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Abstract. Nonimaging optics is a field that study optimal concentration of light
from a source distribution to a receiver. The relevant information is codified by a

field of cones at each point of the concentrator, formed by those rays that we want

to reach the receiver (perhaps after some reflections on the wall of the concentrator).
This suggests that we can use Lorentz geometry to analyze the problem. We will

establish a technique to design three dimensional ideal concentrators with arbitrary

media which generalize a previous one for the homogeneous case.

1. Introduction. A nonimaging concentrator is a device that transfers a light radiation from
an entry aperture to a receiver of less area such that the intensity of the radiation is higher

at the receiver. Mathematically it can be determined by giving the set of the admissible light

rays at each point of the aperture surface (usually a plane disc), the equation of the wall of the
concentrator, formed by a mirror, and the equation of the receiver where the concentration of

light achieves a maximum [7], [8]. At each point inside the concentrator the set of admissible light

rays is determined by a cone in the tangent space at that point, and it is possible to determine
the concentrator using Lorentz geometry. In this paper we consider the general case in which we

have an arbitrary refractive index media and we will establish a technique to design nonimaging

concentrator which generalize a previous one developed for the homogeneous case. The main
technical difficulty is to establish and analyze a system of first order partial differential equations

which models the problem.

A Lorentz metric on a manifold provides to each tangent space with a scalar product of signature
(−, +, . . . , +). This mean that the maximum dimension of the subspaces where the metric is

negative definite is 1. Formally it is close related to Riemannian Geometry but they have different

properties. Lorentz manifolds are used as the mathematical background for General Relativity
and, from a mathematical point of view, there is an increasing research interest in recent years.

One of the main properties of Lorentz Geometry is that it provides a field of cones on the manifold,
and this is the feature that we want to use in nonimaging optics.

There is a limit to the concentration of light and a concentrator which achieves this limit is

called ideal. They are characterized by the property that each point of the receiver has isotropic
illumination. At each point inside an ideal concentrator the cone of rays that will reach the receiver
is wider and wider as the points approximate the receiver, and it degenerates to a semispace just

at the points of the receiver. The problem of design ideal concentrators has a simpler version in
dimension 2. Once we have a solution in dimension 2 that has a symmetry with respect to an axis,

we can have a 3-dimensional concentrator making a rotation around the axis of symmetry, but in

general it will not be ideal. This is because we know the behavior of all light rays inside any plane
that contains the symmetry axis, but there are other “non vertical” rays. Thus it is interesting to

develop proper three dimensional methods such as the Lorentz geometry technique discussed in

this paper.
It is enough to consider the trajectories of the edge rays of the cones at each point because if

they reach the receiver then the inside rays of the cone at that point will also reach the receiver

1991 Mathematics Subject Classification. Primary: 78A05; Secondary: 53C50.
Key words and phrases. Nonimaging optics, Lorentz geometry, Christoffel symbols, Frobenius

theorem.

1



2 MANUEL GUTIÉRREZ

[8]. If we fix our attention to the trajectory of a light ray of the edge of the cone at a point it is
clear that it is a broken geodesic of the euclidean space R3 (in the homogeneous case), where there

is a broken point each time the ray reflects on the mirror. At each point of a smooth segment of
the trajectory, the ray remains in the edge of the cone in that point. In Lorentz geometry this

means that it is a lightlike curve for an appropriate Lorentz metric. After the first reflection, it

is not guaranteed that the ray remains on the edge of the cone at the reflection point and this
would force us to consider a different cone at this reflection point. In the non-homogeneous case

the same argument applies with a suitable metric in R3 conformal to the euclidean metric.

To avoid this difficulty we only consider concentrators with the property that the field of cones
is invariant by the (two sided mirror) wall of the concentrator, or equivalently, the reflected ray

of any lightlike ray remains being a lightlike ray of the same Lorentz metric. This is called the

detailed balance property [9].

2. Lorentz geometry approach. Let (M, g) be a Lorentz manifold where M is an open set in

R3. Recall that this means that g is a symmetric twice covariant tensor field on M such that at

each point p ∈ M , the bilinear form gp : TpM × TpM → R is not degenerate and has signature
(−, +, +). As usual, a vector v ∈ TpM is called timelike if g(v, v) < 0, lightlike if g(v, v) = 0 and

v 6= 0, and spacelike if g(v, v) > 0 or v = 0, and it is know as the causal character of the vector v.

If γ : R → M is a C1 curve, then it is called timelike, lightlike or spacelike if all its tangent vectors
has the corresponding causal character. The set of lightlike vectors in TpM forms the light cone

at p [6].

Let (x1, x2, x3) be the standard chart in R3, and G(p) the matrix which represent gp in the

coordinate basis Bp = ( ∂
∂x1 |p

, ∂
∂x2 |p

, ∂
∂x3 |p

). Let δ be the euclidean metric on R3. The matrix

G can be diagonalized, leading to a matrix G′ = diag(λ1, λ2, λ3) where one of the eigenvalues is

negative, say λ1, and the other two positives. Let B′ = (J, U, V ) be the δ-orthonormal basis of
eigenvectors of G. Changing the order of U and V if it were necessary, we can assume that B and

B′ are related by a rotation at each point.

Let v ∈ TpM be a lightlike vector, v =
∑3

i=1 yi
∂

∂xi |p
. The condition g(v, v) = 0 can be

expressed in the basis B′ by the equation

λ1y2
1 + λ2y2

2 + λ3y2
3 = 0

which is the equation of a cone with axis in the direction of J . The intersection of this cone with

the hyperplane y1 = 1 gives the ellipse

λ2y2
2 + λ3y2

3 = −λ1

with semiaxis
√

−λ1
λ2

in the U direction and
√

−λ1
λ3

in the V direction. Thus the Lorentz metric

g provides a field of elliptic cones on M whose principal elements are codified by the eigensystem
of G.

A key fact in this approach is that the edge rays of the cone at each point must be lightlike

curves of the Lorentz metric, but these edge rays are true light rays, and then, by the Fermat
principle, their trajectories are geodesic of the metric r2δ where r is the refractive index function

on M . This imposes the following condition to the Lorentz metric g called the restricted optical

condition: Every lightlike geodesic of the Lorentz metric must be a geodesic of the metric r2δ.
Here the word “restricted” is used to distinguish with the optical condition that assert that every

lightlike geodesic of the Lorentz metric must be a pregeodesic of the metric r2δ.

Let ∇ be the Levi-Civita connection of g, and Γk
ijthe Christoffel symbols of ∇ in the canonical

basis B, and ∇, Γ
k
ij the Levi-Civita and the Chirstoffel symbols of the metric r2δ in the same

basis. Let Γk and Γ
k

be the matrices formed with the corresponding Christoffel symbols. Let
γ = (γ1, γ2, γ3) be a differentiable curve in M . Then the restricted optical condition may be

rewritten as the following matrix condition

..
γ

k
+

.
γ Γk

.
γ= 0

.
γ G

.
γ= 0

}
⇒

..
γ

k
+

.
γ Γ

k .
γ= 0. (1)

Metrics satisfying the above condition form a wide class including all types of signatures, thus

we will impose that the metric be Lorentz in a suitable open set M of R3.
From the above analysis of the field of cones of a Lorentz metric, it is clear that the concentrator

is ideal if for each point p of the receiver, limx→p
−λ1
λi

= +∞, i = 1, 2. This gives us a tool in
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order to determine the surface of the receiver. Another consequence of the analysis is that for a
concentrator with rotational symmetry around the x1-axis whose generator curve is an integral

curve of J , the detailed balance holds.

3. The restricted optical equation. There are some solutions to the three dimensional ideal

concentrator design in the non-homogeneous case using other techniques, see [3] and [4]. As far

as we know, the most important case for applications is when M has constant refractive index
(the homogeneous case). This case has well known solutions, some of then has been obtained

using the Lorentz geometry technique. Here we generalize this technique establishing the optical

equations for arbitrary (positive) refractive index function and their integrability conditions. We
will give a solution to the integrability condition in the important case in which the refractive

index function is symmetric around the x1-axis. The optical equation forms a system of eighteen

first order partial differential equation whose general solution for the homogeneous case was found
in [2].

The restricted optical condition (1) can be equivalently expressed with the following system

called the restricted optical equation

Γk = Γ
k

+ fkG, k ∈ {1, 2, 3}, (2)

where Γ
k

is the matrix formed by the Christoffel symbols of the metric r2δ in the standard chart,

Γ
k
ij =

1

2n

(
−

∂n

∂xi
δjk −

∂n

∂xj
δki +

∂n

∂xk
δij

)
, i, j, k ∈ {1, 2, 3}, (3)

being n = r−2 the square of the speed of light in the media, and fk are coefficient functions on

M to be determined. Let H ∈ Λ1(M, gl(3, R)) be the one-form given by

H = dxf t + fdxt, (4)

where dx =

 dx1

dx2

dx3

 and f =

 f1

f2

f3

, and let A ∈ Λ1(M, gl(3, R)) be the connection form of

r2δ in the coordinate basis B, A =
∑3

i=1 dxiΓi, being Γi =
(
Γ

k
ij

)
the matrix whose element in

the j-row and k-column is given by Γ
k
ij . Then the restricted optical equation is equivalent to the

following Pfaff system,

$ = dG−GHG−AG−GAt = 0. (5)

Note that the homogeneous case corresponds to A = 0.

The 2-form dA − A ∧ A is skewsymmetric, that is, dA − A ∧ A ∈ Λ1(M, o(3, R)). In fact,

write A =
∑3

i=1 dxiΓi as A = α0I + α1E1 + α2E2 + α3E3 for suitable 1-forms αi, where I is the

identity matrix, and E1 =

 0 −1 0
1 0 0

0 0 0

, E2 =

 0 0 −1
0 0 0

1 0 0

, E3 =

 0 0 0
0 0 −1

0 1 0

 is

the standard basis of the Lie algebra o(3, R). A direct computation gives

dA−A ∧A = (dα1 − α2 ∧ α3)E1 + (dα2 − α3 ∧ α1)E2 + (dα3 − α1 ∧ α2)E3.

Using the fact that if A ∈ Λr(Rn, gl(n, R)), B ∈ Λs(Rn, gl(n, R)) are gl(n, R)-valued r and s

forms, then (A∧B)t = (−1)rsBt∧At, and taking the exterior derivative in both sides of equation

(5), we get

d$ = (GH + A) ∧$ −$ ∧ (GH + A)−
−G(dH + At ∧H −H ∧A)G− (dA−A ∧A)G + G(dA−A ∧A)

thus, using the Frobenius theorem [1], the integrability conditions may be expressed imposing that

the coefficients of the six second degree polynomials in the six unknown gij , given by

G(dH + At ∧H −H ∧A)G + (dA−A ∧A)G−G(dA−A ∧A)

must be identically null. The coefficients of the second order terms are clear. For the other terms

it is immediate that the matrix dA− A ∧ A commutes with the unknown symmetric matrix G if
and only if dA−A ∧A is proportional to the identity, but being skewsymmetric, it must be zero.
This leads us to the integrability conditions

dH + At ∧H −H ∧A = 0
dA−A ∧A = 0.

}
(6)
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Note that the second equation involves only the refractive index function r whereas the first
one involves r and f i.

An important family of solutions of (6) can be obtained assuming rotational symmetry for the
refractive index function. This is equivalent to

n(x1, x2, x3) = t(x1, x2
2 + x2

3) (7)

for some differentiable function t : R2→ R. Writing the second equation of (6) in the standard
chart and using (7), after a straightforward computation we obtain the following solution

n(x1, x2, x3) = eb
(
4(x2

1 + x2
2 + x2

3) + (4x1 + c)c
)2

(8)

being b, c ∈ R, such that (− c
2
, 0, 0) /∈ M . Introducing this function in the first equation of (6) we

get

f1(x1, x2, x3) = a(x1 +
c

2
) (9)

f2(x1, x2, x3) = ax2

f3(x1, x2, x3) = ax3

where a ∈ R.
Because we are looking for a solution G on M where it is not singular, taking into account

that G−1dG = −dG−1G, the equation (5) is equivalent to the following linear equation in the

component of G−1 as unknown

dG−1 + H + G−1A + AtG−1 = 0 (10)

Once we have a solution of this system, the technique to construct the concentrator follows the
same steps than in the homogeneous case below and we will not describe it here. We point out

that such a solution must satisfy some additional properties to determine an ideal concentrator.

4. The homogeneous case. Without loss of generality we can suppose n = 1. The euclidean

metric has null Christoffel symbols in the coordinate basis B, thus, the restricted optical equation
in this case is

Γk = fkG, k ∈ {1, 2, 3} (11)

and the Pfaff system becomes equivalent to

$ = dG + GHG = 0. (12)

Using the Frobenius theorem we have the integrability conditions dH = 0, that is,

f1 = ax1 + b1 (13)

f2 = ax2 + b2

f3 = ax3 + b3

where a, bi ∈ R3.

The system (12) is equivalent to that in (10) making A = 0, that it to say, dG−1 = −H, and it

can be solved by quadratures taking into account (13). In order to simplify the solution we impose
rotational symmetry around the x1-axis, obtaining the following solution

G =
1

|G−1|

 −am(x2
2 + x2

3) + m2 (ax1 + b)mx2 (ax1 + b)mx3

(ax1 + b)mx2 h(x1, x3) (ad + b2)x2x3

(ax1 + b)mx3 (ad + b2)x2x3 h(x1, x2)


where h(y, z) = −(ay2+2by−d)m−(ad+b2)z2,

∣∣G−1
∣∣ = −(ax2

1+2bx1−d)m2−(ad+b2)m(x2
2+x2

3),

and a, b, d, m are real parameters to be determined such that G is a Lorentz metric.
The matrix G has a constant eigenvalue 1

m
, thus if we take m > 0, then g cannot be negative

definite and the open set where g is Lorentz is M =
∣∣G−1

∣∣ < 0. After the discussion about
the role of the eigenvalues of G in the determination of the receiver in order to be an ideal

concentrator, it is clear that the natural candidate to be this surface must be contained in the

quadric
∣∣G−1

∣∣ = −(ax2
1 + 2bx1 − d)m2 − (ad + b2)m(x2

2 + x2
3) = 0. If we call µ1, µ2, µ3 the

eigenvalues of G−1 taking the first negative and the other two positives on M , it is easy to see
that at each point of the above quadric we have

µ1 = 0

µ2 =
1

m

(
(ad + b2 − am)(x2

2 + x2
3) + m2

)
µ3 = m
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this mean that the surface of the receiver must be contained in the region, which is called virtual
entry aperture, determined by the conditions ∣∣G−1

∣∣ = 0 (14)

(ad + b2 − am)(x2
2 + x2

3) + m2 > 0

to guarantee that the concentrator, if it exist, be ideal.
Using the axial symmetry of g around the x1-axis, it is easy to see that at each point p ∈ M

the eigenvector V associated with λ3 = 1
m

is tangent to the horizontal circle with center in the

x1-axis which contains p. Thus taking an integral curve of J as the generator of the revolution
surface that forms the wall of the concentrator, it will satisfy the detailed balance property.

The following table summarizes the parameter combinations that makes g to be Lorentz on∣∣G−1
∣∣ < 0.

Case a m ad + b2 ad + b2 − am virtual entry aperture

1 + + 0 Disk r =
√

m
a

2 0 + + Paraboloid
3 - + + Two-sheet hyperboloid

4 + + + + Ellipsoid (major axis on x1)

4.5 + + + 0 Sphere
5 + + + - Ellipsoid (minor axis on x1)

6 + + - Empty

7 - - - Empty

Classification of Lorentz metrics that satisfy the restricted optical condition and has
rotational symmetry around the x1-axis.

The case 4.5 is the intermediate case between 4 and 5. The cases 6 and 7 have the same

quadric
∣∣G−1

∣∣ = 0 which is a one-sheet hyperboloid, but in both cases they have empty virtual
entry aperture. In 6 the open set M is the region that contains the x1-axis. The case 7 has the

parameter value m < 0, and the metric g is Lorentz in the region which does not contain the

x1-axis. Neither of the two define properly a concentrator because the rays inside the cone at
each point of M do not reach the quadric

∣∣G−1
∣∣ = 0. A similar situation has been used to design

light-confining cavities in photovoltaic applications [5].

All other cases define a concentrator. To obtain the equation of the wall we use the flowline
technique [8]. Let p be a point in M that does not belong to the x1-axis and α an integral curve

of the eigenvector J through p such that it has a limit point in the receiver. The wall of the
concentrator can be obtained as the surface of revolution around the x1-axis that has the curve α

as a generator. Then any ray at a point p inside the concentrator and directed toward an arbitrary

point of the virtual entry aperture is a ray inside the cone at p, and thus it will reach the receiver
directly or after reflections. Reciprocally, any ray reaching any point of the receiver is a ray that

comes from inside the cone at each point of its trajectory, because the receiver is illuminated

isotropically by the family of rays forming the field of cones of the Lorentz metric. In cases 2 - 5,
the quadric

∣∣G−1
∣∣ = 0 and the wall intersects a meridian plane (a plane containing the x1-axis)

forming two confocal conics. See [2] for more details. Case 1 is the flow line concentrator FLC,

and Case 4.5 is the cone concentrator, CC. Both are well known and they was previously obtained
with a different technique [8].
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