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Abstract. For any n ≥ 2 and fixed k ≥ 1, we give necessary and sufficient

conditions for an arbitrary nonzero square matrix in the matrix ring Mn(F) to
be written as a sum of an invertible matrix U and a nilpotent matrix N with

Nk = 0 over an arbitrary field F.
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1. Introduction

In 1977, when studying lifting properties of idempotents, Nicholson defined an
element a in a ring R to be clean if it can be written in the form e + u, where e
is an idempotent and u is a unit (i.e., an invertible); see [9]. If every element in a
ring R is clean, the ring is called clean. Inspired by these definitions, in 2013 Diesl
[6] defined a ring element b ∈ R to be nil-clean if it can be expressed as a sum of
an idempotent and a nilpotent element, and the ring R is nil-clean if every element
in R is so.

By combining the notions of invertibility and nilpotence, Cǎlugǎreanu and Lam
introduced in 2016 the notion of fine rings: those in which every nonzero element
can be written as the sum of an invertible element and a nilpotent one; see [1]. One
of the main results of the paper [1] is the fact that every nonzero square matrix over
a division ring is the sum of an invertible matrix and a nilpotent matrix. Indeed,
they proved that as soon as the division ring has more than two elements, every
nonzero square matrix over such division ring is similar to what they call a matrix
in good form, i.e., a matrix with all diagonal entries nonzero. By decomposing
this last matrix into its (invertible) lower part and its strictly (nilpotent) upper
part, one concludes matrix rings over division rings with more than two elements
are fine. Moreover, they separately proved that nonzero matrices over F2 are also
clean, reaching to the desired result.

In the same paper (see the Acknowledgements section), the authors remarked
that there was no previous reference to the fact that every square nonzero matrix
(even over the complex field) could be expressed as the sum of a nilpotent matrix
and an invertible one. Notice that the nilpotent matrices in Cǎlugǎreanu and
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Lam decomposition have high indices of nilpotence because they correspond to the
strictly upper part of a matrix in good form.

The rings whose nonzero idempotents are fine turned out to be an interesting
class of indecomposable rings and were studied in [2] by Cǎlugǎreanu and Zhou. In
2021, the same authors focused on rings in which every nonzero nilpotent element
is fine, which they called NF rings, and showed that for a commutative ring R and
n ≥ 2, the matrix ring Mn(R) is NF if and only if R is a field; see [3].

On the same vein, a slightly more general class of rings than the aforementioned
class of fine rings was defined in [5] under the name nil-good rings and some their
characteristic properties, including the behaviour of the matrix ring over a nil-good
ring, were explored in [4] and [7], respectively.

In our work, we begin by fixing a bound k ≥ 1 for the index of nilpotence of the
nilpotent part and pose the following problem for matrices over fields:

Problem: Given k ≥ 1, find necessary and sufficient conditions to decompose
any nonzero square matrix A over a field F as a sum of an invertible matrix U and
a nilpotent matrix N with Nk = 0.

Remark 1.1. Notice that the problem of decomposing a matrix as the sum of a
unit matrix and a nilpotent matrix of index at most k is not true in general. In
fact, invertible square matrices have full rank, and the rank of a nilpotent matrix
of index k is the sum of the rank of every nilpotent block of index ki (whose rank
is ki − 1) in the Jordan canonical form of N . Therefore, in the matrix ring Mn(F)
over the field F, if we decompose n = ck + d where c, d ∈ N and 0 ≤ d < k, the
rank of every nilpotent matrix is less than or equal to{

c(k − 1) = n− n
k , if d = 0;

c(k − 1) + d− 1 = n− n
k + d

k − 1 ≤ n− n
k , if d > 0

(c blocks of index k, and one block of index d when d > 0, in its Jordan canonical
form), so a necessary condition for this decomposition to hold is that the rank of
the original matrix must be greater than or equal to n

k . To illustrate this more
concretely, let k ≥ 2, suppose n ≥ k + 2 and let A = e12 ∈ Mn(F) be the standard
matrix. If we assume in a way of contradiction that A = U + N , where U is an
invertible matrix and Nk = 0, then one may write that U = A−N . But the rank
of an invertible matrix is always maximal (that is, exactly n in this case), whereas
the rank of A is one and the rank of N is ≤ n− n

k , so it cannot be recovered a rank
n matrix from a matrix of rank 1 and a matrix of rank at most n− n

k .

In this paper we completely solve this problem for matrices over arbitrary fields,
proving that following result:

Theorem. Let F be a field, let n ≥ 2, and let us fix k ≥ 1. Given a nonzero
matrix A ∈ Mn(F), there exists an invertible matrix U ∈ Mn(F) and a nilpotent
matrix N ∈ Mn(F) with Nk = 0 such that A = U +N if, and only if, the rank of
A is greater than or equal to n

k .

Since the properties invertibility and nilpotence are both invariant conditions
under similarity, we will use the primary rational canonical form of a matrix ([8,
VII.Corollary 4.7(ii)]), which states that every matrix A ∈ Mn(F), where F is a
field, is similar to a direct sum of companion matrices of prime power polynomials
pm11
1 , . . . , p

msks
s ∈ F[x] where each pi is prime (irreducible) in F[x]. The matrix
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A is uniquely determined except for the order of these companion matrices. The
polynomials pm11

1 , . . . , p
msks
s are called the elementary divisors of the matrix A.

2. Decomposing Matrices into a Sum of Invertible and Nilpotent
Matrices

In our argument we will separate the elementary divisors q(x) of a matrix A ∈
Mn(F) between those that satisfy q(0) ̸= 0 and those with q(0) = 0, i.e., q(x) = xm,
m ≥ 1. Among these last ones, we will also distinguish between those of degree 1
and those of degree bigger than 1:

(i) Any elementary divisor q(x) = xm+am−1x
m−1+· · ·+a0 with q(0) = a0 ̸= 0

gives rise to an invertible companion matrix

C(q(x)) =


0 0 . . . −a0

1 0
...

. . .
. . .

0 1 −am−1

 ∈ Mm(F).

(ii) Any elementary divisor of the form q(x) = x gives rise to the 1 × 1 com-
panion matrix C(x) = (0).

(iii) Any elementary divisor of the form q(x) = xm, m > 1, gives rise to a
companion of the form

C(xm) =


0 0 . . . 0

1 0
...

. . .
. . .

0 1 0

 =

m−1∑
i=1

ei+1,i ∈ Mm(F).

Definition 2.1. Let F be a field, let n ≥ 2, and let us fix an index of nilpotence
k with 2 ≤ k ≤ n. For each 1 ≤ r < s ≤ n such that s + k − 2 ≤ n, we define the
following matrices, which will be the ingredients of our main result:

Nr,s,k := er,r + es,r − er,s+k−2 −
k−2∑
i=0

es,s+i +

k−3∑
i=0

es+i+1,s+i ∈ Mn(F).

We begin our work with a series of technicalities, which we need to establish our
chief result.

Lemma 2.2. Let F be a field, let n ≥ 2, and let us fix an index of nilpotence k
with 2 ≤ k ≤ n. For each 1 ≤ r, s ≤ n such that s+ k − 2 ≤ n, the matrices Nr,s,k

have rank equal to k − 1 and are nilpotent of index k.

Proof. Let N =
∑k−1

i=1 ei+1,i ∈ Mn(F) be the matrix consisting on a single nilpotent
Jordan block of size k and n − k blocks of size 1. By construction, N is nilpotent
of index k.

We claim that each Nr,s,k can be obtained from the matrix N by an appropriate
change of basis. If we denote by {e1, e2, . . . , ek, ek+1, . . . } the canonical basis, the
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matrix

N1,2,k =



1 0 0 · · · 0 −1 0 · · · 0
1 −1 −1 · · · −1 −1 0 · · · 0
0 1 0 0 0 0 0 · · · 0
0 0 1 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
...

0 0 0 0 1 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
...

0 0 0 0 0 0 0 · · · 0


is just the same operator N represented on the basis

B1,2,k = {v1 = e1, v2 = e2 − e1, . . . , vk = ek − e1, vk+1 = ek+1, . . . }.
Similarly, if we consider the basis Br,s,k = {v1, . . . , vn} where

vr = e1

vs = e2 − e1,

vs+1 = e3 − e1,

...

vs+k−2 = ek − e1,

and the rest of the vectors vi of Br,s,k are any reordering of the vectors ek+1, . . . ,
en, the matrix Nr,s,k is the representation of the operator N on the basis Br,s,k.

The rank and the index of nilpotence of the matrices Nr,s,k is a direct con-
sequence of the rank and the index of nilpotence of the original matrix N , as
claimed. □

Proposition 2.3. Let F be a field, let n ≥ 2, and let us fix k ≥ 1. Also, let
B ∈ Mn(F) be a matrix consisting of a single invertible block of type (i) and size t,
and also of r = n− t nilpotent blocks of type (ii). If r ≤ t(k − 1) (or, equivalently,
rank(B) = t ≥ n/k), then there exists a nilpotent matrix NB with Nk

B = 0 such
that B +NB is invertible.

Proof. By hypothesis, the matrix B consists of an invertible block of the form
C(q(x)), for some polynomial q(x) of degree t with q(0) ̸= 0, and r nilpotent blocks
of type (ii). If r = 0, we just take NB = 0 since B itself is invertible. For the rest
of the proof, suppose that r > 0.

Let us use the classical division theorem to write r = c(k−1)+d with 0 ≤ d < k−1
(c represents the number of nilpotent matrices of type Nr,s,k that we will use in
our argument and d, if nonzero, means an extra nilpotent matrix of type Nr,s,d+1).
The condition r ≤ t(k − 1) means that{

c ≤ t, if d = 0;
c+ 1 ≤ t, if d > 0.

– If c > 0, we consider the matrix

N1,t+1,k +N2,t+1+(k−1),k + · · ·+Nc,t+1+(c−1)(k−1),k =

c∑
i=1

Ni,t+1+(i−1)(k−1),k.
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By construction, (
∑c

i=1 Ni,t+1+(i−1)(k−1),k)
k = 0 (the matrices Nr,s,k appearing in

this sum are nilpotent of index k by Lemma 2.2 and they are two-by-two orthogo-
nal).
– If d > 0, we consider Nc+1,t+1+c(k−1),d+1 which satisfies (Nc+1,t+1+c(k−1),d+1)

k =

0 because d+1 < k; Nc+1,t+1+c(k−1),d+1 is orthogonal to
∑c

i=1 Ni,t+1+(i−1)(k−1),k.
Define the nilpotent matrix

NB =

c∑
i=1

Ni,t+1+(i−1)(k−1),k︸ ︷︷ ︸
if c > 0

+Nc+1,t+1+c(k−1),d+1︸ ︷︷ ︸
if d > 0

, Nk
B = 0.

We assert that the matrix UB = B +NB is invertible. Indeed, since the deter-
minant of a matrix remains the same if we replace some columns by the original
columns to which we add some other columns,

• we add to the first column of UB the one in position t+ k − 1,
• we add to the second column of UB the one in position t+ 2k − 2,
...

• we add to the c-column of UB the one in position t+ c(k − 1),
• if d > 0, we add to the c+1-column of UB the one in position t+c(k−1)+d.

The condition c ≤ t if d = 0 and c + 1 ≤ t if d > 0 assures that these sums of
columns in UB only affects, at most, to the first t-columns of UB . We end up with
a matrix of the form


C(q(x)) ∗ ∗ ∗ ∗

0 Jk−1 ∗ ∗ ∗
0 0 Jk−1 ∗ ∗

0 0 0
. . . ∗

0 0 0 0 Jd


where

Jr =


−1 −1 . . . −1
1 0 . . . 0

0
. . . 0

0 0 1 0

 ∈ Mr(F), r = k − 1 or d.

Since det(Jr) = (−1)r, r = k− 1 or d, the determinant of UB coincides with ± the
determinant of the companion matrix C(q(x)), which by hypothesis is nonzero, as
required. □

The above proposition can be substantiate by the following concrete construc-
tion.
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Example 2.4. Let us consider an index of nilpotence k = 5 and the matrix

B =



0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


∈ M9(F)

consisting on the invertible block C(x2 − x − 1) of a degree t = 2 polynomial and
r = 7 blocks of type (ii). The condition r ≤ t(k − 1) holds. Following the proof of
Proposition 2.3, we obtain c = 1 and d = 3 in the formula n − t = c(k − 1) + d;
hence we consider the nilpotent matrices

N1,3,5 =



1 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0
1 0 −1 −1 −1 −1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


,

N2,7,4 =



0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 −1 −1 −1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


.

Then NB = N1,3,5 +N2,7,4 satisfies N5
B = 0; moreover,

B +NB =



1 1 0 0 0 −1 0 0 0
1 2 0 0 0 0 0 0 −1
1 0 −1 −1 −1 −1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 −1 −1 −1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
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is invertible because, if we add the column 6 to column 1 and add column 9 to
column 2, it would follow that

0 1 0 0 0 −1 0 0 0
1 1 0 0 0 0 0 0 −1
0 0 −1 −1 −1 −1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 −1 −1 −1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


=

 C(x2 − x− 1) ∗ ∗
0 J4 ∗
0 0 J3

 ,

which is clearly invertible, as expected.

Proposition 2.5. Let F be a field, let n ≥ 2, and let us fix k ≥ 2. Let C =∑t−1
i=1 ei+1,i ∈ Mn(F) be a matrix consisting of a nilpotent block of type (iii) and

size t, and r = n− t nilpotent blocks of type (ii). If r ≤ k − 2 + (t− 1)(k − 1) (or,
equivalently, rank(C) = t − 1 ≥ n

k ), then there exists a nilpotent matrix NC with

Nk
C = 0 and such that C +NC is invertible.

Proof. If r < k − 2, we take the nilpotent matrix NC = N1,t,r+2 = e1,1 + et,1 −
e1,t+r −

∑r
i=0 et,t+i +

∑r−1
i=0 et+i+1,t+i; then

UC = C +NC =

r−1∑
i=1

ei+1,i + e1,1 + et,1 − e1,t+r −
r∑

i=0

et,t+i.

Adding the column in position t + r to the first column of UC and replacing row
t by the sum of that row and the rest of the rows below, we obtain the matrix
C(xn+xt+1), which is the companion matrix of the polynomial p(x) = xn+xt+1,
p(0) ̸= 0, so UC is invertible. Moreover, since r + 2 < k, we have Nr+2

C = Nk
C = 0.

If r ≥ k− 2, arguing as in the proof of Proposition 2.3 but beginning at position
(2,2), let us use the classical division theorem to write r− k+2 = c(k− 1)+ d with
0 ≤ d < k − 1. Define

NC = N1,t,k

+N2,t+(k−1),k +N3,t+2(k−1),k + · · ·+Nc+1,t+c(k−1),k if c > 0

+Nc+2,t+(c+1)(k−1),d+1 if d > 0

= N1,t,k +

c+1∑
i=2

Ni,t+(i−1)(k−1),k︸ ︷︷ ︸
if c > 0

+Nc+2,t+(c+1)(k−1),d+1︸ ︷︷ ︸
if d > 0

.

The matrixNC satisfiesNk
C = 0, because it consists of orthogonal nilpotent matrices

of the form Nr,s,j , j ≤ k, all of them satisfying Nk
r,s,j = 0.

In order to see that UC = C +NC is invertible, if

• we add to the first column of UC the column in position t+ k − 2,
• we add to the second column of UC the one in position t+ 2(k − 1)− 1,
...

• we add to the c-column of UC the one in position t+ (c+ 1)(k − 1)− 1,
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• we add to the c+1-column of UC the one in position t+(c+1)(k−1)−1+d =
n,

and then we replace row t by the sum of that row and the rows t+ 1,. . . , t+ k− 2
below, we obtain a matrix of the form

C(xt+k−2 + xt + 1) ∗ ∗ ∗ ∗
0 Jk−1 ∗ ∗ ∗
0 0 Jk−1 ∗ ∗

0 0 0
. . . ∗

0 0 0 0 Jd


where

Jr =


−1 −1 . . . −1
1 0 . . . 0

0
. . . 0

0 0 1 0

 ∈ Mr(F), r = k − 1 or d.

Since det(Jr) = (−1)r, r = k − 1 or d, the determinant of UC coincides with ±
the determinant of the companion matrix C(xt+k−2 + xt +1), which is nonzero, as
needed. □

The next concrete construction will materialize the last proposition.

Example 2.6. Let us consider an index of nilpotence k = 4 and the nilpotent
matrix

C =



0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


∈ M9(F)

consisting on a nilpotent block of size t = 4 and r = 5 blocks of type (ii). Since
r ≥ k − 2, imitating the proof of Proposition 2.5 we first consider

N1,4,4 =



1 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 −1 −1 −1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


.
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Moreover, since r = 5 and k = 4, we can get c = 1 and d = 0 in the formula
r − k + 2 = c(k − 1) + d, so we also consider the matrix

N2,7,4 =



0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 −1 −1 −1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


.

Thus NC = N1,4,4 +N2,7,4 satisfies N4
C = 0 and

C +NC =



1 0 0 0 0 −1 0 0 0
1 1 0 0 0 0 0 0 −1
0 1 0 0 0 0 0 0 0
1 0 1 −1 −1 −1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 −1 −1 −1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


is invertible because, if we add the column 4 to column 1, add column 9 to column
2 and add rows 5 and 6 to row 4, we will receive

0 0 0 0 0 −1 0 0 0
1 0 0 0 0 0 0 0 −1
0 1 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 −1 −1 −1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


=

(
C(x6 + x3 + 1) ∗

0 J3

)
,

which is clearly invertible, as promised.

Combining the previous two propositions we reach the main result which moti-
vates writing of this article.

Theorem 2.7. Let F be a field, let n ≥ 2, and let us fix k ≥ 1. Given a nonzero
matrix A ∈ Mn(F), there exists an invertible matrix U ∈ Mn(F) and a nilpotent
matrix N ∈ Mn(F) with Nk = 0 such that A = U +N if, and only if, the rank of
A is greater than or equal to n

k .

Proof. As already mentioned in Remark 1.1, a necessary condition to express A as
the sum U +N , where U is invertible and Nk = 0, is that the rank of A is greater
than or equal to n

k because n = rank(U) = rank(A − N) ≤ rank(A) + rank(N) ≤
rank(A) + n− n

k .
Conversely, suppose that the rank of A ∈ Mn(F) is no less than n

k . Without loss
of generality, we may assume that A is expressed in its primary rational canonical
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form, i.e., it is a sum of the companion matrices of its elementary divisors. Let us
show that there will exist an invertible matrix U and a nilpotent matrix N , Nk = 0,
such that A = U +N , as pursuing.

Let us reorder the blocks of matrix A – which just corresponds to a reordering
of the elementary divisors of A – as follows:

(1) we follow each ti × ti block Bi of type (i) by si blocks of type (ii) (si ≤
ti(k − 1)),

(2) we follow each tj × tj block Cj of type (iii) by rj blocks of type (ii) (rj ≤
k − 2 + (tj − 1)(k − 1)).

such that
∑

i si +
∑

j rj = n− rank(A). The rank of A guarantees that all blocks

of type (ii) can be distributed and combined with either blocks of type (i) or with
blocks of type (iii) by following points (1) and (2).

We, thereby, have the following two cases:
• In accordance with Proposition 2.3, for every invertible block Bi of rank ti

which is followed by si blocks of type (ii), si ≤ ti(k − 1), there exists a nilpotent
matrix NBi

such that Nk
Bi

= 0 such that Bi +NBi
is an invertible matrix of rank

ti + si.
• In accordance with Proposition 2.5, for every nilpotent block Cj of index tj

and rank tj−1 which is followed by rj blocks of type (ii), rj ≤ k−2+(tj−2)(k−1),
there exists a nilpotent matrix NCj such that Nk

Cj
= 0 such that Cj + NCj is an

invertible matrix of rank tj + rj .
Now, define N = −

∑
i NBi −

∑
j NCj . Since the nilpotent matrices that we add

are mutually orthogonal, we therefore can get a nilpotent matrix N with Nk = 0
and such that U = A−N is invertible:

A−N =



B1 +NB1 0 0 0 0 0
0 B2 +NB2

0 0 0 0

0 0
. . . 0 0 0

0 0 0 C1 +NC1
0 0

0 0 0 0 C2 +NC2
0

0 0 0 0 0
. . .


.

Finally, we decompose A = U +N , as stated. □

In conclusion, it is worthwhile noticing that the key tool in our arguments is
the primary rational canonical form of any square matrix, which holds for matrices
over arbitrary fields. However, since the mentioned above Calugareanu-Lam’s result
from [1] about the decomposition of matrices into invertible and nilpotent is true
for matrices over division rings [1, Remark 3.12], we can close our work by posing
the following query:

Open Problem: Given a fixed bound k ≥ 1 for the index of nilpotence, find
necessary and sufficient conditions to expressed every nonzero square matrix over
a division ring as the sum of an invertible matrix and a nilpotent matrix N with
Nk = 0.
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Email address: esther.garcia@urjc.es
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