

Dunkl operators [3] generalise partial derivatives by introducing terms related to a
reflection groupW ⊂ O(N ), its associated root system R, and a function κ : R → C

invariant on the W -orbits. Together with the multiplication operators and the group
algebraC[W ], they generate an associative algebraAκ that is the faithful polynomial
representation of a rational Cherednik algebra [4]. Given a Clifford algebra Cl(N ),
there is an osp(1|2)-realisation inside the tensor product Aκ ⊗ Cl(N ) generated by
the Dunkl–Dirac operator obtained by changing the partial derivatives by Dunkl
operators and its dual symbol. The symmetry algebra SA linked to a family of
osp(1|2)-realisations containing the Dunkl realisation mentioned was characterised
abstractly in [1], and it was shown in [6] that it is the full osp(1|2)-supercentraliser.
The representation theory of these algebras is only known for a few specific cases.

In a recent article [2], we constructed the finite-dimensional representations of the
dihedral Dunkl–Dirac symmetry algebraSAm ⊂ Aκ ⊗ Cl(3), that is, the symmetry
algebra of the osp(1|2)-realisation linked to the group W = Z2 × D2m acting on
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the three-dimensional Euclidean space. A pair of ladder operators behaving nicely
under the action of the double covering ˜W of the group W was instrumental to this.
As the construction was rather involved, only the case when the Clifford algebra
had positive signature was considered, that is when the generators e1, e2, e3 square
to 1. The goal of this short contribution is to give the needed results to proceed to
the same construction in the case when the Clifford algebra has negative signature,
that is e1, e2, e3 square to −1. To help compare, the sign introduced is given as
ε ∈ {−1,+1}. We study thus here the algebra SAε

m ⊂ Aκ ⊗ Clε(3). The complete
classification of the finite-dimensional representations is long and would greatly
exceed the allowed space, we refer the readers to [2] for its details. We believe
this contribution could be of help for interested readers who want to translate our
results, since both conventions for Clifford algebras coexist and the two lead to non-
isomorphic real Clifford algebras; multiplication of the generators by i gives the
correspondence for complex Clifford algebras.

In Sect. 2 we present the general result needed for the construction. Proposition 1
gives the commutation relations respected by the algebra, where a small sign change
appears. Proposition 2 compares the Casimir of the osp(1|2) superalgebra with cen-
tral elements of SAε

m , and two signs appear. As a consequence, the factorisation of
the ladder operators changes slightly as shown in Proposition 5. The remaining steps
of the construction of the finite-dimensional representations are then presented in
Sect. 3.

2 The Dihedral Dunkl–Dirac Symmetry Algebra

In this sectionwe present the necessary definitions and results on the dihedral Dunkl–
Dirac symmetry algebra. We refer the readers to [2, Sects. 2 and 3] for more details,
bearing in mind that ε = +1 there.

We consider the Euclidean space R
3 with coordinate vectors ξ1, ξ2, ξ3 and its

canonical bilinear form 〈−,−〉. Let W = Z2 × D2m . Its root system R is

R = {α0 := (0, 0, 1),−α0, α j := (sin( jπ/m),− cos( jπ/m), 0) | 1 ≤ j ≤ 2m}.
(1)

The positive root system is R+ = {α0, α1, . . . , αm} and the simple roots are given
by α0, α1 and αm . The related reflections σα(x) := x − 2〈x, α〉/〈α, α〉 are given in
matrix form by

σ0 := σα0 =
⎛

⎝

1 0 0
0 1 0
0 0 −1

⎞

⎠ , σ j := σα j =
⎛

⎝

cos(2 jπ/m) sin(2 jπ/m) 0
− sin(2 jπ/m) cos(2 jπ/m) 0

0 0 1

⎞

⎠ . (2)
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Let κ : R → C be a function invariant on the W -orbits. The Dunkl operators are

D j f (x) := ∂x j f (x) +
∑

α∈R+
κ(α)

f (x) − f (σα(x))

〈x, α〉
〈

α, ξ j
〉

. (3)

The Dunkl operators, the group algebra C[W ] and the multiplication operators gen-
erate a faithful representation denoted Aκ of a rational Cherednik algebra.

Let ε ∈ {−1,+1} be a sign and Clε(3) be the Clifford algebra generated by the
three anticommuting elements e1, e2, e3 subject to

{e j , ek} = 2εδi j . (4)

There is an osp(1|2)-realisation given by the Dunkl–Dirac operatorD and its dual
symbol x in the tensor product Aκ ⊗ Clε(3):

D = D1e1 + D2e2 + D3e3, x = x1e1 + x2e2 + x3e3. (5)

We are interested in the elements of Aκ ⊗ Cl(3) supercommuting with the
osp(1|2)-realisation, obtained in previous work [1]. First, the following elements
in W ⊗ Clε(3) anticommute with D and x :

σ̃α = σα ⊗
3

∑

j=1

〈α, ξ j 〉e j . (6)

They generate a group that is isomorphic to either one of the two possible central
extensions of W denoted by ˜W ε [5]. The simple roots become σ̃0 := σ̃α0 , σ̃1 := σ̃α1 ,
σ̃m := σ̃α1 and they respect the following relations depending on the parity of m and
the value of ε:

σ̃ 2
j = ε, (̃σ0σ̃m)2 = −1, (̃σ1σ̃m)m = (−1)m+1εm . (7)

The following linear combinations, called one-index symmetries, of C[W ] ⊗
Clε(3) are distinguished:

Oj =
m

∑

k=0

κ(αk)〈αk, ξ j 〉̃σαk = ε

2
([D, xi ] − ei ) = ε

2

(

∑

k=1

ek[Dk, x j ] − e j

)

. (8)

Defining Li j := xiD j − x jDi , the following elements, named the two-index symme-
tries, commute with D and x



518 A. Langlois-Rémillard

Oi j := Li j + ε

2
ei e j + Oie j − Ojei , (9)

= Li j + ε

2
ei e j + ei O j − e j Oi . (10)

The final symmetry is named three-index symmetry and is given by

O123 = −ε

2
e1e2e3 − O1e2e3 − O2e3e1 − O3e1e2 + O12e3 + O31e2 + O23e1,

(11)

= −ε

2
e1e2e3 − e2e3O1 − e3e1O2 − e1e2O3 + e3O12 + e2O31 + e1O23.

(12)

Definition 1 The dihedral Dunkl–Dirac symmetry algebra SAε
m is the associative

subalgebra ofAκ ⊗ Clε(3) generated by O12, O31, O23, O123 and the group algebra
C[ ˜W ε].
It is the full centraliser of the osp(1|2)-realisation [6].
Proposition 1 The element O123 commutes with every element of SAε

m; the two-
index symmetries respect

[O12, O31] = O23 + 2O1O123 + ε[O2, O3],
[O23, O12] = O31 + 2O2O123 + ε[O3, O1],
[O31, O23] = O12 + 2O3O123 + ε[O1, O2],

(13)

and the elements of ˜W ε interact as

σ̃0O12 = O12σ̃0, σ̃ j O12 = −O12σ̃ j ,

σ̃0O31 = −O31σ̃0, σ̃ j O31 = (cos(2 jπ/m)O31 + sin(2 jπ/m)O23)̃σ j ,

σ̃0O23 = −O23σ̃0, σ̃ j O23 = (− cos(2 jπ/m)O31 + sin(2 jπ/m)O23)̃σ j .

(14)

Proof The relations (13) come from [1, Theorem 3.12]. For (14), remark that it is
equivalent to consider σk Li j by the definition (9) of Oi j and that (6) of σ̃ j . Then only
σ̃ j O12 is not direct, and we get:

σ j L12 = σ j (x1D2 − x2D1) = (sin2(2 jπ/m) + cos2(2 jπ/m))L21σ j = −L12σ j .

Working out the remaining terms of (9) gives the rest. �
We are interested in the representation theory of SAε

m . The construction uses
ladder operators, and their factorisations in turn follow from the next proposition.

Proposition 2 The three-index symmetry squares to

O2
123 = −ε

4
+ O2

1 + O2
2 + O2

3 + ε(O2
12 + O2

31 + O2
23). (15)
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Proof Express O2
123 as the product of the two expressions (11) and (12)

O2
123 =

(

−ε

2
e1e2e3 − O1e2e3 − O2e3e1 − O3e1e2 + O12e3 + O31e2 + O23e1

)

×
(

− ε

2
e1e2e3 − e2e3O1 − e3e1O2 − e1e2O3 + e3O12 + e2O31 + e1O23

= −ε

4
− O2

1 − O2
2 − O2

3 + ε(O2
12 + O2

31 + O2
23

)

+ Q, (16)

where Q expresses the 42 remaining “cross terms”. We show now that Q = 2(O2
1 +

O2
2 + O2

3 ). Replace in Q all instances of Oi j on the left with (9), and all instances
on the right by (10). For example, the terms below produce 2(O2

1 + O2
2 + O2

3 ) (the
underlined term comes from the two underlined terms in the product)

A = ε((O2e1O12 − O12e1O2) + (O1e3O31 − O31e3O1) + (O3e2O23 − O23e2O3))

= ε
(

O2e1L12 + 1
2O2e2 + εO2

2 − O2e1e2O1 − L12e1O2 + 1
2 e2O2 + O1e1e2O2 + εO2

2

+ O1e3L31 + 1
2O1e1 + εO2

1 + O1e1e3O3 − L31e3O1 + 1
2 e1O1 + O3e3e1O1 + εO2

1

+ O3e2L23 + 1
2O2e3 + εO2

3 + O3e3e2O2 − L23e3O3 + 1
2 e3O3 + O2e2e3O3 + εO2

3

)

= 2ε2(O2
1 + O2

2 + O2
3 ) + B, with B the remaining part.

After doing this procedure for all terms, and further simplifications, one reaches

Q = 2(O2
1 + O2

2 + O2
3 )

+ ε

2

( L12e1e2(ε−e3e1L31−e2e3L23+2εe3O3)+L31e3e1(ε−e1e2L12−e2e3L23+2εe2O2)+L23e2e3(ε−e1e2L12−e3e1L31+2εe1O1)

)

+ ε

2

(

(ε−L31e3e1−L23e2e3+2εO3e3)e1e2L12+(ε−L12e1e2−L23e2e3+2εO2e2)e3e1L31+(ε−L12e1e2−L31e3e1+2εO1e1)e2e3L23

)

.

The last line is zero. To prove this, replace the O j by their last definition (8) in terms of commutators
Ckj := [Dk , x j ] and apply the following identity [1, Thm 2.5]

Li j Lkl + Lki L jl + L jk Lil = Li jCkl + LkiC jl + L jkCil , (17)

keeping in mind that Lii = 0, Li j = −L ji and Ci j = C ji . �

This proposition yields in fact a correspondence between the Casimir of the Lie
algebra osp(1|2) and a central element in the symmetry algebra. Similar statements
hold for any reflection group in any dimension, see [6].

The finite-dimensional representations are constructed via ladder operators. In the
classical non-Dunkl case, the ladder operators for the so(3) algebra are given by the
following linear combinations of the two-index symmetries:

O0 := −i O12, O+ := i O31 + O23, O− := i O31 − O23. (18)

For ease of notation, denote the following combination of one-index symmetries
(note that they vanish when κ = 0):
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T0 := i O3, T+ := O1 + i O2, T− := O1 − i O2. (19)

Proposition 3 The commutation relations respected by O0, O+ and O− are

[O0, O+] = +O+ + {O123, T+} + ε[T0, T+],
[O0, O−] = −O− + {O123, T−} − ε[T0, T−],
[O0, O+] = 2O0 − {O123, T0} + ε[T+, T−],

(20)

and those with T0, T+ and T− are

T0O0 = O0T0, T0O+ = −O+T0, T0O− = −O−T0,
T+O0 = −O0T+, T+O− = −O+T−, T−O+ = O−T+,

T−O0 = −O0T−, T−T0 = −T0T−, T+T0 = −T0T+.

(21)

Proof Use the commutation relations of Proposition 1. �
In this new basis, the following expressions hold.

Proposition 4 The square of the three-index symmetry becomes

O2
123 = −ε

4
+ T+T− − T 2

0 − ε(O2
0 − O0 + O+O− + 2O123T0), (22)

= −ε

4
+ T−T+ − T 2

0 − ε(O2
0 + O0 − O−O+ − 2O123T0). (23)

Furthermore, the following equations hold

O+O− = εT+T− − (O0 − 1/2)2 − ε(εO123 + T0)
2, (24)

O−O+ = εT−T+ − (O0 + 1/2)2 − ε(εO123 − T0)
2. (25)

Proof We prove (22) by directly rewriting from the definitions (18) and (19):

O2
12 = −O2

0 , O2
31 + O2

23 = −O+O− + O0 − 2O123T0 + ε

2
[T+, T−],

O2
3 = T 2

0 , O2
1 + O2

2 = T+T− − 1

2
[T+, T−].

Equation (23) is similar, and the expressions (24) and (25) follow directly. �
Proposition 5 The following operators

L+ := 1

2
{O0, O+} and L− := 1

2
{O0, O−} (26)

are ladder operators with respect to O0 in the sense that

[O0, L+] = +L+, [O0, L−] = −L−, (27)
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and the products of two of them admit the following factorisations

L+L− = −((O0 − 1/2)2 + ε(εO123 + T0)
2)((O0 − 1/2)2 − εT+T−), (28)

L−L+ = −((O0 + 1/2)2 + ε(εO123 − T0)
2)((O0 + 1/2)2 − εT−T+). (29)

Proof That L+ and L− are ladder operators comes from Proposition 3

2[O0, L±] = [O0, {O0, O±}] = {O0, [O0, O±]}
= {O0,±O± + {O123, T±} ± ε[T0, T±]} = ±{O0, O±} = 2L±,

where Eq. (14) was used in the second line. The proof of the factorisation is the same
as [2, Proposition 3.8] using the ε variants of the commutation relations. �

3 Sketch of the Finite-Dimensional Representations
Construction

Everything needed for the construction of the finite-dimensional representations is
in place. Doing it would, however, greatly exceed the scope of this note. We give
below a sketch of the steps needed and refer the readers to [2] for the details.

1. Any finite-dimensionalSAε
m-representation decomposes as a ˜W ε-representation

into a direct sum of spin irreducible ˜W ε-representations by Maschke’s Theorem
(the irreducible representations for these groups can be found in [2, Thm A.5]).
Let ˜W ε

0 be the subgroup of ˜W ε generated by elements commuting with O0. The
associative subalgebra ofSAε

m generated by O0, L+, L−, O123 and ˜W ε
0 has a trian-

gular decomposition.Use this triangular decomposition and the ladder operators to
give a basis of O0- and O123-eigenvectors for any irreducibleSAε

m-representation.
(See [2, Lem. 4.3].)

2. Thus start from a general O0- and O123-eigenbasis. The elements v+
j and v−

j of
this basis are obtained from multiple applications of the ladder operators on a
first pair v+

0 , v−
0 . Use the two factorisations (28) and (29) to create equations

L+v−
j = A( j)v−

j+1 and L−v+
j = A( j)v+

j+1. The terms A( j) will depend on the
first ˜W ε-representation, and on the eigenvalues ofO123 andO0. Then irreducibility
and the finite-dimension give conditions on A( j). (See [2, (4.21)–(4.23)].)

3. Solve the system obtained for the values of the O123- and O0-eigenvalues keeping
track of the conditions on κ . (See [2, (4.28)].)

4. Furthermore, the unitarity of the representations can be studied in the same fashion
by looking at positivity constraints in the A( j). (See [2, Sect. 3.3 and Lem. 4.4].)

Acknowledgements We wish to thank Hendrik De Bie, Roy Oste and Joris Van der Jeugt for
helpful discussions and support. ALR holds scholarships from the Fonds de recherche Nature et
technologies (Québec) 270527 and the Excellence of Science Research Project 30889451. This
support is gratefully acknowledged.



522 A. Langlois-Rémillard

References

1. H. De Bie, R. Oste, J. Van der Jeugt, Lett. Math. Phys. 108, 1905–1953 (2018). https://doi.org/
10.1007/s11005-018-1065-0

2. H. De Bie, A. Langlois-Rémillard, R. Oste, J. Van der Jeugt, J. Algebra. 591, 170–216 (2022).
https://doi.org/10.1016/j.jalgebra.2021.09.025

3. C.F. Dunkl, Trans. Am. Math. Soc. 311, 167–183 (1989). https://doi.org/10.2307/2001022
4. P. Etingof, V. Ginzburg, Invent. math. 147, 243–348 (2002). https://doi.org/10.1007/

s002220100171
5. A.O. Morris, Proc. Lond. Math. Soc. s3-32, 403–420 (1976). https://doi.org/10.1112/plms/s3-

32.3.403
6. R. Oste, Supercentralizers for deformations of the Pin osp dual pair. arXiv:2110.15337

https://doi.org/10.1007/s11005-018-1065-0
https://doi.org/10.1007/s11005-018-1065-0
https://doi.org/10.1016/j.jalgebra.2021.09.025
https://doi.org/10.2307/2001022
https://doi.org/10.1007/s002220100171
https://doi.org/10.1007/s002220100171
https://doi.org/10.1112/plms/s3-32.3.403
https://doi.org/10.1112/plms/s3-32.3.403
http://arxiv.org/abs/2110.15337


Lie Structure on Hopf Algebra
Cohomology

Tekin Karadağ

Abstract We calculate the Gerstenhaber bracket (graded Lie bracket) on Hopf alge-
bra and Hochschild cohomologies of the Taft algebra Tn for any integer n > 2 which
is a nonquasi-triangular Hopf algebra. We show that the bracket is indeed zero on
Hopf algebra cohomology of Tn , as in all known quasi-triangular Hopf algebras. This
example is the first known bracket computation for a nonquasi-triangular Hopf alge-
bra. We also explore a general formula for the bracket on Hopf algebra cohomology
of any Hopf algebra with bijective antipode on the bar resolution that is reminis-
cent of Gerstenhaber’s original formula for Hochschild cohomology [8, Sect. 5]. In
order to find the expression, we use the composition of various isomorphisms and
an embedding from Hopf algebra cohomology into Hochschild cohomology.

Keywords Hochschild cohomology · Hopf algebra cohomology · Gerstenhaber
bracket · Taft algebra

1 Introduction

In 1945, Hochschild introduced homology and cohomology of any associative alge-
bra [7]. Almost two decades later, Gerstenhaber showed that a Hochschild cohomol-
ogy ring is an algebra with an associative product (cup product) and is a Lie alge-
bra with nonassociative Lie bracket (Gerstenhaber bracket) [2]. The Gerstenhaber
bracket is originally defined on bar complex which makes the bracket impossible to
calculate by the definition.

The Gerstenhaber bracket was originally defined on Hochschild cohomology by
Gerstenhaber himself [2, Sect. 1.1] which makes the Hochschild cohomology a G-
algebra together with the cup product. In 1992, M. Gerstenhaber and D. Schack
conjectured that Hopf algebra cohomology has a G-structure as well [3]. Farinati
and Solotar showed that for any Hopf algebra A, Hopf algebra cohomology is a G-
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algebra [1]. In the same year, R. Taillefer used a different approach and solve the same
conjecture [13]. In 2016, Hermann [6, Theorem 6.3.12, Corollary 6.3.15] proved that
the Gerstenhaber bracket on the Hopf algebra cohomology of a quasi-triangular Hopf
algebra is trivial. We use the technique introduced by Negron and Witherspoon [10]
and find the bracket structure on Hochschild cohomology of a Taft algebra which is a
nonquasi-triangularHopf algebra [8, Sect. 4].Moreover, it is known that for anyHopf
algebra with bijective antipode, the Hopf algebra cohomology can be embedded into
the Hochschild cohomology [4]. A Taft algebra also has a bijective antipode. Then,
we consider the Hochschild and Hopf algebra cohomologies of a Taft algebra that
were done by Nguyen [12], find the embedding from the Hopf algebra cohomology
into the Hochschild cohomology, and finally find the corresponding bracket on the
Hopf algebra cohomology of a Taft algebra [8, Sect. 4]. As a result, we show that the
bracket is indeed zero, as in all known quasi-triangular Hopf algebras. This example
is the first known bracket computation on Hopf algebra cohomology of a nonquasi-
triangularHopf algebra.Moreover, it is known that any non-semisimpleHopf algebra
of dimension p2 for a prime p over an algebraically closed field is isomorphic to a
Taft algebra [11, Theorem 6.5]. Hence, on Hopf algebra cohomology of such a Hopf
algebra, the Lie structure is Abelian.

2 Gerstenhaber Bracket on Cohomologies of a Taft Algebra

A Hopf algebra is an algebra over a field k with a coalgebra structure, i.e. it has a
comultiplication, counit and antipode which satisfy coassociativity, counit property
and antipode property. Group algebras, universal enveloping algebras over a Lie
algebra, quantum enveloping algebras, and quantum elementary Abelian groups are
a few examples of Hopf algebras. For n > 2, a Taft algebra is defined as the k-algebra
generated by g and x satisfying the relations : gn = 1, xn = 0 and xg = ωgx where
ω is a primitive nth root of unity. A Taft algebra has also a Hopf algebra structure
with the maps:

• Comultiplication: Δ(g) = g ⊗ g, Δ(x) = 1 ⊗ x + x ⊗ g
• Counit: ε(g) = 1, ε(x) = 0
• Antipode: S(g) = g−1, S(x) = −xg−1.

Aswell as Hochschild cohomology, we also define Hopf algebra cohomology of a
Hopf algebra. It is proved that Hopf algebra cohomology has alsoG-algebra structure
[1, 13], i.e. it has a cup product and a graded Lie bracket which are compatible.
We know that the Lie bracket is trivial when the Hopf algebra is quasi-triangular
[1, 6, 13]. To see the Lie structure on nonquasi-triangular case, we compute the
Gerstenhaber bracket on the Hopf algebra cohomology of a Taft algebra over a field
k of characteristic 0 which is a nonquasi-triangular Hopf algebra [5].

A finite groupG acts by automorphisms on a k-algebra A. The skew group algebra
A � G is A ⊗ kG as a vector space, with the multiplication
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(a1 ⊗ g1)(a2 ⊗ g2) = a1(
g1a2) ⊗ g1g2

where ga represent the action of g on a. A Taft algebra Tn can be seen as a skew
group algebra A � G for A = k[x]/(xn) and G = Z/nZ [5].

2.1 Lie Structure on Hochschild Cohomology of
A = k[x]/(xn)

In order to calculate the bracket on the Hopf algebra cohomology of a Taft algebra
Tn , first, we calculate the bracket on Hochschild cohomology of A. Computing the
bracket on the bar resolution is not an idealmethod. Instead,we consider the following
resolution of A:

A : · · · v.−→ Ae u.−→ Ae v.−→ Ae u.−→ Ae π−→ A −→ 0 (1)

where Ae = A ⊗ Aop, u = x ⊗ 1 − 1 ⊗ x , v = xn−1 ⊗ 1 + xn−2 ⊗ x + · · · + 1 ⊗
xn−1, and π is the multiplication. The following theorem which is the combination
of [10, Theorem 3.2.5] and [10, Lemma 3.4.1] allows us to use the resolution (1) for
the bracket calculation.

Theorem 1 Suppose A

μ→ A is a projective A-bimodule resolution of A that sat-
isfies some hypotheses [10, hypotheses 3.1]. Let φ : A ⊗A A → A be any contract-
ing homotopy for the chain map FA : A ⊗A A → A defined by FA := (μ ⊗A idA −
idA ⊗A μ), i.e.

d(φ) := dAφ + φdA⊗AA = FA. (2)

Then for cocycles f and g in HomAe(A, A), the bracket given by

[ f, g]φ = f ◦φ g − (−1)(| f |−1)(|g|−1)g ◦φ f (3)

where the circle product is

f ◦φ g = f φ(idA ⊗A g ⊗A idA)Δ(2) (4)

agrees with the Gerstenhaber bracket on cohomology.

Wefind the neededmaps φ andΔ in the formula (4) for the resolution (1) [8, (3.3),
(3.4)] and find the bracket structure on Hochschild cohomology of A [8, Sect. 3].
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2.2 Lie Structure on Hochschild Cohomology of a Taft
Algebra

Now, we consider D = Ae
� G which is isomorphic to a subalgebra of T e

n . By
using the resolution A in (1), we derive the resolution Tn ⊗D A of Tn ⊗D A with
Tn ⊗D Ae in each degree. It is known that, Tn ∼= T e

n ⊗D A as Tn-bimodules [14,
Sect. 3.5], which also implies A ⊗ Tn ∼= T e

n ⊗D Ae [8, (4.2)]. Then, the resolution
Tn ⊗D A of Tn ⊗D A turns into the following resolution of Tn:

Ã : · · · ũ.−→ A ⊗ Tn
ṽ.−→ A ⊗ Tn

ũ.−→ A ⊗ Tn
π̃.−→ Tn −→ 0 (5)

where ṽ = v ⊗ idkG, ũ = u ⊗ idkG , and π̃ = π ⊗ idkG .
Next, we find the neededmaps φ̃ and Δ̃ [8, Lemmas 4.6, 4.10], use the formula (3)

and calculate the bracket on Hochschild cohomology of Tn for degree 1 and degree
2 elements ( f̃xgi and f̃g j , respectively) as follows [8, Sect. 4]:

[ f̃xgi , f̃xg j ] = 0, [ f̃xgi , f̃g j ] =
{−(n − 2)g j , i = 0

(ω−i + 1)gi+ j , i �= 0
, [ f̃gi , f̃g j ] = 0. (6)

By the relation between the bracket and the cup product, brackets in higher degrees
can be determined, since the Hochschild cohomology is generated as an algebra
under cup product in degrees 1 and 2.

2.3 Lie Structure on Hopf Algebra Cohomology of a Taft
Algebra

It is known that the Hopf algebra cohomology of a Hopf algebra with a bijective
antipode can be embedded into Hochschild cohomology of the algebra [4]. Since
all finite dimensional Hopf algebras and many known infinite dimensional Hopf
algebras have a bijective antipode, the condition on the Hopf algebras is not too
restrictive.

ATaft algebra is aHopf algebrawith a bijective antipode as it is finite dimensional.
Hence there is an embedding from the Hopf algebra cohomology to Hochschild
cohomology of Tn . The Hopf algebra and Hochschild cohomologies of Tn were
calculated in [12, Sect. 8] as follows:

Hn(Tn, k) =
{
k if n is even,

0 if n is odd,
HHn(Tn) =

{
k if n is even,

Spank{x} if n is odd.
(7)

We summarize all the work in this section with the following theorem:
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Theorem 2 The graded Lie algebra structure on Hopf algebra cohomology of a Taft
algebra is Abelian.

Proof Since a Taft algebra is finite dimensional, it has a bijective antipode. Then,
the Hopf algebra cohomology of Tn can be embedded into Hochschild cohomology
of Tn [4]. The Hochschild and Hopf algebra cohomologies of Tn in (7) implies that
the embedding is identity in even degrees and zero map in odd degrees. The even
degree elements in HH∗(Tn) is in form fgi and the bracket for degree 2 elements is
[ f̃gi , f̃g j ] = 0 by (6). This implies the bracket for any two even degree elements is also
0 as the bracket of higher even degree elements is determined by bracket of degree 2
elements. Therefore, the corresponding bracket on Hopf algebra cohomology of Tn
is 0.

This example is the first known bracket computation for a nonquasi-triangular
algebra. Later, the author and S. Witherspoon obtains the same result by using a
homotopy lifting technique [9, Sect. 5].

The following is a direct result of Theorem 2 and [11, Theorem 6.5]:

Corollary 1 Let A be a non-semisimple Hopf algebra of dimension p2 for a prime
p over an algebraically closed field. Then the bracket structure on the Hopf algebra
cohomology of A is Abelian.

3 Gerstenhaber Bracket for Hopf Algebras

As it is mentioned before, the Gerstenhaber bracket is defined on Hochschild coho-
mology via the bar resolution. However, for a Hopf algebra with a bijective antipode,
weknow that there is an embedding from theHopf algebra cohomology toHochschild
cohomology. To explore a bracket formula on the Hopf algebra cohomology, we take
the following resolution which is the bar resolution of k [8, Lemma 5.1]:

P• : · · · d3−→ A⊗3 d2−→ A⊗2 d1−→ A
ε−→ k −→ 0.

Then, we find an equivalent formula for the bracket on Hochschild cohomology.
Then, we use the isomorphism in the proof of the Eckmann-Shapiro lemma [8,
Lemma 5.3] with the embedding in [14, Theorem 9.4.5] and give a new bracket
formula for the Hopf algebra cohomology [8, Sect. 5]:

[ f, g] = ε∗(η∗( f ) ◦ η∗(g)) − (−1)(m−1)(n−1)ε∗(η∗(g) ◦ η∗( f )) (8)

where f ∈ HomA(Pm, k), g ∈ HomA(Pn, k), the unit map η∗ : HomA(P•, k) →
HomA(P•, Aad), the counit map ε∗ : HomA(P•, A) → HomA(P•, k), and
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ε∗((η∗( f ) ◦ η∗(g))(1 ⊗ c1 ⊗ c2 ⊗ · · · ⊗ cm+n−1)) = ε
( ∑ m∑

i=1

(−1)(n−1)(i−1)

η( f (1 ⊗ c11 ⊗ c21 ⊗ · · · ⊗ ci−1
1 ⊗ c∗

1 ⊗ ci+n
1 ⊗ · · · ⊗ cm+n−1

1 ))

c12c
2
2 · · · ci−1

2 c∗
2c

i+n
2 · · · cm+n−1

2 S(c13c
2
3 · · · cm+n−1

3 )
)

with

Δ(c∗) =
∑

c∗
1 ⊗ c∗

2 and

c∗ =
∑

η(g(1 ⊗ ci1 ⊗ ci+1
1 ⊗ · · · ⊗ ci+n−1

1 ))ci2c
i+1
2 · · · ci+n−1

2 .

Therefore, the formula in (8) is a general expression of the Gerstenhaber bracket
on a Hopf algebra cohomology which is indeed inherited from the formula of the
bracket on Hochschild cohomology.

We lastly need to point that, the definition in (8) on Hopf algebra cohomology
of a Hopf algebra can be considered as a similar definition of M. Gerstenhaber’s
original bracket formula onHochschild cohomology of an algebra. Unfortunately, we
cannot use Gerstenhaber’s definition to calculate the bracket structure on Hochschild
cohomology of an algebra. Similarly, we cannot use the formula in (8) to calculate
the bracket structure on Hopf algebra cohomology of a Hopf algebra. However, (8)
gives us a general expression of the bracket on the Hopf algebra cohomology.
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Filtration Associated to an Abelian Inner
Ideal and the Speciality of the
Subquotient of a Lie Algebra

Esther García, Miguel Gómez Lozano, and Rubén Muñoz Alcázar

Abstract For any abelian inner ideal B of a Lie algebra L such that [B,KerL B]n ⊆
B for some n ∈ Nwe build a bounded filtration {Fi }i∈Z whose first nonzero termF−n

is B,Fn−1 = KerL B andFn = L . The extremes of the inducedZ-graded Lie algebra
L̂ = F−n ⊕ F−n+1/F−n ⊕ ... ⊕ Fn/Fn−1 are the Jordan pair V = (F−n, Fn/Fn−1)

and coincide with the subquotient (B, L/KerL B). Thanks to this filtration, we can
prove that when a Lie algebra L is strongly prime and KerL B is not a subalgebra of
L , then subquotient (B, L/KerL B) is a special strongly prime Jordan pair.

Keywords Lie algebra · Inner ideal · Filtration · Jordan pair · Subquotient ·
Speciality

1 Preliminaries

Throughout this chapter we are going to introduce definitions and results which are
necessary for the development of subsequent sections.

By a ring of scalars � we understand an associative, commutative and unitary
ring. We will be deal with Lie algebras L , associative algebras R and linear Jordan
pairs V over a ring of scalars � containing 1

2 and 1
3 . As usual, [x, y] will denote

the Lie bracket of two elements x, y of L , and the product of elements of R will be
written by juxtaposition. Any associative algebra R gives rise to a Lie algebra R(−)

with Lie bracket [x, y] := xy − yx , for all x, y ∈ R. If R has an involution ∗ we
will consider the Lie subalgebra Skew(R, ∗) = {x ∈ R | x∗ = −x} of R(−). Jordan
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triple products of a Jordan pair V = (V+, V−) will be written by {x, y, z} for any
x, z ∈ V σ , y ∈ V−σ , σ = ±. The reader is referred to [1, 2] and [4] for basic results,
notation and terminology on Lie algebras and Jordan pairs.

Definition 1 A �-module B of a Lie algebra L is called an abelian inner ideal if
[B, B] = 0 and [B, [B, L]] ⊆ B. The kernel of an abelian inner ideal is

KerL B = {x ∈ L | [B, [B, x]] = 0}

Associated to an abelian inner ideal B of L we can consider the subquotient
(B, L/KerL B), which is a linear Jordan pair with products

{b1, x̄, b2} = [[b1, x], b2] {x̄, b1, ȳ} = [[x, b1], y]

for every b1, b2 ∈ B and every x̄, ȳ ∈ L/KerL B, see [7, 3.2].

Definition 2 Let � be a ring of scalars and let L be a Lie algebra over �. For each
x ∈ L , we define the linear map adx : L −→ L as adx (y) := [x, y] for every y ∈ L .
We will say that L is a nondegenerate Lie algebra if, for every x ∈ L such that
ad2x (L) = 0, then x = 0. An element x in a Lie algebra L is called a Jordan element
of L if ad3x (L) = 0.

Definition 3 Let L be a Lie algebra. A finite Z-grading is a non-trivial Z-grading of
L such that the support supp L = {m ∈ Z | Lm �= 0} is finite. In this case L = L−n ⊕
L−(n−1) ⊕ . . . ⊕ L0 ⊕ . . . ⊕ Ln−1 ⊕ Ln for some positive integer n. If L−n + Ln �=
0, we will call such a grading a (2n + 1)-grading. Note that if L is nondegenerate
then both L−n and Ln are non-zero. If L = L−n ⊕ . . . ⊕ Ln is a (2n + 1)-graded Lie
algebra, then V = (L−n, Ln) is a Jordan pair with products {x, y, z} = [[x, y], z]
and {y, x, t} = [[y, x], t] for every x, z ∈ L−n and every y, t ∈ Ln , which is called
the associated Jordan pair of L .

Definition 4 Let L be a Lie algebra over �. A Z-filtration {Fi }i∈Z is a chain of
submodules of L . . . ⊂ F−2 ⊂ F−1 ⊂ F0 ⊂ F1 ⊂ F2 ⊂ . . . such that [Fi ,F j ] ⊂
Fi+ j for every i, j ∈ Z. A Z-filtration {Fi }i∈Z is bounded if there exist n,m ∈ Z,
with n < m, such thatFi = 0 for every i ≤ n andF j = L for every j ≥ m. If {Fi }i∈Z
is a Z-filtration of a Lie algebra L over �, we can consider the �-module

L̂ = . . . ⊕ Fi−1/Fi−2
︸ ︷︷ ︸

L̂ i−1

⊕Fi/Fi−1
︸ ︷︷ ︸

L̂ i

⊕Fi+1/Fi
︸ ︷︷ ︸

L̂ i+1

⊕ . . . (�)

with product [x̄, ȳ] = [x, y] ∈ Fi+ j/Fi+ j−1 for every x̄ = x + Fi−1 ∈ Fi/Fi−1 and
every ȳ = y + F j−1 ∈ F j/F j−1. Thereby L̂ has structure of Z-graded Lie algebra
and it is called the induced graded Lie algebra (see [5, p. 351]).

Definition 5 An associative algebra R is semiprime if, for every nonzero ideal I of
R, I 2 �= 0, and it is prime if I J �= 0 for every pair of nonzero ideals I, J of R. If R
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is an associative algebra with involution ∗, we say that and ideal I of R is an ∗-ideal
if y∗ ∈ I for every y ∈ I , and we say that R is ∗-prime if I J �= 0 for every nonzero
∗-ideals I, I of R.

The extended centroid of R will be denoted by C(R) (see [3, Sect. 2.3] for its
definition andmain properties).When R is semiprime,C(R) is vonNeumann regular,
andwhen R is prime,C(R) is a field. The central closure of R is R̂ = C(R) + C(R)R
and R is centrally closed if it coincides with its central closure. When R has an
involution ∗, this involution extends to C(R) and to R̂. If R is a prime associative
algebra with involution ∗, the involution is of the first kind when every element in
C(R) is symmetric with respect to ∗, and it is of the second kind if there are nonzero
skew-symmetric elements in C(R).

A Lie algebra L is said to be prime if [I, J ] �= 0 for every nonzero ideals I, J of
L . If L is prime and nondegenerate, we say that L is a strongly prime Lie algebra.
By [8, Theorem 1.6], we know that L is a strongly prime Lie algebra if and only if
for every x, y ∈ L such that [x, [y, L]] = 0, we have that x = 0 or y = 0.

Definition 6 An associative pair over a ring of scalars � is a pair A = (A+, A−) of
�-modules with a triple product such that uv(xyz) = u(vxy)z = (uvx)yz for every
x, z, u ∈ Aσ and every y, v ∈ A−σ , where σ = ±.

Example 1 If X and Y are two �-modules over a ring of scalars �, then the pair
V = (Hom�(X,Y ),Hom�(Y, X)) with triple product f1g1 f2 and g1 f1g2 for every
f1, f2 ∈ Hom�(X,Y ) and for every g1, g2 ∈ Hom�(Y, X), is an associative pair.

If A = (A+, A−) is an associative pair over a ring of scalars�, then the pair of�-
modules (A+, A−) with products {x, y, z} = xyz + zyx and {y, x, t} = yxt + t xy
for every x, z ∈ Aσ and for every y, t ∈ A−σ , σ = ±, is a Jordan pair denoted by
(A+, A−)(+).

Definition 7 Let � be a ring of scalars an let V = (V+, V−) be a Jordan pair over
�. We say that V is special if is a subpair of the Jordan pair A = (A+, A−)(+) for
some associative pair A = (A+, A−) over �.

Example 2 Let X and Y be two modules over a ring of scalars �. Then the Jordan
pair V = (Hom�(X,Y ),Hom�(Y, X))(+) is special.

2 Filtration Associated to an Abelian Inner Ideal

In this section we will construct a filtration associated to an abelian inner ideal. If
B is an abelian inner ideal of a Lie algebra L such that [B,KerL B]n ⊂ B for some
n ∈ N, we will show that B induces a bounded filtration of L starting on B andwhose
second last submodule coincides with KerL B.

In [9, Theorem 1.2] a bounded filtration from −2 to 2 associated to a Jordan
element was built. Generalizing this idea, given an abelian inner ideal B of a Lie
algebra L, we are going to construct a bounded filtration of L associated to B.
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Theorem 1 ([6, Theorem 3.1]) Let L be a Lie algebra and let B be an abelian inner
ideal of L. Let us suppose that there exists n ∈ N such that [B,KerL B]n ⊆ B. Then
the chain

· · · ⊂ F−n ⊂ F−n+1 ⊂ · · · ⊂ F0 ⊂ · · · ⊂ Fn−1 ⊂ Fn ⊂ . . . ,

where F−m := {0} and Fm := L for every m ≥ n, and

F−n : = B, F−k := [B,KerL B]k + B for k = 1, . . . , n − 1,

F0 : = {x ∈ L | [x, B] ⊆ B}
Fs : = adn−s−1

[B,KerL B](KerL B) + F0 for s = 1, . . . , n − 1, Fn := L

is a bounded filtration of L.

Remark 1 The graded Lie algebra induced by this filtration L̂ = F−n ⊕ F−n+1/

F−n ⊕ · · · ⊕ Fn/Fn−1 has associated Jordan pair V = (F−n,Fn/Fn−1) equal to the
subquotient (B, L/KerL B).

In the following results we will show that the hypothesis [B,KerL B]n = 0 for
some n ∈ N is quite natural for large families of Lie algebras.

Remark 2 In [10, Proposition 3.5(d)] it was shown that for any abelian inner ideal
B of a centrally closed prime associative algebra R, [B,KerR(−) B] is nilpotent of
index k with k ≤ 3. This result easily extends to semiprime associative algebras.
Indeed, given an abelian inner ideal of a semiprime associative algebra R, since
R is a subdirect product of prime associative algebras Ri , B decomposes into a
subdirect product of abelian inner ideals Bi of Ri . For each i , let us consider the
central closure R̂i , and let us extend Bi to an abelian inner ideal B̂i = C(Ri )Bi of R̂i .
Then [B̂i ,KerR̂i

B̂i ] is nilpotent of index ≤ 3 for each i , and therefore [B,KerR(−) B]
is nilpotent of index ≤ 3. In particular, every abelian inner ideal B of a semiprime
associative algebra R satisfies [B,KerR(−) B]k = 0 ⊆ B for some k ≤ 3.

Proposition 1 ([6, Proposition 4.2]) Let R be a centrally closed associative alge-
bra with involution ∗. Suppose that R is ∗-prime and that 1

2 ,
1
3 ,

1
5 ∈ �. Let L =

Skew(R, ∗) and let B be an abelian inner ideal of L. Then [B,KerL B] is a nilpotent
subalgebra of L of index n, where we have the following possibilities for n:

(a) If R is ∗-prime not prime or if it is prime and the involution is of the second kind,
n ≤ 3.

(b) If R is prime and the involution is of the first kind, then n ≤ 4. In particular, if
[L , L] = 0, n = 1; otherwise b3 = 0 for every b ∈ B and either

• there exists b ∈ B such that b3 = 0, b2 �= 0. In this case n = 2 and L admits
a 3-grading L = L−1 ⊕ L0 ⊕ L1 with B = L−1 and KerB = L−1 ⊕ L0, or

• B2 = 0 and n ≤ 4. If, moreover, B(KerB)B = 0, then n ≤ 3.
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Since every semiprime associative algebra R with involution ∗ is a subdirect
product of ∗-prime associative algebras Ri , given an abelian inner ideal B of L =
Skew(R, ∗) we can consider the projections Bi of B onto Li = Skew(Ri , ∗). Let
R̂i be the central closure of each Ri and let B̂i = H(C(Ri ), ∗)Bi be the abelian
inner ideal generated by Bi in L̂ i = Skew(R̂i , ∗). By Proposition1, [B̂i ,KerL̂ i

B̂i ] is
nilpotent of index ≤ 4, so [Bi ,KerLi Bi ] is also nilpotent of index ≤ 4 for each i .
Thus [B,KerL B] is nilpotent of index ≤ 4.

Remark 3 Let L be nondegenerate. Then for every nonzero abelian inner ideal B
of finite length of L there exists a finite Z-grading L = L−n ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln

such that B = Ln (this is always the case when L is nondegenerate finite dimen-
sional), see [7, Corollary 6.2]. With respect to this grading, KerL B = L−(n−1) ⊕
· · · ⊕ L0 ⊕ · · · ⊕ Ln , so [B,KerL B] ⊂ L1 ⊕ · · · ⊕ Ln implies that [B,KerL B]n
⊆ B.

3 The Speciality of the Subquotient

In this last section we will apply the filtration associated to an abelian inner ideal to
give a sufficient condition for the speciality of the subquotient associated to such an
abelian inner ideal.

Wewill use the following lemma,whichhas appeared several times in the literature
and can be found for example in [1, Theorem 11.34].

Lemma 1 Let L = L−n ⊕ · · · ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ · · · ⊕ Ln be a (2n + 1) −
Z-graded Lie algebra. Then the pair V := (L−n, Ln) with product {x, y, z} :=
[x, [y, z]] for x, z ∈ Lσn and y ∈ L−σn, σ = ± is a Jordan pair. Moreover, for any
i ∈ 1, 2, . . . , n − 1 the pair of linear maps (�i , �−i )

�i : L−n → Hom(Li , Li−n) �−i : Ln → Hom(Li−n, Li )

defined by�σ i (x)(y) = adx y for any x ∈ L−σn and any y ∈ Li ifσ = + or y ∈ Li−n

if σ = − is a homomorphism of Jordan pairs between V and the special Jordan pair
(Hom(Li , Li−n),Hom(Li−n, Li ))

(+).

In the following theorem we will give sufficient conditions to assure that the pair
of homomorphisms (�n−1, �1−n) is a monomorphism and therefore the subquotient
(B, L/KerL B) is a special Jordan pair.

Theorem 2 ([10, Corollary 3.4]) Let L be a strongly prime Lie algebra over a ring
of scalars �. Let B be an abelian inner ideal of L and consider KerL B. Suppose
that there exists n ∈ N such that [B,KerL B]n ⊆ B. If KerL B is not a subalgebra of
L, then the subquotient (B, L/KerL B) is a special Jordan pair.
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Nilpotent Inner Derivations in Prime
Superalgebras

Esther García, Miguel Gómez Lozano, and Guillermo Vera de Salas

Abstract In this contribution, we summarize an in-depth analysis of the nilpotency
index of nilpotent homogeneous inner superderivations in associative prime superal-
gebraswith andwithout superinvolution.We also present examples of all the different
cases that our analysis exhibits for the nilpotency indices of the inner superderiva-
tions [5]. This work fits with Herstein’s branch of the theory that studies nilpotent
inner derivations in algebras.

Keywords Associative superalgebra · Lie superalgebra · Inner superderivation ·
Superinvolution · Skew-symmetric element

1 Preliminaries

Thiswork can be foundwith all the details in [5].General notions about superalgebras
can be found in [4, 6–8].

In this first section, we will only present the definitions necessary to understand
the theorems in Sect. 2.

Definition 1 Throughout this work, Φ will denote a scalar ring with 1
2 . We say that

a non-necessarily associative algebra R over Φ is a superalgebra if R = R0 ⊕ R1

and Ri R j ⊂ Ri+ j with i, j indices modulo 2. For any superalgebra R = R0 ⊕ R1

we can consider the automorphism σ : R → R such that R0 = {x ∈ R | σ(x) = x}
and R1 = {x ∈ R | σ(x) = −x}.
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Recall that R = R0 ⊕ R1 is an associative superalgebra if it is associative as an
algebra. In such R we can define a new product, called the super-bracket, as follows:

[x, y] := xy − (−1)|x ||y|yx (1)

for any homogeneous x, y ∈ R. Then R with the superbracket is a Lie superalgebra.
Given an associative superalgebra, the adjoint operator at a ∈ R0 ∪ R1 is defined

by ada(x) := [a, x] for any homogeneous x ∈ R and we say that a is ad-nilpotent of
index n if adna(x) = 0 for every x ∈ R and there exists y ∈ R such that adn−1

a (y) �= 0.

Definition 2 A semiprime associative superalgebra R is a superalgebra without
nonzero nilpotent graded ideals. We remark that a semiprime associative superal-
gebra is just an associative superalgebra which is semiprime as an algebra (for every
nonzero ideal I of R, I 2 �= 0). A prime associative superalgebra R is an associative
superalgebra without nonzero orthogonal graded ideals (for every nonzero graded
ideals I, J of R, I J �= 0).

Definition 3 Given an associative superalgebra R with superinvolution ∗, that is, ∗
is a 0-degree linear map such that for every homogeneous x, y ∈ R, (x∗)∗ = x and
(xy)∗ = (−1)|x ||y|y∗x∗, the set of skew-symmetric elements K := Skew(R, ∗) =
{a ∈ R | a∗ = −a} and the set of symmetric elements H := Sym(R, ∗) = {a ∈
R | a∗ = a} are Lie subsuperalgebras and Jordan subsuperalgebras of R respec-
tively. Since 1

2 ∈ Φ, R = H ⊕ K . We will denote Hi = H ∩ Ri and Ki = K ∩ Ri ,
i = 0, 1.

Definition 4 Let R be a semiprime associative superalgebra. Since R is semiprime
as an algebra, we can consider the extended centroid C(R) of R (see [1, Sect. 2.3]
for further information ). Let R̂ = RC(R) + C(R) be the central closure of R. Let
σ : R → R be the automorphism associated to the Z2-grading of R (σ2 = id). This
automorphism can be extended to R̂ and we denote this extension by σ̂. Since σ̂2 =
id, R̂ is again a superalgebra and σ̂(C(R)) = C(R), i.e., C(R) = C(R)0 + C(R)1
where C(R)0 = {λ + σ̂(λ) | λ ∈ C(R)} and C(R)1 = {λ − σ̂(λ) | λ ∈ C(R)}. We
will say that R is centrally closed if R = R̂, i.e., if R is centrally closed as an algebra.

2 Ad-nilpotent Elements of R and Skew(R, ∗)

In this section we present the description, depending on the index of ad-nilpotency,
of ad-nilpotent elements in a prime associative superalgebra R and of ad-nilpotent
elements in K when a superinvolution is considered.

First, let us state the description of homogeneous ad-nilpotent elements in a prime
associative superalgebra R.

Theorem 1 ([5, Theorem 3.2]) Let us consider a prime associative superalgebra
R = R0 ⊕ R1, let R̂ denote the central closure of R, and let a ∈ R0 ∪ R1 be a homo-
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geneous ad-nilpotent element of index n. If R is free of
(n
s

)
-torsion and free of s-

torsion, for s = [ n+1
2 ], then:

1. If a ∈ R0, n is odd and exists λ ∈ C(R)0 such that a − λ ∈ R̂ is nilpotent of index
n+1
2 .

2. If a ∈ R1, then

a. if n ≡4 1 and R is free of
( n−1

2
s−1
2

)
-torsion, then a is nilpotent of index n+1

2 .

b. if n ≡4 2 then there is λ ∈ C(R)0 such that (a2 − λ) ∈ R̂ is nilpotent of index
n+2
4 .

c. the cases n ≡4 0 and n ≡4 3 do not occur.

Let R be a prime associative superalgebra with superinvolution. In the fol-
lowing two results we will describe the homogeneous ad-nilpotent elements of
K = Skew(R, ∗).

Theorem 2 ([5, Theorem 4.3]) Let R = R0 ⊕ R1 be a prime associative superal-
gebra of characteristic p > n with superinvolution ∗, let R̂ be its central closure,
let a ∈ K0 := Skew(R, ∗)0 be an ad-nilpotent element of K of index n > 1 and let
s = [ n+1

2 ]. Then
1. If n ≡4 0 then a is nilpotent of index s + 1, ad-nilpotent of R and of R0 of index

n + 1 and satisfies asKas = 0. Moreover, the index of ad-nilpotence of a in K0

can be n − 1 or n.
2. If n ≡4 1 then there exists λ ∈ Skew(C(R), ∗)0 such that a − λ ∈ R̂ is nilpotent

of index s and a is ad-nilpotent of R, of R0 and of K0 of index n.
3. The case n ≡4 2 is not possible.
4. If n ≡4 3 then either:

a. there exists λ ∈ Skew(C(R), ∗)0 such that a − λ ∈ R̂ is nilpotent of index s
and a is ad-nilpotent of R, of R0 and of K0 of index n, or

b. a is nilpotent of index s + 1, ad-nilpotent of K0 of index n, ad-nilpotent of
R and of R0 of index n + 2 and satisfies askas−1 − as−1kas = 0 for every
k ∈ K. In particular R satisfies asKas = 0.

Theorem 3 ([5, Theorem 4.4]) Let R = R0 ⊕ R1 be a prime associative superal-
gebra of characteristic p > n with superinvolution ∗, let R̂ be its central closure,
let a ∈ K1 := Skew(R, ∗)1 be an ad-nilpotent element of K of index n > 1 and let
s = [ n+1

2 ].
1. If n ≡8 0 then a is nilpotent of index s + 1, ad-nilpotent of R of index n + 1 and

asKas = 0 (so as Ras is a commutative trivial local superalgebra).
2. If n ≡8 1 then as−1 ∈ H0, and a is nilpotent of index s and ad-nilpotent of R of

index n.
3. If n ≡8 2 then there exists λ ∈ Skew(C(R), ∗)0 such that a2 − λ ∈ R̂ is nilpotent

of index s+1
2 and a is ad-nilpotent of R of index n.

4. If n ≡8 5 then as−1 ∈ K0, and a is nilpotent of index s and ad-nilpotent of R of
index n.
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5. If n ≡8 6 then there exists λ ∈ Skew(C(R), ∗)0 such that a2 − λ ∈ R̂ is nilpotent
of index s+1

2 and a is ad-nilpotent of R of index n.
6. If n ≡8 7 then a is nilpotent of index s + 1, ad-nilpotent of R of index n + 2

and askas−1 + (−1)|k|as−1kas = 0 for every homogeneous k ∈ K (so as Ras is
a commutative trivial local superalgebra).

7. The cases n ≡8 3 and n ≡8 4 do not occur.

Remark 1 Wehighlight that some of the types appearing in these last three theorems
are newmodels than only appear in the supersetting (see, [2, Theorems 4.4 and 5.6]).

3 Examples

In this section we are going to construct examples of all types of homogeneous ad-
nilpotent elements appearing in Theorem 1, and in Theorems 2 and 3. The examples
of even ad-nilpotent elements of R and of K are based on the examples of ad-nilpotent
elements in the non-super setting, see [3].

Definition 5 Let Φ be a ring of scalars and let r, s be natural numbers. The matrix
algebra Mr+s(Φ) with

M(r |s)0 :=
{[

A 0
0 D

]
: A ∈ Mr (Φ), D ∈ Ms(Φ)

}
and

M(r |s)1 :=
{[

0 B
C 0

]
: B ∈ Mr,s(Φ),C ∈ Ms,r (Φ)

}

becomes an Z2-graded associative algebra. It will be denotedM(r |s) = M(r |s)0 +
M(r |s)1. We will use the notation M(r) = M(r |r).
Definition 6 Let r and s be two natural numbers with odd r > 1 and even s, let F
be a field with involution denoted by α for any α ∈ F , and let R be the superalgebra
M(r |s) over F . Let {ei, j } denote the matrix units, and define

H = ∑r
i=1(−1)i ei,r+1−i ∈ Mr (F) (notice H = Ht = H−1)

J = ∑s
i=1(−1)i ei,s+1−i ∈ Ms(F) (notice J t = −J = J−1).

The map ∗ : R → R given by

[
A B
C D

]∗
=

[
H 0
0 J

]−1 [
A −B
C D

]t [
H 0
0 J

]
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defines a superinvolution in R. In particular

e∗
i, j = (−1) j−i er− j+1,r−i+1 for every i, j ∈ {1, . . . , r},

e∗
r+i,r+ j = (−1) j−i er+s− j+1,r+s−i+1 for every i, j ∈ {1, . . . , s} and

e∗
i,r+ j = (−1)i− j+1er+s+1− j,r+1−i for every i ∈ {1, ..., r} and j ∈ {1, ..., s}.

The associative superalgebra R is a simple superalgebra with superinvolution, and
its extended centroid C(R), which coincides with Z(R), is isomorphic to F . More-
over, the extension of the superinvolution ∗ to C(R) is isomorphic to the involution
− of F .

3.1 Examples of Even Ad-nilpotent Elements of R and of
Skew(R, ∗)

Let F be a field with involution− and characteristic zero (or big enough). Let k be an
even number( k ≥ 2), let r = 3k + 3 and s = 2k, and let us consider the associative
superalgebra R = M(r |s) over F with the superinvolution defined in Definition 6.
Let us denote by K the skew-symmetric elements of R with respect to ∗. Consider
the following nilpotent matrices:

T :=
2k+1∑

i=k+2

ei,i+1 ∈ R0 (nilpotent of index k + 1) (2)

S :=
k−1∑

i=1

(ei,i+1 + er−i,r−i+1) ∈ R0 (nilpotent of index k) (3)

U :=
k−1∑

i=1

er+i,r+i+1 +
2k−1∑

i=k+1

er+i,r+i+1 ∈ R0 (nilpotent of index k). (4)

T is ad-nilpotent of R and of R0 of index 2k + 1, and S and U are ad-nilpotent
elements of R and of R0 of index 2k − 1. Notice that T ∗ = −T , S∗ = −S and
U ∗ = −U so T, S,U ∈ K0. Then, for any λ ∈ Skew(F,−),

1. T + λI is an example of case (1) of Theorem 1 and of case (2) of Theorem 2,
2. S + λI is an example of case (1) of Theorem 1 and of case (4.a) of Theorem 2,
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If Skew(F,−) = 0:

3. T is an example of case (4.b) of Theorem 2,
4. T + S is an example of case (1) of Theorem 2,
5. T +U is an example of case (1) of Theorem 2 such that the index in K0 decreases.

3.2 Examples of Odd Ad-nilpotent Elements of R and of
Skew(R, ∗)

Let F be a field of characteristic zero (or big enough) and with identity involution, let
r > 1 be an odd number, let s = r − 1, and consider the superalgebra R = M(r |s)
with the superinvolution given in Definition 6. Again, let us denote by K the skew-
symmetric elements of R with respect to ∗. Let us consider T := ∑r−1

i=1 ei,r+i ∈ R1

and

A = T − T ∗ =
r−1∑

i=1

ei,r+i +
r∑

i=2

er+i−1,i ∈ K1 (nilpotent of index 2r − 1). (5)

1. For r = 10t + 1, A5 is an example of case (1) of Theorem 3,
2. For r = 10t + 3, A5 is an example of case (2) of Theorem 3,
3. For r = 10t + 5, A5 is an example of case (3) of Theorem 3,
4. For r = 10t + 7, A5 is an example of case (4) of Theorem 3,
5. For r = 10t + 9, A5 is an example of case (5) of Theorem 3,
6. A is an example of case (6) of Theorem 3.
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