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AD-NILPOTENT ELEMENTS OF SKEW-INDEX IN SEMIPRIME

ASSOCIATIVE ALGEBRAS WITH INVOLUTION

JOSE BROX, ESTHER GARCÍA, MIGUEL GÓMEZ LOZANO, RUBÉN MUÑOZ ALCÁZAR,
AND GUILLERMO VERA DE SALAS

Abstract. In this paper we study ad-nilpotent elements of a semiprime as-
sociative algebra R with involution ∗ whose indices of ad-nilpotence differ on

Skew(R, ∗) and on R. The existence of such an ad-nilpotent element a im-

plies the existence of a GPI of R, and determines a big part of its structure.
When moving to the symmetric Martindale algebra of quotients Qs

m(R) of R,

a remains ad-nilpotent of the original indices in Skew(Qs
m(R), ∗) and Qs

m(R).

There exists an idempotent e that orthogonally decomposes a = ea + (1 − e)a
and either both ea and (1 − e)a are ad-nilpotent of the same index (in this

case the index of ad-nilpotence of a in Skew(Qs
m(R), ∗) is congruent with 0

modulo 4), or ea and (1 − e)a have different indices of ad-nilpotence (in this
case the index of ad-nilpotence of a in Skew(Qs

m(R), ∗) is congruent with 3

modulo 4). Furthermore we show that Qs
m(R) has a finite Z-grading induced

by a ∗-complete family of orthogonal idempotents and that eQs
m(R)e, which

contains ea, is isomorphic to an algebra of matrices over its extended centroid.

All this information is used to produce examples of these types of ad-nilpotent
elements for any possible index of ad-nilpotence n.

Mathematics Subject Classification: 16R50, 16W10, 16W25.
Keywords: Ad-nilpotent element, semiprime algebra, GPI, involution, matrix

algebra, grading

1. Introduction

Let R be an associative algebra, and let a ∈ R. The map ada : R → R defined
by ada(x) := ax − xa is called an inner derivation of R. It is a derivation of the
Lie algebra R(−) with bracket product given by [x, y] := xy−yx for every x, y ∈ R.
An element a ∈ R is ad-nilpotent if the map ada is nilpotent. Suppose that R is an
associative algebra with involution ∗ and let K and H(R, ∗) respectively denote the
sets of skew-symmetric and of symmetric elements of R. We say that an element
a ∈ K is ad-nilpotent (of K) of index n if adna K = 0 but adn−1

a K 6= 0. Since the
seminal work [15] by Posner, derivations (or some of their generalizations) forcing a
prime or semiprime ring to be PI have been broadly studied (see e.g. [13] or [6]). In
this paper we focus on the ad-nilpotent elements of a semiprime associative algebra
with involution that produce GPIs.

The study of ad-nilpotent elements of the skew-symmetric elements of a prime
ring with involution began in 1991 with the work of Martindale and Miers [14].

This work was partially supported by the Centre for Mathematics of the University of

Coimbra - UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES.

The first author was supported by the Portuguese Government through the FCT grant
SFRH/BPD/118665/2016. The four last authors were partially supported by MTM2017-84194-P

(AEI/FEDER, UE), and by the Junta de Andalućıa FQM264.
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Later on, their result was extended to prime associative superalgebras (see [11])
and to semiprime rings with involution (see [2] and [12]).

Martindale and Miers result in the prime setting separates ad-nilpotent elements
of K between those which are ad-nilpotent of R of the same index (this may occur
when n ≡4 1, 3) and those that are nilpotent elements and produce a GPI in the
central closure of R (this may happen if n ≡4 0, 3). A similar phenomenon occurs
when R is semiprime under the right torsion constraints (see [2, Proposition 3.4
and Theorem 5.6]): for any ad-nilpotent element a ∈ R there exists a family of
orthogonal central idempotents εi such that R =

⊕
εiR, a =

∑
εia, each εia is

ad-nilpotent of index ni in Ki = Skew(εiR, ∗), and either

(a) εia is ad-nilpotent in the whole εiR of the same index ni, or

(b) εia is nilpotent of index [n+1
2 ] + 1, the ideal generated by a[n+1

2 ] is essential

in εiR and the elements of εiR satisfy certain GPI involving a[n+1
2 ].

Elements of type (a) occur when ni ≡4 1, 3 and will be called ad-nilpotent elements
of full-index. Elements of type (b) occur when ni ≡4 0, 3 and will be called elements
of skew-index. Notice that ad-nilpotent elements of skew-index are also ad-nilpotent
elements of εiR, but the indices of ad-nilpotence in Ki and in εiR differ. The
goal of this paper is to describe ad-nilpotent elements of skew-index in semiprime
associative algebras and to show how they determine a big part of their structure.

The smallest possible index for an element of skew-index is n = 3. Ad-nilpotent
elements of skew-index 3 are called Clifford elements because associated to them
there is a Jordan algebra of Clifford type (see [9] and [5]). Our paper is a natural
generalization of the careful study of Clifford elements carried out in [4] (alterna-
tively, see [8, Section 8.4]): If R is a prime ring with involution and a ∈ R is a
Clifford element then it satisfies a3 = 0, a2 6= 0 and a2Ka2 = 0, a2 and a are
von Neumann regular elements and there is an element b ∈ H(R, ∗) such that

a2ba2 = a2, ba2b = b and b2 = 0 (which also has a square root
√
b ∈ K,

√
b
2

= b,

such that a
√
ba = a,

√
ba
√
b =
√
b, which is also a Clifford element). The existence

of a Clifford element determines much of the structure of the prime ring: it forces
Skew(C(R), ∗) = 0 for the extended centroid C(R), makes R a GPI ring (so R has
socle), and the related ∗-orthogonal idempotents a2b, ba2 induce a 5-grading on R

and a compatible 3-grading on K with a ∈ K1 (and
√
b ∈ K−1) with R−2, R2 being

isomorphic to C(R) as vector spaces and K−1,K1 being Clifford inner ideals of
the Lie algebra K (see [3] for details). We generalize these results to ad-nilpotent
elements of skew-index.

Since they produce GPIs and we are working with semiprime associative algebras
with involution, the best setting to study these elements is the symmetric Martin-
dale ring of quotients Qsm(R). Accordingly, we show that these elements remain
ad-nilpotent of the same index in K := Skew(Qsm(R), ∗) and produce a ∗-complete
family of orthogonal idempotents inQsm(R) which induces a grading onQsm(R) com-
patible with the involution. When restricting the grading to K we obtain a grading
with shorter support. We can consider this result an extension of Smirnov’s descrip-
tion of simple graded algebras with involution with Supp(K) 6= Supp(R), see [16,
Theorem 5.4], which deepens Zelmanov’s classification of simple Lie algebras with
a Z-grading carried out in [17]. Furthermore we show that, given an ad-nilpotent
element of skew-index, there is an associated set of matrix units making a related
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AD-NILPOTENT ELEMENTS OF SKEW-INDEX 3

subalgebra isomorphic to a ring of matrices, which produces a clear-cut extension
of the relevant properties of Clifford elements.

Our last section is devoted to constructing matrix examples of ad-nilpotent ele-
ments both of full-index and of skew-index of all possible ad-nilpotence indices n.
We highlight that this section completes the work of Martindale and Miers in [14].
In [14, §4.Examples] Martindale and Miers constructed examples of ad-nilpotent el-
ements of skew-index in complex matrices with the transpose involution, and they
claimed that they were giving examples for both n ≡4 3 and n ≡4 0, covering the
possibilities of [14, Main Theorem(2b)], but, as it turns out, they actually addressed
the case n ≡4 3 twice: for each n ≡4 0 they constructed a skew-symmetric matrix
W which, as they showed, satisfies adnW (K) = 0; but it is easily checked that it also
satisfies adn−1

W (K) = 0, so that its index of ad-nilpotence is actually n − 1, which
is congruent to 3 modulo 4.

2. Preliminaries

2.1. In this paper we will deal with semiprime associative algebras R with involu-
tion ∗ over a ring of scalars Φ with 1

2 ∈ Φ (λR 6= 0 for every nonzero λ ∈ Φ). If we
define the bracket product as [x, y] := xy−yx for every x, y ∈ R, R turns into a Lie
algebra denoted by R(−). The set of skew-symmetric elements {x ∈ R | x∗ = −x},
which will be denoted by K, is a Lie subalgebra of R(−).

Given a Lie algebra L, we say that a ∈ L is ad-nilpotent of L of index n if
adna L = 0 and adn−1

a L 6= 0, where ada denotes the usual adjoint map ada x := [a, x]
for every x ∈ L. In [2], a deep study of ad-nilpotent elements in semiprime asso-
ciative algebras with involution was carried out. Following the classification of
ad-nilpotent elements obtained in [2, Proposition 3.4 and Theorem 5.6], we intro-
duce the following definitions:

2.2. Let R be a semiprime associative algebra with involution ∗. Let a ∈ K.
We say that a is ad-nilpotent of full-index if a is ad-nilpotent of R and of K of

the same index n. By [2, Theorem 5.6], under the adequate torsion requirements,
this occurs when n ≡4 1 or n ≡4 3.

We say that a is ad-nilpotent of skew-index n if it satisfies all the following
conditions:

• a is ad-nilpotent of K of index n with n ≡4 0 or n ≡4 3,
• a is a nilpotent element of index t+ 1 for t :=

[
n+1

2

]
(in particular t is even

and a is an ad-nilpotent of R of index n+ 1 or n+ 2),
• at generates an essential ideal in R,
• and

- if n ≡4 0, atxat = 0 for every x ∈ K.
- if n ≡4 3, atxat−1 − at−1xat = 0 for every x ∈ K.

Notice that under the adequate torsion requirements, this last condition follows
from [2, Theorem 5.6].

2.3. Given an associative algebra R over Φ, we define a permissible map of R as a
pair (I, f) where I is an essential ideal of R and f is a homomorphism of right R-
modules. For permissible maps (I, f) and (J, g) of R, define an equivalence relation
≡ by (I, f) ≡ (J, g) if there exists an essential ideal M of R, contained in I∩J , such
that f(x) = g(x) for all x ∈ M . The quotient set Qrm(R) will be called the right
Martindale algebra of quotients of R. Suppose from now on that R is semiprime.
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Then we can define an addition and a multiplication in Qrm(R) coming respectively
from the addition and the composition of homomorphisms (see [1, Chapter 2]):

• [I, f ] + [J, g] := [I ∩ J, f + g],
• [I, f ] · [J, g] := [(I ∩ J)2, f ◦ g].

The map i : R ↪→ Qrm(R) defined by i(r) := [R,Lr], where Lr : R → R is the left
multiplication map Lr(x) := rx, is a monomorphism of associative algebras (called
the usual embedding of R into Qrm(R)), i.e., R can be considered as a subalgebra
of its right Martindale algebra of quotients. Moreover, given any 0 6= q := [I, f ] ∈
Qrm(R) we have that 0 6= qI ⊆ R. Therefore every subalgebra S of Qrm(R) which
contains R is semiprime because every nonzero ideal of S has nonzero intersection
with R. We also recall the following useful property: for every q ∈ Qrm(R) and
every essential ideal J of R, qJ = 0 or Jq = 0 imply q = 0.

The symmetric Martindale ring of quotients of R is defined as

Qsm(R) := {q ∈ Qrm(R)| ∃ an essential ideal I of R such that qI + Iq ⊆ R}.
Since R ⊆ Qsm(R) ⊆ Qrm(R), Qsm(R) is again semiprime. When R has an involution,
the involution is uniquely extended to Qsm(R) ([1, Proposition 2.5.4]).

2.4. The extended centroid C(R) of a semiprime algebra R is defined as the center
of Qsm(R). It is commutative and unital von Neumann regular. The ring of scalars
Φ is contained in C(R) under the usual embedding of R into Qsm(R).

The central closure of R, denoted by R̂, is defined as the subalgebra of Qsm(R)

generated by R and C(R), i.e., R̂ := C(R) + C(R)R; so the elements of R can be

identified with elements in its central closure. The algebra R̂ is semiprime since
R ⊆ R̂ ⊆ Qrm(R), and it is centrally closed, meaning that R̂ coincides with its
central closure.

Since the extended centroid C(R) of a semiprime R is von Neumann regular,
given an element λ ∈ C(R) there exists λ′ ∈ C(R) such that λλ′λ = λ and λ′ =
λ′λλ′. Let us define ελ := λλ′. Then ελ is an idempotent of C(R) such that
ελλ = λ. Moreover, if R is semiprime with involution ∗ and λ ∈ Skew(C(R), ∗), then
−λ = λ∗ = (λλ′λ)∗ = λλ′∗λ, which implies that λ′ can be taken in Skew(C(R), ∗)
(replace λ′ by 1

2 (λ′ − λ′∗)). In this case ελ = λλ′ ∈ H(C(R), ∗) is a symmetric
idempotent of C(R).

The following result relates the extended centroid and the center of the local
algebra at an idempotent element, and can be easily deduced from [1, Corollary
2.3.12].

Lemma 2.5. Let R be a semiprime centrally closed associative algebra and let e
be an idempotent of R such that the ideal generated by e in R is essential. Then
C(R) ∼= Z(eRe).

Proof. The homomorphism ϕ : C(R) → Z(eRe) defined by ϕ(λ) = λe = eλe is an
isomorphism: by [1, Corollary 2.3.12], ϕ is surjective; moreover, if ϕ(λ) = 0, then
the ideals λR and ReR are orthogonal, which implies that λ = 0 because ReR is
an essential ideal. �

The following technical lemma, which collects two results about ∗-identities, was
proved in [2, Lemma 5.1].

Lemma 2.6. Let R be a semiprime associative algebra with involution ∗ over a
ring of scalars Φ with 1

2 ∈ Φ. Let k ∈ K and h ∈ H(R, ∗). Then:
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(1) hKh = 0 implies hRh ⊆ H(C(R), ∗)h. Moreover, R satisfies hxhyh =
hyhxh for every x, y ∈ R, and if IdR(h) is essential this identity is a strict
GPI in R and Skew(C(R), ∗) = 0.

(2) hKh = 0 and hKk = 0 imply hRk = 0.
(3) kKk = 0 implies k = 0.

In particular, if there is an element a ∈ R which is ad-nilpotent of skew-index n,
then since t =

[
n+1

2

]
is even we have atKat = 0 with at ∈ H(R, ∗) and IdR(at)

essential, so item (1) applies and shows that Skew(C(R), ∗) = 0 and that R satisfies
a strict GPI (in particular Qrm(R) is von Neumann regular; see [1, Section 6.3] for
more structural consequences).

3. Main

3.1. Let R be an associative algebra over a ring of scalars Φ with 1
2 ∈ Φ. Let

a ∈ K be a nilpotent element of index t+1 such that at ∈ H(R, ∗) is von Neumann
regular – as occurs when a is an ad-nilpotent element of skew-index, see Theorem
3.5 below. In this situation we can associate a ∗-Rus inverse to a, i.e., an element
b ∈ H(R, ∗) satisfying atbat = at, batb = b and basb = 0 for every s < t, see
[10, Lemma 2.4] and [7, Lemma 3.2] (which works also when a ∈ K). Define

eij := ai−1bat+1−j , ei := eii for every i, j = 1, . . . , t + 1, and e :=
∑t+1
i=1 ei. The

element e is a symmetric idempotent which we call a ∗-Rus idempotent associated
to a. It satisfies ea = ae =

∑t+1
i=2 ei,i−1, eat = at and eb = b = be. The set {eij}t+1

i,j=1

is a set of matrix units for eRe. Notice that e t+2
2
∈ H(R, ∗) and let S := e t+2

2
Re t+2

2
.

Then the subalgebra eRe and Mt+1(S) are ∗-isomorphic under the isomorphism

Ψ :Mt+1(S)→ eRe defined by Ψ((xij)
t+1
i,j=1) :=

t+1∑
i,j=1

ei, t+2
2
xije t+2

2 ,j

where each xij = e t+2
2
xije t+2

2
∈ e t+2

2
Re t+2

2
, and the involution inMt+1(S) is given

by

A∗ := D−1ĀtrD

for every A =
∑
ij aijeij ∈Mt+1(S), where Ātr :=

∑
ij a
∗
ijeji and

D :=

t+1∑
i=1

(−1)iei,t+2−i = D−1 ∈Mt+1(S).

When considering the following ∗-complete family of orthogonal idempotents

{fi := ei+1, i = 0, . . . , t, i 6= t

2
} ∪ {f t

2
:= 1− e+ e t+2

2
},

which satisfy f∗i = ft−i for every i, we obtain a grading in R which is compatible
with the involution:

R = R−t ⊕ · · · ⊕R0 ⊕ · · · ⊕Rt
where Rj :=

∑
k−l=j fkRfl (notice that R∗j = Rj for each j). With respect to this

grading we have

ea ∈ R1, (1− e)a ∈ R0, a
t ∈ Rt and b ∈ R−t.

This grading is called the grading of R induced by a and its ∗-Rus inverse b.
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In the above argument, the element a can be replaced by ea without changing
the grading in R: the element b = eb is also a ∗-Rus inverse for ea and gives rise to
the same set of matrix units

eij = ai−1bat+1−j = ai−1ebeat+1−j = (ea)i−1b(ea)t+1−j ,

so the grading in R induced by ea and its ∗-Rus inverse b coincides with the grading
of R induced by a and b.

When a is an ad-nilpotent element of K of skew-index, the GPIs satisfied in R
allow a more precise description of this grading, as we will show in the following
theorem.

Theorem 3.2. Let R be a semiprime associative algebra with involution ∗ over a
ring of scalars Φ with 1

2 ∈ Φ, let K := Skew(R, ∗) and let a ∈ K be an ad-nilpotent

element of skew-index n. Let t := [n+1
2 ] and suppose that at is von Neumann

regular. Let us consider the grading in R

R = R−t ⊕ · · · ⊕R0 ⊕ · · · ⊕Rt (?)

induced by a and its ∗-Rus inverse b. Let e be a ∗-Rus idempotent associated to a.
Then:

(1) The grading (?) restricted to K has K−t = 0 = Kt.
(2) S is a semiprime commutative algebra with identity involution. In partic-

ular, the involution in eRe ∼= Mt+1(S) under this isomorphism is given
by

A∗ = D−1AtrD for any A ∈Mt+1(S).

(3) As Φ-modules, both Rt and R−t are isomorphic to S.
(4) If t > 2, both K−(t−1) and Kt−1 are isomorphic to S.

Moreover, if R is centrally closed, S ∼= C(R).

Proof. Since the grading (?) is compatible with the involution, we can restrict it to
K,

K = K−t ⊕K−t+1 ⊕ · · · ⊕K0 ⊕ · · · ⊕Kt−1 ⊕Kt.

(1) Let us show thatK−t = 0 = Kt: if x ∈ K−t = R−t∩K then x = f0kft = e1ket+1

for some k ∈ K, so x = batkatb ∈ batKatb = 0. Similarly, if x ∈ Kt = Rt ∩K then
x = ftkf0 = et+1ke1 for some q ∈ K, so x = atbkbat ∈ atKat = 0.
(2) We claim that S = e t+2

2
Re t+2

2
does not contain skew-symmetric elements: let

k := t+2
2 ; if x = −x∗ ∈ ekRek then x = ekxek = ek,t+1(et+1,kxek,1)e1,k, but

et+1,kxek,1 = et+1et+1,kxek,1e1 is a skew-symmetric element of Rt, so it is zero by
(1). Therefore x = 0, the involution in S is the identity and hence S is commutative.
(3) Rt = ftRf0 = et+1Re1

∼= S as a Φ-module, and analogously for R−t.
(4) Since t > 2, R−(t−1) =

∑
k−l=−(t−1) fkRfl = e1Ret + e2Ret+1 ⊆ eRe ∼=

Mt+1(S), and under this isomorphism the elements of R−(t−1) are of the form

x = λe1,t + µe2,t+1, λ, µ ∈ S,

whence x = λ+µ
2 u+ λ−µ

2 v for u := e1,t+e2,t+1 ∈ H(R, ∗) and v := e1,t−e2,t+1 ∈ K.
Therefore K−(t−1) ⊆ Sv. A similar argument applies to Kt−1.

Moreover, if R is centrally closed, by Lemma 2.5, since the ideal of R generated
by e t+2

2
is essential because it contains at = a

t
2 e t+2

2
a
t
2 , we get S = e t+2

2
Re t+2

2
=

Z(e t+2
2
Re t+2

2
) ∼= C(R) as associative algebras. �
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AD-NILPOTENT ELEMENTS OF SKEW-INDEX 7

The last theorem allows to describe ea ∈ eRe ∼= Mt+1(S) in detail. Now we
show how is a related to ea.

Theorem 3.3. Let R be a semiprime associative algebra with involution ∗ over a
ring of scalars Φ with 1

2 ∈ Φ , let K := Skew(R, ∗) and let a ∈ K be an ad-nilpotent

element of skew-index n. Set t := [n+1
2 ] and suppose that R is free of

(
2t−2
t−1

)
-torsion

and at is von Neumann regular. Then for any ∗-Rus-idempotent e ∈ R associated
to a, a = ea+ (1− e)a, and

(1) if n ≡4 0:
• ea is nilpotent of index t + 1 and ad-nilpotent of skew-index n − 1 in
K.

• (1− e)a is nilpotent of index t and ad-nilpotent of full-index n− 1 in
K.

(2) if n ≡4 3:
• ea is nilpotent of index t+ 1 and ad-nilpotent of skew-index n in K.
• (1 − e)a is nilpotent of index ≤ t − 1 and ad-nilpotent in K of index
≤ n− 2.

• eat−1 = at−1.

Proof. Let b ∈ H(R, ∗) be a ∗-Rus-inverse of a and let e be the associated ∗-Rus
idempotent.

Suppose that n ≡4 0. Let us see that ea is ad-nilpotent of index n− 1 in K: for
every k ∈ K,

adn−1
ea k = ad2t−1

ea k =

(
n− 1

t− 1

)
(eat−1keat − eatkeat−1) =

=

(
n− 1

t− 1

)
(eat−1kat − atkeat−1) =

=

(
n− 1

t− 1

)
((atbat−1 + at−1bat)kat − atk(atbat−1 + at−1bat)) =

=

(
n− 1

t− 1

)
(at(bat−1k)at − at(kat−1b)at) =

=

(
n− 1

t− 1

)
at((bat−1k)− (bat−1k)∗)at = 0

because (bat−1k)∗ = kat−1b and atKat = 0. Thus ea is nilpotent of index t + 1
(since (ea)t = at 6= 0) and ad-nilpotent of index ≤ n− 1. Let us see that its index
of ad-nilpotence is n − 1. Suppose on the contrary that adn−2

ea K = 0. Then for
every k ∈ K,

0 = a · adn−2
ea k =

(
2t− 2

t

)
eat−1kat −

(
2t− 2

t− 1

)
atkeat−1.

Since eat−1 = atbat−1 + at−1bat and atkat = 0 we obtain(
2t− 2

t

)
atbat−1kat −

(
2t− 2

t− 1

)
atkat−1bat = 0,

and since atx∗at = atxat for all x ∈ R and (bat−1k)∗ = kat−1b we get((
2t− 2

t− 1

)
−
(

2t− 2

t

))
atkat−1bat = 0.
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8J. BROX, E. GARCÍA, M. GÓMEZ LOZANO, R. MUÑOZ ALCÁZAR, AND G. VERA DE SALAS

Now, again from atkat = 0 and eat−1 = atbat−1 + at−1bat, we find((
2t− 2

t− 1

)
−
(

2t− 2

t

))
(atkat−1bat + atkatbat−1) =

=

((
2t− 2

t− 1

)
−
(

2t− 2

t

))
atkeat−1 = 0.

Since
(

2t−2
t−1

)
−
(

2t−2
t

)
divides

(
2t−2
t−1

)
and R is

(
2t−2
t−1

)
-torsion free we have atKeat−1 =

0, so by Lemma 2.6(2) we get atReat−1 = 0 with at generating an essential ideal
of R, and thus eat−1 = 0, a contradiction. Thus ea is ad-nilpotent of index n − 1
in K.

Since eat = at, (1 − e)a is nilpotent of index less than or equal to t. Let us see
that its index of nilpotence is t. Suppose on the contrary that eat−1 = at−1. Then,
for every k ∈ K,

adn−1
a k = ad2t−1

a k =

(
2t− 1

t− 1

)
(−1)t(at−1kat − atkat−1) =

=

(
2t− 1

t− 1

)
(−1)t(eat−1kat − atkeat−1) = ad2t−1

ea k = adn−1
ea k = 0

would mean that a has index of ad-nilpotence ≤ n−1 in K, a contradiction. Hence
(1− e)at−1 6= 0.

Let us see that (1 − e)a is ad-nilpotent of index n − 1: since (1 − e)at = 0
we get that adn−1

(1−e)aK = ad2t−1
(1−e)aK = 0. In addition, adn−2

(1−e)aK =
(

2t−2
t−1

)
(1 −

e)at−1K(1− e)at−1 6= 0 by Lemma 2.6(3). Thus (1− e)a is nilpotent of index t and
ad-nilpotent of index 2t− 1 = n− 1.

Suppose that n ≡4 3. Let us see that in this case eat−1 = at−1: for every k ∈ K,
using that atkat = 0, at−1kat = atkat−1 and atbat = at,

(eat−1 − at−1)kat = (at−1bat + atbat−1 − at−1)kat = atbat−1kat − at−1kat =

= atbatkat−1 − at−1kat = atkat−1 − at−1kat = 0.

Hence (eat−1 − at−1)Kat = 0. Since eat−1 − at−1 ∈ K, at ∈ H(R, ∗), atKat = 0
and the ideal generated by at is essential in R, we have by Lemma 2.6(2) that
eat−1 − at−1 = 0. In particular we get that (1 − e)a is nilpotent of index ≤ t − 1.
Moreover, since in this case n−2 = 2t−2, ad2t−3

(1−e)aK = 0, implying that the index

of ad-nilpotence of (1− e)a in K must be ≤ n− 2.
Let us see that ea is ad-nilpotent of index n: since n = 2t−1, adneaK = 0 follows

as above. In addition, adn−1
ea K =

(
2t−2
t−1

)
eat−1Keat−1 6= 0 by Lemma 2.6(3). So ea

is nilpotent of index t+ 1 and ad-nilpotent of index ≤ n. �

Remarks 3.4. Let e be a ∗-Rus idempotent associated to the ad-nilpotent element a
of skew-index n with at von Neumann regular (t = [n+1

2 ]), and consider the grading
of K associated to them by Theorem 3.2.

(1) When a is a Clifford element (i.e., n = 3) we have a = ea = a2ba+ aba2 by
Theorem 3.3(2) (since t− 1 = 1), and a ∈ K1 in the grading.

(2) When n ≡4 3 and R is free of
(

2t−2
t−1

)
-torsion we obtain that at−1 is also

von Neumann regular: by Theorem 3.3(2) we have at−1 = eat−1, so at−1 =
et,1 + et+1,2 ∈ eRe ∼= Mt+1(S) by Theorem 3.2(2) and we get at−1 =
at−1cat−1, c = cat−1c for c := e1,t + e2,t+1 ∈ K. If t > 2 then c2 = 0,
while when a is Clifford we have n = 3, t = 2 and c = e1,2 + e2,3 satisfies
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AD-NILPOTENT ELEMENTS OF SKEW-INDEX 9

c2 = e1,3 = e1,t+1 = b, so c is a square root of b. In addition c is also a
Clifford element and c ∈ K−1 in the grading.

(3) Suppose R centrally closed. While when t > 2 we have K−(t−1),Kt−1

isomorphic to C(R) as Φ-modules by Theorem 3.2(4), when t = 2 they may
be larger: since t = 2 we have n ∈ {3, 4}; in either case, a′ := ea is a Clifford
element generating the same grading by Theorem 3.3. We can show that
a′Ka′ = C(R)a′ by using a′ = a2ba + aba2, a2Ka2 = 0 and a2xa2 = λxa

2

with λx ∈ C(R) for x ∈ R to show a′Ka′ ⊆ C(R)a′, and a′ca′ = a′ with
c ∈ K to show the equality. Then as a Φ-module K1 = C(R)a′ ⊕X with
X := {a2k+ka2 | k ∈ K, a′ka′ = 0} and analogously for K−1 with c in place
of a′ (see [4, Proposition 4.4 and related results] for the details, which can
be easily adapted to our context). The Φ-module X can be 0, for example
in the ring of 3× 3 matrices over a field (see [4, Remark 4.6(2)]).

The extra hypothesis of at being von Neumann regular required in Theorems 3.2
and 3.3 is not too restrictive. When R is a ∗-prime associative algebra, atKat = 0
implies von Neumann regularity by Lemma 2.6(1). In general, if R is semiprime
we can move to the symmetric Martindale algebra of quotients Qsm(R) because, as
we will show in the following theorem, any ad-nilpotent element a of skew-index n
is still ad-nilpotent in K = Skew(Qsm(R), ∗) of skew-index n with at von Neumann
regular in Qsm(R). Although the liftings of GPIs and ∗-GPIs respectively to the
maximal right ring of quotients and the Martindale symmetric ring of quotients are
well known (see for example [1, Theorems 6.4.1 and 6.4.7]), we will include all the
calculations for the sake of completeness.

Theorem 3.5. Let R be a semiprime associative algebra with involution ∗ over a
ring of scalars Φ with 1

2 ∈ Φ. Let a ∈ K be an ad-nilpotent element of skew-index

n. Let t := [n+1
2 ], let Qsm(R) be the symmetric Martindale ring of quotients of R

and denote K := Skew(Qsm(R), ∗). Then a is an ad-nilpotent element of skew-index
n of K, and at is von Neumann regular in Qsm(R).

Proof. Let us see that atKat = 0: let q ∈ K and let I be an essential ideal of R
such that Iq + qI ⊆ R. By Lemma 2.6(1) we know that for any y ∈ I there exists
λy ∈ H(C(R), ∗) with atyat = λya

t. From atKat = 0 we have atxat = atx∗at for
every x ∈ R. Thus

atyatqat = at(yatq)∗at = −atqaty∗at =

= −atqatyat = −λyatqat = −atyatqat

so 2atyatqat = 0 for every y in the essential ideal I of R, so atqat = 0.
Suppose now that n ≡4 3. In this case we will show that not only atKat = 0 but

also atqat−1 = at−1qat for every q ∈ K. Let q ∈ K and let I be an essential ideal of
R such that Iq + qI ⊆ R. From atkat−1 = at−1kat for every k ∈ K and atKat = 0
we get atqat = atq∗at for every q ∈ Qsm(R), whence

atyatqat−1 = at(yatq − (yatq)∗)at−1 + at(yatq)∗at−1 =

= at−1(yatq − (yatq)∗)at − atqaty∗at−1 =

= at−1(yatq − (yatq)∗)at = −at−1(yatq)∗at =

= at−1qaty∗at = at−1qatyat.
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As we know, for any y ∈ I there is λy ∈ H(C(R), ∗) such that atyat = λya
t.

Therefore, for every x ∈ R, if we multiply atyatqat−1 − at−1qatyat = 0 by atx on
the left we obtain

0 = atxatyatqat−1 − atxat−1qatyat = λya
txatqat−1 − λyatxat−1qat =

= atyatxatqat−1 − atyatxat−1qat = atyatx(atqat−1 − at−1qat),

so atqat−1 − at−1qat = 0 because atIat generates an essential ideal of R.
• If n ≡4 0, for any q ∈ K,

adna(q) =

n∑
i=0

(−1)n−i
(
n

i

)
aiqan−i = (−1)t

(
n

t

)
atqat = 0.

• If n ≡4 3, for any q ∈ K,

adna(q) = (−1)t−1

(
n

t− 1

)
atqat−1 + (−1)t

(
n

t

)
at−1qat =

= (−1)t−1

(
n

t− 1

)
(atqat−1 − at−1qat) = 0.

Moreover, since at generates an essential ideal of R, it also generates an essential
ideal of Qsm(R).

Let us see that at is von Neumann regular in Qsm(R). Since Qsm(R) = Qsm(R̂) we
will suppose in the rest of this proof that R is centrally closed. As we know, for every
x ∈ R there exists λx ∈ H(C(R), ∗) such that atxat = λxa

t. Since C(R) is von
Neumann regular there exists λ′x ∈ C(R) such that λxλ

′
xλx = λx and εx := λxλ

′
x

is an idempotent of C(R), i.e., for every x ∈ R we have atλ′xxa
t = εxa

t. Let us
consider the family {εx}x∈R of these idempotents and take a maximal subfamily
{εxγ}γ∈∆ of nonzero orthogonal idempotents. Note that for every γ ∈ ∆ there
exists cxγ := λ′xγxγ ∈ R such that atcxγa

t = εxγa
t.

Let us prove that I :=
∑
γ∈∆ εxγR is an essential ideal of R: by [2, Proposition

2.10] there exists an idempotent ε ∈ C(R) such that ε εxγ = εxγ for every γ ∈ ∆
and AnnR(I) = (1− ε)R. We claim that ε = 1; otherwise, if ε 6= 1, we can produce
a new orthogonal idempotent that does not belong to ∆, which contradicts the
maximality of ∆: since R is semiprime and the ideal generated by at is essential,
atRatR(1 − ε) 6= 0 and for every x ∈ R such that 0 6= atxatR(1 − ε) we have
0 6= (1− ε)atxat = (1− ε)εxλxat, i.e., (1− ε)εx is a new orthogonal idempotent, a
contradiction. Therefore ε = 1 and I is an essential ideal of R.
Define c : I → R by c(

∑
γ εxγyγ) :=

∑
γ cxγyγ . It is clear that c is a homomorphism

of right R-modules; moreover, for every δ ∈ ∆,

Lεxδ c(
∑
γ

εxγyγ) = εxδcxδyδ = Lcxδ (
∑
γ

εxγyγ) ∈ R,

where Lεxδ : R → R and Lcxδ : R → R are the corresponding left multiplication

maps, so [R,Lεxδ ] · [I, c] = [R,Lcxδ ], and by the usual embedding of R into Qsm(R)

we obtain Iq ⊆ R for q := [I, c]. Furthermore, since each εxδ lies in C(R), with the
same argument we can prove that qI ⊆ R. Thus q ∈ Qsm(R).
Finally, for every γ ∈ ∆ we have εxγ (atqat−at) = atcxγa

t−εxγat = 0 which implies
that atqat − at ∈ AnnR(I) = 0, i.e., atqat = at. �
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4. Examples

In this section we construct examples of ad-nilpotent elements of full-index and
of skew-index for any possible index of ad-nilpotence.

4.1. Let m be a natural number, let F a field of characteristic zero (or big enough)
with involution denoted by α for any α ∈ F , and denote the simple associative
algebra Mm(F ) by R and its standard matrix units by eij , 1 ≤ i, j ≤ m. We
endow R with the involution ∗ : R→ R given by

X∗ := D−1X
tr
D

where D :=
∑m
i=1(−1)iei,m+1−i ∈ R and X

tr
:= (xji)

m
i,j=1 for X = (xij)

m
i,j=1 ∈ R.

As before, we denote the set of skew-symmetric elements of R with respect to the
involution ∗ by K. When m is odd (the only case we actually need) we have
D−1 = D and

e∗ij = (−1)i+jem−j+1,m−i+1,

and thus A = (aij)
m
i,j=1 ∈ K if and only if

aij = (−1)i+j+1am−j+1,m−i+1

for all 1 ≤ i, j ≤ m; in particular ai,m−i+1 = −ai,m−i+1, so ai,m−i+1 ∈ Skew(F,−)
for all 1 ≤ i ≤ m.

4.2. Ad-nilpotent elements of full-index: Let R := Mm(F ) with the involution ∗
given in 4.1, and let m be odd. As in 4.1, consider

A1 :=

m−1∑
i=1

ei,i+1 ∈ K,

which is a nilpotent element of index m and ad-nilpotent of R of index 2m − 1
(see [2, Lemma 4.2]). If the involution − in the field F is not the identity, for any
0 6= α ∈ Skew(F,−), the element 0 6= αem,1 is skew-symmetric in R, and

ad2m−2
A1

(αem,1) =

(
2m− 2

m− 1

)
Am−1

1 αem,1A
m−1
1 =

(
2m− 2

m− 1

)
αe1,m 6= 0.

Thus A1 is an ad-nilpotent element of K (and of R) whose index of ad-nilpotence
is n = 2m− 1 ≡4 1.

In the same associative algebra R, take any 1 < t ≤ m−1
2 and consider the matrix

A2 :=

t−1∑
i=1

(ei,i+1 + em−i,m−i+1) ∈ K,

which is nilpotent of index t. The element A2 is ad-nilpotent of R of index 2t−1 (see
[2, Lemma 4.2]). Moreover, 0 6= B := et,1 + (−1)tem,m−t+1 ∈ K and ad2t−2

A2
B 6= 0.

Therefore A2 is ad-nilpotent of K (and of R) of index n = 2t− 1. If t is even then
n ≡4 3, while if t is odd then n ≡4 1.

4.3. Ad-nilpotent elements of skew-index: Inspired by Theorem 3.2 we will con-
struct the examples of ad-nilpotent elements of skew-index in matrix algebras over
fields with identity involution.
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• n ≡4 3: Let m > 1 be some odd number. Let us consider R =Mm(F ) where F
is a field with identity involution and R is an algebra with the involution ∗ given
in 4.1. Take any k such that 2k ≤ m. Let us consider the element

A1 :=

m−k∑
i=k

ei,i+1 ∈ K

which is nilpotent of index l = m−2k+2 and ad-nilpotent of R of index 2l−1 (see
[2, Lemma 4.2]). Nevertheless, its index of ad-nilpotence in K is lower: Indeed,
any B =

∑m
i,j=1 bijeij ∈ K has bk+l−1,k = 0 and bk+l−2,k = bk+l−1,k+1 by 4.1 since

Skew(F,−) = 0, so

ad2l−3
A1

B =

(
2l − 3

l − 2

)
(Al−2

1 BAl−1
1 −Al−1

1 BAl−2
1 ) =

=

(
2l − 3

l − 2

)
(ek,k+l−2 + ek+1,k+l−1)Bek,k+l−1−

−
(

2l − 3

l − 2

)
ek,k+l−1B(ek,k+l−2 + ek+1,k+l−1) =

=

(
2l − 3

l − 2

)
(bk+l−2,k − bk+l−1,k+1)ek,k+l−1 = 0.

Furthermore, for C := ek+l−2,k − e∗k+l−2,k = ek+l−2,k + ek+l−1,k+1 ∈ K we have

ad2l−4
A1

C 6= 0, so the index of ad-nilpotence of A1 in K is 2l− 3 ≡4 3. For any odd
l we have built an ad-nilpotent matrix A1 of index n := 2l − 3 ≡4 3.

• n ≡4 0: Take any n ≡4 0. Then n = 2t for some even number t. Let m := 3t+ 3.
In the associative algebra R =Mm(F ) where F is a field with identity involution
and R has the involution ∗ given in 4.1, let us define A := A1 +A2 where

A1 :=

2t+1∑
i=t+2

ei,i+1 and A2 :=

t−1∑
i=1

(ei,i+1 + em−i,m−i+1).

By construction, A1 ∈ K is nilpotent of index t+ 1 and ad-nilpotent of R of index
2t + 1. Moreover, by taking k = t + 2 this matrix corresponds to the matrix A1

defined in case n ≡4 3, so it is ad-nilpotent of K of index 2t− 1. Similarly, A2 ∈ K
is nilpotent of index t, and it is ad-nilpotent of K (and of R) of index 2t− 1.

The matrix A, which is an orthogonal sum of A1 and A2, is nilpotent of index
t + 1 and ad-nilpotent of R of index 2t + 1. Let us see that ad2t

A K = 0: for any
B =

∑
ij bijeij ∈ K we have

ad2t
A B =

(
2t

t

)
AtBAt =

(
2t

t

)
et+2,2t+2Bet+2,2t+2 =

=

(
2t

t

)
b2t+2,t+2et+2,2t+2 = 0

because b2t+2,t+2 ∈ Skew(F,−) = 0. Furthermore, for C := et,t+2 − e∗t,t+2 =

et,t+2 − e2t+2,2t+4 ∈ K we have ad2t−1
A C 6= 0, so A is ad-nilpotent of K of index

n = 2t ≡4 0.
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