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DECOMPOSITIONS OF MATRICES INTO A SUM OF

TORSION MATRICES AND MATRICES OF FIXED

NILPOTENCE

PETER DANCHEV, ESTHER GARCÍA, AND MIGUEL GÓMEZ LOZANO

Abstract. For n ≥ 2 and fixed k ≥ 1, we study when a square matrix A over
an arbitrary field F can be decomposed as T +N where T is a torsion matrix

and N is a nilpotent matrix with Nk = 0. For fields of prime characteristic, we

show that this decomposition holds as soon as the characteristic polynomial of
A ∈ Mn(F) is algebraic over its base field and the rank of A is at least n

k
, and

we present several examples that show that the decomposition does not hold

in general. Furthermore, we completely solve this decomposition problem for
k = 2 and nilpotent matrices over arbitrary fields (even over division rings).

This somewhat continues our recent publications in Lin. & Multilin. Algebra

(2023) and Internat. J. Algebra & Computat. (2022) as well as it strengthens
results due to Calugareanu-Lam in J. Algebra & Appl. (2016).
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1. Introduction and Fundamentals

The decomposition of matrices over an arbitrary field into the sum of some special
elements, like nilpotent elements, idempotent elements, potent elements, units, etc.,
was in the focus of so many researchers for a long time (see, e.g., [1], [2], [3], [4], [5],
[6], [20], [22] and [23] and the bibliography cited therewith). Specifically, concerning
our own work on the subject, in [14] we found some necessary (and sufficient)
conditions when any square matrix over a field (finite or infinite) is expressible as
a sum of a diagonalizable matrix and a nilpotent matrix of index less than or equal
to two. In particular, we also obtained some results on the expression of square
matrices into the sum of a potent matrix and a square-zero matrix over finite fields.
Nevertheless, such a decomposition does not hold for fields of zero characteristic
(see [14, Example 4.3]). Further insight in that matter over some special finite rings
was achieved by us in [13]. We also refer the interested reader to [11] for some other
aspects of the realization of matrices into the sum of specific elements over certain
fields.

By combining the notions of invertibility and nilpotence, Cǎlugǎreanu and Lam
introduced in 2016 the notion of fine rings [7]: those in which every nonzero element
can be written as the sum of an invertible element and a nilpotent one, proving in
that work that every nonzero square matrix over a division ring is the sum of an
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2 P. DANCHEV, E. GARCÍA, AND M. GÓMEZ LOZANO

invertible matrix and a nilpotent matrix. The rings whose nonzero idempotents are
fine turned out to be an interesting class of indecomposable rings and were studied
in [8] by Cǎlugǎreanu and Zhou. In 2021, the same authors focused on rings in
which every nonzero nilpotent element is fine, which they called NF rings, and
showed that for a commutative ring R and n ≥ 2, the matrix ring Mn(R) is NF if
and only if R is a field; see [9]. A slightly more general class of rings than fine rings
was defined in [12] under the name nil-good rings (every element a can be expressed
the sum a = n+ u where n is nilpotent and u is either zero or a unit); in [18] it is
shown that the matrix ring Mn(D) over a division ring D is nil-good. In general,
no restriction in the index of nilpotence is required in these decompositions.

In our work [15] we considered the ring of matrices Mn(F) over an arbitary field
F, we fixed a bound k for the index of nilpotence, and studied when a matrix A
in Mn(F) could be expressed as the sum of an invertible matrix U and a nilpotent
matrix N with Nk = 0. Here we will continue our study in this branch by replacing
the invertibility condition of U by being a torsion matrix. Recall that a torsion
matrix T is the one for which there is a positive integer s such that T s is the identity
matrix. One elementarily sees that such a matrix is necessarily invertible as well
as that it is s+ 1-potent, i.e., T s+1 = T . Canonical forms of torsion matrices were
studied by D. Sjerve and a full classification over the rational numbers is presented
in his paper [21].

The paper is organized as follows: in the first section we will show that the desired
decomposition holds as soon as the characteristic polynomial of A is algebraic over
its base field and its rank satisfies a certain bound, and we present several examples
that show that the decomposition does not hold in general. In the second section,
we focus on nilpotent matrices and deal with the problem of finding a necessary
and sufficient condition to decompose such matrices as the sum of a torsion matrix
and a zero-square matrix (fixed nilpotence k ≤ 2). Since we solve this problem by
dealing with the Jordan canonical blocks of the considered nilpotent matrix, our
result also holds for nilpotent matrices over division rings.

2. Decomposing Matrices Into a Sum of Torsion Matrices and
Matrices of Fixed Nilpotence

As usual, for convenience of the presentation, let us specify that the letter F will
stand an arbitrary field unless it is not specified something else, and the symbol
Mn(F) is reserved for the matrix ring over F. All other unexplained explicitly
notations are standard and will be in an agreement with the book [19].

In our work [15] we showed:

Theorem 2.1. [15, Theorem 2.7] Let n ≥ 2. Let F be a field, consider the ring
Mn(F) and let us fix k ≥ 1. Given a nonzero matrix A ∈ Mn(F), there exists an
invertible matrix U ∈ Mn(F) and a nilpotent matrix N ∈ Mn(F) with Nk = 0 such
that A = U +N if and only if the rank of A is greater than or equal to n

k

In this section, we will address the following query:

Problem: Given a fixed k ≥ 1, find necessary and sufficient conditions to decom-
pose any non-zero square matrix A over a field F as a sum of a torsion matrix T
and a nilpotent matrix N with Nk = 0.
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DECOMPOSITIONS OF MATRICES INTO A SUM OF TORSION AND NILPOTENT MATRICES3

Notice that the proposed Problem is already solved for matrices over finite fields
by using Theorem 2.1 and the obvious fact that the unit group of finite rings is
always torsion. Nevertheless, the rank condition is not enough to guarantee this
decomposition when working over infinite fields. In the rest of this section, we
will show some cases when this decomposition holds, and some counterexamples
showing that the decomposition does not hold in general.

Remark 2.2. Let A ∈ Mn(F). If there exists a nilpotent matrix N ∈ Mn(F) (Nk =
0) and T = A−N satisfies T s = Id for some s ∈ N, then the following three points
are fulfilled:

• the trace of A coincides with the trace of T ;
• the minimal polynomial of T divides Xs − 1 and therefore the eigenvalues
of T (in some extension of F) are s-roots of the unity. Moreover, if Xs − 1
is separable, T is diagonalizable;

• the trace of T coincides with the sum of its eigenvalues, so it is an algebraic
number over the base field of F.

For example, a matrix A ∈ Mn(F), even of full rank, and whose trace is tran-
scendent over its base field can never be decomposed into the sum T +N , where T
is a torsion matrix and N is a nilpotent matrix.

Let n ≥ 2. Recall that the trace of a polynomial p(x) = xn+bn−1x
n−1+· · ·+b0 ∈

F[x] is the scalar −bn−1 and coincides with the trace of the companion matrix
C(p(x)) ∈ Mn(F). Notice that the rank of a companion matrix is always greater
than or equal to n− 1.

We can now give a partial solution to the proposed above Problem. Concretely,
the following statements hold.

Proposition 2.3. Let n ≥ 2, let p(x) ∈ F[x] be a polynomial of degree n and let
C(p(x)) ∈ Mn(F) be its companion matrix. If the trace of p(x) can be expressed
as the sum of n different roots of the unity in some extension of F, then A can be
decomposed (in some extension of F) into T +N , where T is a torsion matrix and
N2 = 0. In particular, this always holds if the trace of p(x) is either 1, or −1, or
0.

Proof. By hypothesis, the trace of p(x) = xn+bn−1x
n−1+ · · ·+b0 can be expressed

as α1+ · · ·+αn for some different roots of unity α1, . . . , αn in some extension of F.
Let us consider the polynomial q(x) = (x−α1) · · · (x−αn) = xn+an−1x

n−1+· · ·+a0.
Thus, we have

C(p(x)) =


0 0 . . . −b0

1 0
...

. . .
. . .

0 1 −bn−1



=


0 0 . . . −a0

1 0
...

. . .
. . .

0 1 −an−1


︸ ︷︷ ︸

C(q(x))

+


0 0 . . . a0 − b0

0 0
...

. . .
. . .

0 0 an−1 − bn−1


︸ ︷︷ ︸

N

,
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4 P. DANCHEV, E. GARCÍA, AND M. GÓMEZ LOZANO

where T := C(q(x)) is a diagonalizable torsion matrix and N2 = 0, because an−1−
bn−1 = 0, as required. In view of these arguments, the last claim follows now at
once. □

As an immediate consequence, we obtain:

Corollary 2.4. Let A ∈ Mn(F) and let p1(x), . . . , pk(x) be the elementary divisors
of A (respectively, the invariant factors of A). If each pi(x) has degree ni and its
trace is a sum of n′

is different roots of the unity in some extension of F, then A can
be decomposed (in some extension of F) into T + N , where T is a torsion matrix
and N2 = 0.

Proof. If p1(x), . . . , pk(x) are the elementary divisors (respectively, the invariant
factors of A), then the matrix A is similar to a direct sum of companion matrices
of each pi(x). However, utilizing Proposition 2.3, we can express every companion
matrix of pi(x) into the sum Ti +Ni, where Ti is a torsion matrix and N2

i = 0, as
needed. □

The next two curious comments are worthwhile.

Remark 2.5. Not every matrix A ∈ Mn(F) whose trace is a sum of n roots of unity
can be written as T + N , where T is a torsion matrix and N2 = 0 (even if those
roots are different and A satisfies the rank condition). Indeed, let n ≥ 2 and let
us consider the element a ∈ F such that na is a sum of roots of unity, but a itself
is not a root of unity (notice that such an element a always exists and is easy to
be constructed, so we leave out the details). Then the matrix A = a Id ∈ Mn(F)
cannot be written as a sum T + N ; otherwise there would exist m ∈ N such
that Tm = Id; but then Id = Tm = (A − N)m = am Id−mam−1N , so that
(am − 1)2 Id = ((am − 1) Id)2 = (mam−1N)2 = 0, a contradiction.

For example, the matrix A =

(
1
2 0
0 1

2

)
cannot be expressed as T +N even if its

trace is the sum of two (different) 6th-roots of unity: 1
2 +

√
3
2 i and 1

2 −
√
3
2 i.

Remark 2.6. Let F be a field of characteristic 0. When n ≥ 3, if p(x) is a polynomial
of degree n and the trace of p(x) is the sum of n equal roots of unity, then the matrix
C(p(x)) can never be written as T+N . Indeed, let α be a root of unity, and consider
a degree n polynomial p(x) whose trace is nα and its companion matrix C(p(x)).
Suppose now that C(p(x)) = T +N where T satisfies Tm = Id for some m ∈ N and
N2 = 0. Since the minimal polynomial of T divides Xm−1 and this polynomial has
no multiple roots, then T is diagonalizable and its eigenvalues are all roots of unity
whose sum coincides with the trace of T (which, on the other side, coincides with
the trace of p(x)), so it is exactly nα. The only solution to nα = α1 + · · ·+ αn, α,
α1, . . . , αn being roots of unity, is α = α1 = · · · = αn. Therefore, the eigenvalues
of T are all equal to α and thus T = α Id. But then N = C(p(x)) − α Id should
have zero square, which is manifestly untrue (the rank of C(p(x))− α Id is at least
n− 1).

For example, the matrix

C((x− 1)3) =

 0 0 1
1 0 −3
0 1 3


cannot be expressed as T +N , where T is a torsion matrix and N2 = 0.
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DECOMPOSITIONS OF MATRICES INTO A SUM OF TORSION AND NILPOTENT MATRICES5

Nevertheless, when we focus on fields of prime characteristic, we can partially
solve the Problem. Let F be a field of prime characteristic p and let us denote by
Fp its base field.

Lemma 2.7. Let n ≥ 2. If F is a field of characteristic p and we fix k ≥ 1, then
for every matrix A ∈ Mn(F) of rank greater than or equal to n

k and whose entries

are algebraic over Fp there exists a matrix N with Nk = 0 such that A − N is a
torsion matrix.

Proof. The subfield K of F generated by the base field Fp and by the entries of
matrix A is a finite field, and A ∈ Mn(K). Apply Theorem 2.1 to decompose A as
U +N , where U ∈ Mn(K) is invertible and N ∈ Mn(K) satisfies Nk = 0. Since U
is an invertible matrix over a finite field, being invertible is equivalent to being a
torsion matrix, as wanted. □

The conditions on the entries of the matrix can be translated to the coefficients
of the characteristic polynomial of the matrix A. We will say that a polynomial is
algebraic over Fp is all its coefficients are algebraic over Fp.

Theorem 2.8. Let F be a field of characteristic p, let us fix an index of nilpotence
k ≥ 1 and let A ∈ Mn(F) of rank greater than or equal to n

k . If the characteristic
polynomial of A is algebraic over Fp, then A can be written as T +N , where T is
a torsion matrix and Nk = 0. In particular, this decomposition always holds for
nilpotent matrices of rank greater than or equal to n

k .

Proof. Let us consider the primary rational canonical form C of A, whose character-
istic polynomial is algebraic over Fp. The eigenvalues of C (roots in some extension
of F of the characteristic polynomial) are algebraic over Fp and, therefore, all the el-
ementary divisors of A are algebraic polynomials over Fp. Consequently, the entries
of C are all algebraic over Fp and we can apply Lemma 2.7 to get the proof. □

Open Question 1: Given a fixed index of nilpotence k ≥ 1, find a suitable criterion
for the decomposition of an arbitrary matrix over a field of zero characteristic into
the sum of a torsion matrix and a nilpotent matrix of index of nilpotence ≤ k.

In the following section we will answer this question for k ≤ 2 and nilpotent
matrices of rank at least n

2 . Since our arguments are quite technical, we leave open
the question of decomposing nilpotent matrices of rank at least n

k into torsion and
nilpotent matrices of index less than or equal to k.

3. Decomposing Nilpotent Matrices Into a Sum of Torsion and
Square-Zero Matrices

The goal of this section is to show that, for any field F, every nilpotent matrix in
Mn(F) whose rank is at least n

2 can always be decomposed as the sum of a torsion
matrix and a square-zero matrix. Recall that every nilpotent matrix is similar to a
direct sum of its Jordan blocks – all of them associated to the eigenvalue 0.

As in the previous section, the main difficulties arise when dealing with Jordan
blocks of size 1. The condition on the rank guarantees that they can always be
combined with Jordan blocks of bigger size. Let us consider the following two
examples.
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6 P. DANCHEV, E. GARCÍA, AND M. GÓMEZ LOZANO

Example 3.1. Let A be the nilpotent matrix

A =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0

 ,

which is the smallest nilpotent matrix decomposed into Jordan blocks with one
Jordan block of size 1 and rank of A greater than or equal to n

2 (n = 4). Let us
define

N =


0 1 0 −1
0 0 −1 0
0 0 0 0
0 0 −1 0


and let T = A−N . Then N2 = 0 and the characteristic polynomial of T is x4 − 1,
so A = T +N with T 4 = Id and N2 = 0.

Example 3.2. In some situations, more than one Jordan block of size 1 has to be
combined with a Jordan block of bigger size. Consider for example

A =


0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

which again is the smallest nilpotent matrix expressed in Jordan blocks having two
blocks of size 1 and satisfying rank(A) ≥ n

2 (n = 6 here). Let us consider the
zero-square matrix

N =


0 0 1 0 0 −1
0 0 0 −1 0 0
0 1 0 0 −1 0
0 0 0 0 0 0
0 0 0 −1 0 0
0 1 0 0 −1 0

 .

Then T = A−N has characteristic polynomial equal to x6 − 1, so A = T +N with
T 6 = Id and N2 = 0.

The construction of the zero-square matrices above depend on how many Jordan
blocks of size 1 we have to combine with a Jordan block of bigger size. Let s be the
number of Jordan blocks of size 1 (recall that the condition on the rank requires
that 2(s + 1) ≤ n). The construction of N also depends on a certain parameter,
called r, that must satisfy 1+ 2s+ r < n and that it is zero in the above examples.
With such ingredients, we are going to define a family of zero-square matrices called
Ns,r and an auxiliary family of zero-square matrices denoted N ′

s,r.
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DECOMPOSITIONS OF MATRICES INTO A SUM OF TORSION AND NILPOTENT MATRICES7

Definition 3.3. Let s, r ∈ N∪ {0} such that 2(s+ 1) ≤ n and 1 + 2s+ r < n. Let
A ∈ Mn(F) be a nilpotent matrix consisting on a single Jordan block and s Jordan
blocks of size 1 (notice that the condition 2(s + 1) ≤ n is equivalent to A having
rank greater or equal to n

2 ). Let us define the matrices

N0,r : = −e1,n,

Ns,r : =

n−s−r−2∑
i=n−2s−r

(ei+1,i + ei+1+s+r+1,i) + e1,n−s−r−1

−
n−1∑

i=n−s

(ei+1,i + ei+1−s−r−1,i)− e1,n, if s ≥ 1,

N ′
0,r : = −e1,n,

N ′
s,r : = Qn−2s−r,n−s−r−1Ns,rQn−2s−r,n−s−r−1 =

=

n−s−r−2∑
i=n−2s−r

(ei+1,i − ei+1+s+r+1,i)− e1,n−s−r−1

−
n−1∑

i=n−s

(ei+1,i − ei+1−s−r−1,i)− e1,n, if s ≥ 1,

Ts,r : = A−Ns,r, for s ≥ 0,

T ′
s,r : = A−N ′

s,r for s ≥ 0.

Now we are going to show that the matrices Ns,r and N ′
s,r are zero-square ma-

trices. Let us recall the elementary matrices of Mn(F):
Pi,j(t) := Id+tei,j , t ∈ F.
Pi,j := Id+ei,j + ej,i − ei,i − ej,j
Qi(s) = Id+(s− 1)ei,i, 0 ̸= s ∈ F.

All of them are invertible with inverses (Pi,j(t))
−1 = Pi,j(−t), (Pi,j)

−1 = Pi,j and

(Qi(s))
−1 = Qi(1/s). Let us define Qi,j :=

∑j
r=i Qr(−1).

Proposition 3.4. Let F be a field and take n ∈ N and s, r ∈ N ∪ {0} such that
2(s + 1) ≤ n and 1 + 2s + r < n. Then, the matrices Ns,r and N ′

s,r in Mn(F) are
nilpotent of index 2.

Proof. Along this proof, let us identify matrices with the endomorphisms acting on
the canonical basis {e1, . . . , en} of Fn. Clearly N2

0,r = (N ′
0,r)

2 = 0. Suppose that
s ≥ 1 and let us denoted by N the matrix Ns,r. For every i = 1 . . . , n we have:

(1) if i = 1, . . . , n− 2s− r − 1, N(ei) = 0,
(2) if i = n− 2s− r, . . . , n− s− r − 2, N(ei) = ei+1 + ei+1+s+r+1,
(3) N(en−s−r−1) = e1,
(4) if i = n− s− r, . . . , n− s− 1, N(ei) = 0,
(5) if i = n− s, . . . , n− 1, N(ei) = −ei+1 − ei+1−s−r−1,
(6) N(en) = −e1

Therefore, the image of N is spanned by

{e1}∪{en−2s−r+1+en−s+2, . . . , en−s−r−1+en}∪{en−s+1+en−2s−r, . . . , en+en−s−r−1},
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8 P. DANCHEV, E. GARCÍA, AND M. GÓMEZ LOZANO

i.e., the image of N is the subspace generated by

S = {e1} ∪ {en−s+i + en−2s−r−1+i | i = 1, . . . , s}.
Let us see that N(S) = 0. Clearly, N(e1) = 0; moreover, if i = 1, . . . , s−1, we have

N(en−s+i + en−2s−r−1+i) =

= −en−s+i+1 − en−2s−r+i + en−2s−r+i + en−s+i+1 = 0

and N(en + en−s−r−1) = −e1 + e1 = 0. Therefore, N2 = 0.
Since the matrix Qn−2s−r,n−s−r−1 satisfies Q2

n−2s−r,n−s−r−1 = Id, we deduce
that N ′

s,r is also a zero-square matrix, as required. □

In Theorem 3.10 we will calculate the characteristic polynomials of the matrices

Ts,r := A−Ns,r and T ′
s,r := A−N ′

s,r,

defined in 3.3. Since characteristic polynomials are invariant under similarity, our
argument will consist on transforming by similarity the matrices Ts,r and T ′

s,r in a
finite number of steps into matrices of the form Ts′,r′ or T ′

s′,r′ , s
′ = 0, 1 or 2. We

will first prove two descending lemmas. In each of these descending lemmas, we will
decrease the first subscript of Ts,r or of T ′

s,r by three units and increase the second
subscript by three units. Afterwards, it will only remain to explicitly calculate the
characteristic polynomial of the matrices Ts′,r′ and T ′

s′,r′ , s
′ = 0, 1, 2.

Lemma 3.5 (From Ts,r to T ′
s−3,r+3). Let F be a field and let A ∈ Mn(F) be a

nilpotent matrix consisting on a single Jordan block of rank bigger than or equal to
n
2 and s Jordan blocks of size 1. Suppose that s ≥ 3 and let r ∈ N ∪ {0} such that
1 + 2s+ r < n. Let Ts,r and T ′

s,r be the matrices defined in 3.3. Then, the matrix
Ts,r is similar to the matrix T ′

s−3,r+3.

Proof. For v = s+ r + 1 and

T1 : = Pn−s+3,n−s+3−v(−1) · Ts,r · Pn−s+3,n−s+3−v(1)

T2 : = Pn−s+2,n−s+2−v · T1 · Pn−s+2,n−s+2−v

T3 : = Pn−s+1−v,n−s+1(−1) · T2 · Pn−s+1−v,n−s+1(1),

T4 : = Qn−s+2−v,n−s+2 · T3 ·Qn−s+2−v,n−s+2,

we will show that T4 = T ′
s−3,r+3.

Along this proof, let us identify matrices with the endomorphisms acting on the
canonical basis {e1, . . . , en} of Fn. Let us denote by P the following matrix

P := Pn−s+3,n−s+3−v(1) ·Pn−s+2,n−s+2−v ·Pn−s+1−v,n−s+1(1) ·Qn−s+2−v,n+r+3−v.

With this notation in hand, we have T4 = P−1Ts,rP . Let us calculate P (ei),
i = 1, . . . , n:

P (ei) = ei for i = 1, 2, . . . , n− s− v,
P (en−s−v+1) = en−s−v+1,
P (en−s−v+2) = −en−s+2,
P (en−s−v+3) = −en−s−v+3 − en−s+3,
P (ei) = −ei for i = n− s− v + 4, . . . , n− v (if n− s− v + 4 ≤ n− v),
P (ei) = −ei for i = n− v + 1, . . . , n− s− 1 (if n− v + 1 ≤ n− s− 1),
P (en−s) = −en−s (if s ̸= 3),
P (en−s+1) = −en−s+1 − en−s+1−v,
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P (en−s+2) = −en−s+2−v and
P (ei) = ei for i = n− s+ 3, . . . , n.

Let us see how T4 = P−1Ts,rP acts on the canonical basis: to do so let us divide
the set {1, 2, . . . , n} into the following subsets relative to the definition of T ′

s−3,r+3:

∆′
1 := {1, . . . , n− s− v + 3} ∆′

2 := {n− s− v + 4, . . . , n− v − 1}
∆′

3 := {n− v, if s ̸= 3} ∆′
4 := {n− v + 1, . . . , n− s+ 2}

∆′
5 := {n− s+ 3, . . . , n− 1} ∆′

6 := {n}

(notice that if s = 3, then ∆′
2 = ∅, ∆′

3 = ∅ and ∆′
5 = ∅; and if s = 4, then ∆′

2 = ∅).
• T4 acting on elements of ∆′

1:

(1) T4(ei) = P−1Ts,rP (ei) = P−1Ts,r(ei) = P−1(ei+1) = ei+1 for i = 1, 2, . . . , n−
s− v,

(2) T4(en−s−v+1) = P−1Ts,rP (en−s−v+1) = P−1Ts,r(en−s−v+1) = P−1(−en−s+2) =
en−s−v+2,

(3) T4(en−s−v+2) = P−1Ts,rP (en−s−v+2) = P−1Ts,r(−en−s+2) = P−1(−en−s+3−
en−s−v+3) = en−s−v+3,

(4) T4(en−s−v+3) = P−1Ts,rP (en−s−v+3) = P−1Ts,r(−en−s+3 − en−s−v+3) =
P−1(−en−s+4 − en−s−v+4 + en−s+4) = P−1(−en−s−v+4) = en−s−v+4.

• T4 acting on elements of ∆′
2 (when ∆′

2 ̸= ∅):
(5) T4(ei) = P−1Ts,rP (ei) = P−1Ts,r(−ei) = P−1(ei+1+v) = ei+1+v for i =

n− s− v + 4, . . . , n− v − 1.

• T4 acting on elements of ∆′
3 (when ∆′

3 ̸= ∅):
(6) T4(en−v) = P−1Ts,rP (en−v) = P−1Ts,r(−en−v) = P−1(e1 − en−v+1) =

e1 + en−v+1.

• T4 acting on elements of ∆′
4:

(7) T4(ei) = P−1Ts,rP (ei) = P−1Ts,r(−ei) = P−1(−ei+1) = ei+1 for i =
n− v + 1, . . . , n− s− 1,

(8) T4(en−s) = P−1Ts,rP (en−s) = P−1Ts,r(−en−s) = P−1(−en−s+1−en−s+1−v)
= en−s+1,

(9) T4(en−s+1) = P−1Ts,rP (en−s+1) = P−1Ts,r(−en−s+1 − en−s+1−v) =
P−1(−en−s+2 − en−s+2−v + en−s+2) = P−1(−en−s+2−v) = en−s+2,

(10) T4(en−s+2) = P−1Ts,rP (en−s+2) = P−1Ts,r(−en−s+2−v) = P−1(en−s+3) =
en−s+3.

• T4 acting on elements of ∆′
5 (when ∆′

5 ̸= ∅):
(11) T4(en−s+3) = P−1Ts,rP (en−s+3) = P−1Ts,r(en−s+3) = P−1(en−s+4 +

en−s+4−v) = en−s+4 − en−s+4−v,
(12) T4(ei) = P−1Ts,rP (ei) = P−1Ts,r(ei) = P−1(ei+1+ei+1−v) = e′i+1−e′i+1−v

for i = n− s+ 4, . . . , n− 1.

• T4 acting on elements of ∆′
6:

(13) T4(en) = P−1Ts,rP (en) = P−1Ts,r(en) = P−1(e1) = e1,

which proves that T4 = P−1Ts,rP behaves on the canonical basis in the same way
as T ′

s−3,r+3 so T4 = T ′
s−3,r+3. □

Following the same arguments as in the above proof we also obtain the following
descending lemma.
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Lemma 3.6 (From T ′
s,r to Ts−3,r+3). Let F be a field and let A ∈ Mn(F) be a

nilpotent matrix consisting on a single Jordan block of rank bigger than or equal to
n
2 and s Jordan blocks of size 1. Suppose that s ≥ 3 and let r ∈ N ∪ {0} such that
1 + 2s + r < n. Let Ts,r and T ′

s,r be the matrices defined in 3.3. Then the matrix
T ′
s,r is similar to the matrix Ts−3,r+3. Indeed, if v = s+ r + 1 and

T ′
1 : = Pn−s+3,n−s+3−v(1) · T ′

s,r · Pn−s+3,n−s+3−v(−1)

T ′
2 : = Pn−s+2,n−s+2−v · T ′

1 · Pn−s+2,n−s+2−v

T ′
3 : = Pn−s+1−v,n−s+1(1) · T ′

2 · Pn−s+1−v,n−s+1(−1),

T ′
4 : = Qn−v−s+3,n−s+1 · T ′

3 ·Qn−v−s+3,n−s+1,

we obtain that T ′
4 = Ts−3,r+3.

After these two descending lemmas, let us compute the characteristic polynomi-
als of Ts,r and T ′

s,r when s = 0, 1 or 2.

Remark 3.7 (Case s = 0). Let F be a field and let A ∈ Mn(F) be a nilpotent
matrix consisting on a single Jordan block of rank bigger than or equal to n

2 and
no Jordan blocks of size 1 (s = 0). For any r < n − 1 we have that T0,r = T ′

0,r =∑n−1
t=1 et+1,t + e1,n, and its characteristic polynomial is exactly xn − 1.

Lemma 3.8 (Case s = 1). Let F be a field and let A ∈ Mn(F) be a nilpotent matrix
consisting on a single Jordan block of rank bigger than or equal to n

2 and one Jordan
block of size 1. Let r ≥ 0 be such that r + 3 < n. Let us consider the matrices
T1,r = A−N1,r and T ′

1,r = A−N ′
1,r. Then, the characteristic polynomials are

• pT1,r
(x) = xn + xr+2 − xn−r−2 − 1 = (xr+2 − 1)(xn−r−2 + 1)

• pT ′
1,r

(x) = xn − xr+2 + xn−r−2 − 1 = (xr+2 + 1)(xn−r−2 − 1).

Proof. We will use the following general remark: suppose we are computing the
determinant of a matrix of the form

B =



x 0 · · · 0 1
−1 x · · · 0
...

. . .
. . .

...
...

0 0
. . . x 0

0 0 · · · −1 x

+ a ei,j

where a is a non-zero element at position (i, j), j > i. If we multiply B on the
left by Pi,j+1(a) (we add to row i the row j + 1 multiplied by a), we get a new
matrix that has a zero at position (i, j) and has ax at position (i, j + 1). Since
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|Pi,j+1(a)| = 1 we get

det





x 0 · · · 0 1
−1 x · · · 0
...

. . .
. . .

...
...

0 0
. . . x 0

0 0 · · · −1 x

+ a ei,j

 =

det





x 0 · · · 0 1
−1 x · · · 0
...

. . .
. . .

...
...

0 0
. . . x 0

0 0 · · · −1 x

+ ax ei,j+1


i.e., when computing the determinant of B, nonzero elements at positions (i, j),
j > i, can be moved to the right by multiplying by x at each step.

By a similar argument, multiplying B on the right by the elementary matrix
Pi−1,j(a) (adding to column j the column i− 1 multiplied by a), we also have that

det





x 0 · · · 0 1
−1 x · · · 0
...

. . .
. . .

...
...

0 0
. . . x 0

0 0 · · · −1 x

+ a ei,j

 =

det





x 0 · · · 0 1
−1 x · · · 0
...

. . .
. . .

...
...

0 0
. . . x 0

0 0 · · · −1 x

+ ax ei−1,j


i.e., when computing the determinant of B, nonzero elements at positions (i, j),
j > i, can be moved upwards to position (i − 1, j) by multiplying at each step by
x.

Notice that

T1,r =

n−1∑
t=1

et+1,t + e1,n + en−r−2,n−1 − e1,n−r−2.

Applying the argument above to the determinant of the matrix x Id−T1,r, we
can move the nonzero element at position (n− r− 2, n− 1) towards position (1, n)
obtaining −xn−r−2 and we can move the non-zero element at position (1, n− r − 2)
towards position (1, n) obtaining xr+2, getting at the end the determinant of a
matrix of the form
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x 0 0 · · · 0 −xn−r−2 + xr+2 − 1
−1 x 0 · · · 0
0 −1 x · · · 0 0
...

...
. . .

. . .
...

...

0 0 0
. . . x 0

0 0 0 · · · −1 x


.

Finally, by the Laplace expansion of the determinant along the first row we get
that the characteristic polynomial of T1,r is given by xn − xn−r−2 + xr+2 − 1.

Similarly, since

T ′
1,r =

n−1∑
t=1

et+1,t + e1,n − en−r−2,n−1 + e1,n−r−2,

its characteristic polynomial is xn + xn−r−2 − xr+2 − 1. □

We continue our work with the next technical assertion.

Lemma 3.9 (Case s = 2). Let F be a field and let A ∈ Mn(F) be a nilpotent matrix
consisting on a single Jordan block of rank bigger than or equal to n

2 and two Jordan
blocks of size 1. Let r ≥ 0 be such that r + 5 < n. Let us consider the matrices
T2,r = A−N2,r and T ′

2,r = A−N ′
2,r. Then, the characteristic polynomials are

• pT2,r
(x) = xn + xr+3 − xn−r−3 − 1 = (xn−r−3 + 1)(xr+3 − 1)

• pT ′
2,r

(x) = xn − xr+3 + xn−r−3 − 1 = (xn−r−3 − 1)(xr+3 + 1).

Proof. Let {e1, . . . , en} be the canonical basis of Fn. Let

P := Pn,n−r−3 ·Qn−r−3,n−r−3

and consider the new basis

{e′i, | i = 1, . . . , n}, where each e′i := P (ei).

This new basis is just a reordering of the canonical basis and a change of sign of
one of its vectors:

{e′i, | i = 1, . . . , n} = {e1, e2, . . . , en−r−4,−en} ∪ {en−r−3, . . . , en−1}.

Recall that

T2,r =

n−r−5∑
t=1

et+1,t − en,n−r−4 + e1,n

+

n−1∑
t=n−r−3

et+1,t − e1,n−r−3 + en−r−4,n−2 + en−r−1,n−1.

Then, the matrix P−1 · T2,r · P is of the form
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0 0 0 −1 ∗ ∗ ∗ ∗
1 0 0 0 ∗ ∗ ∗ ∗

0
. . . 0 0 ∗ ∗ ∗ ∗

0 0 1 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0

0 0 0 0 0
. . . 0 0

0 0 0 0 0 0 1 0



and its characteristic polynomial, which coincides with the characteristic polyno-
mial of T2,r, is the product of the characteristic polynomials of the two diagonal
blocks, i.e., it is precisely (xn−r−3 + 1)(xr+3 − 1).

Similarly, if we consider P ′ := Pn,n−r−3 ·Qn,n and the new basis

{e′′i , | i = 1, . . . , n}, where each e′′i := P ′(ei),

then,

{e′′i , | i = 1, . . . , n} = {e1, e2, . . . , en−r−4, en} ∪ {en−r−3, . . . ,−en−1}.

Thus, the matrix (P ′)−1 · T ′
2,r · P ′ is of the form



0 0 0 1 ∗ ∗ ∗ ∗
1 0 0 0 ∗ ∗ ∗ ∗

0
. . . 0 0 ∗ ∗ ∗ ∗

0 0 1 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 −1
0 0 0 0 1 0 0 0

0 0 0 0 0
. . . 0 0

0 0 0 0 0 0 1 0


and its characteristic polynomial, which coincides with the characteristic polyno-
mial of T ′

2,r, is the product of the characteristic polynomials of the two diagonal

blocks, i.e., it is precisely (xn−r−3 − 1)(xr+3 + 1). □

We thus arrive at the following result in which we compute the characteristic
polynomials of the matrices Ts,r = A−Ns,r and T ′

s,r = A−N ′
s,r. They depend on

the equivalence class of s modulo 3.

Theorem 3.10. Let F be a field, n ∈ N, and let s ∈ N∪{0} such that 2(s+1) ≤ n.
Let A ∈ Mn(F) be a nilpotent matrix consisting on a single Jordan block and s
Jordan blocks of size 1. Then,

(1) If s = 3α for some α ≥ 0 and we take any r such that 1 + 2s+ r < n, then
the characteristic polynomial of Ts,r = A−Ns,r is

pT3α,r
(x) = xn − 1.
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(2.1) If s = 3α+1 for some even α ≥ 0 and we take any r such that 1+2s+r < n
then the characteristic polynomial of Ts,r = A−Ns,r is given by

pT3α+1,r
(x) = pT1,r+3α

(x) = (xr+3α+2 − 1)(xn−r−3α−2 + 1),

and the characteristic polynomial of T ′
s,r = A−N ′

s,r is given by

pT ′
3α+1,r

(x) = pT ′
1,r+3α

(x) = (xr+3α+2 + 1)(xn−r−3α−2 − 1).

(2.2) If s = 3α+1 for some odd α ≥ 1, and we take any r such that 1+2s+r < n
then the characteristic polynomial of Ts,r = A−Ns,r is given by

pT3α+1,r
(x) = pT ′

1,r+3α
(x) = (xr+3α+2 + 1)(xn−r−3α−2 − 1),

and the characteristic polynomial of T ′
s,r = A−N ′

s,r is given by

pT ′
3α+1,r

(x) = pT1,r+3α
(x) = (xr+3α+2 − 1)(xn−r−3α−2 + 1).

(3.1) If s = 3α+2 for some even α ≥ 0 and we take any r such that 1+2s+r < n,
then the characteristic polynomial of Ts,r = A−Ns,r is given by

pT3α+2,r
(x) = pT2,r+3α

(x) = (xn−r−3α−3 + 1)(xr+3α+3 − 1),

and the characteristic polynomial of T ′
s,r = A−N ′

s,r is given by

PT ′
3α+2,r

(x) = pT ′
2,r+3α

(x) = (xn−r−3α−3 − 1)(xr+3α+3 + 1).

(3.2) If s = 3α+2 for some odd α ≥ 0 and we take any r such that 1+2s+r < n,
then the characteristic polynomial of Ts,r = A−Ns,r is given by

pT3α+2,r
(x) = pT ′

2,r+3α
(x) = (xn−r−3α−3 − 1)(xr+3α+3 + 1),

and the characteristic polynomial of T ′
s,r = A−N ′

s,r is given by

pT ′
3α+2,r

(x) = pT2,r+3α
(x) = (xn−r−3α−3 + 1)(xr+3α+3 − 1).

Proof. Notice that the condition 2(s + 1) ≤ n is just equivalent to A having rank
bigger or equal to n

2 .
(1) Suppose that s = 3α for some α ≥ 0. Let us consider T3α,r = A − N3α,r. If
α ≥ 1, applying Lemma 3.5 to T3α,r we obtain the matrix T ′

3(α−1),r+3, which is

similar to T3α,r. If α − 1 ≥ 1 then use Lemma 3.6 to get another similar matrix
T3(α−2),r+6, and repeating this process, in α steps we will end with either T0,r+3α

or with T ′
0,r+3α, which are both equal to the matrix

∑n−1
t=1 et+1,t+e1,n (see Remark

3.7), whose characteristic polynomial is xn − 1. Thus the characteristic polynomial
of Ts,r is xn − 1.
(2.1) Suppose that s = 3α+ 1 for some even α ≥ 0. Let us consider Ts,r. If α > 1,
as in (1) we can use Lemma 3.5 and Lemma 3.6 several times to obtain, in α steps,
a similar matrix T1,r+3α; therefore, the characteristic polynomial of Ts,r coincides
with the characteristic polynomial of T1,r+3α, which is (xr+3α+2−1)(xn−r−3α−2+1)
by Lemma 3.8. Similarly, if we begin with T ′

s,r and we use Lemmas 3.6 and 3.5,
we will end up in α steps with the similar matrix T ′

1,r+3α, whose characteristic

polynomial is (xr+3α+2 + 1)(xn−r−3α−2 − 1) by Lemma 3.8.
(2.2) Suppose that s = 3α+ 1 for some odd α ≥ 1. If we start with Ts,r and apply
Lemmas 3.5 and 3.6, after α steps we will end up with the similar matrix T ′

1,r+3α,
and if we begin with T ′

s,r we will end up with T1,r+3α.
(3.1) and (3.2) follow as (1) and (2.1) and (2.2) above, taking into account the
characteristic polynomials of T2,r+3α and T ′

2,r+3α calculated in Lemma 3.9. □
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As three important consequences, we derive the following:

Corollary 3.11. Let F be a field, suppose that n ∈ N is even, and let s ∈ N ∪ {0}
such that 2(s + 1) ≤ n. Let A ∈ Mn(F) be a nilpotent matrix consisting on a
single Jordan block and s Jordan blocks of size 1. If we take r = n

2 − s − 1, the
characteristic polynomial of Ts,r = A − Ns,r and the characteristic polynomial of
T ′
s,r = A − Ns,r coincide and they are xn − 1. In particular, Tn

s,r = Id so that A
decomposes as the sum of a torsion matrix Ts,r and a zero-square matrix Ns,r.

Proof. If s ≡3 0, since the characteristic polynomial of Ts,r is always xn− 1 for any
r such that 1 + 2s+ r < n, this also is true if we take r = n

2 − s− 1.
If s ≡3 1 or s ≡3 2 and we take r = n

2 − s− 1, we obtain that the characteristic

polynomial of Ts,r is (x
n
2 − 1)(x

n
2 + 1) = xn − 1. □

Corollary 3.12. Let F be a field, suppose that n ∈ N is odd, and let s ∈ N ∪ {0}
such that 2(s+1) ≤ n. Let A ∈ Mn(F) be a nilpotent matrix consisting on a single
Jordan block and s Jordan blocks of size 1.

(1) If s ≡3 0 and we take any r such that 1 + 2s+ r < n, then Ns,r such that
the characteristic polynomial of Ts,r = A−Ns,r is xn − 1.

(2) If s ≡3 1 or s ≡3 2, and:
(a) if n = 4m + 1, α is even, s = 3α + 1 or s = 3α + 2, and we take

r = 2m − s, then Ns,r is such that the characteristic polynomial of
Ts,r = A−Ns,r is (x2m + 1)(x2m+1 − 1);

(b) if n = 4m + 1, α is odd, s = 3α + 1 or s = 3α + 2, and we take
r = 2m − s, then N ′

s,r is such that the characteristic polynomial of

T ′
s,r = A−N ′

s,r is (x2m + 1)(x2m+1 − 1);
(c) if n = 4m + 3, α is even, s = 3α + 1 or s = 3α + 2, and we take

r = 2m − s, then Ns,r is such that the characteristic polynomial of
Ts,r = A−Ns,r is (x2m+2 + 1)(x2m+1 − 1);

(d) if n = 4m + 3, α is odd, s = 3α + 1 or s = 3α + 2, and we take
r = 2m − s, then N ′

s,r is such that the characteristic polynomial of

T ′
s,r = A−N ′

s,r is (x2m+2 + 1)(x2m+1 − 1).

Proof. It is an automatic consequence of Theorem 3.10. □

Corollary 3.13. Let F be a field of zero characteristic, suppose that n ∈ N is odd,
and let s ∈ N ∪ {0} such that 2(s + 1) ≤ n. Let A ∈ Mn(F) be a nilpotent matrix
consisting on a single Jordan block and s Jordan blocks of size 1. Then, there exists
a zero-square matrix N and d ≥ 1 such that (A−N)d = Id, i.e., A decomposes as
the sum of a torsion matrix and a zero-square matrix.

Proof. Following the cases of the above corollary, we have:

- if we are in case (1), take N = Ns,r and d = n; clearly (A−N)n = Id;
- if we are in case (2)(a), take r = 2m − s and N = Ns,r; then if d =
lcm(4m, 2m+1), we obtain (A−N)d = Id, because the polynomials x2m+1
and x2m+1 − 1 have no common roots, so the matrix A−N has n different
eigenvalues (in the algebraic closure of F), all of them roots of unity ξ with
ξ4m = 1 or ξ2m+1 = 1;

- if we are in case (2)(b), take r = 2m − s and N = N ′
s,r; then if d =

lcm(4m, 2m+ 1), we obtain (A−N)d = Id arguing as in case (2)(a);
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- if we are in case (2)(c), take r = 2m − s and N = Ns,r; then if d =
lcm(4m+ 2, 2m+ 1), we obtain (A−N)d = Id arguing as in case (2)(a);

- if we are in case (2)(d), take r = 2m − s and N = N ′
s,r; then if d =

lcm(4m+ 2, 2m+ 1), we obtain (A−N)d = Id arguing as in case (2)(a).

□

We now have all the ingredients necessary to establish our chief result in this
section.

Theorem 3.14. Any nilpotent matrix in Mn(F) can be written as the sum of a
torsion matrix plus a square-zero matrix if, and only if, its rank is at least n

2 .

Proof. According to the above Theorem 2.1, a necessary condition to express A ∈
Mn(F) as the sum T +N , where T is a torsion matrix and N2 = 0, is that the rank
of A is greater than or equal to n

2 , because torsion matrices must be invertible.
Conversely, to prove the sufficiency, suppose that the rank of A ∈ Mn(F) is no less
than n

2 .
If F is a field of prime characteristic, then the result follows by Corollary 2.8

given above. Suppose from now on that F is a field of characteristic zero. By the
primary rational canonical decomposition of any nilpotent matrix, we can assume
without loss of generality that A is the direct sum of its Jordan blocks.

If A only contains Jordan blocks of size r > 1, each of them can be decomposed
separately in the following way


0 0 . . . 0

1 0
...

. . .
. . .

0 1 0

 =


0 0 . . . 1

1 0
...

. . .
. . .

0 1 0

+


0 . . . . . . −1
...

...
...
0 . . . . . . 0



where the first matrix is a torsion matrix and the second one is zero-square.
Otherwise, since the rank of A is greater than or equal to n

2 , we can reorder
the blocks of matrix A – which just corresponds to a reordering of the elementary
divisors of A – as follows: we follow each Jordan block of size r > 1 by s (s ≤ r−2)
blocks of size 1. If r+s is even, the combined block of size r+s can be decomposed
as the sum of a torsion matrix and a zero-square matrix by virtue of Corollary 3.11.
If, however, r + s is odd, we elementarily see that the combined block of size r + s
can be decomposed as the sum of a torsion matrix and a zero-square matrix in view
of Corollary 3.13. □

The next commentaries are worthwhile to show that the above theorem is some-
what true in more general settings.

Remark 3.15. It is well known (see, for example, [10], [16] or [17]) that every
nilpotent matrix over a division ring is still similar to its Jordan form, i.e., it
is similar to a direct sum of Jordan blocks, all of them associated to 0. Thus,
Theorem 3.14 is still valid for nilpotent matrices over division rings.
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The above result suggests the following question:

Open Question 2: Given a fixed index of nilpotence k ≥ 2, is it true that any
nilpotent matrix in Mn(F) can be written as the sum of a torsion matrix and a
nilpotent matrix of index less than or equal to k if, and only if, its rank is at least
n
k ?
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[5] S. Breaz, G. Cǎlugǎreanu, P. Danchev and T. Micu. Nil-clean matrix rings. Linear Algebra &
Appl., 439:3115–3119, 2013.

[6] S. Breaz and S. Megiesan. Nonderogatory matrices as sums of idempotent and nilpotent ma-

trices. Linear Algebra & Appl., 605:239–248, 2020.
[7] G. Calugareanu and T. Y. Lam. Fine rings: A new class of simple rings. J. Algebra & Appl.,

15(9), 2016.
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Málaga, Spain

Email address: miggl@uma.es

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 


