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ABSTRACT
In this paper we give an in-deph analysis of the nilpotency index of
nilpotent homogeneous inner superderivations in associative prime
superalgebras with and without superinvolution. We also present
examples of all the different cases that our analysis exhibits for the
nilpotency indices of the inner superderivations.
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1. Introduction

An associative superalgebra is a Z2-graded associative algebra R = R0 + R1. The elements
of R0 ∪ R1 are called homogeneous elements and we say that the degree of a ∈ R0 ∪ R1 is
i (denoted |a| = i) when a ∈ Ri, i ∈ {0, 1}. Given an associative superalgebra R, we obtain
a Lie superalgebra if the associative product is replaced by the superbracket [ , ], where
[a, b] := ab − (−1)|a| |b|ba for homogeneous a, b ∈ R. The Lie structure of prime/simple
associative superalgebras was investigated by F.Montaner in [1] and S.Montgomery in [2].

We say that a Z2-linear map ∗ : R → R is a superinvolution when (a∗)∗ = a and
(ab)∗ = (−1)|a| |b|b∗a∗ for homogeneous a, b ∈ R. The set of skew-symmetric elements
of an associative superalgebra is a Lie superalgebra and it will be denoted by K through-
out this paper. The study of the Lie structure of K of a simple associative superalgebra
with superinvolution was iniciated by C. Gómez-Ambrosi and I. Shestakov in 1997 in [3],
and their results were extended to prime superalgebras in [4]. Superinvolutions in associa-
tive superalgebras have been a topic of great interest. We highlight the works of Laliena
[5] on the description of the derived superalgebra [K,K] of a semiprime superalgebra
with superinvolution, the papers [6] and [7] of J. Laliena and R. Rizzo on the extension
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of results of Lanski and Montgomery to associative superalgebras with superinvolution,
and the recent works of do Nascimento, Vieira, Giambruno, Ioppolo, La Mattina, Martino
[8–12] on superinvolutions in superalgebras related to polynomial identities and related to
the growth of certain substructures of the superalgebras.

Another interesting and very active topic in superalgebras is the study of superderiva-
tions (see for example theworks of Fošner and Fošner [13], Ghahramani et al. [14] orWang
[15]). A linear map d = d0 + d1 in R is called a superderivation if each di, i ∈ {0, 1}, sat-
isfies di(Rj) ⊂ Ri+j and di(ab) = di(a)b + (−1)i|a|adi(b), for homogeneous a, b ∈ R. For
instance, if a ∈ R0 ∪ R1, the map ada : R → R given by ada(x) = [a, x] is a superderiva-
tion (of degree |a|). Such superderivation is called an inner derivation. In [14] the authors
describe the structure of superderivations on some Z2-graded rings and study when
superderivations are inner.

In this paper we are going to study nilpotent inner superderivations in prime associa-
tive superalgebraswith andwithout involution. This problemfits into the so calledHerstein
theory: the study of nonassociative objects in associative prime and semiprime rings per-
haps with involution. Indeed, back in 1963 I. N. Herstein showed that any ad-nilpotent
element a of index n in a simple ring of characteristic zero or greater than n gives rise to a
nilpotent element a − λ for some λ in the center of R and that the index of nilpotency of
such an element is less than or equal to [n+1

2 ], see [16, Theorempage 84]. This result ofHer-
steinwas generalized byW. S.Martindale andC. R.Miers in 1983 [17, Corollary 1] to prime
rings of characteristic greater than n, and nilpotent derivations of the skew-symmetric
elements of prime rings with involution were described in the 1990’s by Martindale and
Miers in [18,Main Theorem]. The extension of those descriptions to ad-nilpotent elements
in semiprime rings was performed by several authors (Grzeszczuk [19], Lee [20] or the
authors of this paper together with Brox and Muñoz Alcázar [21]).

The goal of this paper is to extend the results ofMartindale andMiers on the description
of ad-nilpotent elements of prime rings with or without involution to the supersetting. We
remark that this extension is not just a direct translation of the non-super results because
a superinvolution on a superalgebra is not an involution in the underlying non-super
structure.

The paper is organized as follows: after a preliminary section where we recall some
useful notions and results in the super and non-super setting, in Section 3 we will give a
detailed description of a homogeneous ad-nilpotent element a of index n in a prime asso-
ciative superalgebra R free of

(n
s
)
and s-torsion, where s = [n+1

2 ], depending on the degree
of the element and the equivalence class of nmodulo 4. If a belongs to R0 the description
follows, except for somedetails, fromour study of ad-nilpotent elements of semiprime alge-
bras (see [21, Theorem 4.4 and Theorem 5.6]), while if a ∈ R1 we will work with a2 ∈ R0
and we will show that the only possible indices of ad-nilpotence of a are n ≡4 1, 2. These
two cases correspond to a nilpotent element of index n+1

2 , when n ≡4 1, or to an element
a for which there exists λ ∈ C(R)0 with (a2 − λ)

n+2
4 = 0, when n ≡4 2.

In Section 4 we will study ad-nilpotent elements of the skew-symmetric elements K
of a prime superalgebra with superinvolution and characteristic p>n, i.e. elements a ∈
K0 ∪ K1 such that adnaK = 0 and adn−1

a K �= 0. The key point is the fact proven in Propo-
sition 4.2 that any homogeneous ad-nilpotent element a of K of index n is either nilpotent
or ad-nilpotent on the whole R with the same index n. When a ∈ K is an ad-nilpotent
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homogeneous even element, it will be classified depending on its index of ad-nilpotence
modulo 4 (see Theorem 4.3), and when a ∈ K1 is ad-nilpotent of index n, its description
will depend on the congruence class of nmodulo 8 (see Theorem 4.4): if n ≡8 1, 2, 5, 6 then
a behaves as an ad-nilpotent element of R and if n ≡8 0, 7 then a is nilpotent of index s+ 1
for s = [n+1

2 ], and asKas = 0.We will also show that the indices of ad-nilpotence n ≡8 3, 4
are not possible.

The last section is devoted to examples.Wewill work in thematrix superalgebraM(r|s)
over F, where r is an odd natural number, s as an even natural number, and F is a field.
In such a superalgebra we will define a superinvolution and we will present examples of
elements fitting each of the cases of ad-nilpotent elements appearing in Theorems 3.2, 4.3
and 4.4.

2. Preliminaries

In this section we recall the main definitions and preliminary results. We refer the reader
to [22, 23] and [3] for further information on associative superalgebras.
2.1. Throughout the article, R = R0 + R1 will denote a superalgebra over a unital commu-
tative ring�with 1

2 ∈ �. In these conditions the map σ : R → R defined by σ(x0 + x1) =
x0 − x1, for every x0 ∈ R0, x1 ∈ R1, is an algebra automorphism with σ 2 = id. Conversely,
given an associative algebra R, every algebra automorphism σ : R → R with σ 2 = id
defines aZ2-graduation on R given by R0 = {a ∈ R | σ(a) = a} and R1 = {a ∈ R | σ(a) =
−a}. Therefore, a Z2-graduation in R is equivalent to an algebra automorphism σ with
σ 2 = id.

Notice that a �-module S of R is graded if and only if σ(S) ⊂ S.
2.2. A semiprime associative superalgebra R is a superalgebra without nonzero nilpotent
graded ideals. We remark that a semiprime associative superalgebra is just an associative
superalgebra which is semiprime as an algebra (for every nonzero ideal I of R, I2 �= 0). A
prime associative superalgebra R is an associative superalgebra without nonzero orthogo-
nal graded ideals (for every nonzero graded ideals I, J of R, IJ �= 0). Prime superalgebras
have the following property: for every nonzero graded ideal I of a prime superalgebra R
and any two elements a, b ∈ Rwhere at least a or b is homogeneous, the condition aIb = 0
implies that either a or b is zero (see [22, p. 693]).

Lemma 2.3 ([1, Lemma 1.2]): If R = R0 + R1 is a semiprime associative superalgebra, then
R and R0 are semiprime algebras.

Lemma 2.4 ([1, Lemma 1.3]): If R = R0 + R1 is a prime associative superalgebra, then
either R or R0 are prime as algebras.

2.5. The notion of the extended centroid for associative superalgebras is due to Fošner, see
[22]. Let R be a semiprime associative superalgebra. Since R is semiprime as an algebra, we
can consider the extended centroidC(R) ofR. Let R̂ = RC(R) + C(R) be the central closure
ofR. Let σ : R → R be the automorphism associated to theZ2-grading ofR (σ 2 = id). This
automorphism can be extended to R̂ and we denote this extension by σ̂ . Since σ̂ 2 = id, R̂
is again a superalgebra and σ̂ (C(R)) = C(R), i.e. C(R) = C(R)0 + C(R)1 where C(R)0 =
{λ + σ̂ (λ)‖ λ ∈ C(R)} and C(R)1 = {λ − σ̂ (λ)‖ λ ∈ C(R)}. We will say that R is centrally
closed if R = R̂, i.e. if R is centrally closed as an algebra.
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2.6. Let R be a prime associative superalgebra such that R is not prime as an algebra. Let
σ denote the automorphism associated to the Z2-grading of R and consider a nonzero
ideal P of R with P ∩ σ(P) = 0. Then P ⊕ σ(P) is a graded essential ideal of R, where
(P ⊕ σ(P))0 = {x + σ(x) | x ∈ P} ∼= P as an algebra and (P ⊕ σ(P))1 = {x − σ(x) | x ∈
P}. Since P ⊕ σ(P) is essential in R,

C(R) ∼= C(P ⊕ σ(P)) = C(P) ⊕ σ(C(P)),

where the isomorphism is given by the restriction of permissiblemaps (for any λ = [I, f ] ∈
C(R) we define λ̂ = [(I ∩ (P ⊕ σ(P)))2, g] where g : (I ∩ (P ⊕ σ(P))2 → P ⊕ σ(P) is
the restriction of f to the essential ideal (I ∩ (P ⊕ σ(P)))2 of P ⊕ σ(P)). Notice that
the Z2-grading of C(P) ⊕ σ(C(P)) comes from the Z2-grading of P ⊕ σ(P): (C(P) ⊕
σ(C(P)))0 = {λ + σ(λ) | λ ∈ C(P)} and (C(P) ⊕ σ(C(P)))1 = {λ − σ(λ) | λ ∈ C(P)}. In
particular,

C(R)0 ∼= {λ + σ(λ) | λ ∈ C(P)} ∼= C(P).

On the other hand, by Lemma 2.4, R0 is prime as an algebra, and therefore its nonzero
ideals are essential. By restricting permissiblemaps fromR0 to (P ⊕ σ(P))0 we getC(R0) ∼=
C((P ⊕ σ(P))0) ∼= C(P).

We have obtained that C(R)0 ∼= C(R0).

Lemma 2.7 ([22, Lemma 3.1]): Let R be a semiprime associative superalgebra. Then the
following assertions are equivalent:

(i) R is a prime superalgebra.
(ii) all nonzero homogeneus elements on C(R) are invertible.
(iii) C(R)0 is a field.

2.8. Let R be an associative superalgebra over � and take an element a ∈ R0 ∪ R1. Then
Ra := aRa with (aRa)i := aRi+|a|a, i ∈ {0, 1}, is a Z2-graded �-module. Moreover, the
product (axa)(aya) := axaya for any x, y ∈ R induces an associative superalgebra structure
in Ra, which is called the local superalgebra of R at a, see [24]. When R is an associative
superalgebra with superinvolution ∗, the superinvolution induces a superinvolution � in
Ra given by (axa)� := (−1)|a|ax∗a, for every x ∈ R.
2.9. Given an associative superalgebra R with superinvolution ∗, the set of skew-symetric
elementsK := {a ∈ R | a∗ = −a} and the set of symmetric elementsH := {a ∈ R | a∗ = a}
are graded submodules of R. Since 1

2 ∈ �, R = H ⊕ K. We will denote Hi = H ∩ Ri and
Ki = K ∩ Ri, i = 0, 1. Notice that

a ∈ K0 =⇒
{

as ∈ H0, when s is even,
as ∈ K0, when s is odd,

a ∈ K1 =⇒

⎧⎪⎪⎨
⎪⎪⎩

as ∈ H0, when s ≡4 0,
as ∈ K1, when s ≡4 1,
as ∈ K0, when s ≡4 2,
as ∈ H1, when s ≡4 3.
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Moreover, if R is a prime superalgebra and Skew(C(R), ∗) �= 0, then R = K + μK for
any nonzero homogeneous μ ∈ Skew(C(R), ∗) (indeed, μ2 ∈ C(R)0 is invertible because
C(R)0 is field, and therefore R ⊆ K + μ2H ⊆ K + μK ⊆ R).

Lemma 2.10: Let R = R0 + R1 be an associative superalgebra with superinvolution ∗, and
let a ∈ R0 ∪ R1. If there exists λ ∈ C(R) such that a − λ is nilpotent of index n then:

(i) if R is prime, has no n-torsion and a ∈ R0, then λ ∈ C(R)0,
(ii) if R is semiprime, λ is the unique element of C(R) such that a − λ is nilpotent:moreover,

if a ∈ K then λ ∈ Skew(C(R), ∗).

Proof: (i) Let us consider a ∈ R0 and suppose that there exists λ = λ0 + λ1 ∈ C(R) such
that a − λ is nilpotent of index n. If λ1 �= 0, it is invertible by Lemma 2.7 and there
exists μ1 ∈ C(R)1 such that λ1μ1 = 1. From the nilpotency of a − λ0 − λ1 we get that
μ1a − μ1λ0 − 1 is again nilpotent of index n, i.e. the element b = μ1a − μ1λ0 ∈ R1 satis-
fies a polynomial of the form p(X) = (X − 1)n ∈ C(R)0[X]. Since C(R)0 is a field, p(X) ∈
C(R)0[X] is the minimal polynomial of b over C(R)0. In particular

bn −
(
n
1

)
bn−1 +

(
n
2

)
bn−2 + · · · = 0

and by homogeneity (
n
1

)
bn−1 +

(
n
3

)
bn−3 + · · · = 0,

i.e. b satisfies the polynomial q(X) = ∑[ n+1
2 ]

i=1
( n
2i−1

)
Xn−2i+1. But n − 1 = deg q(X) <

deg p(X) = n, a contradiction with the minimality of p(X). Therefore λ1 = 0 and λ ∈
C(R)0.

(ii) It follows as in [25, Lemma 2.11]. �

The following technical result appears in [25] and is a direct consequence of a theorem
of Beidar, Martindale and Mikhalev [26, Theorem 2.3.3].

Lemma 2.11 ([25, Corollary 2.14]): Let R be a semiprime ring and let R̂ denote its central
closure. Let ai, bi ∈ R for i = 1, 2, . . . , n be such that IdR(a1) ⊂ IdR(b1) and

∑n
i=1 aixbi = 0

for every x ∈ R. Then there exist λi ∈ C(R) for i = 2, . . . , n such that a1 = ∑n
i=2 λiai in R̂.

2.12. Given a Lie superalgebra L = L0 + L1 we say that an element a ∈ L is ad-nilpotent
of index n if adna(L) = 0 and adn−1

a (L) �= 0, where ada(x) := [a, x] for every x ∈ L, equiv-
alently, if the inner superderivation ada is nilpotent of index n.

Every associative superalgebraR = R0 + R1 can seen as a Lie superalgebra for the super-
bracket [a, b] := ab − (−1)|a||b|ba for every a, b ∈ R0 ∪ R1. When a ∈ R0, ada behaves as
the usual adjoint map in the non-super setting; when a ∈ R1, ad2a = ada2 .
2.13. In this paper we will use some results about the description of ad-nilpotent elements
in the non-super setting. In them, the notion of pure ad-nilpotent element of an associative
algebra was crucial. We recall here that notion and some of the results of [21] that will be
used in this paper:



5552 E. GARCÍA ET AL.

Let R be an associative algebra with or without involution ∗. Let R̂ denote the central
closure of R and let K be the set of skew-symmetric elements of R with respect to ∗.

(i) Let us considerR−, i.e. the Lie algebraRwith product [a, b] := ab − ba for every a, b ∈
R. We say that an element a is a pure ad-nilpotent element of R− of index n if for every
λ ∈ C(R) with λa �= 0, λa is ad-nilpotent in R̂− of index n.

(ii) Let us consider K. We say that an element a is a pure ad-nilpotent element of K of
index n if for every λ ∈ H(C(R)), ∗) with λa �= 0, λa is ad-nilpotent in Skew(R̂, ∗) of
index n.

Lemma 2.14 ([21, Lemma 3.2]): If R is a semiprime ring and a is an ad-nilpotent element
of R of index n, the following conditions are equivalent:

(i) a is a pure ad-nilpotent element of R−.
(ii) IdR(adn−1

a (R)) is an essential ideal of IdR(a).
(iii) AnnR(IdR(adn−1

a (R))) = AnnR(IdR(a)).

Theorem2.15 ([21, Theorem4.4]): Let R be a semiprime ring with no 2-torsion, let R̂ be its
central closure, and let a ∈ R be a pure ad-nilpotent element of R− of index n. Put t := [n+1

2 ],
and suppose that R is free of

(n
t
)
-torsion and t-torsion. Then n is odd and there exists λ ∈ C(R)

such that a − λ ∈ R̂ is nilpotent of index n+1
2 .

Proposition 2.16 ([21, Proposition 5.3]): Let R be a semiprime ring with involution ∗ and
free of 2-torsion, let R̂ be its central closure, and let a ∈ K be a nilpotent element of index of
nilpotency s. Then a is ad-nilpotent in R. If the index of ad-nilpotence of a in K is n and R is
free of

(n
t
)
-torsion for t := [n+1

2 ], then:

(1) If n ≡4 0 then s = t+ 1 and atKat = 0.
(2) If n ≡4 1 then s = t and the index of ad-nilpotence of a in R is also n.
(3) The case n ≡4 2 is not possible.
(4) If n ≡4 3 then there exists an idempotent ε ∈ C(R) such that εat = at. Moreover, when

we write a = εa + (1 − ε)a, we have:
(a) (4.1)If 0 �= εa ∈ R̂ then εa is nilpotent of index t + 1, εat = at generates

an essential ideal in εR̂ and (εa)t−1k(εa)t = (εa)tk(εa)t−1 for every k ∈
Skew(R̂, ∗).

(b) (4.2)If 0 �= (1 − ε)a ∈ R̂, then the index of ad-nilpotence of (1 − ε)a in R̂ is not
greater than n, and (1 − ε)at = 0.

Proposition 2.17 ([21, Proposition 5.5]): Let R be a semiprime ring with involution ∗ and
free of 2-torsion, let R̂ be its central closure, and let a ∈ K be a pure ad-nilpotent element of
K of index n>1. Then:

(1) There exists an idempotent ε ∈ H(C(R), ∗) such that (1 − ε)a is an ad-nilpotent element
of R̂ of index ≤ n and εa is nilpotent with adnμεa(R̂) �= 0 for every μ ∈ C(R) such that
μεa �= 0.
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(2) Moreover, if a is pure ad-nilpotent in K and R is free of
(n
t
)
-torsion and t-torsion for

t := [n+1
2 ], when we write a = εa + (1 − ε)a we have:

(a) (2.1)If εa �= 0 then εa is nilpotent of index t+ 1.
(b) (2.2)If (1 − ε)a �= 0 then (1 − ε)a is pure ad-nilpotent in R̂ of index n. In this

case n is odd and there exists λ ∈ Skew(C(R), ∗) such that ((1 − ε)a − λ)t = 0.

3. Ad-Nilpotent elements of R

In the following result we will relate the index of nilpotency of a homogeneous element of
R with its index of ad-nilpotence. It will be useful in our study of ad-nilpotent elements
of K.

Proposition 3.1: Let R = R0 + R1 be a semiprime associative superalgebra. If a ∈ R is a
homogeneous nilpotent element of index s and

(1) a ∈ R0 and R is free of
(2s−2
s−1

)
-torsion, then a is ad-nilpotent of R (and of R0) of index

n = 2s − 1,
(2a) a ∈ R1, s is even and R is free of

(s−2
s−2
2

)
-torsion, then a is ad-nilpotent of R of index

n = 2s − 2(n ≡4 2),
(2b) a ∈ R1, s is odd and R is free of

(s−1
s−1
2

)
-torsion, then a is ad-nilpotent of R of index

n = 2s − 1(n ≡4 1).

Proof: (1) Since a ∈ R0, the operator ada behaves as the adjoint map in the non-super
setting. From as = 0 we get that ad2s−1

a (R) = 0. On the other hand, as−1 �= 0, so by
semiprimeness of R (and of R0) (see Lemma 2.3) there exists x ∈ R (respectively, x ∈ R0)
such that as−1xas−1 �= 0 and, since R has no

(2s−2
s−1

)
-torsion,

(2s−2
s−1

)
as−1xas−1 �= 0. Thus

ad2s−2
a (x) =

(
2s − 2
s − 1

)
(−1)s−1as−1xas−1 �= 0.

We have shown that a is ad-nilpotent of R (and of R0) of index n = 2s−1.
(2a) Suppose that a ∈ R1 is a nilpotent element of even index s. Since ad2a = ada2 and

a2 ∈ R0 is nilpotent of index s
2 , we have by (1) that a

2 is ad-nilpotent of R of index 2( s2 ) −
1 = s − 1. Hence the index of ad-nilpotence of a is less or equal to 2s−2. Let x be any
element in R0 ∪ R1:

ad2s−3
a (x) = ad2s−4

a ada(x) = ads−2
a2 ada(x)

=
(
s − 2
s−2
2

)
(−1)

s−2
2 as−2(ax − (−1)|x|xa)as−2

=
(
s − 2
s−2
2

)
(−1)

s−2
2 as−1xas−2 −

(
s − 2
s−2
2

)
(−1)

s−2
2 +|x|as−2xas−1, hence

ad2s−3
a (x)a =

(
s − 2
s−2
2

)
(−1)

s−2
2 as−1xas−1.
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Therefore ad2s−3
a (R) cannot be zero, since otherwise as−1 = 0 because R is free of

(s−2
s−2
2

)
-

torsion and semiprime, a contradiction. We have shown that a is ad-nilpotent of index
n = 2s−2.

(2b) Suppose that a ∈ R1 is a nilpotent element of odd index s. For any homogeneous
x ∈ R0 ∪ R1:

ad2s−1
a (x) = adaad2s−2

a (x) = adaads−1
a2 (x) = ada

((
s − 1
s−1
2

)
(−1)

s−1
2 as−1xas−1

)

=
(
s − 1
s−1
2

)
(−1)

s−1
2 (asxas−1 − (−1)|x|as−1xas) = 0

so ad2s−1
a (R) = 0. Let us see that ad2s−2

a (R) �= 0: as−1 �= 0, so there exists x ∈ R such that

ad2s−2
a (x) = ads−1

a2 (x) =
(
s − 1
s−1
2

)
(−1)

s−1
2 as−1xas−1 �= 0

because R is semiprime and free of
(s−1
s−1
2

)
-torsion. We have shown that a is ad-nilpotent of

index n = 2s−1. �

In the following theorem we describe the homogeneous ad-nilpotent elements of R,
depending on the equivalence class of their indices of ad-nilpotence modulo 4.

Theorem 3.2: Let us consider a prime associative superalgebra R = R0 + R1, let R̂ denote
the central closure of R, and let a ∈ R0 ∪ R1 be a homogeneous ad-nilpotent element of index
n. If R is free of

(n
s
)
-torsion and free of s-torsion, for s = [n+1

2 ], then:

(1) If a ∈ R0, n is odd and there exists λ ∈ C(R)0 such that a − λ ∈ R̂ is nilpotent of index
n+1
2 .

(2) If a ∈ R1, then

(a) if n ≡4 1 and R is free of
( n−1

2
s−1
2

)
-torsion, then a is nilpotent of index n+1

2 .

(b) if n ≡4 2 then there is λ ∈ C(R)0 such that (a2 − λ) ∈ R̂ is nilpotent of index n+2
4 .

(c) the cases n ≡4 0 and n ≡4 3 do not occur.

Proof: We will suppose without loss of generality that R is centrally closed.
(1) Let a ∈ R0 be an ad-nilpotent element of index n. By Lemma 2.3, R is semiprime

as an algebra. Moreover, the element a is a pure ad-nilpotent element of R because every
graded ideal of R is essential (see 2.14). Therefore, we can use Theorem 2.15 to obtain that
n is odd and there exists λ ∈ C(R) such that a − λ is nilpotent of index n+1

2 . Moreover,
a ∈ R0, R is prime and has no n+1

2 -torsion, so λ ∈ C(R)0 by Lemma 2.10(i).
(2) Let a ∈ R1 be an ad-nilpotent element of index n. Let us split our argument in two

cases:
(2a) If n is odd, n = 2s−1 for some s. Then 0 = adn+1

a (R) = ad2sa (R) = adsa2(R), and
a2 ∈ R0 is ad-nilpotent of index s (notice that ads−1

a2 (R) = ad2s−2
a (R) = adn−1

a (R) �= 0).
Therefore, by (1), s is odd (equivalently, n ≡4 1) and there exists λ ∈ C(R)0 such that
a2 − λ is nilpotent of index s+1

2 . Let us prove that λ = 0: Let us denote b = (a2 − λ)
s−1
2 .
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Then, for every x ∈ R0 ∪ R1,

0 = adna(x) = ada(ad
n−1
2

a2 (x)) = ada(ad
n−1
2

a2−λ
(x))

=
⎡
⎣a,

n−1
2∑

i=0

(n−1
2
i

)
(−1)

n−1
2 −i(a2 − λ)ix(a2 − λ)

n−1
2 −i

⎤
⎦

=
[
a,

(n−1
2

s−1
2

)
(−1)

s−1
2 (a2 − λ)

s−1
2 x(a2 − λ)

s−1
2

]

=
[
a,

(n−1
2

s−1
2

)
(−1)

s−1
2 bxb

]
=

(n−1
2

s−1
2

)
(−1)

s−1
2 (abxb − (−1)|x|bxba).

Since R is free of
( n−1

2
s−1
2

)
-torsion, we get that

abxb = (−1)|x|bxba, for every x ∈ R0 ∪ R1.

Take any x ∈ R0. Multiplying this last equality by a on the left and taking into account
that ab = ba we have a2bxb = a(abxb) = a(bxba) = abxab; but a2bxb = ab(ax)b =
−b(ax)ba = −abxab because ax ∈ R1. Then a2bR0b = abR0ab = 0. Similarly, for any x ∈
R1 we have that a2bxb = a(abxb) = −a(bxab), and we also have that a2bxb = ab(ax)b =
b(ax)ba = abxab because ax ∈ R0. Then a2bR1b = abR1ab = 0. We have obtained

a2bRb = abRab = 0.

From the definition of b we have that (a2 − λ)b = 0, i.e. a2b = λb, so 0 = a2bRb =
λbRb. If λ �= 0, we would have that bRb = 0 (notice that λ ∈ C(R)0 and C(R)0 is a field
(Lemma 2.7)), leading to a contradiction with the semiprimeness of R and b �= 0.

Thus λ = 0, so 0 �= b = as−1, ab = as and 0 = abRab = asRas implies as = 0 by
semiprimeness of R.

(2b) If n is even, then n = 2s for some s, so a2 ∈ R0 is ad-nilpotent of index s (adsa2(R) =
adna(R) = 0 and ads−1

a2 (R) = ad2s−2
a (R) = adn−2

a (R) �= 0). Then by (1) we obtain that s is
odd (equivalently, n ≡4 2) and there exists λ ∈ C(R)0 such that (a2 − λ)

s+1
2 = 0.

Notice that the cases n ≡4 0 and n ≡4 3 do not occur. �

4. Ad-Nilpotent elements of K

We start with a technical lemma, which is also interesting by itself. For example, it
implies that every semiprime superalgebrawith superinvolution and no nonzero skew even
elements is a trivial superalgebra, i.e. the odd part is zero.

Lemma 4.1: Let R = R0 + R1 be a semiprime superalgebra with superinvolution ∗.

(i) If K0 = 0 then R1 = 0 and R = R0 = H0 is commutative.
(ii) Let us consider h0 ∈ H0. If h0K0h0 = 0 then h0R1h0 = 0 and h0Rh0 = h0R0h0 =

h0H0h0 is commutative as the (trivial) local superalgebra of R at h0.
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Proof: (i) Take any k1, k′
1 ∈ K1 and h1, h′

1 ∈ H1. Then, since R0 = H0, we have that

k1h1 = (k1h1)∗ = h1k1, k1k′
1 = (k1k′

1)
∗ = −k′

1k1, h1h′
1 = (h1h′

1)
∗ = −h′

1h1.

In particular, k21 = h21 = 0.
We claim thatK1 = 0. Take any k1 ∈ K1. Then for every h0 ∈ H0, k1h0k1 = (k1h0k1)∗ =

−k1h0k1 implies k1h0k1 = 0, so k1H0k1 = 0; similarly, for every h1 ∈ H1, (k1h1)k1 =
h1k21 = 0, so h1H1h1 = 0, and, for every k′

1 ∈ K1, (k1k′
1)k1 = −k′

1k
2
1 = 0, so k1K1k1 = 0.

We have shown that k1Rk1 = 0, so by semiprimeness of R, k1 = 0.
Let us show that H1 = 0. Take any h1 ∈ H1. For every h0 ∈ H0, since h1h0h1 =

(h1h0h1)∗ = −h1h0h1, we have that h1h0h1 = 0, so h1H0h1 = 0. Similarly, for every h′
1 ∈

H1, h1h′
1h1 = −h′

1h
2
1 = 0, so h1H1h1 = 0, and, finally, for every k1 ∈ K1, h1k1h1 = k1h21 =

0, so h1K1h1 = 0. We have shown that h1Rh1 = 0, so by semiprimeness of R, h1 = 0.
Therefore, R1 = H1 + K1 = 0.
Finally, H0 is commutative because for every h0, h′

0 ∈ H0,

h0h′
0 = (h0h′

0)
∗ = h′

0h0.

(ii) Take h0 ∈ H0 and let us consider the local algebra Rh0 = h0Rh0 as defined in 2, which
is an associative superalgebra with induced superinvolution (h0xh0)� := h0x∗h0, for every
x ∈ R. Clearly Skew(h0Rh0, �) = h0Kh0 and Sym(h0Rh0, �) = h0Hh0. If we suppose that
h0K0h0 = 0 then Skew(h0Rh0, �)0 = 0 and by (i) we have

(Rh0)1 = h0R1h0 = 0 and Rh0 = h0Rh0 = (Rh0)0 = h0R0h0 = h0H0h0.

�

Proposition 4.2: Let R be a prime associative superalgebra with superinvolution ∗ and let
a ∈ K be a homogeneous ad-nilpotent element of K of index n > 2. Suppose that R is free of(n
s
)
-torsion and free of s-torsion, for s = [n+1

2 ]. If Skew(C(R), ∗) �= 0 then a is ad-nilpotent
of R of index n. Otherwise, a is nilpotent.

Proof: If there exists a homogeneous 0 �= λ ∈ Skew(C(R), ∗) then λ2 is invertible in the
field C(R)0, and R = K + λ2H ⊆ K + λK so adna(R) = 0. Suppose from now on that
Skew(C(R), ∗) = 0. We split our proof in two cases, depending on the parity of a:

(I) Suppose that a ∈ K0. Let us see that a is nilpotent. Every x ∈ R can be expressed as
x = xh + xk for xh := x+x∗

2 ∈ H and xk = x−x∗
2 ∈ K, so for every x ∈ R

adna(ax + xa) = adna(axk + xka) + adna(axh + xha) = aadna(xk) + adna(xk)a

+ adna(axh + xha) = 0

because axh + xha ∈ K and aadia(x) = adia(ax) for every x ∈ R and any i ∈ N. Expanding
this expression

0 = adna(ax + xa) = (−1)nxan+1 +
n∑
i=1

((
n
i

)
−

(
n

i − 1

))
(−1)n−iaixan+1−i + an+1x.

Since R is semiprime as an algebra, by Lemma 2.11, a is an algebraic element of R over
C(R).
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(I.a) Let us suppose that R is prime as an algebra. The calculations of (1.b) in the proof
of [21, Proposition 5.5] show that a is nilpotent.

(I.b) If R is prime as a superalgebra but not prime as an algebra, R0 is prime
by 2.4, C(R)0 ∼= C(R0) by 2, the superinvolution ∗ restricted to R0 is an involution and
Skew(C(R0), ∗) = 0 because we are assuming that Skew(C(R), ∗) = 0. The element a is
a pure ad-nilpotent element of K0 because C(R0) is a field, so we can apply Proposi-
tion 2.17(2) to the prime associative algebra R0 to obtain that a is nilpotent.

(II) If a ∈ K1, consider a2 ∈ K0 and by (I), a2 is nilpotent, i.e. a is nilpotent. �

In the following two theorems we will describe the homogeneous ad-nilpotent elements
of K. Our goal is to relate the index of ad-nilpotence of a homogeneous element of K with
its index of ad-nilpotence in R (and in R0 and in K0 when the element is even). Moreover,
when these indices inK and inR do not coincide, we will show that the element is nilpotent
and we will exhibit the explicit index of nilpotency of the element.

We begin with the description of even ad-nilpotent elements of K.

Theorem 4.3: Let R be a prime associative superalgebra of characteristic p>n with superin-
volution ∗, let R̂ be its central closure, let a ∈ K0 := Skew(R, ∗)0 be an ad-nilpotent element
of K of index n>1 and let s = [n+1

2 ]. Then

(1) If n ≡4 0 then a is nilpotent of index s + 1, ad-nilpotent of R and of R0 of index n+ 1
and satisfies asKas = 0. Moreover, the index of ad-nilpotence of a in K0 can be n−1 or
n.

(2) If n ≡4 1 then there exists λ ∈ Skew(C(R), ∗)0 such that a − λ ∈ R̂ is nilpotent of index
s and a is ad-nilpotent of R, of R0 and of K0 of index n.

(3) The case n ≡4 2 is not possible.
(4) If n ≡4 3 then either:

(a) (4.1)there exists λ ∈ Skew(C(R), ∗)0 such that a − λ ∈ R̂ is nilpotent of index s
and a is ad-nilpotent of R, of R0 and of K0 of index n, or

(b) (4.2)a is nilpotent of index s + 1, ad-nilpotent of K0 of index n, ad-nilpotent of R
and of R0 of index n+ 2 and satisfies askas−1 − as−1kas = 0 for every k ∈ K. In
particular R satisfies asKas = 0.

Proof: Suppose without loss of generality that R is centrally closed. Let a ∈ K0 be an ad-
nilpotent element of K of index n.

– If Skew(C(R), ∗) �= 0, by Proposition 4.2, a is ad-nilpotent of index n of R and by
Theorem 3.2 n has to be odd (n ≡4 1 or n ≡4 3) and there exists λ ∈ C(R)0 such
that a − λ is nilpotent of index s, so a is ad-nilpotent of R and of R0 of the same index
n = 2s−1, see Proposition 3.1(1). Moreover, λ ∈ Skew(C(R), ∗)0 by Lemma 2.10 and
since Skew(C(R), ∗)0 ⊂ Skew(C(R0), ∗), the index of ad-nilpotence of a − λ in K0 is
again n = 2s−1 (notice that, by Lemma 2.10(ii), λ is the unique element of C(R0)

such that a − λ is nilpotent). These are the cases (2) and (4.1).
– If Skew(C(R), ∗) = 0, by Proposition 4.2, a is nilpotent. We are going to approach this

case considering the index of ad-nilpotence of a inK0 and comparing it with its index
of ad-nilpotence in K and in R. Let us suppose that a is ad-nilpotent of K0 of index
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m ≤ n and let r = [m+1
2 ]. Since R0 is a semiprime algebra and the superinvolution ∗

restricted to R0 is an involution, by Proposition 2.16 we have four possibilities:

• m ≡4 0 then a is nilpotent of index r+ 1 and arK0ar = 0, which, by Lemma 4.1(ii),
implies that arR1ar = 0, so a is also ad-nilpotent of index m of K, i.e. m = n and a is
nilpotent of index s+ 1 with s = n

2 = r. Now, since s+ 1 is the index of nilpotency of a,
by Proposition 3.1(1) a is ad-nilpotent of index n+ 1 of R and of R0. This is the case (1)
(n ≡4 0) with the index of ad-nilpotence of a in K0 equal to the index of ad-nilpotence
of a in K.

• m ≡4 1 then a is nilpotent of index r. This implies, by Proposition 3.1(1), that a is ad-
nilpotent of R and of R0 of index m. So n has to be equal to m and therefore the index
of nilpotency of a is s = n+1

2 = r. This is the case (2), i.e. n ≡4 1.
• m ≡4 2 does not occur.
• m ≡4 3 then there exists an idempotent ε ∈ C(R0) such that εar = ar and adecomposes

as a = εa + (1 − ε)a (although the elements εa and (1 − ε)a do not belong to R but in
the central closure of R0, this decomposition will be useful for our purposes):
� If εa = 0 then a = (1 − ε)a is nilpotent of index r. By Proposition 3.1(1), this implies

that a is ad-nilpotent of R and of R0 of index m, so n = m and the index of
nilpotency of a is s = n+1

2 = r. This is the case (4.1), i.e. n ≡4 3.
� If εa �= 0 then a is nilpotent of index r+ 1 and ark0ar−1 − ar−1k0ar = (εa)rk0

(εa)r−1 − (εa)r−1k0(εa)r = 0 for every k0 ∈ K0. Since ar+1 = 0, arK0ar = 0 and,
by Lemma 4.1(ii), arR1ar = 0, so arKar = 0 and therefore adm+1

a K = 0. There are
two possibilities:
– Either arkar−1 − ar−1kar = 0 for every homogeneous k ∈ K and therefore a

is ad-nilpotent of index m of K. Then n = m, r = n+1
2 = s, so askas−1 −

as−1kas = 0 and a is nilpotent of index s+ 1 which, by Proposition 3.1(1),
implies that a is ad-nilpotent of R and of R0 of index n+ 2 and fits with the
case (4.2), i.e. n ≡4 3,

– or there exists k ∈ K such that arkar−1 − ar−1kar �= 0, so a is ad-nilpotent ofK of
index m+ 1. Hence n = m+ 1, r = n

2 = s, and a is nilpotent of index s+ 1.
Therefore, by Proposition 3.1(1), a is ad-nilpotent of R and of R0 of index
n+ 1. This is again case (1) with the index of ad-nilpotence of a in K0 equal
to n−1 and n ≡4 0.

�

In the following theorem we describe the odd ad-nilpotent elements of K. We will first
distinguish whether C(R) has skew-symmetric elements, in which case a is ad-nilpotent
of R of the same index, or Skew(C(R), ∗) = 0, which implies by Proposition 4.2 that a is
nilpotent. In this second case, we will consider a2 ∈ K0 and use Theorem 4.3 applied to a2
to obtain the description of a.

Theorem 4.4: Let R be a prime associative superalgebra of characteristic p>n with superin-
volution ∗, let R̂ be its central closure, let a ∈ K1 := Skew(R, ∗)1 be an ad-nilpotent element
of K of index n>1 and let s = [n+1

2 ].
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(1) If n ≡8 0 then a is nilpotent of index s + 1, ad-nilpotent of R of index n+ 1 and asKas =
0 (so asRas is a commutative trivial local superalgebra).

(2) If n ≡8 1 then as−1 ∈ H0, and a is nilpotent of index s and ad-nilpotent of R of index n.
(3) If n ≡8 2 then there exists λ ∈ Skew(C(R), ∗)0 such that a2 − λ ∈ R̂ is nilpotent of index

s+1
2 and a is ad-nilpotent of R of index n.

(4) If n ≡8 5 then as−1 ∈ K0, and a is nilpotent of index s and ad-nilpotent of R of index n.
(5) If n ≡8 6 then there exists λ ∈ Skew(C(R), ∗)0 such that a2 − λ ∈ R̂ is nilpotent of index

s+1
2 and a is ad-nilpotent of R of index n.

(6) If n ≡8 7 then a is nilpotent of index s + 1, ad-nilpotent of R of index n+ 2 and
askas−1 + (−1)|k|as−1kas = 0 for every homogeneous k ∈ K (so asRas is a commutative
trivial local superalgebra).

(7) The cases n ≡8 3 and n ≡8 4 do not occur.

Proof: Suppose without loss of generality that R is centrally closed.
Let a ∈ K1 be an ad-nilpotent element of K of index n. If Skew(C(R), ∗) �= 0, by

Proposition 4.2, a is ad-nilpotent of R of index n. By Theorem 3.2 n can be:

• n ≡4 1 and therefore a is nilpotent of index s (cases (2) and (4)), or
• n ≡4 2 and therefore there exists λ ∈ Skew(C(R)0, ∗) such that a2 − λ is nilpotent of

index s+1
2 (cases (3) and (5)).

Let us suppose that Skew(C(R), ∗) = 0. By Proposition 4.2, a is nilpotent. Then, since
a2 ∈ K0 and ad2a(x) = ada2(x), a2 is an ad-nilpotent element of K. Let us denote by m the
index of ad-nilpotence of a2 inK and let r = [m+1

2 ]. By Theorem 4.3 applied to the element
a2 we have:

• If m ≡4 0 and r = m
2 , (a

2)r �= 0, (a2)r+1 = 0 and a2rKa2r = 0. We are going to show
that a2r+1 = 0: let x be any homogeneous element in R, so ax + (−1)|x|x∗a ∈ K1+|x|,

0 = adma2(ax + (−1)|x|x∗a)a =
(
m
m
2

)
(−1)

m
2 (am(ax + (−1)|x|x∗a)am)a

=
(
m
r

)
(−1)ra2r(ax + (−1)|x|x∗a)a2r+1 =

(
m
r

)
(−1)ra2r+1xa2r+1

+
(
m
r

)
(−1)r(−1)|x|a2rx∗a2r+2 =

(
m
r

)
(−1)ra2r+1xa2r+1.

Since R is semiprime and free of
(m
r
)
-torsion, a2r+1 = 0. Moreover, since adm−1

a2 (K) �= 0,
we have two possibilities:

• If ad2m−1
a (K) �= 0, then a is an ad-nilpotent element of K of index n = 2m. In this

case n ≡8 0 and for s = n
2 we have that as+1 = 0, as �= 0 and asKas = 0. Moreover, by

Proposition 3.1, a is ad-nilpotent of R of index n+ 1, case (1).
• If ad2m−1

a (K) = 0, then a is an ad-nilpotent element ofK of index n = 2m−1. So in this
case we have got n ≡8 7 and for s = n+1

2 we have that as+1 = 0, as �= 0. Moreover, for
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every homogeneous k ∈ K,

0 = ad2m−1
a (k) =

(
m − 1

m
2

)
(−1)

m
2 (amkam−1 + (−1)|k|am−1kam)

=
(
m − 1

s
2

)
(−1)

s
2 (askas−1 + (−1)|k|as−1kas)

and since R is free of
(m−1

s
2

)
-torsion we have that askas−1 + (−1)|k|as−1kas = 0. In

addition, by Proposition 3.1, a is ad-nilpotent element of R of index n+ 2, case (6).

• If m ≡4 1 and r = m+1
2 we have that (a2)r = 0, (a2)r−1 �= 0 and adma2(R) = 0. Since

adm−1
a2 (K) �= 0, we have two possibilities:

• If ad2m−1
a (K) �= 0, then a is an ad-nilpotent element of K of index n = 2m and there

exists a homogeneous k in K such that:

0 �= ad2m−1
a (k) = adm−1

a2 ada(k)

=
(
m − 1
m−1
2

)
(−1)

m−1
2 (amkam−1 − (−1)|k|am−1kam)

=
(
m − 1

r

)
(−1)r(a2r−1ka2r−2 − (−1)|k|a2r−2ka2r−1).

Therefore, since R is free of
(m−1

r
)
-torsion, a2r−1 �= 0. In this case n ≡8 2 and for s = n

2
we have that as+1 = 0, as �= 0. By Proposition 3.1, a is ad-nilpotent of index n, case (3).

• If ad2m−1
a (K) = 0, then a is ad-nilpotent of K of index n = 2m − 1. Let x be any

homogeneous element in R and let us consider ax + (−1)|x|x∗a ∈ K1+|x|:

0 = ad2m−1
a (ax + (−1)|x|x∗a) = ad2m−2

a ada(ax + (−1)|x|x∗a)

= adm−1
a2 ada(ax + (−1)|x|x∗a)

=
(
m − 1
m−1
2

)
(−1)

m−1
2 am−1(a2x + (−1)|x|ax∗a − (−1)1+|x|(axa + (−1)|x|x∗a2))am−1

=
(
m − 1
r − 1

)
(−1)r−1a2r−2(a2x + (−1)|x|ax∗a − (−1)1+|x|(axa + (−1)|x|x∗a2))a2r−2

=
(
m − 1
r − 1

)
(−1)

m−1
2 +|x|a2r−1(x∗ + x)a2r−1

and

0 = ad2m−1
a (x − x∗)a = ad2m−2

a ada(x − x∗)a = adm−1
a2 ada(x − x∗)a

=
(
m − 1
m−1
2

)
(−1)

m−1
2 am−1(ax − ax∗ − (−1)|x|(xa − x∗a))am

=
(
m − 1
r − 1

)
(−1)r−1a2r−2(ax − ax∗ − (−1)|x|(xa − x∗a))a2r−1
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=
(
m − 1
r − 1

)
(−1)r−1a2r−1(x − x∗)a2r−1.

Therefore, since R is free of
(m−1
r−1

)
-torsion, a2r−1Ra2r−1 = 0, and by semiprimeness

of R, a2r−1 = 0 and a is an ad-nilpotent element of R of index n = 2m−1. So n ≡8 1
and for s = n+1

2 we have that as = 0, as−1 �= 0. By Proposition 3.1, a is ad-nilpotent of
R of index n, case (2).

•m ≡4 2 is not possible.
• If m ≡4 3 and r = m+1

2 , let us first see that (a2)r = 0. Suppose otherwise that
(a2)r �= 0. Then (a2)r+1 = 0 and a2rka2r−2 − a2r−2ka2r = 0 for every k ∈ K. Let x be any
homogeneous element in R and let us consider ax + (−1)|x|x∗a ∈ K1+|x|:

0 = adma2(ax + (−1)|x|x∗a)a3 =
(

m
m−1
2

)
(−1)

m−1
2 am+1(ax + (−1)|x|x∗a)am+2

+
(

m
m+1
2

)
(−1)

m+1
2 am−1axam+4 +

(
m

m+1
2

)
(−1)

m+1
2 am−1(−1)|x|x∗aam+4

=
(

m
r − 1

)
(−1)r−1a2r(ax + (−1)|x|x∗a)a2r+1 +

(
m

m+1
2

)
(−1)

m+1
2 a2r−2axa2r+3

+
(

m
m+1
2

)
(−1)

m+1
2 a2r−2(−1)|x|x∗aa2r+3 =

(
m

m−1
2

)
(−1)

m−1
2 a2r+1xa2r+1

and therefore, since R is free of
( m
r−1

)
-torsion and semiprime, a2r+1 = 0. Then for every

homogeneous x ∈ R

0 = aadma2(ax + (−1)|x|x∗a) =
(

m
m−1
2

)
(−1)

m−1
2 am+2(ax + (−1)|x|x∗a)am−1

+
(

m
m+1
2

)
(−1)

m+1
2 amaxam+1 +

(
m

m+1
2

)
(−1)

m+1
2 am(−1)|x|x∗aam+1

=
(

m
r − 1

)
(−1)r−1a2r+1(ax + (−1)|x|x∗a)a2r−2

+
(
m
r

)
(−1)ra2r−1axa2r +

(
m
r

)
(−1)ra2r−1(−1)|x|x∗aa2r =

(
m
r

)
(−1)ra2rxa2r

and therefore, since R is free of
(m
r
)
-torsion and semiprime, a2r = 0, a contradiction. Thus

(a2)r = 0, (a2)r−1 �= 0 and adma2(R) = 0.

• If ad2m−1
a (K) �= 0, then a is ad-nilpotent of K of index n = 2m and there exists k ∈ K

homogeneous such that

0 �= ad2m−1
a (k) = ad2m−2

a ada(k) = adm−1
a2 ada(k)

=
(
m − 1
m−1
2

)
(−1)

m−1
2 (amkam−1 − (−1)|k|am−1kam)
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=
(
m − 1
r − 1

)
(−1)r−1(a2r−1ka2r−2 − (−1)|k|a2r−2ka2r−1).

Therefore, since R is free of
(m−1
r−1

)
-torsion, a2r−1 �= 0 so a is nilpotent of index 2r. So

n ≡8 6 and with s = n
2 , a

s+1 = 0, as �= 0 and by Proposition 3.1 a is ad-nilpotent of R
of index n, case (5).

• If ad2m−1
a (K) = 0, then a is ad-nilpotent of K of index n = 2m − 1. Let x be any

homogeneous element in R and let us consider ax + (−1)|x|x∗a ∈ K1+|x|:

0 = ad2m−1
a (ax + (−1)|x|x∗a) = ad2m−2

a ada(ax + (−1)|x|x∗a)

= adm−1
a2 ada(ax + (−1)|x|x∗a)

=
(
m − 1
m−1
2

)
(−1)

m−1
2 am−1(a2x + (−1)|x|ax∗a − (−1)1+|x|(axa + (−1)|x|x∗a2))am−1

=
(
m − 1
r − 1

)
(−1)r−1a2r−2(a2x + (−1)|x|ax∗a − (−1)1+|x|(axa + (−1)|x|x∗a2))a2r−2

=
(
m − 1
r − 1

)
(−1)r−1+|x|a2r−1(x∗ + x)a2r−1,

and

0 = ad2m−1
a (x − x∗)a = ad2m−2

a ada(x − x∗)a = adm−1
a2 ada(x − x∗)a

=
(
m − 1
m−1
2

)
(−1)

m−1
2 am−1(ax − ax∗ − (−1)|x|(xa − x∗a))am

=
(
m − 1
r − 1

)
(−1)r−1a2r−2(ax − ax∗ − (−1)|x|(xa − x∗a))a2r−1

=
(
m − 1
r − 1

)
(−1)

m−1
2 a2r−1(x − x∗)a2r−1.

Therefore, since R is free of
(m−1
r−1

)
-torsion, a2r−1Ra2r−1 = 0, and by semiprimeness of

R, a2r−1 = 0. So in this case n ≡8 5. For s = n+1
2 we have that as = 0, as−1 �= 0 and, by

Proposition 3.1, a is an ad-nilpotent element of R of index n, case (4).
�

5. Examples

In this sectionwe are going to construct examples of all types of homogeneous ad-nilpotent
elements appearing in Theorem 3.2, and in Theorems 4.3 and 4.4. The examples of even
ad-nilpotent elements of R and of K are based on the examples of ad-nilpotent elements in
the non-super setting, see [27].
5.1. Let � be a ring of scalars and let r, s be natural numbers. Following the notation of
[28], the matrix algebraMr+s(�) with

M(r|s)0 :=
{[

A 0
0 D

]
: A ∈ Mr(�),D ∈ Ms(�)

}
and
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M(r|s)1 :=
{[

0 B
C 0

]
: B ∈ Mr,s(�),C ∈ Ms,r(�)

}

becomes an Z2-graded associative algebra. It will be denoted M(r|s) = M(r|s)0 +
M(r|s)1. We will use the notationM(r) = M(r|r).
5.2. Let r and s be two natural numbers with odd r>1 and even s, let F be a field with
involution denoted by α for any α ∈ F, and let R be the superalgebra M(r|s) over F. Let
{ei,j} denote the matrix units, and define

H =
r∑

i=1
(−1)iei,r+1−i ∈ Mr(F) (notice H = Ht = H−1)

J =
s∑

i=1
(−1)iei,s+1−i ∈ Ms(F) (notice Jt = −J = J−1).

The map ∗ : R → R given by

[
A B
C D

]∗
=

[
H 0
0 J

]−1 [
A −B
C D

]t [
H 0
0 J

]

defines a superinvolution in R. In particular

e∗i,j = (−1)j−ier−j+1,r−i+1 for every i, j ∈ {1, . . . , r},
e∗r+i,r+j = (−1)j−ier+s−j+1,r+s−i+1 for every i, j ∈ {1, . . . , s} and

e∗i,r+j = (−1)i−j+1er+s+1−j,r+1−i for every i ∈ {1, . . . , r} and j ∈ {1, . . . , s}.
The associative superalgebra R is a simple superalgebra with superinvolution, and its
extended centroid C(R), which coincides with Z(R), is isomorphic to F. Moreover, the
extension of the superinvolution ∗ to C(R) is isomorphic to the involution − of F.
5.3. Examples of even ad-nilpotent elements of K and of R.

Let F be a field with involution − and characteristic zero (or big enough). Let k be
an even number (k ≥ 2), let r = 3k+ 3 and s = 2k, and let us consider the associative
superalgebra R = M(r|s) over F with the superinvolution defined in 5. Let us denote by
K the skew-symmetric elements of R with respect to ∗. Consider the following nilpotent
matrices:

T :=
2k+1∑
i=k+2

ei,i+1 ∈ R0 (nilpotent of index k + 1)

S :=
k−1∑
i=1

(ei,i+1 + er−i,r−i+1) ∈ R0 (nilpotent of index k)

U :=
k−1∑
i=1

er+i,r+i+1 +
2k−1∑
i=k+1

er+i,r+i+1 ∈ R0 (nilpotent of index k).

By Proposition 3.1(1), T is ad-nilpotent of R and of R0 of index 2k+ 1, and S and U are
ad-nilpotent elements of R and of R0 of index 2k−1.
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Notice that T∗ = −T, S∗ = −S and U∗ = −U so T, S,U ∈ K0. Let us calculate their
indices of ad-nilpotence in K:

(a) If Skew(F,−) �= 0, by Proposition 4.2 the index of ad-nilpotence of T in K coincides
with its index of ad-nilpotence in R, i.e. 2k+ 1.

(b) If Skew(F,−) = 0, for any B = ∑
i,j λi,jei,j ∈ K we have that λ2k+2,k+2 = 0 and

λ2k+1,k+2 = λ2k+2,k+3, so

ad2k−1
T (B) =

(
2k − 1

k

)
(Tk−1BTk − TkBTk−1)

=
(
2k − 1

k

)
((ek+2,2k+1 + ek+3,2k+2)B(ek+2,2k+2))

−
(
2k − 1

k

)
(ek+2,2k+2)B(ek+2,2k+1 + ek+3,2k+2))

=
(
2k − 1

k

)
(λ2k+1,k+2ek+2,2k+2 + λ2k+2,k+2ek+3,2k+2)

−
(
2k − 1

k

)
(λ2k+2,k+2ek+2,2k+1 + λ2k+2,k+3ek+2,2k+2) = 0.

Furthermore,

ad2k−2
T (e2k+1,k+2 − e∗2k+1,k+2) = ad2k−2

T (e2k+1,k+2 + e2k+2,k+3) �= 0.

Thus T is ad-nilpotent of K of index 2k−1.
(c) S is ad-nilpotent ofK of index 2k−1: by its ad-nilpotence inR, we have ad2k−1

S (K) = 0.
Moreover, 0 �= C = ek,1 − e∗k,1 = ek,1 + er,r−k+1 ∈ K and

ad2k−2
S (C) = −

(
2k − 2
k − 1

)
Sk−1(ek,1 + er,r−k+1)Sk−1

= −
(
2k − 2
k − 1

)
(e1,k + er−k+1,r)(ek,1 + er,r−k+1)(e1,k + er−k+1,r)

= −
(
2k − 2
k − 1

)
(e1,k + er−k+1,r) �= 0,

so S is also ad-nilpotent of K of index 2k−1.
(d) U is ad-nilpotent of K of index 2k−1: by its ad-nilpotence in R, we have ad2k−1

U (K) =
0. Moreover, 0 �= C = er+k,r+1 − e∗r+k,r+1 = er+k,r+1 + er+2k,r+k+1 ∈ K and

ad2k−2
U (C) = ad2k−2

U (er+k,r+1 + er+2k,r+k+1)

= −
(
2k − 2
k − 1

)
Uk−1(er+k,r+1 + er+2k,r+k+1)Uk−1

= −
(
2k − 2
k − 1

)
(er+1,r+k + er+k+1,r+2k) �= 0.
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Let us use these matrices T, S and U to get examples of any of models of even
ad-nilpotent elements in Theorems 3.2 and 4.3.

(i) Suppose Skew(F,−) �= 0. For any λ ∈ Skew(F,−), the element T + λid is ad-
nilpotent of R of index 2k+ 1, and by Proposition 4.2 its index in K is again
n = 2k+ 1. This is an example that fits case (2) of Theorem 4.3 (a skew element a in
K0 with nilpotent (a − λ) of index k+ 1 such that a is ad-nilpotent of index n ≡4 1
inK and the same index in R). It also provides an example of case (1) in Theorem 3.2.

(ii) Suppose Skew(F,−) �= 0. For any λ ∈ Skew(F,−), S + λid is an ad-nilpotent ele-
ment of R and of K of index n = 2k−1. This is an example that fits case (1) of
Theorem 3.2 and case (4.1) of Theorem 4.3 (a skew element in K0, which is ad-
nilpotent of index n ≡4 3 in K0 and in K, and ad-nilpotent of the same index
in R).

(iii) Suppose Skew(F,−) = 0. T is an element of K0 which is ad-nilpotent of K of index
n = 2k−1. This is an example that fits case (4.2) of Theorem 4.3 (an element in K0
which is ad-nilpotent of index n ≡4 3 inK and inK0, and ad-nilpotent of index n+ 2
in R).

(iv) Suppose Skew(F,−) = 0. The matrix A = T + S, which is an orthogonal sum of T
and S, is nilpotent of index t+ 1 and ad-nilpotent of R and of R0 of index 2k+ 1.
Let us see that it is ad-nilpotent of K of index 2k: from the indices of nilpotency of T
and S, their indices of ad-nilpotence in K and the fact that TS = 0 = ST we get that
ad2kA (K) = 0. Moreover, C = ek,k+2 − e∗k,k+2 = ek,k+2 − e2k+2,2k+4 ∈ K and one can
check that ad2k−1

A (C) = −(2k−1
k

)
(e1,2k+2 + ek+2,3k+3) �= 0. This is an example that

fits case (1.1) of Theorem 4.3 (a skew element in K0 which is ad-nilpotent of index
n ≡4 0 in K0 and in K, and ad-nilpotent of index n+ 1 in R).

(v) Suppose Skew(F,−) = 0. Let us consider A = T +U, which is an orthogonal sum
of T and U. The nilpotency of T +U implies that the index of ad-nilpotence of A in
R (and in R0) is 2k+ 1 (by Proposition 3.1(1)). Since both T and U are ad-nilpotent
elements of K0 of indices 2k−1, A is ad-nilpotent of K0 of index 2k−1. Neverthe-
less, its index of ad-nilpotence in K is higher: for any B = ∑

λi,jei,j ∈ K we have that
λ2k+2,k+2 = 0 because Skew(F,−) = 0, so

ad2kA (B) =
(
2k
k

)
AkBAk =

(
2k
k

)
ek+2,2k+2Bek+2,2k+2

=
(
2k
k

)
λ2k+2,k+2ek+2,2k+2 = 0.

Moreover, if we consider the element C = e2k+2,r+1 − e∗2k+2,r+1 = e2k+2,r+1 −
er+s,k+2 ∈ K one can check that

ad2k−1
A (C) =

(
2k − 1

k

)
(Ak−1CAk − AkCAk−1)

= −
(
2k − 1

k

)
(er+k+1,2k+2 + ek+2,r+k) �= 0
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because

Ak−1 = Tk−1 + Uk−1 = ek+2,2k+1 + ek+3,2k+2 + er+1,r+k + er+k+1,r+s.

This means that the index of ad-nilpotence ofA inK is n = 2k. This gives an example
of an element in the conditions of Theorem 4.3(1) (a skew element in K0, which ad-
nilpotent of K of index n ≡4 0, ad-nilpotent of K0 of index n−1, and ad-nilpotent of
R index n+ 1).

5.4 Examples of odd ad-nilpotent elements of K and of R.
Let F be a field of characteristic zero (or big enough) and with identity involution, let

r>1 be an odd number, let s = r−1, and consider the superalgebra R = M(r|s) with the
superinvolution given in 5. Again, let us denote by K the skew-symmetric elements of R
with respect to ∗.

Let us consider T := ∑r−1
i=1 ei,r+i ∈ R1. Then

A = T − T∗ =
r−1∑
i=1

ei,r+i +
r∑

i=2
er+i−1,i ∈ K1 (nilpotent of index 2r − 1).

We have that

A2 = ∑r−1
i=1 ei,i+1 + ∑r−1

i=2 er+i−1,r+i,
A2r−7 = e1,2r−3 + e2,2r−2 + e3,2r−1 + er+1,r−2 + er+2,r−1 + er+3,r,
A2r−6 = e1,r−2 + e2,r−1 + e3,r + er+1,2r−2 + er+2,2r−1,
A2r−3 = e1,2r−1 + er+1,r,
A2r−2 = e1,r and
A2r−1 = 0.

By Proposition 3.1(2b) A is ad-nilpotent in R of index m = 4r−3. For every B =∑
i,j λi,jei,j ∈ K0 ∪ K1,

ad4r−5
A (B) = ad2r−3

A2 adA(B)

=
(
2r − 3
r − 1

)
((A2)r−2adA(B)(A2)r−1 − (A2)r−1adA(B)(A2)r−2)

=
(
2r − 3
r − 1

)
(A2r−3BA2r−2 + (−1)|B|A2r−2BA2r−3)

=
(
2r − 3
r − 1

)
((e1,2r−1 + er+1,r)Be1,r + (−1)|B|e1,rB(e1,2r−1 + er+1,r))

=
(
2r − 3
r − 1

)
(λ2r−1,1e1,r + λr,1er+1,r + (−1)|B|λr,1e1,2r−1

+ (−1)|B|λr,r+1e1,r) = 0

because when B ∈ K0 we always have that λ2r−1,1 = λr,r+1 = 0 (by grading) and λr,1 = 0,
and when B ∈ K1, λr,1 = 0 (by grading) and λ2r−1,1 = λr,r+1. Moreover, by Theorem 4.4,
the index of ad-nilpotence of A in K can bem,m−1 orm−2, so it ism−2 = 4r−5.
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(i). The elementA ∈ K1 is an example of an element in the conditions of Theorem 4.4(6)
(a nilpotent element of index 2r−1, which is ad-nilpotent of index n = 4r − 5 ≡8 7 in K
and ad-nilpotent of index n+ 2 inR, and such thatA2r−3BA2r−2 + (−1)|B|A2r−2BA2r−3 =
0 for every B ∈ K0 ∪ K1).

To produce examples for the rest of the cases of Theorem 4.4, let us consider A5 ∈ K1
for some particular cases of odd r>1.

(ii). Fix r = 10t+ 1 for some t ∈ N. Then

(A5)4t+1 = A2r+3 = 0,
(A5)4t = A2r−2 ∈ H0,
(A5)4t−1 = A2r−7.

In particular,A5 is nilpotent of index 4t+ 1 and ad-nilpotent ofR of index 8t+ 1. Notice
that for every B = ∑

i,j λi,jei,j ∈ K

(A5)4tB(A5)4t = e1,rBe1,r = λr,1e1,r = 0

because every B ∈ K has λr,1 = 0. Therefore, for every B ∈ K we have

ad8tA5(B) = ad4tA10(B) =
(
4t
2t

)
(A10)2tB(A10)2t = 0.

Furthermore, considering C = er,r+1 − e∗r,r+1 = er,r+1 + e2r−1,1 ∈ K1

ad8t−1
A5 (C) = ad8t−2

A5 (adA5(er,r+1 + e2r−1,1))

= ad4t−1
A10 (adA5(er,r+1 + e2r−1,1))

=
(
4t − 1
2t

)
(A10)2t−1(adA5(er,r+1 + e2r−1,1))(A10)2t

−
(
4t − 1
2t

)
(A10)2t(adA5(er,r+1 + e2r−1,1))(A10)2t−1

=
(
4t − 1
2t

) (
A20t−5(er,r+1 + e2r−1,1)A20t) − (A20t(er,r+1 + e2r−1,1)A20t−5)

=
(
4t − 1
2t

)
(e3,r − e1,r−2) �= 0.

The element A5 gives an example of an element in the conditions of Theorem 4.4(1) (a
nilpotent element of index 4t+ 1, ad-nilpotent element in K1 of index n = 8t ≡8 0, ad-
nilpotent in R of index n+ 1 = 8t+ 1 and such that (A5)4tK(A5)4t = 0).

(iii). Fix r = 10t+ 3 for some t ∈ N. Then

(A5)4t+1 = A2r−1 = 0
(A5)4t = A2r−6.

In particular, A5 is nilpotent of index 4t+ 1 and ad-nilpotent of R of index 8t+ 1 (see
Proposition 3.1(2b)). In this case the index of ad-nilpotence of A5 in K is the same as in R
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because for C = er,r+1 − e∗r,r+1 = er,r+1 + e2r−1,1 ∈ K1 we have

ad8tA5(C) = ad4tA10(er,r+1 + e2r−1,1)

=
(
4t
2t

)
(A10)2t(er,r+1 + e2r−1,1)(A10)2t

=
(
4t
2t

)
(e3,2r−2 + er+2,r−2) �= 0.

The element A5 gives an example of an element in the conditions of Theorem 4.4(2) (a
nilpotent element in K1 of index 4t+ 1, ad-nilpotent of K and of R of the same index n =
8t + 1 ≡8 1).

(iv). Fix r = 10t+ 5 for some t ∈ N. ThenA5 is nilpotent of index 4t+ 2. Since the index
of nilpotency of A5 is even, we know by Proposition 3.1(2a) that A5 is ad-nilpotent of R of
index 2(4t + 2) − 2 = 8t + 2.Moreover, from the fact thatA5 is ad-nilpotent of R of index
8t + 2 ≡8 2 we get from Theorem 4.4 that its index of ad-nilpotence in K is the same as
in R. The element A5 gives an example of an element in the conditions of Theorem 4.4(3)
with λ = 0 (a nilpotent element of K1 of index 4t+ 2 which is ad-nilpotent of K and of R
of the same index n = 8t + 2 ≡8 2.)

(v). Fix r = 10t+ 7 for some t ∈ N. ThenA5 is nilpotent of index 4t+ 3. Since the index
of nilpotency of A5 is odd, we know by Proposition 3.1(2a) that A5 is ad-nilpotent of R of
index 2(4t + 3) − 1 = 8t + 5.Moreover, from the fact thatA5 is ad-nilpotent of R of index
8t + 5 ≡8 5 we get from Theorem 4.4 that its index of ad-nilpotence in K is the same as
in R. The element A5 gives an example of an element in the conditions of Theorem 4.4(4)
(a nilpotent element of K1 of index 4t+ 3 which is ad-nilpotent of K and of R of the same
index n = 8t + 5 ≡8 5).

(vi). Fix r = 10t+ 9 for some t ∈ N. Then A5 is nilpotent of 4t+ 4. Since the index of
nilpotency of A5 is even, we know by Proposition 3.1(2a) that A5 is ad-nilpotent of R of
index 2(4t + 4) − 2 = 8t + 6.Moreover, from the fact thatA5 is ad-nilpotent of R of index
8t + 6 ≡8 6 we get from Theorem 4.4 that its index of ad-nilpotence in K is the same as
in R. The element A5 gives an example of an element in the conditions of Theorem 4.4(5)
with λ = 0 (a nilpotent element of K1 of index 4t+ 4 which is ad-nilpotent of K and of R
of the same index n = 8t + 6 ≡8 6).

The matrices given in (i), (ii), (iii) and (v) provide examples of (2.a) in Theorem 3.2.
Moreover, the matrices of (iv) and (vi) fit in case (2.b) of Theorem 3.2 with λ = 0.
5.5. Some other examples of odd ad-nilpotent elements of K and of R.

The examples (iv) and (vi) in the previous section are ad-nilpotent elements of K of
indices n ≡8 2 and n ≡8 6, and fit in Theorem 4.4(3) and (5) with λ = 0. To get examples
of such types of elements with nonzero λ’s, we will work with matrices over a field with
nontrivial involution.

Let r be a natural number, let C be the field of complex numbers with involution given
by conjugation, and let us consider the simple superalgebra R = M(r) over C. The map
trp given by

[
A B
C D

]trp
=

[
Dt −Bt
Ct At

]
,
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where A,B,C,D ∈ Mr(C) and ( )t denotes the usual matrix transposition, defines a
superinvolution in R known as the transpose superperinvolution (see [23, Example 2.2]).

Let us denote by K the set of skew-symmetric elements ofM(r) with respect trp. Note

that any element of K1 has the form
[

0 B
C 0

]
where B is a symmetric matrix and C is a

skew-symmetric matrix inMr(C) with respect to the usual transposition.
Let us consider a symmetric matrix B ∈ Mr(C) with Br = 0 and Br−1 �= 0 (it is shown

in [29, Corollary 5] that for every r there exist symmetric nilpotent matrices inMr(C) of
rank r−1). Let 0 �= λ ∈ R and let i denote the square root of -1. Then

a =
[

0 B + id
(λi)id 0

]
∈ K1 and a2 =

[
(λi)B + (λi)id 0

0 (λi)B + (λi)id

]

i.e. (a2 − λi) is nilpotent of index r.
When r is odd, a is an example for Theorem 4.4 (3), and when r is even, a is an example

for Theorem 4.4 (5). Both cases are examples of elements of the form (2.b) of Theorem 3.2.
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