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Abstract

We survey some techniques for constructing b-completions. First, we give general
results relating the b-completion of a product to the b-completion of its factors, the
b-completion of a quotient, and the dependence of the b-completion on the bundle
chosen to form it. Second, we relate (when possible) some b-completions to those of
Riemannian metrics, and study invariant connections on homogenous spaces. Some
particular examples are also considered.
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1 Introduction

The classical singularity theorems proved in the sixties by Hawking and Pen-
rose, being as they were timelike incompleteness theorems of Lorentz mani-
folds, brought to the forefront the need to define those “ideal points” form-
ing the “edge” of the space-time, which were the “limits” of the incomplete
geodesics. These ideal points are the singularities of the space-time and its ex-
istence indicates the existence of particles with a begining or end according to
its proper time. A reasonable choice was to define singularities as equivalence
classes of incomplete timelike geodesics. Nevertheless, Geroch [7] showed the
shortcomings of this definition, giving an example of a geodesically complete
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space-time admitting endless timelike curves with finite length and bounded
acceleration. This example was singularity free with the mathematical defi-
nition, but did not fit the intended physical condition that all particles were
“eternal”.

A much more successful definition of singularity was given by Schmidt [14].
He defined the set of singularities and endowed it with a topology. This con-
struction is very general in the sense that it depends only on the existence
of a connection on a manifold and not on a metric. The example of Geroch
has singularities with this definition. The Schmidt definition has interesting
properties, but some drawbacks too. It is very hard to determine the singular-
ity space in many examples, and when it has been obtained, as in the case of
closed Friedmann spaces, its properties seem to contradict physical intuition
(the Big Bang and the Big Crunch are the same singularity). See [10], [4],
and [3]. At any rate, the b-completion stands out as a reference for future
definitions, since endless finite length curves (measured via a parallel basis
along the curve) are very important for any definition of singularity. In this
paper we study different examples of b-completion (with the Schmidt defini-
tion) along with the tools required to construct them. Some of them are well
known; others not so much; therefore we put more emphasis on them.

2 The b-completion of some products and quotients

Let M be a connected m-dimensional manifold, π : P → M a connected
subbundle of the frame bundle with structural group G ⊂ GL(m,R). Let Φ
be the fundamental form and λ a connection (form) on P . We define on P the
Riemann metric

gλ(X, Y ) = 〈Φ(X), Φ(Y )〉+ 〈λ(X), λ(Y )〉 , (1)

where 〈•, •〉 is the standard Euclidean product in Rm and 〈A, B〉 = tr(ABt)
(•t denoting transposition) the standard Euclidean product in gl(m,R). All is
clear since g, the Lie algebra of G, is a subspace of gl(m,R). Let d = dλ be
the distance in P associated to gλ and (P̂ , d̂) = (P, d)c the Cauchy completion
of the metric space (P, d). The right action of G on P can be extended to
P̂ . The quotient space M̂ = P̂ /G is now the b-completion of (M,λ). The
singularity space or b-boundary is ∂M = M̂ − M . Since the distance d̂
and the projection π̂ are extensions of d and π, we simply write d and π.

If (M, g) is a space-time, P is usually the bundle of all positive(ly oriented)
frames (u1, u2, . . . , um) such that u1 is timelike future, G is the connected
component of the Lorentz group and λ the connection form of the Levi-Civita
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connection of g. If (M, h) is a Riemann manifold and similar choices are made,
M̂ is homeomorphic to the Cauchy completion of (M, δ) , where δ is the dis-
tance in M attached to g [14]. In any case we refer to the b-completion of g
or h. Although we will not use it, we cite an equivalent definition of the b-
completion due to Sachs [13], only for space-times (M, g) . In the unit bundle
UM = {X ∈ TM | X unit timelike future} a Riemann metric gD, depending
on g, is given and the gD-distance d is used to get the Cauchy completion
of (UM, d) . Then an equivalence relation R in (UM, d)c is defined and the

quotient space is shown to be homeomorphic to M̂.

It is not hard to prove that π : P̂ → M̂ is open, M̂ is arc connected, M is dense
in M̂ , and the manifold topology of M is the one inherited as a subspace of
M̂ . Nevertheless M̂ fails to be locally compact or Hausdorff. This happens in
important examples of space-times and adds to the difficulties of mathematical
handling those of physical interpretation.

Quite often we require M to be inextendible. If not, there are simple examples
of b-completion as we may see.

Proposition 2.1 Let M be a connected manifold with m > 1 with a connection.
Given x1, . . . , xn ∈ M , let N = M −{x1, . . . , xn} with the induced connection.
Then N̂ is homeomorphic to M̂ and ∂N = ∂M ∪ {x1, . . . , xn}. ¤

Singularities are closely related to b-incomplete curves [9]. Let c : [a, b) → M
be a smooth curve and C : [a, b) → P a (non unique) horizontal lift of c. It
happens that the finiteness of the length of C, measured with gλ, depends
only on c. Accordingly we say that c has finite or infinite fibre length.

Definition 2.2 A smooth curve c : [a, b) → M is extendible if limt→b c(t)
exists in M , and is inextendible otherwise. We say that c is b-incomplete
if it is inextendible and has finite fibre length.

Incomplete geodesics are b-incomplete if b < ∞, since it is well known that
the existence of limt→b c(t) ∈ M implies that c is extendible as a geodesic to
[a, b + ε) for some ε > 0.

Theorem 2.3 For any Cauchy sequence (un) in P with limit û ∈ P̂ , there is a
finite length horizontal curve C : [0, 1) → P such that limt→1 C(t) = û. ¤

If c : [0, 1) → M is b-incomplete, any horizontal lift C has finite length. This
implies the existence of limt→1 C(t) = û, necessarily unique and in P̂ − P.
Therefore, π(û) is a singularity and c converges to it. Nevertheless, since M̂
may be non-Haussdorf, c may converge to other points in M̂ . To sum up,
b-incomplete curves converge to singularities, but not uniquely (there is a
limit set rather than a limit point). In any case, theorem 2.3 shows that any
singularity is in the limit set of a curve: If x̂ = π(û), and c = π ◦ C, then c
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converges to x̂. However, we must stress that we have no information about
a possible limit of c in M (recall M̂ is not Haussdorf). If all limits of c were
in ∂M, c would be b-incomplete. Schmidt proved (see [15], [9]) that in space-
times all singularities are limits of b-incomplete curves.

Definition 2.4 A b-incomplete curve c induces a singularity p ∈ ∂M if
there is a horizontal lift C of c with limit in π−1(p). (Then all horizontal lifts
have limit in π−1(p).)

Lemma 2.5 Let C, D : [a, b) → P be curves such that C is horizontal and
D(t) = C(t)s(t) for some s : [a, b) → G. Then

(1) Length(s) ≤ Length(D), where lengths in G are measured with the left
invariant metric induced by the Euclidean product 〈•, •〉 already chosen
in g.

(2) For some k ∈ R we have Length(C) ≤ k Length(D). ¤

This lemma is used to prove the following theorem.

Theorem 2.6 Let C, D : [a, b) → P be finite length curves having limit in P̂
as t → b. Then the following statements are equivalent

(1) The limits of C and D belong to the same fibre π−1(p) ⊂ P̂ , p ∈ M̂ .
(2) There is an increasing sequence tn → b and a family of horizontal curves

∆n : [0, 1] → P, joining C(tn) with the fibre π−1(d(tn)), such that Length(∆n) →
0 and the sequence (sn) in G defined by ∆n(1)sn = D(tn) converges to
some s ∈ G.

Conditions 1 and 2 are a consequence of
(3) There is an increasing sequence tn → b, a family of curves Γn : [0, 1] → P

joining C(tn) to D(tn) and a constant k ∈ R such that

1∫

0

∣∣∣λ(Γ̇n(t))
∣∣∣ dt ≤ k for all n ∈ N and

1∫

0

∣∣∣Φ(Γ̇n(t))
∣∣∣ dt → 0. (2)

If G is connected, conditions 1,2 and 3 are equivalent. ¤

We remark that if C and D are horizontal lifts of b-incomplete curves c and
d, condition 1 can be substituted by the condition that c and d induce the
same singularity. As an application we give necessary conditions to hold if two
b-incomplete curves induce the same singularity.

Theorem 2.7 Let αi : [0, 1) → M, i = 1, 2 be b-incomplete curves inducing the
same singularity. If Ji = Im (αi), suppose the closures in M of J1 and J2

are disjoint. Then, there is a b-incomplete curve β : [0, 1) → M inducing the
same singularity as α1 and α2 and an increasing sequence (tn) in [0, 1) with
limit 1 such that β(t2n) ∈ J1 and β(t2n+1) ∈ J2.
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Proof. By hypothesis, for some p ∈ ∂M there are finite length horizontal lifts
Ai : [0, 1) → P, i = 1, 2, of αi, converging to points in π−1(p). Substituting if
necessary A2 by the translated A2 · s, for some s ∈ G, we may assume that
A1 and A2 have the same limit u ∈ P̂ . We choose any increasing sequence
(tn) in [0, 1) with limit 1 such that {d(A1(tp), A2(tp)) | p ≥ n} ≤ 1/2n. By the
definition of the Riemannian distance we get a continuous curve C : [0, 1) → P
made by joining smooth arcs Cn : [tn, tn+1] → P of length ≤ 2/2n from A1(tn)
to A2(tn+1) if n is even, and from A2(tn) to A1(tn+1) if n is odd. A function
f : R → R can be constructed with f ′ ≥ 0, f(tn) = tn and all derivatives
0 at t = tn. The reparametrized curve B = C ◦ f is a smooth finite length
curve with limit u. Define β = π ◦ B and let H be a horizontal lift of β. By
2 in lemma 2.5, H has finite length. By theorem 2.6 H has a limit in π−1(p);
simply apply the theorem to the constant curves (n even) ∆n ≡ H(tn) and
sn = s(tn), B = H ·s, s : [0, 1) → G. The convergence of a subsequence of (sn)
is a consequence of the completeness of the metric in G and the finite length
of s (see 1 in lemma 2.5).

We only need show that β has no limit in M. If x = limt→1 β(t) existed, we
would have, say, x /∈ closure(J1) and a neighbourhood W of x disjoint of J1.
The sequence (β(t2n)) cannot converge to x. ¤

Theorem 2.8 Let π : P → M and χ : Q → M be connected subbundles of the
frame bundle L(M) with structural groups G and H and connections λ and σ.
Let F : P → Q be a morphism of principal bundles such that

(1) F is an injective immersion, inducing a difeomorphism f on M and the
inclusion of G in H.

(2) G is a closed subgroup of H.
(3) F ∗σ = λ.

Then the b-completions M̂P and M̂Q are homeomorphic.

Proof. From 3 we get the uniform continuity of F and the possibility to extend
F to F̂ : P̂ → Q̂. In the quotients we get an extension f̂ : M̂P → M̂Q of

f : M → M such that χ̂ ◦ F̂ = f̂ ◦ π̂. This implies that f̂ is continuous.

f̂ is surjective. Given y ∈ M̂Q choose v ∈ χ̂−1(y). By theorem 2.3 there is a
curve Γ in Q which is σ-horizontal, with finite length and limit v. Multiplying
by some element of H if necessary, we may suppose that Γ starts at a point in
F (P ). Condition 2 implies that F (P ) is a regular submanifold of Q; therefore
Γ = F ◦ ∆ for some λ-horizontal ∆ in P with Length(Γ) = Length(∆) <
∞. Finite length implies that ∆ converges to some u ∈ P̂ , and clearly y =
f (π(u)) .

f̂ is injective. Suppose x, y ∈ M̂P and f̂(x) = f̂(y). By theorem 2.3 there are
curves C, D which are λ-horizontal, with finite length and limits in π̂−1(x)
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and π̂−1(y). Now F ◦ C and F ◦ D are λ-horizontal, with finite length and
limits in χ̂−1(f̂(x)) = χ̂−1(f̂(y)). Using 2 in theorem 2.6 and condition 2 we
get x = y.

f̂ is open. Suppose there is an open U ⊂ M̂P such that f̂(U) ⊂ M̂Q is not

open. Then there is a sequence (vn) out of χ̂−1(f̂(U)) with limit v ∈ χ̂−1(f̂(U)).
By theorem 2.3 we may assume that there is a D : [0, 1) → Q which is σ-
horizontal, with finite length and such that D(tn) = vn for some increasing
sequence tn → 1. After multiplication by some s ∈ H we get D(a)s ∈ F (P );
therefore we may write F (C(t)) = D(t)s for some C : [a, b) → P which is
λ-horizontal with finite length. The sequence (C(tn)) has a limit u ∈ P̂ and
F̂ (u) = vs. Since χ̂◦F̂ = f̂ ◦π̂ and f̂ is bijective it follows that C(tn) /∈ π̂−1(U)
but u ∈ π̂−1(U). This contradicts U being open. ¤

Corollary 2.9 Let (M, g) be a semi-riemannian manifold, P a connected com-
ponent of the orthonormal bundle OM and Q a connected component of the
frame bundle LM. If they are endowed with the Levi-Civita connections, the
completions of M are homeomorphic. ¤

Corollary 2.10 Let M be a manifold with a connection, P a connected com-
ponent in the holonomy bundle and Q a connected component in the frame
bundle L(M). If the holonomy group is closed, both b-completions of M are
homeomorphic. ¤

Let (M,λ), (N, σ) be manifolds of dimension m, n with connections λ, σ. Let
L′(M×N), L′M , and L′N be connected components of the frame bundles and
ϕ, π, χ the projections. Depending on manifold orientability, the structural
groups will be the full GL(k,R), k = m,n,mn or connected components of
them. They will be denoted by G, H, K. Let π × χ : L′M × L′N → M
be the product bundle, which is a principal bundle with structural group
G × H. In a natural way, G × H is a subgroup of K and L′M × L′N a
subbundle of L′ (M ×N) . If p : L′M × L′N → L′M , q : L′M × L′N → L′N
are the projections there is on L′M × L′N a connection λ × σ defined by
λ × σ = p∗λ + q∗σ. (Since G and H are subgroups of K, its Lie algebras are
subalgebras of k, and p∗λ, q∗σ are seen as k-valued forms). Finally λ×σ induces
a connection ω in L′(M ×N) with formula Ψ∗ω = λ× σ.

Theorem 2.11 With the above notation the completion of (M ×N, ω) is home-
omorphic to the product of the b-completions of (M,λ) and (N, σ).

Proof. By theorem 2.8, the completions of (M ×N, ω) and (M ×N, λ× σ)
are homeomorphic. We only need show that this last one is homeomorphic to
the product of the b-completions of (M, λ) and (N, σ) .
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Since L′M × L′N is a subbundle of L′(M ×N), its fundamental form is just

Ψ∗ΦL′(M×N) = p∗ΦL′M + q∗ΦL′N (3)

The spaces g, h, Rm, Rn are mutually orthogonal subspaces of Rm+n⊕ (g× h)
and we have gλ×σ = p∗gλ+q∗gσ. The following inequalities are straightforward
for u = (u1, u2), v = (v1, v2) ∈ L′M × L′N,

dλ×σ(u, v) ≤ dλ(u1, v1) + dσ(u2, v2),

dλ(u1, v1) ≤ dλ×σ(u, v),

dσ(u2, v2) ≤ dλ×σ(u, v).

It follows that Id : (LM×LN, dλ×σ) → (LM×LN, dλ+dσ) is a uniformly con-
tinuous homeomorphism. Therefore it can be extended to a homeomorphism
between

(
L′M × L′N, dλ + dσ

)
c

and
(
(L′M)c × (L′N)c , dλ

c + dσ
c

)
,

where the subindex c represents the space, distance or metric space of the
Cauchy completion. Passing to the quotient we get a homeomorphism between
the b-completions. ¤

Corollary 2.12 Let (M, g) and (N, h) be semi-riemannian manifolds, then the
b-completion of (M ×N, g × h) is the product of the b-completions of (M, g)
and (N, h). ¤

Some particular cases of the results derived from theorem 2.8 are in [6], and
others appear in [2].

Let ψ : M → M be an affine map for a connection λ and Ψ its lift to LM ; it is
an isometry of (LM, dλ) which can be extended to an isometry of (LM, dλ)c.
In the quotient we get a homeomorphism ψ̂ : M̂ → M̂ ; hence a group A of
affine transformations of M acts also on M̂ and the orbit space M̂/A can be
considered.

If A acts discretely on M , then N = M/A is a manifold and the projection
p : M → N is smooth. Let L′N be a connected component of the frame bundle
LN . Then p induces a fibre space morphism q : LM → LN and there is a
unique connection λ0 in LN determined by q∗λ0 = λ. We have [1]

Theorem 2.13 If the action of A on (LM)c has closed orbits, the b-completion

of (N, λ0) is homeomorphic to M̂/A with the quotient topology. ¤
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3 Other examples

In the preceding section we developed theorems which allow us to get new
examples from old ones. We give now concrete examples.

3.1 Riemann metrics and related cases

We said at the begining that if (M, h) is a Riemann manifold, the b-completion
of the Levi-Civita connection is just the Cauchy completion of (M, δ) , where
δ is the distance associated to the metric. These cases are considered trivial
in the sense that there is a general simple answer (although (M, δ)c may be
hard to determine). If a Lorentz manifold (M, g) had the same Levi-Civita
connection ∇ as that of the Riemann metric h, we would know that the b-
completion of g is the b-completion of h. This is clear, since the b-completion
can be computed in the full frame bundle (not necessarily in the specific
orthonormal bundle of g or h, see theorem 2.8) and the b-completion depends
only on the connection.

Let g and h be a Lorentz and Riemann metric on M and g[, h[ : TM → T ∗M
the induced isomorphisms. We have a field of automorphisms J defined by

TM
h[→ T ∗M

J ↘ ↑g[

TM

that is, h(X, Y ) = g(JX, Y ) for X, Y ∈ X(M). The symmetry of g and h
imply that J is self adjoint for both metrics.

Proposition 3.1 If J is parallel for either metric, the b-completions of them
coincide, and M̂g is homemorphic to the Cauchy completion of (M, δ) . This
is the case if the metrics are related by h(Y, Z) = g(Y, Z) + 2g(X, Y )g(X, Z),
where X is a unit timelike parallel field.

Proof. Let ∇ and ∇′ be the Levi-Civita connections of g and h. It is easy to
prove that g((∇XJ)Y, Z) = (∇Xh)(Y, Z) and it follows that ∇ = ∇′ if and
only if J is∇-parallel (by symmetry it is also equivalent to J being∇′-parallel).
This settles the general case. In the particular case, JY = Y +2g(X, Y )X and
J is parallel if and only if X is parallel. ¤

We may then show the equivalence of another definition of singularity set
(called the Cauchy boundary [8]) and the b-completion. Using the fact that X
is parallel if and only if the connection form of g is reducible to the O(m− 1)-
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structure of frames having X as the first vector, it can be proved that the
Riemann metric associated to the space time given in [8] is just the metric h
given above.

On the other hand, the b-completion of the example in the last section of
[13], can be computed via a Riemann metric h constructed with the help of a
parallel field X. It can also be computed with the corollary of theorem 2.11.

3.2 Reductive homogeneous spaces

We fix a connected Lie group P and a closed Lie subgroup G. The quotient
space P/G is denoted by M , and the projection of P onto M by π. We have
the corresponding Lie algebras p and g. It is well known that P is a principal
fibre bundle with base M , group G, and such that the right action of G onto
P is the multiplication. Therefore, if A ∈ g ⊂ p, the fundamental field A# in
X(P ) associated to A is just A. This bundle has the important property that
P acts on the left on P and (more important) on M by left multiplication:
For v ∈ P we have τv : M → M, τv(uG) = vuG. We assume our homogeneus
space to be reductive. This means there is a supplementary m of g in p such
that Ads(m) ⊂ m for all s ∈ G. We have a homomorphism A : G → GL(m)
by defining A(s) = As = Ad(s)|m. The associated Lie algebra homomorphism
is X → aX , obtained by restriction of ad(X) ∈ gl(p) to m.

It is convenient to consider frames in M as isomorphisms r : m → TxM . Define
j : P → LM , j(u)(Z) = π∗u(Zu) u ∈ P, Z ∈ m.

Theorem 3.2 The map j : P → LM is a principal fibre bundle homomorphism
over the identity of M , with A : G → GL(m) as associated group homomor-
phism; i.e., j(us) = j(u) ◦ As for u ∈ P , s ∈ G. For v ∈ P , j ◦ τv = Tv ◦ j,
where Tv is the lift of τv to LM . ¤

Let L′M be a connected component of LM. In a reductive homogeneous space
M = P/G an invariant connection is considered. This means by definition
that the translations τv : M → M are affine maps. Due to high symmetry, it is
easier to get information about the b-completion. The study of these examples
was started by the authors [2]. We outline the main results.

For each connection λ in LM define µ = j∗λ ∈ Λ1(P, gl(m)). If X ∈ g ⊂ p ⊂
X(P ), then µ(X) is the constant map aX . This shows that the information
that µ may carry about λ is in the maps µ(Z), Z ∈ m. We also denote by
µ : m → C∞(P, gl(m)) the induced linear map.

Theorem 3.3 The connections λ on LM are in bijective correspondence with
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the linear maps µ : m → C∞(P, gl(m)) such that

µ(As(Z))(us−1) = As ◦ (µ(Z)(u)) ◦ A−1
s , for all u ∈ P, s ∈ G, Z ∈ m.

The relation between λ and µ is µ(Z)(u) = j∗λ(Z(u)). ¤

If λ is invariant, µ(Z) ∈ C∞(P, gl(m)) is constant. We identify µ(Z) with its
constant value in gl(m).

Corollary 3.4 The invariant connections λ on LM are in bijective correspon-
dence with the linear maps µ : m → gl(m) such that

µ(As(Z)) = As ◦ µ(Z) ◦ A−1
s for all s ∈ G, Z ∈ m

or the bilinear maps µ : m×m → m such that

µ(As(X),As(Y )) = As (µ(X, Y )) for all s ∈ G, X, Y ∈ m.

¤

Theorem 3.5 Let λ be an invariant connection λ on LM such that there is a
connection ω in the G-principal bundle π : P → M with the property that

µ(X) = j∗λ(X) = aω(X) for all X ∈ X(P ).

Then λ has no singularities. ¤

However, many invariant connections have singularities. Let C0 : R → P be
given by C0(t) = u exp(εtZ), for some Z ∈ m, u ∈ P and ε = ±1, and let
c : R→ M be its projection on M ; i.e., c = π ◦ C0. The horizontal lift C of c
to L′M such that C(0) = j(u) is

C(t) = j(C0(t))EXP (−εtµ(Z)) (4)

and its length measured by gλ for a ≤ t ≤ b is

b∫

a

|EXP (εtµ(Z))(Z)| dt, (5)

where EXP is the exponential of an endomorphism.

Theorem 3.6 Consider an invariant connection λ on LM given by µ : m →
gl(m), and Z ∈ m such that µ(Z)(Z) = kZ with k 6= 0. If ε = ±1 has opposite
sign to k, the curve c(t) = π(u exp(εtZ)), t ≥ 0, is b-incomplete and thus
converges to a singularity.
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Proof. (Sketchy) The integral (5) is finite and c cannot converge in M, being
a geodesic of a complete connection (not λ) in M . ¤

Invariant connections on Lie groups and homogeneous spaces are classified in
[11] and [12].

3.3 An example of b-completion for a homogeneous space.

Let P = (Rm, +) and G = 0. We identify P = M = Rm, p = m = Rm,
π = id, u exp(tZ) = u + tZ, and L′M = Rm ×GL+(m;R). The connection λ
is associated to µ : m = Rm → gl(m), µ(Z) = f(Z)I, where f : Rm → R is
f(x1, ..., xm) = xm.

Let I = [a, b] , c : I → M a curve and C : I → LM = Rm × GL+(m;R) its
horizontal lift with initial condition C(0) = (x, 1). Then

C(t) =
(
c(t), e−(f(c(t))−f(x))

)
∈ Rm ×GL+(m;R), (6)

Length(C) =

b∫

a

e(f(c(t))−f(x)) |ċ(t)| dt ≥
∣∣∣∣
[
e(f(c(t))−f(x))

]b

a

∣∣∣∣ ,

since |f(ċ(t))| ≤ |ċ(t)| .

We show that every singularity is induced by a b-incomplete curve. Let p ∈
∂M . By theorem 2.3, there is a horizontal C : I → LM of finite length
such that limt→b C(t) ∈ π−1(p) ⊂ π−1 (∂M). If c = π ◦ C, then C(t) =(
c(t), e−(f(c(t))−f(x))

)
. If c converged to y ∈ M , limt→b C(t) =

(
y, e−(f(y)−f(x))

)
∈

LM. Therefore c is b-incomplete and induces p.

Define γ : [0,∞) → M = Rm, γ(t) = (0, ..., 0,−t). Then Γ(t) = (γ(t), et) is the
horizontal lift of γ such that Γ(0) = (0, 1). Clearly, Length(Γ) =

∫∞
0 e−tdt <

∞; therefore γ is b-incomplete and induces p∗ ∈ ∂M . We say that there is a
unique singularity ; i.e., ∂M = {p∗}. We should prove that any b-incomplete
curve c and γ induce the same singularity. This is shown with theorem 2.6 using
as curves ∆n the horizontal lifts of curves joining c(t) and (0, ..., 0, cm(t)) =
γ(cm(t)).

Let K ⊂ Rm be a closed subset such that inf {f(x) | x ∈ K} > −∞. It can be
proved that π−1(K) is closed in the completion (LRm)c . Therefore M̂ −K =

R̂m −K is an open neighbourhood of p∗ and M̂ is Hausdorff. Moreover, M is
open in M̂, but this information is not enough to know exactly the topology
of M̂ except in the case m = 1.
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Consider a discrete subgroup A of Rm. Every a ∈ A can be seen as a trans-
lation of Rm = M . Translations are affine maps for λ; therefore theorem 2.13
is applicable to get the b-completion of the manifold N = M/A with the con-
nection λ0 induced by λ. We get N̂ = (Rm ∪ {p∗}) /A under the action of A
on M̂ = Rm ∪ {p∗} given by

a · x = a + x if x ∈ Rm and a · p∗ = p∗.

The topology of N̂ is the quotient topology. As we said, the topology of M̂
is not fully determined, but the sets {p∗} ∪ f−1 ((−∞, r)) are open in M̂. It
follows that if some a ∈ A is not orthogonal to (0, ..., 0, 1) , then N̂ has a
unique singularity q∗, and that q∗ has a unique neighbourhood N̂ . On the
other hand, if A ⊂ Ker(f) and Ker(f)/A is compact, any neighbourhood V

of the unique singularity q∗ of N̂ = R̂m/A contains one of the form

(
(S1)m−1 × (−∞, r)

)
∪ {q∗}.

The homogeneous spaces in this section generalize those given in [5] where
R and R/Z = S1 with a ”constant” connection were considered. The b-
completions obtained were either R ∪ {−∞} with intervals [-∞, r) as neigh-
bourhoods of p∗ = −∞, or S1 ∪ {q∗} having q∗ only one neighbourhood. The
techniques of proof were different.

3.4 Other invariant connection in Rm.

For each x ∈ Rm, m ≥ 2, let µ (x) ∈ gl(Rm) denote the diagonal matrix A
such that Ai

i = xi. We consider the Lie group P = (Rm, +) . The invariant
connection on P is given by µ : Rm −→ gl(Rm) just defined. The curve
c : [0, a) → Rm has

C(t) = (c(t), exp (−µ (c (t)− c(0))) S)

as the horizontal lift such that C(0) = (c(0), S) for S ∈ GL(m,R). The length
of C is

Length(C) =

a∫

0

∣∣∣S−1 · exp (µ (c(t)− c(0))) (ċ(t))
∣∣∣ dt.

Suppose S = 1. Then

Length(C) ≥
a∫

0

∣∣∣ċi(t) exp
(
ci(t)− ci(0)

)∣∣∣ dt ≥
a∫

0

∣∣∣∣∣
d

dt
exp

(
ci(t)− ci(0)

)∣∣∣∣∣ dt.

This implies the existence of the limits limt→a exp (ci(t)), if Length(C) < ∞.
Consider the curve α : [0,∞) → Rm, α(t) = tu, where u is a unit vector with
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all ui ≤ 0. The length of the horizontal lift A such that A(0) = (0, 1) is

Length(A) =

∞∫

0

∣∣∣
(
etu1

, ..., etum
) (

u1, ..., um
)∣∣∣ dt ≤ ∑

ui 6=0

∞∫

0

∣∣∣ui
∣∣∣ etui

dt < ∞.

The curve α is b-incomplete and induces a singularity z = z(u).

Theorem 3.7 The singularities z are different.

Proof. Suppose that there are unit vectors u, v with non-positive coordinates
such that the curves α(t) = tu and β(t) = tv had horizontal lifts converging
to points in the same fibre π−1(z). In order to apply theorem 2.7, suppose α, β
defined in [1,∞); this will not alter the preceding hypothesis. We know there
is a b-incomplete curve γ : [0,∞) → Rm and increasing sequences (sn) , (tn)
such that (?) γ (sn) ∈ Im (αi) , γ (tn) ∈ Im (βi) .

We know that limt→∞ exp (γj(t)) = xi exists. Not all xi can be > 0 because γ
would converge to (ln x1, ..., ln xm), contradicting b-incompleteness. Suppose
then xk = 0 for some k, hence γk(t) → −∞. Consider two possible cases

(1) ek is not in the plane spanned by {u, v}. Choose a basis (w1, ..., wm) such
that w1 = u, w2 = v, w3 = ek. Consider the scalar product (• : •) that
has (wi) as orthonormal basis. Since all metrics in Rm are equivalent,
〈γ(t), ek〉 → −∞ if and only if (γ(t) : ek) → −∞. We get then that the
components γi of γ in the basis (wi) verify γ3(t) → −∞, but γ3(sn) = 0
because of (?) . Contradiction.

(2) ek is in the plane spanned by {u, v}; say ek 6= −u. Choose a basis
(w1, ..., wm) such that w1 = u, w2 = ek. Consider the scalar product
(• : •) that has (wi) as orthonormal basis. Since all metrics in Rm are
equivalent, 〈γ(t), ek〉 → −∞ if and only if (γ(t) : ek) → −∞. We get
then that the components γi of γ in the basis (wi) verify γ2(t) → −∞,
but γ1(sn) = 0 because of (?). Contradiction.

Since we always get a contradiction, the singularities are different. ¤

3.5 The Friedmann spaces.

It is proved in [4] and [10] that the closed Friedmann space in dimension two
has exactly one essential past singularity. This singularity has a single neigh-
bourhood (the whole b-completion). Using this as stepping stone, these au-
thors show that in dimension four there is at least one essential singularity with
a single neighbourhood and at least one essential past and one essential future
singularity are in fact the same singularity. It was conjectured in [10] that
there was a unique essential past singularity. Other results on Schwarzschild
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spaces are also obtained. The definition given in [10] of essential singularity
is specific for the cases considered and of a technical nature. Its purpose is to
rule out singularities which are induced by “physically meaningless” curves.

The present authors [3] prove that 4-dimensional Friedmann closed space has
only one singularity (not restricted to being essential) and this singularity has
a unique neighbourhood. Briefly ∂M = {p} and M̂ is the only neighbourhood
of p. They also prove that the non-closed Friedmann four dimensional space
has a unique essential past singularity. As for future essential singularities, it
is shown that maximal non-spacelike future geodesics are not b-incomplete;
hence, if these singularities existed, they would be of little physical importance.
To sum up in a very simplified way: There is a Big Bang, only one Big Bang,
and if there is a Big Crunch it will be the same as the Big Bang.

4 Final comments

The techniques shown to get the b-completion of a space, related to some
other whose b-completion is known gives an important collection of examples,
at least from the mathematical viewpoint. Unfortunately, the collection is very
short if we look for physically interesting cases. The closed Friedmann space
is the only case, and there is interesting information for non-closed Friedmann
spaces, but Schwarzschild space has not been tackled. At present, everything
seems to indicate that to compute the b-completion, a specific way has to be
found for every case. The knowledge of the b-completion of the most important
space-times and its physical interpretation (if any) are the more important
steps to be taken.

References

[1] A. M. Amores, On the b-Completion of Certain Quotient Spaces. Lett. Math.
Phys. 15, 341-343 (1988).

[2] A. M. Amores, M. Gutiérrez. Singularities of Invariant Connections. Gen.
Relativity Gravitation. 24, 1235-1253 (1992).

[3] A. M. Amores, M. Gutiérrez. The b-completion of the Friedmann space. J.
Geom. Phys. 29, 177-197 (1999).

[4] B. Bosshard. On the b-Boundary of the Closed Friedmann-Model. Comm. Math.
Phys. 46, 263-268 (1976).

[5] C. J. T. Dodson, L. J. Sulley. The b-boundary of S1 with a constant connection.
Lett. Math. Phys. 1, 301-307 (1976).

14



[6] H. Friedrich. Construction and properties of Space-Time b-Boundaries. Gen.
Relativity Gravitation. 5, 681-697 (1974).

[7] R. Geroch. What is a Singularity in General Relativity? Ann. Physics. 48,
526-540 (1968).

[8] J. Gruszczak, M. Heller, Z. Pogoda. Cauchy Boudary and b-Incompleteness of
Space-Time. International Journal of Theoretical Physics. 30, 555-565 (1991).

[9] S. W. Hawking, G.F.R. Ellis. The Large-Scale Structure of Spacetime. University
Press, Cambridge, (1973).

[10] R. A. Johnson. The bundle boundary in some special cases. J. Math. Phys. 18,
898-902 (1977).

[11] H. T. Laquer. Invariant affine connections on Lie Groups. Trans. AMS 331,
541-551 (1992).

[12] H. T. Laquer. Invariant affine connections on homogeneous spaces. Proc. AMS
115, 447-454 (1992).

[13] R. K. Sachs. Spacetime b-Boundaries. Comm. Math. Phys. 33, 215-220 (1973).

[14] B. G. Schmidt. A New Definition of Singular Points in General Relativity. Gen.
Relativity Gravitation. 1, 269-280 (1971).

[15] B. G. Schmidt. The local b-completeness of Space-times. Comm. Math. Phys.
29, 49-54 (1973).

15


