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ABSTRACT

We study the notion of general left quotient ring of an alternative ring and
show the existence of a maximal left quotient ring for every alternative ring that
is a left quotient ring of itself.

1. Introduction.

The theory of rings of quotients has its origins between 1930 and 1940, in the
works of O. Ore and K. Osano on the construction of the total ring of fractions.
In that decade, Ore gave a necessary and sufficient condition for a ring R to have
a (left) classical ring of quotients (left Ore condition). At the end of the 50’s,
Goldie, Lesieur and Croisot characterized the associative rings that are classical
left orders in semiprime and left artinian rings [7, Chapter IV] (result known as
Goldie’s Theorem).
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Later on in 1956, Y. Utumi introduced the notion of a general ring of left
quotients [8] and proved that the rings without right zero divisors are precisely
those which have maximal left quotient rings.

Following Goldie’s idea of characterizing certain types of rings via a suitable
envelope, R.E. Johnson characterized those rings R whose maximal left quotient
rings are von Neumann regular, see [7, (13.36)], and P. Gabriel specialized it further
by giving characterizations for those rings whose maximal left quotient rings are
semisimple, i.e., isomorphic to a finite direct product of rings of the form End∆(V )
for suitable finite dimensional left vector spaces V over a division ring ∆, see [7,
(13.40)].

It is natural to ask whether similar notions and results can be obtained for
alternative rings.

In [4] H. Essannouni and A. Kaidi gave a version for alternative rings of the
classical Goldie theory and in [6] the authors, dealing with orders in no necessarily
unital alternative rings (see [1] and [5] for associative rings) extended to alternative
rings the results and notions by Fountain and Gould, and Áhn and Márki.

In 1989, K.L. Beidar and A.V. Mikhalev, interested in the structure of non-
degenerate and purely alternative algebras, introduced what they referred to as
the almost classical localization of an algebra and described, using the theory of
orthogonally complete algebraic systems, the structure of this type of algebras,
see [3, Theorem 2.12]. This construction, that only works when the associative
center coincides with the center (which is a property of nondegenerate and purely
alternative rings), coincides with our maximal left quotient ring in these particular
conditions, see (2.16)(5).

The notion of left quotient ring for alternative rings was introduced in [6] in
order to relate, in the most general way, properties between a ring and its rings of
quotients. We want to point out that, following [4], “denominators” were taken in
the associative center of the alternative ring.

In this paper we give the ideas that gave rise to the construction of the
maximal left quotient ring of an alternative ring R, see [2], in the most general
case, i.e., when R is a left quotient ring of itself, equivalently when R is a faithful
N(R)-module. In general, the maximal left quotient ring is a non-associative ring
whose associator is an alternating function of its arguments, see Theorem 3.8.
Furthermore, it is an alternative ring when D(R) is semiprime or 2-torsion free.



Construction of Ql
max(R) 3

2. Preliminaries.

2.1 The following three basic central subsets can be considered in an alter-
native ring R: the associative center N(R), the commutative center K(R), and
the center Z = Z(R), defined by:

N(R) = {x ∈ R | (x, R, R) = (R, x, R) = (R,R, x) = 0},
K(R) = {x ∈ R | [x,R] = 0},
Z(R) = N(R) ∩K(R),

where [x, y] = xy − yx denotes the commutator of two elements x, y ∈ R and
(x, y, z) = (xy)z − x(yz) is the associator of three elements x, y, z in R.

2.2 The defining axioms for an alternative ring R are the left and the right
alternative laws:

(x, x, y) = 0 = (y, x, x)

for every x, y ∈ R. As a consequence we have the fact that the associator is an
alternating function of its arguments. The standard reference for alternative rings
is [9].

2.3 The associative nucleus and the associator ideal of an alternative ring will
be very important notions in this theory. Given a ring R, every ideal contained in
the associative center of R will be called nuclear ideal. The largest nuclear ideal
of R will be the associative nucleus, denoted by U(R). By D(R) we will mean the
associator ideal, i.e., the ideal of R generated by the set (R,R, R) of all associators.

2.4 From now on, for an alternative ring R, R1 will denote its unitization, that
is, R if the ring is unital, or R×Z with product (x,m)(y, n) := (xy+nx+my,mn)
if R has no unity.

2.5 An alternative ring without nonzero trivial ideals (i.e., ideals with zero
multiplication) is called semiprime. By [9, Exercise 9.1.8], every semiprime alter-
native ring does not contain nonzero trivial left (right) ideals. An element a of
an alternative ring R is called an absolute zero divisor if aRa = {0}. An alterna-
tive ring R is called nondegenerate (or strongly semiprime) if R does not contain
nonzero absolute zero divisors.

2.6 The notion of left quotient ring in the setting of alternative rings was
introduced in [6], where the relationship among classical, Fountain and Gould and
this type of rings of quotients was established.



4 Artacho Cárdenas, Gómez Lozano and Ruiz Calviño

Let R be a subring of an alternative ring Q. We recall that Q is a left quotient
ring of R, denoted by R ≤q Q, if:

(1) N(R) ⊂ N(Q) and

(2) for every p, q ∈ Q, with p 6= 0, there exists r ∈ N(R) such that rp 6= 0 and
rq ∈ R.

Note that R and Q can be seen as left N(R)-modules and that condition (2)
of the previous definition means that R is a dense left N(R)-submodule of Q, see
[7, (8.2)].

The next proposition gives us the common denominator property for left quo-
tients rings.

2.7 Proposition [2, Proposition 1.12]. Let R be a subring of an alternative
ring Q.

(i) If R ≤q Q and we take q1, q2, . . . , qn ∈ Q, with q1 6= 0, then there exists
r ∈ N(R) such that rq1 6= 0 and rqi ∈ R for i = 1, 2, . . . , n.

(ii) Let R ⊂ S ⊂ Q be three alternative rings. Then R ≤q Q if and only if R ≤q S

and S ≤q Q.

2.8 The notion of maximal left quotient ring, in the setting of associative
rings, was studied by Y. Utumi in [8], where he proved that rings which are left
quotient rings of themselves (equivalently rings without total right zero divisors)
have a unique maximal left quotient ring. Following the categorical definition
given in [8], we define the notion of maximal left quotient ring of an alternative
ring:

2.9 Definition. We will say that an alternative ring R has a maximal left
quotient ring if there exists a ring Q such that:

(i) Q is a left quotient ring of R and

(ii) if S is a left quotient ring of R then there exists a unique monomorphism of
rings f : S → Q with f(r) = r for every r ∈ R.

Clearly, this definition implies that the maximal left quotient ring of a ring
R, if it exists, is unique up to isomorphisms. We will denote it by Ql

max(R).
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3. Construction of the maximal left quotient ring of an alternative
ring.

Let R be an alternative ring. If we suppose that R has a maximal left quotient
ring, by (2.7(ii)) it is a left quotient ring of itself. Like in the associative case, we
are going to prove the converse of this fact, i.e., given an alternative ring R which
is a left quotient ring of itself we are going to prove that R has a maximal left
quotient ring.

Our construction of Ql
max(R) (with R an alternative ring) follows, surpris-

ingly, the associative construction, see [7], where the maximal left quotient ring of
an associative ring R′ is a quotient, under a suitable equivalence relation, in the
set of couples (I, f), where I a dense left ideal of R′ and f is a homomorphism of
left R′-modules from I to R′, and, in essence, the sum and the product is defined
as the sum and the composition of maps.

3.1 Definition. We will say that a left ideal I of an alternative ring R is
dense if for every p, q ∈ R, with p 6= 0, there exists a ∈ N(R) such that ap 6= 0
and aq ∈ I.

This notion has similar properties to the associative one.

3.2 Lemma [2, Lema 2.3]. A left ideal I of an alternative ring R is dense if
and only if R is a left quotient ring of I.

A fundamental result in our work is that the notion of dense ideal can be
characterized, essentially, by properties of the associative center of the ideal.

3.3 We will denote by F∗ the family of all left ideals A of N(R) with the
property that for every 0 6= x ∈ R and µ ∈ N(R) there exists λ ∈ N(R) such that
λx 6= 0 and λµ ∈ A. We note that λ can be taken in A, and that the intersection
of a finite family of elements of F∗ is an element of F∗.

3.4 Proposition [2, Proposition 2.6]. Let R be an alternative ring and let
I be an ideal of R. Then I is a dense ideal of R if and only if N(I) ∈ F∗.

3.5 Let R be an alternative ring. Let us construct the set that will be
the maximal left quotient ring of R. First we define a filter of dense left ideals:
F := {R1A | A ∈ F∗}. Second we consider the set

S := {(I, f) | I ∈ F and f ∈ Hom∗
N(R)(I, R)}
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where Hom∗
N(R)(I,R) denotes the set of homomorphisms f ∈ HomN(R)(I, R)

such that for every x ∈ R and λ, µ ∈ N(I) we have:

(i) (xλ)f = x(λ)f

(ii) ([λ,µ])f ∈ N(R)

Remark: When we define a product in Ql
max(R), (i) and (ii) will mean

respectively that the associative center of R will be contained in the associative
center of Ql

max(R) and the commutator of two elements of Ql
max(R) belongs to

its associative nucleus (which is a general property of alternative rings).

3.6 We define on S the equivalence relation:

(I, f) ≈ (I ′, f ′) ⇔ there exists I ′′ ∈ F such that I ′′ ⊂ I ∩ I ′ and f |I′′= f ′ |I′′

We denote by [I, f ] the equivalence class of the element (I, f) and consider
the quotient

Q := S/ ≈

Abusing notation, given an element q ∈ Q we will denote by Aq any element
of F∗ and by fq any element of Hom∗

N(R)(R
1Aq, R) such that q = [R1Aq, fq].

3.7 Let us define a ring structure over Q: If q, q′ ∈ Q, we define:

? the sum:
q + q′ := [R1(Aq ∩Aq′), fq + fq′ ],

? the product:
qq′ := [R1Aqq′ , fqq′ ]

where
Aqq′ := {λ ∈ Aq | (λ)fq ∈ R1Aq′}(∈ F∗), and

(
∑

xiai)fqq′ :=
∑

xi((ai)fq)f ′q.

Remark: The product is well defined and (Q, +, ·) is a (non associative) ring.
Moreover, Q is unital, with 1Q = [R1N(R), IdR] (see [2]).

3.8 Theorem [2, Theorem 2.11]. Let Q be as above. Then:

(i) R is a subring of Q. Moreover, R is a dense left N(R)-submodule of Q.
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(ii) N(R) ⊂ N(Q).

(iii) For every q ∈ Q and λ ∈ N(R), [λ, q] ∈ N(Q).

(iv) The associator on Q is an alternate trilinear map of its arguments over N(Q).

Moreover, if D(R) is 2-torsion free or semiprime,

(v) Q is an alternative ring.

(vi) Q is the maximal left quotient ring of R.

Now, by (2.7(ii)) and the above theorem we obtain the main theorem of the
paper:

3.9 Theorem. Let R be an alternative ring such that D(R) is 2-torsion free
or semiprime. Then R is a left quotient ring of itself if and only if the maximal
left quotient ring of R exists.

The next proposition, which is [6, Lemma 5.7 and Proposition 6.7 (i)], shows
that the maximal ring of quotients gives us an appropriate framework to settle
the different left quotient rings that have been investigated (Fountain and Gould
and classical), see [4] and [6] for definitions. This fact was used by P. Ahn and L.
Marki to give a general theory of Fountain and Gould left orden in the setting of
associative rings.

3.10 Proposition [6,(5.7) and (6.7)(i)]. Let R be an alternative ring. If R

is a classical (Fountain and Gould) left order in an alternative ring S, then S is
a left quotient ring of R. Therefore S is a subring of Ql

max(R).

Some examples of maximal left quotient rings are the following ones:

3.11 Examples:

(1) The maximal left quotient ring of an associative ring is its maximal left
quotient ring as an alternative ring.

(2) Let Q be a Cayley-Dickson algebra over its center. Then Ql
max(Q) = Q.

(3) If R is a Cayley-Dickson ring, its maximal left quotient ring is a Cayley-
Dickson algebra.

(4) Let us consider a family {Rα} of alternative rings such that for every α

there exists the maximal left quotient ring of Rα, which we denote by Qα. Then,
Ql

max(⊕Rα) exists and it is equal to ΠQα, the direct product of the Qα.

(5) Let R be a nondegenerate and purely alternative ring. Then the nearly
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classical localization of R, given in [3, section 1] is the maximal left quotient ring
of R.
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